1
|
Chin M, Kaeser PS. On the targeting of voltage-gated calcium channels to neurotransmitter release sites. Curr Opin Neurobiol 2024; 89:102931. [PMID: 39500143 PMCID: PMC11718439 DOI: 10.1016/j.conb.2024.102931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 11/13/2024]
Abstract
At the presynaptic active zone, voltage-gated Ca2+ channels (CaVs) mediate Ca2+ entry for neurotransmitter release. CaVs are a large family of proteins, and different subtypes have distinct localizations across neuronal somata, dendrites and axons. Here, we review how neurons establish and maintain a specific CaV repertoire at their active zones. We focus on molecular determinants for cargo assembly, presynaptic delivery and release site tethering, and we discuss recent work that has identified key roles of the CaV intracellular C-terminus. Finally, we evaluate how these mechanisms may differ between different types of neurons. Work on CaVs provides insight into the protein targeting pathways that help maintain neuronal polarity.
Collapse
Affiliation(s)
- Morven Chin
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Guzikowski NJ, Kavalali ET. Functional specificity of liquid-liquid phase separation at the synapse. Nat Commun 2024; 15:10103. [PMID: 39572583 PMCID: PMC11582584 DOI: 10.1038/s41467-024-54423-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
The mechanisms that enable synapses to achieve temporally and spatially precise signaling at nano-scale while being fluid with the cytosol are poorly understood. Liquid-liquid phase separation (LLPS) is emerging as a key principle governing subcellular organization; however, the impact of synaptic LLPS on neurotransmission is unclear. Here, using rat primary hippocampal cultures, we show that robust disruption of neuronal LLPS with aliphatic alcohols severely dysregulates action potential-dependent neurotransmission, while spontaneous neurotransmission persists. Synaptic LLPS maintains synaptic vesicle pool clustering and recycling as well as the precise organization of active zone RIM1/2 and Munc13 nanoclusters, thus supporting fast evoked Ca2+-dependent release. These results indicate although LLPS is necessary within the nanodomain of the synapse, the disruption of this nano-organization largely spares spontaneous neurotransmission. Therefore, properties of in vitro micron sized liquid condensates translate to the nano-structure of the synapse in a functionally specific manner regulating action potential-evoked release.
Collapse
Affiliation(s)
- Natalie J Guzikowski
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
3
|
Martinez-Mayer J, Vishnopolska S, Perticarari C, Iglesias Garcia L, Hackbartt M, Martinez M, Zaiat J, Jacome-Alvarado A, Braslavsky D, Keselman A, Bergadá I, Marino R, Ramírez P, Pérez Garrido N, Ciaccio M, Di Palma MI, Belgorosky A, Forclaz MV, Benzrihen G, D'Amato S, Cirigliano ML, Miras M, Paez Nuñez A, Castro L, Mallea-Gil MS, Ballarino C, Latorre-Villacorta L, Casiello AC, Hernandez C, Figueroa V, Alonso G, Morin A, Guntsche Z, Lee H, Lee E, Song Y, Marti MA, Perez-Millan MI. Exome Sequencing Has a High Diagnostic Rate in Sporadic Congenital Hypopituitarism and Reveals Novel Candidate Genes. J Clin Endocrinol Metab 2024; 109:3196-3210. [PMID: 38717911 DOI: 10.1210/clinem/dgae320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 06/23/2024]
Abstract
CONTEXT The pituitary gland is key for childhood growth, puberty, and metabolism. Pituitary dysfunction is associated with a spectrum of phenotypes, from mild to severe. Congenital hypopituitarism (CH) is the most commonly reported pediatric endocrine dysfunction, with an incidence of 1:4000, yet low rates of genetic diagnosis have been reported. OBJECTIVE We aimed to unveil the genetic etiology of CH in a large cohort of patients from Argentina. METHODS We performed whole exome sequencing of 137 unrelated cases of CH, the largest cohort examined with this method to date. RESULTS Of the 137 cases, 19.1% and 16% carried pathogenic or likely pathogenic variants in known and new genes, respectively, while 28.2% carried variants of uncertain significance. This high yield was achieved through the integration of broad gene panels (genes described in animal models and/or other disorders), an unbiased candidate gene screen with a new bioinformatics pipeline (including genes with high loss-of-function intolerance), and analysis of copy number variants. Three novel findings emerged. First, the most prevalent affected gene encodes the cell adhesion factor ROBO1. Affected children had a spectrum of phenotypes, consistent with a role beyond pituitary stalk interruption syndrome. Second, we found that CHD7 mutations also produce a phenotypic spectrum, not always associated with full CHARGE syndrome. Third, we add new evidence of pathogenicity in the genes PIBF1 and TBC1D32, and report 13 novel candidate genes associated with CH (eg, PTPN6, ARID5B). CONCLUSION Overall, these results provide an unprecedented insight into the diverse genetic etiology of hypopituitarism.
Collapse
Affiliation(s)
- Julian Martinez-Mayer
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
| | - Sebastian Vishnopolska
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
| | - Catalina Perticarari
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
| | - Lucia Iglesias Garcia
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
| | - Martina Hackbartt
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
| | - Marcela Martinez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, C1428EHA, Ciudad de Buenos Aires, Argentina
| | - Jonathan Zaiat
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, C1428EHA, Ciudad de Buenos Aires, Argentina
| | - Andrea Jacome-Alvarado
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
| | - Debora Braslavsky
- Centro de Investigaciones "Dr. Cesar Bergadá" (CEDIE)-CONICET-FEI-División Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina
| | - Ana Keselman
- Centro de Investigaciones "Dr. Cesar Bergadá" (CEDIE)-CONICET-FEI-División Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina
| | - Ignacio Bergadá
- Centro de Investigaciones "Dr. Cesar Bergadá" (CEDIE)-CONICET-FEI-División Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina
| | - Roxana Marino
- Servicio de Endocrinología-CONICET, Hospital de Pediatría Prof. Dr. J. P. Garrahan, C1245AAM, Buenos Aires, Argentina
| | - Pablo Ramírez
- Servicio de Endocrinología-CONICET, Hospital de Pediatría Prof. Dr. J. P. Garrahan, C1245AAM, Buenos Aires, Argentina
| | - Natalia Pérez Garrido
- Servicio de Endocrinología-CONICET, Hospital de Pediatría Prof. Dr. J. P. Garrahan, C1245AAM, Buenos Aires, Argentina
| | - Marta Ciaccio
- Servicio de Endocrinología-CONICET, Hospital de Pediatría Prof. Dr. J. P. Garrahan, C1245AAM, Buenos Aires, Argentina
| | - Maria Isabel Di Palma
- Servicio de Endocrinología-CONICET, Hospital de Pediatría Prof. Dr. J. P. Garrahan, C1245AAM, Buenos Aires, Argentina
| | - Alicia Belgorosky
- Servicio de Endocrinología-CONICET, Hospital de Pediatría Prof. Dr. J. P. Garrahan, C1245AAM, Buenos Aires, Argentina
| | - Maria Veronica Forclaz
- Servicio de Endocrinología Pediátrica, Hospital Nacional Profesor Alejandro Posadas, 1684, Buenos Aires, Argentina
| | - Gabriela Benzrihen
- Servicio de Endocrinología Pediátrica, Hospital Nacional Profesor Alejandro Posadas, 1684, Buenos Aires, Argentina
| | - Silvia D'Amato
- Servicio de Endocrinología Pediátrica, Hospital Nacional Profesor Alejandro Posadas, 1684, Buenos Aires, Argentina
| | - Maria Lujan Cirigliano
- Servicio de Endocrinología Pediátrica, Hospital Nacional Profesor Alejandro Posadas, 1684, Buenos Aires, Argentina
| | - Mirta Miras
- Hospital De Niños de la Santísima Trinidad, CP5000, Córdoba, Argentina
- Centro Privado de Endocrinologia Infanto Juvenil Crecer, CP5000, Cordoba, Argentina
| | - Alejandra Paez Nuñez
- Centro Privado de Endocrinologia Infanto Juvenil Crecer, CP5000, Cordoba, Argentina
| | - Laura Castro
- Hospital De Niños de la Santísima Trinidad, CP5000, Córdoba, Argentina
| | | | - Carolina Ballarino
- Servicio de Endocrinología, Hospital Militar Central, C1426BOS, Buenos Aires, Argentina
| | | | - Ana Clara Casiello
- Servicio de Endocrinología, Hospital General de Niños Pedro de Elizalde, C1270AAN, Buenos Aires, Argentina
| | - Claudia Hernandez
- Servicio de Endocrinología, Hospital General de Niños Pedro de Elizalde, C1270AAN, Buenos Aires, Argentina
| | - Veronica Figueroa
- Servicio de Endocrinología, Hospital General de Niños Pedro de Elizalde, C1270AAN, Buenos Aires, Argentina
| | - Guillermo Alonso
- Sección Endocrinología Pediátrica, Hospital Italiano, C1199ABB, Buenos Aires, Argentina
| | - Analia Morin
- Sala de Endocrinología, Hospital de Niños Sor Maria Ludovica de La Plata, B1904, La Plata, Argentina
| | | | - Hane Lee
- 3Billion Inc., 14th, 416 Teheran-ro, Gangnam-gu, Seoul, South Korea
| | - Eugene Lee
- 3Billion Inc., 14th, 416 Teheran-ro, Gangnam-gu, Seoul, South Korea
| | - Yongjun Song
- 3Billion Inc., 14th, 416 Teheran-ro, Gangnam-gu, Seoul, South Korea
| | - Marcelo Adrian Marti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, C1428EHA, Ciudad de Buenos Aires, Argentina
| | - Maria Ines Perez-Millan
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
4
|
Emperador-Melero J, Andersen JW, Metzbower SR, Levy AD, Dharmasri PA, de Nola G, Blanpied TA, Kaeser PS. Distinct active zone protein machineries mediate Ca 2+ channel clustering and vesicle priming at hippocampal synapses. Nat Neurosci 2024; 27:1680-1694. [PMID: 39160372 PMCID: PMC11682530 DOI: 10.1038/s41593-024-01720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
Action potentials trigger neurotransmitter release at the presynaptic active zone with spatiotemporal precision. This is supported by protein machinery that mediates synaptic vesicle priming and clustering of CaV2 Ca2+ channels nearby. One model posits that scaffolding proteins directly tether vesicles to CaV2s; however, here we find that at mouse hippocampal synapses, CaV2 clustering and vesicle priming are executed by separate machineries. CaV2 nanoclusters are positioned at variable distances from those of the priming protein Munc13. The active zone organizer RIM anchors both proteins but distinct interaction motifs independently execute these functions. In transfected cells, Liprin-α and RIM form co-assemblies that are separate from CaV2-organizing complexes. At synapses, Liprin-α1-Liprin-α4 knockout impairs vesicle priming but not CaV2 clustering. The cell adhesion protein PTPσ recruits Liprin-α, RIM and Munc13 into priming complexes without co-clustering CaV2s. We conclude that active zones consist of distinct machineries to organize CaV2s and prime vesicles, and Liprin-α and PTPσ specifically support priming site assembly.
Collapse
Affiliation(s)
| | | | - Sarah R Metzbower
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aaron D Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Poorna A Dharmasri
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Giovanni de Nola
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Jánosi B, Liewald JF, Seidenthal M, Yu SC, Umbach S, Redzovic J, Rentsch D, Alcantara IC, Bergs ACF, Schneider MW, Shao J, Gottschalk A. RIM and RIM-Binding Protein Localize Synaptic CaV2 Channels to Differentially Regulate Transmission in Neuronal Circuits. J Neurosci 2024; 44:e0535222024. [PMID: 38951038 PMCID: PMC11293454 DOI: 10.1523/jneurosci.0535-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 07/03/2024] Open
Abstract
At chemical synapses, voltage-gated Ca2+ channels (VGCCs) translate electrical signals into a trigger for synaptic vesicle (SV) fusion. VGCCs and the Ca2+ microdomains they elicit must be located precisely to primed SVs to evoke rapid transmitter release. Localization is mediated by Rab3-interacting molecule (RIM) and RIM-binding proteins, which interact and bind to the C terminus of the CaV2 VGCC α-subunit. We studied this machinery at the mixed cholinergic/GABAergic neuromuscular junction of Caenorhabditis elegans hermaphrodites. rimb-1 mutants had mild synaptic defects, through loosening the anchoring of UNC-2/CaV2 and delaying the onset of SV fusion. UNC-10/RIM deletion much more severely affected transmission. Although postsynaptic depolarization was reduced, rimb-1 mutants had increased cholinergic (but reduced GABAergic) transmission, to compensate for the delayed release. This did not occur when the excitation-inhibition (E-I) balance was altered by removing GABA transmission. Further analyses of GABA defective mutants and GABAA or GABAB receptor deletions, as well as cholinergic rescue of RIMB-1, emphasized that GABA neurons may be more affected than cholinergic neurons. Thus, RIMB-1 function differentially affects excitation-inhibition balance in the different motor neurons, and RIMB-1 thus may differentially regulate transmission within circuits. Untethering the UNC-2/CaV2 channel by removing its C-terminal PDZ ligand exacerbated the rimb-1 defects, and similar phenotypes resulted from acute degradation of the CaV2 β-subunit CCB-1. Therefore, untethering of the CaV2 complex is as severe as its elimination, yet it does not abolish transmission, likely due to compensation by CaV1. Thus, robustness and flexibility of synaptic transmission emerge from VGCC regulation.
Collapse
Affiliation(s)
- Barbara Jánosi
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt D-60438, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt D-60438, Germany
| | - Jana F Liewald
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt D-60438, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt D-60438, Germany
| | - Marius Seidenthal
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt D-60438, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt D-60438, Germany
| | - Szi-Chieh Yu
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt D-60438, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt D-60438, Germany
| | - Simon Umbach
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt D-60438, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt D-60438, Germany
| | - Jasmina Redzovic
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt D-60438, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt D-60438, Germany
| | - Dennis Rentsch
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt D-60438, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt D-60438, Germany
| | - Ivan C Alcantara
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt D-60438, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt D-60438, Germany
| | - Amelie C F Bergs
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt D-60438, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt D-60438, Germany
| | - Martin W Schneider
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt D-60438, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt D-60438, Germany
| | - Jiajie Shao
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt D-60438, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt D-60438, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt D-60438, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt D-60438, Germany
| |
Collapse
|
6
|
Chin M, Kaeser PS. The intracellular C-terminus confers compartment-specific targeting of voltage-gated calcium channels. Cell Rep 2024; 43:114428. [PMID: 38996073 PMCID: PMC11441329 DOI: 10.1016/j.celrep.2024.114428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
To achieve the functional polarization that underlies brain computation, neurons sort protein material into distinct compartments. Ion channel composition, for example, differs between axons and dendrites, but the molecular determinants for their polarized trafficking remain obscure. Here, we identify mechanisms that target voltage-gated Ca2+ channels (CaVs) to distinct subcellular compartments. In hippocampal neurons, CaV2s trigger neurotransmitter release at the presynaptic active zone, and CaV1s localize somatodendritically. After knockout of all three CaV2s, expression of CaV2.1, but not CaV1.3, restores neurotransmitter release. We find that chimeric CaV1.3s with CaV2.1 intracellular C-termini localize to the active zone, mediate synaptic vesicle exocytosis, and render release sensitive to CaV1 blockers. This dominant targeting function of the CaV2.1 C-terminus requires the first EF hand in its proximal segment, and replacement of the CaV2.1 C-terminus with that of CaV1.3 abolishes CaV2.1 active zone localization and function. We conclude that CaV intracellular C-termini mediate compartment-specific targeting.
Collapse
Affiliation(s)
- Morven Chin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Belghazi M, Iborra C, Toutendji O, Lasserre M, Debanne D, Goaillard JM, Marquèze-Pouey B. High-Resolution Proteomics Unravel a Native Functional Complex of Cav1.3, SK3, and Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels in Midbrain Dopaminergic Neurons. Cells 2024; 13:944. [PMID: 38891076 PMCID: PMC11172389 DOI: 10.3390/cells13110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Pacemaking activity in substantia nigra dopaminergic neurons is generated by the coordinated activity of a variety of distinct somatodendritic voltage- and calcium-gated ion channels. We investigated whether these functional interactions could arise from a common localization in macromolecular complexes where physical proximity would allow for efficient interaction and co-regulations. For that purpose, we immunopurified six ion channel proteins involved in substantia nigra neuron autonomous firing to identify their molecular interactions. The ion channels chosen as bait were Cav1.2, Cav1.3, HCN2, HCN4, Kv4.3, and SK3 channel proteins, and the methods chosen to determine interactions were co-immunoprecipitation analyzed through immunoblot and mass spectrometry as well as proximity ligation assay. A macromolecular complex composed of Cav1.3, HCN, and SK3 channels was unraveled. In addition, novel potential interactions between SK3 channels and sclerosis tuberous complex (Tsc) proteins, inhibitors of mTOR, and between HCN4 channels and the pro-degenerative protein Sarm1 were uncovered. In order to demonstrate the presence of these molecular interactions in situ, we used proximity ligation assay (PLA) imaging on midbrain slices containing the substantia nigra, and we could ascertain the presence of these protein complexes specifically in substantia nigra dopaminergic neurons. Based on the complementary functional role of the ion channels in the macromolecular complex identified, these results suggest that such tight interactions could partly underly the robustness of pacemaking in dopaminergic neurons.
Collapse
Affiliation(s)
- Maya Belghazi
- CRN2M Centre de Recherche Neurobiologie-Neurophysiologie, CNRS, UMR7286, Aix-Marseille Université, 13015 Marseille, France;
- Institut de Microbiologie de la Méditerranée (IMM), CNRS, Aix-Marseille Université, 13009 Marseille, France
| | - Cécile Iborra
- Ion Channel and Synaptic Neurobiology, INSERM, UMR1072, Aix-Marseille Université, 13015 Marseille, France; (C.I.); (O.T.); (M.L.); (D.D.); (J.-M.G.)
| | - Ophélie Toutendji
- Ion Channel and Synaptic Neurobiology, INSERM, UMR1072, Aix-Marseille Université, 13015 Marseille, France; (C.I.); (O.T.); (M.L.); (D.D.); (J.-M.G.)
| | - Manon Lasserre
- Ion Channel and Synaptic Neurobiology, INSERM, UMR1072, Aix-Marseille Université, 13015 Marseille, France; (C.I.); (O.T.); (M.L.); (D.D.); (J.-M.G.)
| | - Dominique Debanne
- Ion Channel and Synaptic Neurobiology, INSERM, UMR1072, Aix-Marseille Université, 13015 Marseille, France; (C.I.); (O.T.); (M.L.); (D.D.); (J.-M.G.)
| | - Jean-Marc Goaillard
- Ion Channel and Synaptic Neurobiology, INSERM, UMR1072, Aix-Marseille Université, 13015 Marseille, France; (C.I.); (O.T.); (M.L.); (D.D.); (J.-M.G.)
- Institut de Neurosciences de la Timone, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Béatrice Marquèze-Pouey
- Ion Channel and Synaptic Neurobiology, INSERM, UMR1072, Aix-Marseille Université, 13015 Marseille, France; (C.I.); (O.T.); (M.L.); (D.D.); (J.-M.G.)
| |
Collapse
|
8
|
Miyano R, Sakamoto H, Hirose K, Sakaba T. RIM-BP2 regulates Ca 2+ channel abundance and neurotransmitter release at hippocampal mossy fiber terminals. eLife 2024; 12:RP90799. [PMID: 38329474 PMCID: PMC10945523 DOI: 10.7554/elife.90799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Synaptic vesicles dock and fuse at the presynaptic active zone (AZ), the specialized site for transmitter release. AZ proteins play multiple roles such as recruitment of Ca2+ channels as well as synaptic vesicle docking, priming, and fusion. However, the precise role of each AZ protein type remains unknown. In order to dissect the role of RIM-BP2 at mammalian cortical synapses having low release probability, we applied direct electrophysiological recording and super-resolution imaging to hippocampal mossy fiber terminals of RIM-BP2 knockout (KO) mice. By using direct presynaptic recording, we found the reduced Ca2+ currents. The measurements of excitatory postsynaptic currents (EPSCs) and presynaptic capacitance suggested that the initial release probability was lowered because of the reduced Ca2+ influx and impaired fusion competence in RIM-BP2 KO. Nevertheless, larger Ca2+ influx restored release partially. Consistent with presynaptic recording, STED microscopy suggested less abundance of P/Q-type Ca2+ channels at AZs deficient in RIM-BP2. Our results suggest that the RIM-BP2 regulates both Ca2+ channel abundance and transmitter release at mossy fiber synapses.
Collapse
Affiliation(s)
- Rinako Miyano
- Graduate School of Brain Science, Doshisha UniversityKyotoJapan
| | - Hirokazu Sakamoto
- Department of Pharmacology, Graduate School of Medicine, The University of TokyoBunkyo-kuJapan
| | - Kenzo Hirose
- Department of Pharmacology, Graduate School of Medicine, The University of TokyoBunkyo-kuJapan
- International Research Center for Neurointelligence (WPI-IRCN), The University of TokyoBunkyo-kuJapan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha UniversityKyotoJapan
| |
Collapse
|
9
|
LaBianca S, Brikell I, Helenius D, Loughnan R, Mefford J, Palmer CE, Walker R, Gådin JR, Krebs M, Appadurai V, Vaez M, Agerbo E, Pedersen MG, Børglum AD, Hougaard DM, Mors O, Nordentoft M, Mortensen PB, Kendler KS, Jernigan TL, Geschwind DH, Ingason A, Dahl AW, Zaitlen N, Dalsgaard S, Werge TM, Schork AJ. Polygenic profiles define aspects of clinical heterogeneity in attention deficit hyperactivity disorder. Nat Genet 2024; 56:234-244. [PMID: 38036780 PMCID: PMC11439085 DOI: 10.1038/s41588-023-01593-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/25/2023] [Indexed: 12/02/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a complex disorder that manifests variability in long-term outcomes and clinical presentations. The genetic contributions to such heterogeneity are not well understood. Here we show several genetic links to clinical heterogeneity in ADHD in a case-only study of 14,084 diagnosed individuals. First, we identify one genome-wide significant locus by comparing cases with ADHD and autism spectrum disorder (ASD) to cases with ADHD but not ASD. Second, we show that cases with ASD and ADHD, substance use disorder and ADHD, or first diagnosed with ADHD in adulthood have unique polygenic score (PGS) profiles that distinguish them from complementary case subgroups and controls. Finally, a PGS for an ASD diagnosis in ADHD cases predicted cognitive performance in an independent developmental cohort. Our approach uncovered evidence of genetic heterogeneity in ADHD, helping us to understand its etiology and providing a model for studies of other disorders.
Collapse
Affiliation(s)
- Sonja LaBianca
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Isabell Brikell
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark
| | - Dorte Helenius
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Robert Loughnan
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Joel Mefford
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Clare E Palmer
- Center for Human Development, University of California, San Diego, La Jolla, CA, USA
| | - Rebecca Walker
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jesper R Gådin
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Morten Krebs
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Vivek Appadurai
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Morteza Vaez
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Esben Agerbo
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Marianne Giørtz Pedersen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - David M Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Aarhus, Denmark
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Copenhagen Mental Health Center, Mental Health Services Capital Region of Denmark Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Preben Bo Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Kenneth S Kendler
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Terry L Jernigan
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
- Center for Human Development, University of California, San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Daniel H Geschwind
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrés Ingason
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Andrew W Dahl
- Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
| | - Noah Zaitlen
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Søren Dalsgaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Thomas M Werge
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark.
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Andrew J Schork
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark.
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark.
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA.
| |
Collapse
|
10
|
Kazemein Jasemi NS, Mehrabipour M, Magdalena Estirado E, Brunsveld L, Dvorsky R, Ahmadian MR. Functional Classification and Interaction Selectivity Landscape of the Human SH3 Domain Superfamily. Cells 2024; 13:195. [PMID: 38275820 PMCID: PMC10814857 DOI: 10.3390/cells13020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
SRC homology 3 (SH3) domains are critical interaction modules that orchestrate the assembly of protein complexes involved in diverse biological processes. They facilitate transient protein-protein interactions by selectively interacting with proline-rich motifs (PRMs). A database search revealed 298 SH3 domains in 221 human proteins. Multiple sequence alignment of human SH3 domains is useful for phylogenetic analysis and determination of their selectivity towards PRM-containing peptides (PRPs). However, a more precise functional classification of SH3 domains is achieved by constructing a phylogenetic tree only from PRM-binding residues and using existing SH3 domain-PRP structures and biochemical data to determine the specificity within each of the 10 families for particular PRPs. In addition, the C-terminal proline-rich domain of the RAS activator SOS1 covers 13 of the 14 recognized proline-rich consensus sequence motifs, encompassing differential PRP pattern selectivity among all SH3 families. To evaluate the binding capabilities and affinities, we conducted fluorescence dot blot and polarization experiments using 25 representative SH3 domains and various PRPs derived from SOS1. Our analysis has identified 45 interacting pairs, with binding affinities ranging from 0.2 to 125 micromolar, out of 300 tested and potential new SH3 domain-SOS1 interactions. Furthermore, it establishes a framework to bridge the gap between SH3 and PRP interactions and provides predictive insights into the potential interactions of SH3 domains with PRMs based on sequence specifications. This novel framework has the potential to enhance the understanding of protein networks mediated by SH3 domain-PRM interactions and be utilized as a general approach for other domain-peptide interactions.
Collapse
Affiliation(s)
- Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (N.S.K.J.); (M.M.); (R.D.)
| | - Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (N.S.K.J.); (M.M.); (R.D.)
| | - Eva Magdalena Estirado
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands; (E.M.E.); (L.B.)
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands; (E.M.E.); (L.B.)
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (N.S.K.J.); (M.M.); (R.D.)
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (N.S.K.J.); (M.M.); (R.D.)
| |
Collapse
|
11
|
Chin M, Kaeser PS. The intracellular C-terminus confers compartment-specific targeting of voltage-gated Ca 2+ channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.23.573183. [PMID: 38187530 PMCID: PMC10769351 DOI: 10.1101/2023.12.23.573183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
To achieve the functional polarization that underlies brain computation, neurons sort protein material into distinct compartments. Ion channel composition, for example, differs between axons and dendrites, but the molecular determinants for their polarized trafficking remain obscure. Here, we identify the mechanisms that target voltage-gated Ca2+ channels (CaVs) to distinct subcellular compartments. In hippocampal neurons, CaV2s trigger neurotransmitter release at the presynaptic active zone, and CaV1s localize somatodendritically. After knockout of all three CaV2s, expression of CaV2.1, but not of CaV1.3, restores neurotransmitter release. Chimeric CaV1.3 channels with CaV2.1 intracellular C-termini localize to the active zone, mediate synaptic vesicle exocytosis, and render release fully sensitive to blockade of CaV1 channels. This dominant targeting function of the CaV2.1 C-terminus requires an EF hand in its proximal segment, and replacement of the CaV2.1 C-terminus with that of CaV1.3 abolishes CaV2.1 active zone localization. We conclude that the intracellular C-termini mediate compartment-specific CaV targeting.
Collapse
Affiliation(s)
- Morven Chin
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Pascal S. Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Mrestani A, Dannhäuser S, Pauli M, Kollmannsberger P, Hübsch M, Morris L, Langenhan T, Heckmann M, Paul MM. Nanoscaled RIM clustering at presynaptic active zones revealed by endogenous tagging. Life Sci Alliance 2023; 6:e202302021. [PMID: 37696575 PMCID: PMC10494931 DOI: 10.26508/lsa.202302021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023] Open
Abstract
Chemical synaptic transmission involves neurotransmitter release from presynaptic active zones (AZs). The AZ protein Rab-3-interacting molecule (RIM) is important for normal Ca2+-triggered release. However, its precise localization within AZs of the glutamatergic neuromuscular junctions of Drosophila melanogaster remains elusive. We used CRISPR/Cas9-assisted genome engineering of the rim locus to incorporate small epitope tags for targeted super-resolution imaging. A V5-tag, derived from simian virus 5, and an HA-tag, derived from human influenza virus, were N-terminally fused to the RIM Zinc finger. Whereas both variants are expressed in co-localization with the core AZ scaffold Bruchpilot, electrophysiological characterization reveals that AP-evoked synaptic release is disturbed in rimV5-Znf but not in rimHA-Znf In addition, rimHA-Znf synapses show intact presynaptic homeostatic potentiation. Combining super-resolution localization microscopy and hierarchical clustering, we detect ∼10 RIMHA-Znf subclusters with ∼13 nm diameter per AZ that are compacted and increased in numbers in presynaptic homeostatic potentiation.
Collapse
Affiliation(s)
- Achmed Mrestani
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Sven Dannhäuser
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Martin Pauli
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
| | | | - Martha Hübsch
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Lydia Morris
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Tobias Langenhan
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Manfred Heckmann
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Mila M Paul
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
- Department of Orthopedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Dunn TW, Fan X, Lee J, Smith P, Gandhi R, Sossin WS. The role of specific isoforms of Ca V2 and the common C-terminal of Ca V2 in calcium channel function in sensory neurons of Aplysia. Sci Rep 2023; 13:20216. [PMID: 37980443 PMCID: PMC10657410 DOI: 10.1038/s41598-023-47573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023] Open
Abstract
The presynaptic release apparatus can be specialized to enable specific synaptic functions. Habituation is the diminishing of a physiological response to a frequently repeated stimulus and in Aplysia, habituation to touch is mediated by a decrease in transmitter release from the sensory neurons that respond to touch even after modest rates of action potential firing. This synaptic depression is not common among Aplysia synaptic connections suggesting the presence of a release apparatus specialized for this depression. We found that specific splice forms of ApCaV2, the calcium channel required for transmitter release, are preferentially used in sensory neurons, consistent with a specialized release apparatus. However, we were not able to find a specific ApCaV2 splice uniquely required for synaptic depression. The C-terminus of ApCaV2 alpha1 subunit retains conserved binding to Aplysia rab-3 interacting molecule (ApRIM) and ApRIM-binding protein (ApRBP) and the C-terminus is required for full synaptic expression of ApCaV2. We also identified a splice form of ApRIM that did not interact with the ApCav2 alpha 1 subunit, but it was not preferentially used in sensory neurons.
Collapse
Affiliation(s)
- Tyler W Dunn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Xiaotang Fan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Jiwon Lee
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Petranea Smith
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Rushali Gandhi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
14
|
Emperador-Melero J, Andersen JW, Metzbower SR, Levy AD, Dharmasri PA, de Nola G, Blanpied TA, Kaeser PS. Molecular definition of distinct active zone protein machineries for Ca 2+ channel clustering and synaptic vesicle priming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564439. [PMID: 37961089 PMCID: PMC10634917 DOI: 10.1101/2023.10.27.564439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Action potentials trigger neurotransmitter release with minimal delay. Active zones mediate this temporal precision by co-organizing primed vesicles with CaV2 Ca2+ channels. The presumed model is that scaffolding proteins directly tether primed vesicles to CaV2s. We find that CaV2 clustering and vesicle priming are executed by separate machineries. At hippocampal synapses, CaV2 nanoclusters are positioned at variable distances from those of the priming protein Munc13. The active zone organizer RIM anchors both proteins, but distinct interaction motifs independently execute these functions. In heterologous cells, Liprin-α and RIM from co-assemblies that are separate from CaV2-organizing complexes upon co-transfection. At synapses, Liprin-α1-4 knockout impairs vesicle priming, but not CaV2 clustering. The cell adhesion protein PTPσ recruits Liprin-α, RIM and Munc13 into priming complexes without co-clustering of CaV2s. We conclude that active zones consist of distinct complexes to organize CaV2s and vesicle priming, and Liprin-α and PTPσ specifically support priming site assembly.
Collapse
Affiliation(s)
| | | | - Sarah R. Metzbower
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | - Aaron D. Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | - Poorna A. Dharmasri
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | | | - Thomas A. Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | | |
Collapse
|
15
|
Dahimene S, Page KM, Nieto-Rostro M, Pratt WS, Dolphin AC. The Interplay Between Splicing of Two Exon Combinations Differentially Affects Membrane Targeting and Function of Human Ca V2.2. FUNCTION 2023; 5:zqad060. [PMID: 38020068 PMCID: PMC10666670 DOI: 10.1093/function/zqad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
N-type calcium channels (CaV2.2) are predominantly localized in presynaptic terminals, and are particularly important for pain transmission in the spinal cord. Furthermore, they have multiple isoforms, conferred by alternatively spliced or cassette exons, which are differentially expressed. Here, we have examined alternatively spliced exon47 variants that encode a long or short C-terminus in human CaV2.2. In the Ensembl database, all short exon47-containing transcripts were associated with the absence of exon18a, therefore, we also examined the effect of inclusion or absence of exon18a, combinatorially with the exon47 splice variants. We found that long exon47, only in the additional presence of exon18a, results in CaV2.2 currents that have a 3.6-fold greater maximum conductance than the other three combinations. In contrast, cell-surface expression of CaV2.2 in both tsA-201 cells and hippocampal neurons is increased ∼4-fold by long exon47, relative to short exon47, in either the presence or the absence of exon18a. This surprising discrepancy between trafficking and function indicates that cell-surface expression is enhanced by long exon47, independently of exon18a. However, in the presence of long exon47, exon18a mediates an additional permissive effect on CaV2.2 gating. We also investigated the single-nucleotide polymorphism in exon47 that has been linked to schizophrenia and Parkinson's disease, which we found is only non-synonymous in the short exon47 C-terminal isoform, resulting in two minor alleles. This study highlights the importance of investigating the combinatorial effects of exon inclusion, rather than each in isolation, in order to increase our understanding of calcium channel function.
Collapse
Affiliation(s)
- Shehrazade Dahimene
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Karen M Page
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Manuela Nieto-Rostro
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Wendy S Pratt
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| |
Collapse
|
16
|
Oh KH, Xiong A, Choe JY, Richmond JE, Kim H. Active Zone Trafficking of CaV2/UNC-2 Channels Is Independent of β/CCB-1 and α2δ/UNC-36 Subunits. J Neurosci 2023; 43:5142-5157. [PMID: 37160370 PMCID: PMC10343168 DOI: 10.1523/jneurosci.2264-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/28/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023] Open
Abstract
The CaV2 voltage-gated calcium channel is the major conduit of calcium ions necessary for neurotransmitter release at presynaptic active zones (AZs). The CaV2 channel is a multimeric complex that consists of a pore-forming α1 subunit and two auxiliary β and α2δ subunits. Although auxiliary subunits are critical for channel function, whether they are required for α1 trafficking is unresolved. Using endogenously fluorescent protein-tagged CaV2 channel subunits in Caenorhabditis elegans, we show that UNC-2/α1 localizes to AZs even in the absence of CCB-1/β or UNC-36/α2δ, albeit at low levels. When UNC-2 is manipulated to be trapped in the endoplasmic reticulum (ER), CCB-1 and UNC-36 fail to colocalize with UNC-2 in the ER, indicating that they do not coassemble with UNC-2 in the ER. Moreover, blocking ER-associated degradation does not further increase presynaptic UNC-2 channels in ccb-1 or unc-36 mutants, indicating that UNC-2 levels are not regulated in the ER. An unc-2 mutant lacking C-terminal AZ protein interaction sites with intact auxiliary subunit binding sites displays persistent presynaptic UNC-2 localization and a prominent increase of UNC-2 channels in nonsynaptic axonal regions, underscoring a protective role of auxiliary subunits against UNC-2 degradation. In the absence of UNC-2, presynaptic CCB-1 and UNC-36 are profoundly diminished to barely detectable levels, indicating that UNC-2 is required for the presynaptic localization of CCB-1 and UNC-36. Together, our findings demonstrate that although the pore-forming subunit does not require auxiliary subunits for its trafficking and transport to AZs, it recruits auxiliary subunits to stabilize and expand calcium channel signalosomes.SIGNIFICANCE STATEMENT Synaptic transmission in the neuron hinges on the coupling of synaptic vesicle exocytosis with calcium influx. This calcium influx is mediated by CaV2 voltage-gated calcium channels. These channels consist of one pore-forming α1 subunit and two auxiliary β and α2δ subunits. The auxiliary subunits enhance channel function and regulate the overall level of channels at presynaptic terminals. However, it is not settled how these auxiliary subunits regulate the overall channel level. Our study in C. elegans finds that although the auxiliary subunits do not coassemble with α1 and aid trafficking, they are recruited to α1 and stabilize the channel complex at presynaptic terminals. Our study suggests that drugs that target the auxiliary subunits can directly destabilize and have an impact on CaV2 channels.
Collapse
Affiliation(s)
- Kelly H Oh
- Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Ame Xiong
- Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Jun-Yong Choe
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois, Chicago, Illinois 60607
| | - Hongkyun Kim
- Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| |
Collapse
|
17
|
Krout M, Oh KH, Xiong A, Frankel EB, Kurshan PT, Kim H, Richmond JE. C. elegans Clarinet/CLA-1 recruits RIMB-1/RIM-binding protein and UNC-13 to orchestrate presynaptic neurotransmitter release. Proc Natl Acad Sci U S A 2023; 120:e2220856120. [PMID: 37186867 PMCID: PMC10214197 DOI: 10.1073/pnas.2220856120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Synaptic transmission requires the coordinated activity of multiple synaptic proteins that are localized at the active zone (AZ). We previously identified a Caenorhabditis elegans protein named Clarinet (CLA-1) based on homology to the AZ proteins Piccolo, Rab3-interactingmolecule (RIM)/UNC-10 and Fife. At the neuromuscular junction (NMJ), cla-1 null mutants exhibit release defects that are greatly exacerbated in cla-1;unc-10 double mutants. To gain insights into the coordinated roles of CLA-1 and UNC-10, we examined the relative contributions of each to the function and organization of the AZ. Using a combination of electrophysiology, electron microscopy, and quantitative fluorescence imaging we explored the functional relationship of CLA-1 to other key AZ proteins including: RIM1, Cav2.1 channels, RIM1-binding protein, and Munc13 (C. elegans UNC-10, UNC-2, RIMB-1 and UNC-13, respectively). Our analyses show that CLA-1 acts in concert with UNC-10 to regulate UNC-2 calcium channel levels at the synapse via recruitment of RIMB-1. In addition, CLA-1 exerts a RIMB-1-independent role in the localization of the priming factor UNC-13. Thus C. elegans CLA-1/UNC-10 exhibit combinatorial effects that have overlapping design principles with other model organisms: RIM/RBP and RIM/ELKS in mouse and Fife/RIM and BRP/RBP in Drosophila. These data support a semiconserved arrangement of AZ scaffolding proteins that are necessary for the localization and activation of the fusion machinery within nanodomains for precise coupling to Ca2+ channels.
Collapse
Affiliation(s)
- Mia Krout
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL60607
| | - Kelly H. Oh
- Department of Cell Biology and Anatomy, Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL60064
| | - Ame Xiong
- Department of Cell Biology and Anatomy, Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL60064
| | - Elisa B. Frankel
- Department of Genetics, Albert Einstein College of Medicine, New York, NY10461
| | - Peri T. Kurshan
- Department of Genetics, Albert Einstein College of Medicine, New York, NY10461
| | - Hongkyun Kim
- Department of Genetics, Albert Einstein College of Medicine, New York, NY10461
| | - Janet E. Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL60607
| |
Collapse
|
18
|
Wu S, Fan J, Tang F, Chen L, Zhang X, Xiao D, Li X. The role of RIM in neurotransmitter release: promotion of synaptic vesicle docking, priming, and fusion. Front Neurosci 2023; 17:1123561. [PMID: 37179554 PMCID: PMC10169678 DOI: 10.3389/fnins.2023.1123561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/06/2023] [Indexed: 05/15/2023] Open
Abstract
There are many special sites at the end of a synapse called active zones (AZs). Synaptic vesicles (SVs) fuse with presynaptic membranes at these sites, and this fusion is an important step in neurotransmitter release. The cytomatrix in the active zone (CAZ) is made up of proteins such as the regulating synaptic membrane exocytosis protein (RIM), RIM-binding proteins (RIM-BPs), ELKS/CAST, Bassoon/Piccolo, Liprin-α, and Munc13-1. RIM is a scaffold protein that interacts with CAZ proteins and presynaptic functional components to affect the docking, priming, and fusion of SVs. RIM is believed to play an important role in regulating the release of neurotransmitters (NTs). In addition, abnormal expression of RIM has been detected in many diseases, such as retinal diseases, Asperger's syndrome (AS), and degenerative scoliosis. Therefore, we believe that studying the molecular structure of RIM and its role in neurotransmitter release will help to clarify the molecular mechanism of neurotransmitter release and identify targets for the diagnosis and treatment of the aforementioned diseases.
Collapse
Affiliation(s)
- Shanshan Wu
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Jiali Fan
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Fajuan Tang
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Lin Chen
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaoyan Zhang
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Dongqiong Xiao
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xihong Li
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
19
|
Ghelani T, Escher M, Thomas U, Esch K, Lützkendorf J, Depner H, Maglione M, Parutto P, Gratz S, Matkovic-Rachid T, Ryglewski S, Walter AM, Holcman D, O‘Connor Giles K, Heine M, Sigrist SJ. Interactive nanocluster compaction of the ELKS scaffold and Cacophony Ca 2+ channels drives sustained active zone potentiation. SCIENCE ADVANCES 2023; 9:eade7804. [PMID: 36800417 PMCID: PMC9937578 DOI: 10.1126/sciadv.ade7804] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/17/2023] [Indexed: 06/01/2023]
Abstract
At presynaptic active zones (AZs), conserved scaffold protein architectures control synaptic vesicle (SV) release by defining the nanoscale distribution and density of voltage-gated Ca2+ channels (VGCCs). While AZs can potentiate SV release in the minutes range, we lack an understanding of how AZ scaffold components and VGCCs engage into potentiation. We here establish dynamic, intravital single-molecule imaging of endogenously tagged proteins at Drosophila AZs undergoing presynaptic homeostatic potentiation. During potentiation, the numbers of α1 VGCC subunit Cacophony (Cac) increased per AZ, while their mobility decreased and nanoscale distribution compacted. These dynamic Cac changes depended on the interaction between Cac channel's intracellular carboxyl terminus and the membrane-close amino-terminal region of the ELKS-family protein Bruchpilot, whose distribution compacted drastically. The Cac-ELKS/Bruchpilot interaction was also needed for sustained AZ potentiation. Our single-molecule analysis illustrates how the AZ scaffold couples to VGCC nanoscale distribution and dynamics to establish a state of sustained potentiation.
Collapse
Affiliation(s)
- Tina Ghelani
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- Molecular and Theoretical Neuroscience Leibniz-Forschungs Institut für Molekulare Pharmakologie (FMP) im CharitéCrossOver (CCO) Charité–University Medicine Berlin Charité Campus Mitte, Charité Platz, 110117 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany
| | - Marc Escher
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Ulrich Thomas
- Department of Cellular Neurobiology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Klara Esch
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Janine Lützkendorf
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Harald Depner
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Marta Maglione
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany
- Institute for Chemistry and Biochemistry, SupraFAB, Freie Universität Berlin, Altensteinstr. 23a, 14195 Berlin, Germany
| | - Pierre Parutto
- Group of Applied Mathematics and Computational Biology, IBENS, Ecole Normale Superieure, Paris, France
- Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Cambridge CB2 0AH, UK
- Churchill College, University of Cambridge, Cambridge CB3 0DS, UK
| | - Scott Gratz
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Tanja Matkovic-Rachid
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Stefanie Ryglewski
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexander M. Walter
- Molecular and Theoretical Neuroscience Leibniz-Forschungs Institut für Molekulare Pharmakologie (FMP) im CharitéCrossOver (CCO) Charité–University Medicine Berlin Charité Campus Mitte, Charité Platz, 110117 Berlin, Germany
- Department of Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark
| | - David Holcman
- Group of Applied Mathematics and Computational Biology, IBENS, Ecole Normale Superieure, Paris, France
- Churchill College, University of Cambridge, Cambridge CB3 0DS, UK
| | - Kate O‘Connor Giles
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Martin Heine
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
- Research Group Molecular Physiology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Stephan J. Sigrist
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
20
|
Cunningham KL, Littleton JT. Mechanisms controlling the trafficking, localization, and abundance of presynaptic Ca 2+ channels. Front Mol Neurosci 2023; 15:1116729. [PMID: 36710932 PMCID: PMC9880069 DOI: 10.3389/fnmol.2022.1116729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) mediate Ca2+ influx to trigger neurotransmitter release at specialized presynaptic sites termed active zones (AZs). The abundance of VGCCs at AZs regulates neurotransmitter release probability (Pr ), a key presynaptic determinant of synaptic strength. Given this functional significance, defining the processes that cooperate to establish AZ VGCC abundance is critical for understanding how these mechanisms set synaptic strength and how they might be regulated to control presynaptic plasticity. VGCC abundance at AZs involves multiple steps, including channel biosynthesis (transcription, translation, and trafficking through the endomembrane system), forward axonal trafficking and delivery to synaptic terminals, incorporation and retention at presynaptic sites, and protein recycling. Here we discuss mechanisms that control VGCC abundance at synapses, highlighting findings from invertebrate and vertebrate models.
Collapse
Affiliation(s)
- Karen L. Cunningham
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | |
Collapse
|
21
|
Synaptic Development in Diverse Olfactory Neuron Classes Uses Distinct Temporal and Activity-Related Programs. J Neurosci 2023; 43:28-55. [PMID: 36446587 PMCID: PMC9838713 DOI: 10.1523/jneurosci.0884-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
Developing neurons must meet core molecular, cellular, and temporal requirements to ensure the correct formation of synapses, resulting in functional circuits. However, because of the vast diversity in neuronal class and function, it is unclear whether or not all neurons use the same organizational mechanisms to form synaptic connections and achieve functional and morphologic maturation. Moreover, it remains unknown whether neurons united in a common goal and comprising the same sensory circuit develop on similar timescales and use identical molecular approaches to ensure the formation of the correct number of synapses. To begin to answer these questions, we took advantage of the Drosophila antennal lobe (AL), a model olfactory circuit with remarkable genetic access and synapse-level resolution. Using tissue-specific genetic labeling of active zones, we performed a quantitative analysis of synapse formation in multiple classes of neurons of both sexes throughout development and adulthood. We found that olfactory receptor neurons (ORNs), projection neurons (PNs), and local interneurons (LNs) each have unique time courses of synaptic development, addition, and refinement, demonstrating that each class follows a distinct developmental program. This raised the possibility that these classes may also have distinct molecular requirements for synapse formation. We genetically altered neuronal activity in each neuronal subtype and observed differing effects on synapse number based on the neuronal class examined. Silencing neuronal activity in ORNs, PNs, and LNs impaired synaptic development but only in ORNs did enhancing neuronal activity influence synapse formation. ORNs and LNs demonstrated similar impairment of synaptic development with enhanced activity of a master kinase, GSK-3β, suggesting that neuronal activity and GSK-3β kinase activity function in a common pathway. ORNs also, however, demonstrated impaired synaptic development with GSK-3β loss-of-function, suggesting additional activity-independent roles in development. Ultimately, our results suggest that the requirements for synaptic development are not uniform across all neuronal classes with considerable diversity existing in both their developmental time frames and molecular requirements. These findings provide novel insights into the mechanisms of synaptic development and lay the foundation for future work determining their underlying etiologies.SIGNIFICANCE STATEMENT Distinct olfactory neuron classes in Drosophila develop a mature synaptic complement over unique timelines and using distinct activity-dependent and molecular programs, despite having the same generalized goal of olfactory sensation.
Collapse
|
22
|
Zong P, Yue L. Regulation of Presynaptic Calcium Channels. ADVANCES IN NEUROBIOLOGY 2023; 33:171-202. [PMID: 37615867 DOI: 10.1007/978-3-031-34229-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Voltage-gated calcium channels (VGCCs), especially Cav2.1 and Cav2.2, are the major mediators of Ca2+ influx at the presynaptic membrane in response to neuron excitation, thereby exerting a predominant control on synaptic transmission. To guarantee the timely and precise release of neurotransmitters at synapses, the activity of presynaptic VGCCs is tightly regulated by a variety of factors, including auxiliary subunits, membrane potential, G protein-coupled receptors (GPCRs), calmodulin (CaM), Ca2+-binding proteins (CaBP), protein kinases, various interacting proteins, alternative splicing events, and genetic variations.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
23
|
Jin Y, Zhai RG. Presynaptic Cytomatrix Proteins. ADVANCES IN NEUROBIOLOGY 2023; 33:23-42. [PMID: 37615862 DOI: 10.1007/978-3-031-34229-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The Cytomatrix Assembled at the active Zone (CAZ) of a presynaptic terminal displays electron-dense appearance and defines the center of the synaptic vesicle release. The protein constituents of CAZ are multiple-domain scaffolds that interact extensively with each other and also with an ensemble of synaptic vesicle proteins to ensure docking, fusion, and recycling. Reflecting the central roles of the active zone in synaptic transmission, CAZ proteins are highly conserved throughout evolution. As the nervous system increases complexity and diversity in types of neurons and synapses, CAZ proteins expand in the number of gene and protein isoforms and interacting partners. This chapter summarizes the discovery of the core CAZ proteins and current knowledge of their functions.
Collapse
Affiliation(s)
- Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
24
|
Inamdar SM, Lankford CK, Baker SA. Photoreceptor Ion Channels in Signaling and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:269-276. [PMID: 37440044 DOI: 10.1007/978-3-031-27681-1_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Photoreceptors (PRs) in the neural retina convert photon capture into an electrical signal that is communicated across a chemical synapse to second-order neurons in the retina and on through the rest of the visual pathway. This information is decoded in the visual cortex to create images. The activity of PRs depends on the concerted action of several voltage-gated ion channels that will be discussed in this chapter.
Collapse
Affiliation(s)
- Shivangi M Inamdar
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, USA.
| | - Colten K Lankford
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, USA
| | - Sheila A Baker
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
25
|
Zhang W, Jiang HH, Luo F. Diverse organization of voltage-gated calcium channels at presynaptic active zones. Front Synaptic Neurosci 2022; 14:1023256. [PMID: 36544543 PMCID: PMC9760684 DOI: 10.3389/fnsyn.2022.1023256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Synapses are highly organized but are also highly diverse in their organization and properties to allow for optimizing the computing power of brain circuits. Along these lines, voltage-gated calcium (CaV) channels at the presynaptic active zone are heterogeneously organized, which creates a variety of calcium dynamics profiles that can shape neurotransmitter release properties of individual synapses. Extensive studies have revealed striking diversity in the subtype, number, and distribution of CaV channels, as well as the nanoscale topographic relationships to docked synaptic vesicles. Further, multi-protein complexes including RIMs, RIM-binding proteins, CAST/ELKS, and neurexins are required for coordinating the diverse organization of CaV channels at the presynaptic active zone. In this review, we highlight major advances in the studies of the functional organization of presynaptic CaV channels and discuss their physiological implications for synaptic transmission and short-term plasticity.
Collapse
Affiliation(s)
- Weijia Zhang
- Guangzhou Laboratory, Guangzhou, China,Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - He-Hai Jiang
- Guangzhou Laboratory, Guangzhou, China,Bioland Laboratory, Guangzhou, China
| | - Fujun Luo
- Guangzhou Laboratory, Guangzhou, China,Bioland Laboratory, Guangzhou, China,*Correspondence: Fujun Luo
| |
Collapse
|
26
|
Lichter K, Paul MM, Pauli M, Schoch S, Kollmannsberger P, Stigloher C, Heckmann M, Sirén AL. Ultrastructural analysis of wild-type and RIM1α knockout active zones in a large cortical synapse. Cell Rep 2022; 40:111382. [PMID: 36130490 DOI: 10.1016/j.celrep.2022.111382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/14/2022] [Accepted: 08/28/2022] [Indexed: 11/18/2022] Open
Abstract
Rab3A-interacting molecule (RIM) is crucial for fast Ca2+-triggered synaptic vesicle (SV) release in presynaptic active zones (AZs). We investigated hippocampal giant mossy fiber bouton (MFB) AZ architecture in 3D using electron tomography of rapid cryo-immobilized acute brain slices in RIM1α-/- and wild-type mice. In RIM1α-/-, AZs are larger with increased synaptic cleft widths and a 3-fold reduced number of tightly docked SVs (0-2 nm). The distance of tightly docked SVs to the AZ center is increased from 110 to 195 nm, and the width of their electron-dense material between outer SV membrane and AZ membrane is reduced. Furthermore, the SV pool in RIM1α-/- is more heterogeneous. Thus, RIM1α, besides its role in tight SV docking, is crucial for synaptic architecture and vesicle pool organization in MFBs.
Collapse
Affiliation(s)
- Katharina Lichter
- Department of Neurosurgery, University Hospital of Würzburg, 97080 Würzburg, Germany; Institute for Physiology, Department of Neurophysiology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany; Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Mila Marie Paul
- Institute for Physiology, Department of Neurophysiology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany; Department of Orthopedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Martin Pauli
- Institute for Physiology, Department of Neurophysiology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany
| | - Susanne Schoch
- Department of Neuropathology and Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Philip Kollmannsberger
- Center for Computational and Theoretical Biology, Julius-Maximilians-University Würzburg, 97074 Würzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, University of Würzburg, 97074 Würzburg, Germany.
| | - Manfred Heckmann
- Institute for Physiology, Department of Neurophysiology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany.
| | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital of Würzburg, 97080 Würzburg, Germany; Institute for Physiology, Department of Neurophysiology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany.
| |
Collapse
|
27
|
Johnson SL, Tsou WL, Prifti MV, Harris AL, Todi SV. A survey of protein interactions and posttranslational modifications that influence the polyglutamine diseases. Front Mol Neurosci 2022; 15:974167. [PMID: 36187346 PMCID: PMC9515312 DOI: 10.3389/fnmol.2022.974167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/27/2022] [Indexed: 01/20/2023] Open
Abstract
The presence and aggregation of misfolded proteins has deleterious effects in the nervous system. Among the various diseases caused by misfolded proteins is the family of the polyglutamine (polyQ) disorders. This family comprises nine members, all stemming from the same mutation—the abnormal elongation of a polyQ repeat in nine different proteins—which causes protein misfolding and aggregation, cellular dysfunction and disease. While it is the same type of mutation that causes them, each disease is distinct: it is influenced by regions and domains that surround the polyQ repeat; by proteins with which they interact; and by posttranslational modifications they receive. Here, we overview the role of non-polyQ regions that control the pathogenicity of the expanded polyQ repeat. We begin by introducing each polyQ disease, the genes affected, and the symptoms experienced by patients. Subsequently, we provide a survey of protein-protein interactions and posttranslational modifications that regulate polyQ toxicity. We conclude by discussing shared processes and pathways that bring some of the polyQ diseases together and may serve as common therapeutic entry points for this family of incurable disorders.
Collapse
Affiliation(s)
- Sean L. Johnson
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Matthew V. Prifti
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Autumn L. Harris
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
- Maximizing Access to Research Careers (MARC) Program, Wayne State University, Detroit, MI, United States
| | - Sokol V. Todi
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
- Maximizing Access to Research Careers (MARC) Program, Wayne State University, Detroit, MI, United States
- Department of Neurology, Wayne State University, Detroit, MI, United States
- *Correspondence: Sokol V. Todi,
| |
Collapse
|
28
|
Wu Z, Ma L, Courtney NA, Zhu J, Landajuela A, Zhang Y, Chapman ER, Karatekin E. Polybasic Patches in Both C2 Domains of Synaptotagmin-1 Are Required for Evoked Neurotransmitter Release. J Neurosci 2022; 42:5816-5829. [PMID: 35701163 PMCID: PMC9337609 DOI: 10.1523/jneurosci.1385-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/04/2022] [Accepted: 03/13/2022] [Indexed: 01/29/2023] Open
Abstract
Synaptotagmin-1 (Syt1) is a vesicular calcium sensor required for synchronous neurotransmitter release, composed of a single-pass transmembrane domain linked to two C2 domains (C2A and C2B) that bind calcium, acidic lipids, and SNARE proteins that drive fusion of the synaptic vesicle with the plasma membrane. Despite its essential role, how Syt1 couples calcium entry to synchronous release is poorly understood. Calcium binding to C2B is critical for synchronous release, and C2B additionally binds the SNARE complex. The C2A domain is also required for Syt1 function, but it is not clear why. Here, we asked what critical feature of C2A may be responsible for its functional role and compared this to the analogous feature in C2B. We focused on highly conserved poly-lysine patches located on the sides of C2A (K189-192) and C2B (K324-327). We tested effects of charge-neutralization mutations in either region (Syt1K189-192A and Syt1K326-327A) side by side to determine their relative contributions to Syt1 function in cultured cortical neurons from mice of either sex and in single-molecule experiments. Combining electrophysiological recordings and optical tweezers measurements to probe dynamic single C2 domain-membrane interactions, we show that both C2A and C2B polybasic patches contribute to membrane binding, and both are required for evoked release. The size of the readily releasable vesicle pool and the rate of spontaneous release were unaffected, so both patches are likely required specifically for synchronization of release. We suggest these patches contribute to cooperative membrane binding, increasing the overall affinity of Syt1 for negatively charged membranes and facilitating evoked release.SIGNIFICANCE STATEMENT Synaptotagmin-1 is a vesicular calcium sensor required for synchronous neurotransmitter release. Its tandem cytosolic C2 domains (C2A and C2B) bind calcium, acidic lipids, and SNARE proteins that drive fusion of the synaptic vesicle with the plasma membrane. How calcium binding to Synaptotagmin-1 leads to release and the relative contributions of the C2 domains are unclear. Combining electrophysiological recordings from cultured neurons and optical tweezers measurements of single C2 domain-membrane interactions, we show that conserved polybasic regions in both domains contribute to membrane binding cooperatively, and both are required for evoked release, likely by increasing the overall affinity of Synaptotagmin-1 for acidic membranes.
Collapse
Affiliation(s)
- Zhenyong Wu
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06520
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516
| | - Lu Ma
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520
| | - Nicholas A Courtney
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Jie Zhu
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06520
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516
| | - Ane Landajuela
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06520
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516
| | - Yongli Zhang
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Edwin R Chapman
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06520
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
- Saints-Pères Paris Institute for the Neurosciences, Université de Paris, Centre National de la Recherche Scientifique UMR 8003, 75270 Paris, France
| |
Collapse
|
29
|
Grabner CP, Jansen I, Neef J, Weihs T, Schmidt R, Riedel D, Wurm CA, Moser T. Resolving the molecular architecture of the photoreceptor active zone with 3D-MINFLUX. SCIENCE ADVANCES 2022; 8:eabl7560. [PMID: 35857490 PMCID: PMC9286502 DOI: 10.1126/sciadv.abl7560] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cells assemble macromolecular complexes into scaffoldings that serve as substrates for catalytic processes. Years of molecular neurobiology research indicate that neurotransmission depends on such optimization strategies. However, the molecular topography of the presynaptic active zone (AZ), where transmitter is released upon synaptic vesicle (SV) fusion, remains to be visualized. Therefore, we implemented MINFLUX optical nanoscopy to resolve the AZ of rod photoreceptors. This was facilitated by a novel sample immobilization technique that we name heat-assisted rapid dehydration (HARD), wherein a thin layer of rod synaptic terminals (spherules) was transferred onto glass coverslips from fresh retinal slices. Rod ribbon AZs were readily immunolabeled and imaged in 3D with a precision of a few nanometers. Our 3D-MINFLUX results indicate that the SV release site in rods is a molecular complex of bassoon-RIM2-ubMunc13-2-Cav1.4, which repeats longitudinally on both sides of the ribbon.
Collapse
Affiliation(s)
- Chad P. Grabner
- Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075 Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Collaborative Research Center 1286, University of Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells”, University of Göttingen, 37075 Göttingen, Germany
- Corresponding author. (C.P.G.); (C.A.W.); (T.M.)
| | - Isabelle Jansen
- Abberior Instruments, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| | - Jakob Neef
- Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075 Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Collaborative Research Center 1286, University of Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells”, University of Göttingen, 37075 Göttingen, Germany
| | - Tobias Weihs
- Abberior Instruments, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| | - Roman Schmidt
- Abberior Instruments, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| | - Dietmar Riedel
- Laboratory of Electron Microscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Christian A. Wurm
- Abberior Instruments, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
- Corresponding author. (C.P.G.); (C.A.W.); (T.M.)
| | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075 Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Collaborative Research Center 1286, University of Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells”, University of Göttingen, 37075 Göttingen, Germany
- Corresponding author. (C.P.G.); (C.A.W.); (T.M.)
| |
Collapse
|
30
|
Mochida S. Mechanisms of Synaptic Vesicle Exo- and Endocytosis. Biomedicines 2022; 10:1593. [PMID: 35884898 PMCID: PMC9313035 DOI: 10.3390/biomedicines10071593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/05/2023] Open
Abstract
Within 1 millisecond of action potential arrival at presynaptic terminals voltage-gated Ca2+ channels open. The Ca2+ channels are linked to synaptic vesicles which are tethered by active zone proteins. Ca2+ entrance into the active zone triggers: (1) the fusion of the vesicle and exocytosis, (2) the replenishment of the active zone with vesicles for incoming exocytosis, and (3) various types of endocytosis for vesicle reuse, dependent on the pattern of firing. These time-dependent vesicle dynamics are controlled by presynaptic Ca2+ sensor proteins, regulating active zone scaffold proteins, fusion machinery proteins, motor proteins, endocytic proteins, several enzymes, and even Ca2+ channels, following the decay of Ca2+ concentration after the action potential. Here, I summarize the Ca2+-dependent protein controls of synchronous and asynchronous vesicle release, rapid replenishment of the active zone, endocytosis, and short-term plasticity within 100 msec after the action potential. Furthermore, I discuss the contribution of active zone proteins to presynaptic plasticity and to homeostatic readjustment during and after intense activity, in addition to activity-dependent endocytosis.
Collapse
Affiliation(s)
- Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
31
|
Tan C, Wang SSH, de Nola G, Kaeser PS. Rebuilding essential active zone functions within a synapse. Neuron 2022; 110:1498-1515.e8. [PMID: 35176221 PMCID: PMC9081183 DOI: 10.1016/j.neuron.2022.01.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 12/21/2021] [Accepted: 01/24/2022] [Indexed: 01/15/2023]
Abstract
Presynaptic active zones are molecular machines that control neurotransmitter secretion. They form sites for vesicle docking and priming and couple vesicles to Ca2+ entry for release triggering. The complexity of active zone machinery has made it challenging to determine its mechanisms in release. Simultaneous knockout of the active zone proteins RIM and ELKS disrupts active zone assembly, abolishes vesicle docking, and impairs release. We here rebuild docking, priming, and Ca2+ secretion coupling in these mutants without reinstating active zone networks. Re-expression of RIM zinc fingers recruited Munc13 to undocked vesicles and rendered the vesicles release competent. Action potential triggering of release was reconstituted by docking these primed vesicles to Ca2+ channels through attaching RIM zinc fingers to CaVβ4-subunits. Our work identifies an 80-kDa β4-Zn protein that bypasses the need for megadalton-sized secretory machines, establishes that fusion competence and docking are mechanistically separable, and defines RIM zinc finger-Munc13 complexes as hubs for active zone function.
Collapse
Affiliation(s)
- Chao Tan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Shan Shan H Wang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Giovanni de Nola
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Deng K, Thorn P. Presynaptic-like mechanisms and the control of insulin secretion in pancreatic β-cells. Cell Calcium 2022; 104:102585. [DOI: 10.1016/j.ceca.2022.102585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/18/2022]
|
33
|
Takikawa K, Nishimune H. Similarity and Diversity of Presynaptic Molecules at Neuromuscular Junctions and Central Synapses. Biomolecules 2022; 12:biom12020179. [PMID: 35204679 PMCID: PMC8961632 DOI: 10.3390/biom12020179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Synaptic transmission is essential for controlling motor functions and maintaining brain functions such as walking, breathing, cognition, learning, and memory. Neurotransmitter release is regulated by presynaptic molecules assembled in active zones of presynaptic terminals. The size of presynaptic terminals varies, but the size of a single active zone and the types of presynaptic molecules are highly conserved among neuromuscular junctions (NMJs) and central synapses. Three parameters play an important role in the determination of neurotransmitter release properties at NMJs and central excitatory/inhibitory synapses: the number of presynaptic molecular clusters, the protein families of the presynaptic molecules, and the distance between presynaptic molecules and voltage-gated calcium channels. In addition, dysfunction of presynaptic molecules causes clinical symptoms such as motor and cognitive decline in patients with various neurological disorders and during aging. This review focuses on the molecular mechanisms responsible for the functional similarities and differences between excitatory and inhibitory synapses in the peripheral and central nervous systems, and summarizes recent findings regarding presynaptic molecules assembled in the active zone. Furthermore, we discuss the relationship between functional alterations of presynaptic molecules and dysfunction of NMJs or central synapses in diseases and during aging.
Collapse
Affiliation(s)
- Kenji Takikawa
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan;
| | - Hiroshi Nishimune
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan;
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan
- Correspondence: ; Tel.: +81-3-3964-3241
| |
Collapse
|
34
|
Zhang Z, Bao Z, Gao P, Yao J, Wang P, Chai D. Diverse Roles of F-BoxProtein3 in Regulation of Various Cellular Functions. Front Cell Dev Biol 2022; 9:802204. [PMID: 35127719 PMCID: PMC8807484 DOI: 10.3389/fcell.2021.802204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/23/2021] [Indexed: 01/06/2023] Open
Abstract
Accumulated evidence shows that the F-box protein 3 (FBXO3) has multiple biological functions, including regulation of immune pathologies, neuropathic diseases and antiviral response. In this review article, we focus on the role of FBXO3 in inflammatory disorders and human malignancies. We also describe the substrates of FBXO3, which contribute to inflammatory disorders and cancers. We highlight that the high expression of FBXO3 is frequently observed in rheumatoid arthritis, leukemia, pituitary adenoma, and oral squamous cell carcinoma. Moreover, we discuss the regulation of FBXO3 by both carcinogens and cancer preventive agents. Our review provides a comprehensive understanding of the role of FBXO3 in various biological systems and elucidates how FBXO3 regulates substrate ubiquitination and degradation during various physiological and pathological processes. Therefore, FBXO3 can be a novel target in the treatment of human diseases including carcinomas.
Collapse
Affiliation(s)
- Zhiyang Zhang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Zhengqi Bao
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Penglian Gao
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Junyi Yao
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Peter Wang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, China
- *Correspondence: Peter Wang, ; Damin Chai,
| | - Damin Chai
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- *Correspondence: Peter Wang, ; Damin Chai,
| |
Collapse
|
35
|
Banerjee A, Imig C, Balakrishnan K, Kershberg L, Lipstein N, Uronen RL, Wang J, Cai X, Benseler F, Rhee JS, Cooper BH, Liu C, Wojcik SM, Brose N, Kaeser PS. Molecular and functional architecture of striatal dopamine release sites. Neuron 2022; 110:248-265.e9. [PMID: 34767769 PMCID: PMC8859508 DOI: 10.1016/j.neuron.2021.10.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 09/22/2021] [Accepted: 10/19/2021] [Indexed: 01/21/2023]
Abstract
Despite the importance of dopamine for striatal circuit function, mechanistic understanding of dopamine transmission remains incomplete. We recently showed that dopamine secretion relies on the presynaptic scaffolding protein RIM, indicating that it occurs at active zone-like sites similar to classical synaptic vesicle exocytosis. Here, we establish using a systematic gene knockout approach that Munc13 and Liprin-α, active zone proteins for vesicle priming and release site organization, are important for dopamine secretion. Furthermore, RIM zinc finger and C2B domains, which bind to Munc13 and Liprin-α, respectively, are needed to restore dopamine release after RIM ablation. In contrast, and different from typical synapses, the active zone scaffolds RIM-BP and ELKS, and RIM domains that bind to them, are expendable. Hence, dopamine release necessitates priming and release site scaffolding by RIM, Munc13, and Liprin-α, but other active zone proteins are dispensable. Our work establishes that efficient release site architecture mediates fast dopamine exocytosis.
Collapse
Affiliation(s)
- Aditi Banerjee
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | | | - Lauren Kershberg
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Noa Lipstein
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Riikka-Liisa Uronen
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Jiexin Wang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Xintong Cai
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Fritz Benseler
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Jeong Seop Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Changliang Liu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Heck J, Palmeira Do Amaral AC, Weißbach S, El Khallouqi A, Bikbaev A, Heine M. More than a pore: How voltage-gated calcium channels act on different levels of neuronal communication regulation. Channels (Austin) 2021; 15:322-338. [PMID: 34107849 PMCID: PMC8205089 DOI: 10.1080/19336950.2021.1900024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) represent key regulators of the calcium influx through the plasma membrane of excitable cells, like neurons. Activated by the depolarization of the membrane, the opening of VGCCs induces very transient and local changes in the intracellular calcium concentration, known as calcium nanodomains, that in turn trigger calcium-dependent signaling cascades and the release of chemical neurotransmitters. Based on their central importance as concierges of excitation-secretion coupling and therefore neuronal communication, VGCCs have been studied in multiple aspects of neuronal function and malfunction. However, studies on molecular interaction partners and recent progress in omics technologies have extended the actual concept of these molecules. With this review, we want to illustrate some new perspectives of VGCCs reaching beyond their function as calcium-permeable pores in the plasma membrane. Therefore, we will discuss the relevance of VGCCs as voltage sensors in functional complexes with ryanodine receptors, channel-independent actions of auxiliary VGCC subunits, and provide an insight into how VGCCs even directly participate in gene regulation. Furthermore, we will illustrate how structural changes in the intracellular C-terminus of VGCCs generated by alternative splicing events might not only affect the biophysical channel characteristics but rather determine their molecular environment and downstream signaling pathways.
Collapse
Affiliation(s)
- Jennifer Heck
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
| | - Ana Carolina Palmeira Do Amaral
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
| | - Stephan Weißbach
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
- Computational Genomics and Bioinformatics, Johannes Gutenberg-University Mainz, University Medical Center Mainz, Institute for Human Genetics, Mainz, Germany
| | - Abderazzaq El Khallouqi
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
| | - Arthur Bikbaev
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
| | - Martin Heine
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
| |
Collapse
|
37
|
Glycine Release Is Potentiated by cAMP via EPAC2 and Ca 2+ Stores in a Retinal Interneuron. J Neurosci 2021; 41:9503-9520. [PMID: 34620721 PMCID: PMC8612479 DOI: 10.1523/jneurosci.0670-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022] Open
Abstract
Neuromodulation via the intracellular second messenger cAMP is ubiquitous at presynaptic nerve terminals. This modulation of synaptic transmission allows exocytosis to adapt to stimulus levels and reliably encode information. The AII amacrine cell (AII-AC) is a central hub for signal processing in the mammalian retina. The main apical dendrite of the AII-AC is connected to several lobular appendages that release glycine onto OFF cone bipolar cells and ganglion cells. However, the influence of cAMP on glycine release is not well understood. Using membrane capacitance measurements from mouse AII-ACs to directly measure exocytosis, we observe that intracellular dialysis of 1 mm cAMP enhances exocytosis without affecting the L-type Ca2+ current. Responses to depolarizing pulses of various durations show that the size of the readily releasable pool of vesicles nearly doubles with cAMP, while paired-pulse depression experiments suggest that release probability does not change. Specific agonists and antagonists for exchange protein activated by cAMP 2 (EPAC2) revealed that the cAMP-induced enhancement of exocytosis requires EPAC2 activation. Furthermore, intact Ca2+ stores were also necessary for the cAMP potentiation of exocytosis. Postsynaptic recordings from OFF cone bipolar cells showed that increasing cAMP with forskolin potentiated the frequency of glycinergic spontaneous IPSCs. We propose that cAMP elevations in the AII-AC lead to a robust enhancement of glycine release through an EPAC2 and Ca2+ store signaling pathway. Our results thus contribute to a better understanding of how AII-AC crossover inhibitory circuits adapt to changes in ambient luminance.SIGNIFICANCE STATEMENT The mammalian retina operates over a wide dynamic range of light intensities and contrast levels. To optimize the signal-to-noise ratio of processed visual information, both excitatory and inhibitory synapses within the retina must modulate their gain in synaptic transmission to adapt to different levels of ambient light. Here we show that increases of cAMP concentration within AII amacrine cells produce enhanced exocytosis from these glycinergic interneurons. Therefore, we propose that light-sensitive neuromodulators may change the output of glycine release from AII amacrine cells. This novel mechanism may fine-tune the amount of tonic and phasic synaptic inhibition received by bipolar cell terminals and, consequently, the spiking patterns that ganglion cells send to the upstream visual areas of the brain.
Collapse
|
38
|
Mochida S. Stable and Flexible Synaptic Transmission Controlled by the Active Zone Protein Interactions. Int J Mol Sci 2021; 22:ijms222111775. [PMID: 34769208 PMCID: PMC8583982 DOI: 10.3390/ijms222111775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/28/2022] Open
Abstract
An action potential triggers neurotransmitter release from synaptic vesicles docking to a specialized release site of the presynaptic plasma membrane, the active zone. The active zone is a highly organized structure with proteins that serves as a platform for synaptic vesicle exocytosis, mediated by SNAREs complex and Ca2+ sensor proteins, within a sub-millisecond opening of nearby Ca2+ channels with the membrane depolarization. In response to incoming neuronal signals, each active zone protein plays a role in the release-ready site replenishment with synaptic vesicles for sustainable synaptic transmission. The active zone release apparatus provides a possible link between neuronal activity and plasticity. This review summarizes the mostly physiological role of active zone protein interactions that control synaptic strength, presynaptic short-term plasticity, and homeostatic synaptic plasticity.
Collapse
Affiliation(s)
- Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
39
|
Wang J, Beecher K. TSPO: an emerging role in appetite for a therapeutically promising biomarker. Open Biol 2021; 11:210173. [PMID: 34343461 PMCID: PMC8331234 DOI: 10.1098/rsob.210173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is accumulating evidence that an obesogenic Western diet causes neuroinflammatory damage to the brain, which then promotes further appetitive behaviour. Neuroinflammation has been extensively studied by analysing the translocator protein of 18 kDa (TSPO), a protein that is upregulated in the inflamed brain following a damaging stimulus. As a result, there is a rich supply of TSPO-specific agonists, antagonists and positron emission tomography ligands. One TSPO ligand, etifoxine, is also currently used clinically for the treatment of anxiety with a minimal side-effect profile. Despite the neuroinflammatory pathogenesis of diet-induced obesity, and the translational potential of targeting TSPO, there is sparse literature characterizing the effect of TSPO on appetite. Therefore, in this review, the influence of TSPO on appetite is discussed. Three putative mechanisms for TSPO's appetite-modulatory effect are then characterized: the TSPO–allopregnanolone–GABAAR signalling axis, glucosensing in tanycytes and association with the synaptic protein RIM-BP1. We highlight that, in addition to its plethora of functions, TSPO is a regulator of appetite. This review ultimately suggests that the appetite-modulating function of TSPO should be further explored due to its potential therapeutic promise.
Collapse
Affiliation(s)
- Joshua Wang
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kate Beecher
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
40
|
Piekut T, Wong YY, Walker SE, Smith CL, Gauberg J, Harracksingh AN, Lowden C, Novogradac BB, Cheng HYM, Spencer GE, Senatore A. Early Metazoan Origin and Multiple Losses of a Novel Clade of RIM Presynaptic Calcium Channel Scaffolding Protein Homologs. Genome Biol Evol 2021; 12:1217-1239. [PMID: 32413100 PMCID: PMC7456537 DOI: 10.1093/gbe/evaa097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
The precise localization of CaV2 voltage-gated calcium channels at the synapse active zone requires various interacting proteins, of which, Rab3-interacting molecule or RIM is considered particularly important. In vertebrates, RIM interacts with CaV2 channels in vitro via a PDZ domain that binds to the extreme C-termini of the channels at acidic ligand motifs of D/E-D/E/H-WC-COOH, and knockout of RIM in vertebrates and invertebrates disrupts CaV2 channel synaptic localization and synapse function. Here, we describe a previously uncharacterized clade of RIM proteins bearing domain architectures homologous to those of known RIM homologs, but with some notable differences including key amino acids associated with PDZ domain ligand specificity. This novel RIM emerged near the stem lineage of metazoans and underwent extensive losses, but is retained in select animals including the early-diverging placozoan Trichoplax adhaerens, and molluscs. RNA expression and localization studies in Trichoplax and the mollusc snail Lymnaea stagnalis indicate differential regional/tissue type expression, but overlapping expression in single isolated neurons from Lymnaea. Ctenophores, the most early-diverging animals with synapses, are unique among animals with nervous systems in that they lack the canonical RIM, bearing only the newly identified homolog. Through phylogenetic analysis, we find that CaV2 channel D/E-D/E/H-WC-COOH like PDZ ligand motifs were present in the common ancestor of cnidarians and bilaterians, and delineate some deeply conserved C-terminal structures that distinguish CaV1 from CaV2 channels, and CaV1/CaV2 from CaV3 channels.
Collapse
Affiliation(s)
| | | | - Sarah E Walker
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Carolyn L Smith
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | | | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | | |
Collapse
|
41
|
Oh KH, Krout MD, Richmond JE, Kim H. UNC-2 CaV2 Channel Localization at Presynaptic Active Zones Depends on UNC-10/RIM and SYD-2/Liprin-α in Caenorhabditis elegans. J Neurosci 2021; 41:4782-4794. [PMID: 33975919 PMCID: PMC8260173 DOI: 10.1523/jneurosci.0076-21.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/07/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
Presynaptic active zone proteins couple calcium influx with synaptic vesicle exocytosis. However, the control of presynaptic calcium channel localization by active zone proteins is not completely understood. In a Caenorhabditis elegans (C. elegans) forward genetic screen, we find that UNC-10/RIM (Rab3-interacting molecule) and SYD-2/Liprin-α regulate presynaptic localization of UNC-2, the CaV2 channel ortholog. We further quantitatively analyzed live animals using endogenously GFP-tagged UNC-2 and active zone components. Consistent with the interaction between RIM and CaV2 in mammals, the intensity and number of UNC-2 channel puncta at presynaptic terminals were greatly reduced in unc-10 mutant animals. To understand how SYD-2 regulates presynaptic UNC-2 channel localization, we analyzed presynaptic localization of endogenous SYD-2, UNC-10, RIMB-1/RIM-BP (RIM binding protein), and ELKS-1. Our analysis revealed that although SYD-2 is the most critical for active zone assembly, loss of SYD-2 function does not completely abolish presynaptic localization of UNC-10, RIMB-1, and ELKS-1, suggesting an existence of SYD-2-independent active zone assembly. UNC-2 localization analysis in double and triple mutants of active zone components show that SYD-2 promotes UNC-2 localization by partially controlling UNC-10 localization, and ELKS-1 and RIMB-1 also contribute to UNC-2 channel localization. In addition, we find that core active zone proteins are unequal in their abundance. Although the abundance of UNC-10 at the active zone is comparable to UNC-2, SYD-2 and ELKS-1 are twice more and RIMB-1 four times more abundant than UNC-2. Together our data show that UNC-10, SYD-2, RIMB-1, and ELKS-1 control presynaptic UNC-2 channel localization in redundant yet distinct manners.SIGNIFICANCE STATEMENT Precise control of neurotransmission is dependent on the tight coupling of the calcium influx through voltage-gated calcium channels (VGCCs) to the exocytosis machinery at the presynaptic active zones. However, how these VGCCs are tethered to the active zone is incompletely understood. To understand the mechanism of presynaptic VGCC localization, we performed a C. elegans forward genetic screen and quantitatively analyzed endogenous active zones and presynaptic VGCCs. In addition to RIM, our study finds that SYD-2/Liprin-α is critical for presynaptic localization of VGCCs. Yet, the loss of SYD-2, a core active zone scaffolding protein, does not completely abolish the presynaptic localization of the VGCC, showing that the active zone is a resilient structure assembled by redundant mechanisms.
Collapse
Affiliation(s)
- Kelly H Oh
- Center for Cancer Cell Biology, Immunology, and Infection, Department of Cell Biology and Anatomy, Chicago Medical School, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Mia D Krout
- Department of Biological Science, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Janet E Richmond
- Department of Biological Science, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Hongkyun Kim
- Center for Cancer Cell Biology, Immunology, and Infection, Department of Cell Biology and Anatomy, Chicago Medical School, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| |
Collapse
|
42
|
A Trio of Active Zone Proteins Comprised of RIM-BPs, RIMs, and Munc13s Governs Neurotransmitter Release. Cell Rep 2021; 32:107960. [PMID: 32755572 DOI: 10.1016/j.celrep.2020.107960] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/01/2020] [Accepted: 07/02/2020] [Indexed: 11/21/2022] Open
Abstract
At the presynaptic active zone, action-potential-triggered neurotransmitter release requires that fusion-competent synaptic vesicles are placed next to Ca2+ channels. The active zone resident proteins RIM, RBP, and Munc13 are essential contributors for vesicle priming and Ca2+-channel recruitment. Although the individual contributions of these scaffolds have been extensively studied, their respective functions in neurotransmission are still incompletely understood. Here, we analyze the functional interactions of RIMs, RBPs, and Munc13s at the genetic, molecular, functional, and ultrastructural levels in a mammalian synapse. We find that RBP, together with Munc13, promotes vesicle priming at the expense of RBP's role in recruiting presynaptic Ca2+ channels, suggesting that the support of RBP for vesicle priming and Ca2+-secretion coupling is mutually exclusive. Our results demonstrate that the functional interaction of RIM, RBP, and Munc13 is more profound than previously envisioned, acting as a functional trio that govern basic and short-term plasticity properties of neurotransmission.
Collapse
|
43
|
Burger CA, Jiang D, Mackin RD, Samuel MA. Development and maintenance of vision's first synapse. Dev Biol 2021; 476:218-239. [PMID: 33848537 DOI: 10.1016/j.ydbio.2021.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/21/2022]
Abstract
Synapses in the outer retina are the first information relay points in vision. Here, photoreceptors form synapses onto two types of interneurons, bipolar cells and horizontal cells. Because outer retina synapses are particularly large and highly ordered, they have been a useful system for the discovery of mechanisms underlying synapse specificity and maintenance. Understanding these processes is critical to efforts aimed at restoring visual function through repairing or replacing neurons and promoting their connectivity. We review outer retina neuron synapse architecture, neural migration modes, and the cellular and molecular pathways that play key roles in the development and maintenance of these connections. We further discuss how these mechanisms may impact connectivity in the retina.
Collapse
Affiliation(s)
- Courtney A Burger
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Danye Jiang
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Robert D Mackin
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Melanie A Samuel
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
44
|
Mencacci NE, Brockmann MM, Dai J, Pajusalu S, Atasu B, Campos J, Pino G, Gonzalez-Latapi P, Patzke C, Schwake M, Tucci A, Pittman A, Simon-Sanchez J, Carvill GL, Balint B, Wiethoff S, Warner TT, Papandreou A, Soo A, Rein R, Kadastik-Eerme L, Puusepp S, Reinson K, Tomberg T, Hanagasi H, Gasser T, Bhatia KP, Kurian MA, Lohmann E, Õunap K, Rosenmund C, Südhof TC, Wood NW, Krainc D, Acuna C. Biallelic variants in TSPOAP1, encoding the active-zone protein RIMBP1, cause autosomal recessive dystonia. J Clin Invest 2021; 131:140625. [PMID: 33539324 DOI: 10.1172/jci140625] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Dystonia is a debilitating hyperkinetic movement disorder, which can be transmitted as a monogenic trait. Here, we describe homozygous frameshift, nonsense, and missense variants in TSPOAP1, which encodes the active-zone RIM-binding protein 1 (RIMBP1), as a genetic cause of autosomal recessive dystonia in 7 subjects from 3 unrelated families. Subjects carrying loss-of-function variants presented with juvenile-onset progressive generalized dystonia, associated with intellectual disability and cerebellar atrophy. Conversely, subjects carrying a pathogenic missense variant (p.Gly1808Ser) presented with isolated adult-onset focal dystonia. In mice, complete loss of RIMBP1, known to reduce neurotransmission, led to motor abnormalities reminiscent of dystonia, decreased Purkinje cell dendritic arborization, and reduced numbers of cerebellar synapses. In vitro analysis of the p.Gly1808Ser variant showed larger spike-evoked calcium transients and enhanced neurotransmission, suggesting that RIMBP1-linked dystonia can be caused by either reduced or enhanced rates of spike-evoked release in relevant neural networks. Our findings establish a direct link between dysfunction of the presynaptic active zone and dystonia and highlight the critical role played by well-balanced neurotransmission in motor control and disease pathogenesis.
Collapse
Affiliation(s)
- Niccolò E Mencacci
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Marisa M Brockmann
- Institute of Neurophysiology, Charité Universitätsmedizin, Berlin, Germany
| | - Jinye Dai
- Department of Cellular and Molecular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Sander Pajusalu
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Burcu Atasu
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Joaquin Campos
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, and
| | - Gabriela Pino
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, and
| | - Paulina Gonzalez-Latapi
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Christopher Patzke
- Department of Cellular and Molecular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Michael Schwake
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Arianna Tucci
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Alan Pittman
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Javier Simon-Sanchez
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Gemma L Carvill
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sarah Wiethoff
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Klinik für Neurologie mit Institut für Translationale Neurologie, Albert Schweitzer Campus 1, Gebäude A1, Münster, Germany
| | - Thomas T Warner
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Apostolos Papandreou
- Molecular Neurosciences, Developmental Neurosciences, UCL Institute of Child Health, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Audrey Soo
- Molecular Neurosciences, Developmental Neurosciences, UCL Institute of Child Health, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | | | | | - Sanna Puusepp
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Karit Reinson
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Tiiu Tomberg
- Radiology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Hasmet Hanagasi
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Thomas Gasser
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Manju A Kurian
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, United Kingdom.,Molecular Neurosciences, Developmental Neurosciences, UCL Institute of Child Health, London, United Kingdom
| | - Ebba Lohmann
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | | | - Thomas C Südhof
- Department of Cellular and Molecular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Claudio Acuna
- Department of Cellular and Molecular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA.,Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, and
| |
Collapse
|
45
|
Krinner S, Predoehl F, Burfeind D, Vogl C, Moser T. RIM-Binding Proteins Are Required for Normal Sound-Encoding at Afferent Inner Hair Cell Synapses. Front Mol Neurosci 2021; 14:651935. [PMID: 33867935 PMCID: PMC8044855 DOI: 10.3389/fnmol.2021.651935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 11/19/2022] Open
Abstract
The afferent synapses between inner hair cells (IHC) and spiral ganglion neurons are specialized to faithfully encode sound with sub-millisecond precision over prolonged periods of time. Here, we studied the role of Rab3 interacting molecule-binding proteins (RIM-BP) 1 and 2 – multidomain proteins of the active zone known to directly interact with RIMs, Bassoon and CaV1.3 – in IHC presynaptic function and hearing. Recordings of auditory brainstem responses and otoacoustic emissions revealed that genetic disruption of RIM-BPs 1 and 2 in mice (RIM-BP1/2–/–) causes a synaptopathic hearing impairment exceeding that found in mice lacking RIM-BP2 (RIM-BP2–/–). Patch-clamp recordings from RIM-BP1/2–/– IHCs indicated a subtle impairment of exocytosis from the readily releasable pool of synaptic vesicles that had not been observed in RIM-BP2–/– IHCs. In contrast, the reduction of Ca2+-influx and sustained exocytosis was similar to that in RIMBP2–/– IHCs. We conclude that both RIM-BPs are required for normal sound encoding at the IHC synapse, whereby RIM-BP2 seems to take the leading role.
Collapse
Affiliation(s)
- Stefanie Krinner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 1286, University of Göttingen, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Friederike Predoehl
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Dinah Burfeind
- Presynaptogenesis and Intracellular Transport in Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Vogl
- Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Presynaptogenesis and Intracellular Transport in Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 1286, University of Göttingen, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Multiscale Bioimaging Cluster of Excellence, University of Göttingen, Göttingen, Germany
| |
Collapse
|
46
|
Petzoldt AG, Götz TWB, Driller JH, Lützkendorf J, Reddy-Alla S, Matkovic-Rachid T, Liu S, Knoche E, Mertel S, Ugorets V, Lehmann M, Ramesh N, Beuschel CB, Kuropka B, Freund C, Stelzl U, Loll B, Liu F, Wahl MC, Sigrist SJ. RIM-binding protein couples synaptic vesicle recruitment to release sites. J Cell Biol 2021; 219:151735. [PMID: 32369542 PMCID: PMC7337501 DOI: 10.1083/jcb.201902059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/03/2020] [Accepted: 04/07/2020] [Indexed: 11/24/2022] Open
Abstract
At presynaptic active zones, arrays of large conserved scaffold proteins mediate fast and temporally precise release of synaptic vesicles (SVs). SV release sites could be identified by clusters of Munc13, which allow SVs to dock in defined nanoscale relation to Ca2+ channels. We here show in Drosophila that RIM-binding protein (RIM-BP) connects release sites physically and functionally to the ELKS family Bruchpilot (BRP)-based scaffold engaged in SV recruitment. The RIM-BP N-terminal domain, while dispensable for SV release site organization, was crucial for proper nanoscale patterning of the BRP scaffold and needed for SV recruitment of SVs under strong stimulation. Structural analysis further showed that the RIM-BP fibronectin domains form a “hinge” in the protein center, while the C-terminal SH3 domain tandem binds RIM, Munc13, and Ca2+ channels release machinery collectively. RIM-BPs’ conserved domain architecture seemingly provides a relay to guide SVs from membrane far scaffolds into membrane close release sites.
Collapse
Affiliation(s)
- Astrid G Petzoldt
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Torsten W B Götz
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Jan Heiner Driller
- Freie Universität Berlin, Institute of Chemistry and Biochemistry/Structural Biochemistry Berlin, Berlin, Germany
| | - Janine Lützkendorf
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Suneel Reddy-Alla
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | | | - Sunbin Liu
- Freie Universität Berlin, Institute of Chemistry and Biochemistry/Structural Biochemistry Berlin, Berlin, Germany
| | - Elena Knoche
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Sara Mertel
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Vladimir Ugorets
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V., Campus Berlin-Buch, Berlin, Germany
| | - Niraja Ramesh
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | | | - Benno Kuropka
- Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Christian Freund
- Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Ulrich Stelzl
- Institut für Pharmazeutische Wissenschaften, Graz, Austria
| | - Bernhard Loll
- Freie Universität Berlin, Institute of Chemistry and Biochemistry/Structural Biochemistry Berlin, Berlin, Germany
| | - Fan Liu
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V., Campus Berlin-Buch, Berlin, Germany
| | - Markus C Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry/Structural Biochemistry Berlin, Berlin, Germany.,Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Stephan J Sigrist
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany.,NeuroCure, Charité, Berlin, Germany
| |
Collapse
|
47
|
Young SM, Veeraraghavan P. Presynaptic voltage-gated calcium channels in the auditory brainstem. Mol Cell Neurosci 2021; 112:103609. [PMID: 33662542 DOI: 10.1016/j.mcn.2021.103609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022] Open
Abstract
Sound information encoding within the initial synapses in the auditory brainstem requires reliable and precise synaptic transmission in response to rapid and large fluctuations in action potential (AP) firing rates. The magnitude and location of Ca2+ entry through voltage-gated Ca2+ channels (CaV) in the presynaptic terminal are key determinants in triggering AP-mediated release. In the mammalian central nervous system (CNS), the CaV2.1 subtype is the critical subtype for CNS function, since it is the most efficient CaV2 subtype in triggering AP-mediated synaptic vesicle (SV) release. Auditory brainstem synapses utilize CaV2.1 to sustain fast and repetitive SV release to encode sound information. Therefore, understanding the presynaptic mechanisms that control CaV2.1 localization, organization and biophysical properties are integral to understanding auditory processing. Here, we review our current knowledge about the control of presynaptic CaV2 abundance and organization in the auditory brainstem and impact on the regulation of auditory processing.
Collapse
Affiliation(s)
- Samuel M Young
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Otolaryngology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | | |
Collapse
|
48
|
Liang M, Jin G, Xie X, Zhang W, Li K, Niu F, Yu C, Wei Z. Oligomerized liprin-α promotes phase separation of ELKS for compartmentalization of presynaptic active zone proteins. Cell Rep 2021; 34:108901. [PMID: 33761347 DOI: 10.1016/j.celrep.2021.108901] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/02/2021] [Accepted: 03/03/2021] [Indexed: 01/09/2023] Open
Abstract
Synaptic scaffold proteins (e.g., liprin-α, ELKS, RIM, and RIM-BP) orchestrate ion channels, receptors, and enzymes at presynaptic terminals to form active zones for neurotransmitter release. The underlying mechanism of the active zone assembly remains elusive. Here, we report that liprin-α proteins have the potential to oligomerize through the N-terminal coiled-coil region. Our structural and biochemical characterizations reveal that a gain-of-function mutation promotes the self-assembly of the coiled coils in liprin-α2 by disrupting intramolecular interactions and promoting intermolecular interactions. By enabling multivalent interactions with ELKS proteins, the oligomerized coiled-coil region of liprin-α2 enhances the phase separation of the ELKS N-terminal segment. We further show that liprin-α2, by regulating the interplay between two phase separations of ELKS and RIM/RIM-BP, controls the protein distributions. These results imply that the complicated protein-protein interactions allow liprin-α to function with the active zone scaffolds and compartmentalize protein assemblies to achieve comprehensive functions in the active zone.
Collapse
Affiliation(s)
- Mingfu Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Gaowei Jin
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xingqiao Xie
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wenchao Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kaiyue Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Fengfeng Niu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Cong Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong 518055, China.
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
49
|
Gandini MA, Zamponi GW. Voltage‐gated calcium channel nanodomains: molecular composition and function. FEBS J 2021; 289:614-633. [DOI: 10.1111/febs.15759] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Maria A. Gandini
- Department of Physiology and Pharmacology Alberta Children’s Hospital Research Institute Hotchkiss Brain Institute Cumming School of Medicine University of Calgary AB Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology Alberta Children’s Hospital Research Institute Hotchkiss Brain Institute Cumming School of Medicine University of Calgary AB Canada
| |
Collapse
|
50
|
Gao T, Zhang Z, Yang Y, Zhang H, Li N, Liu B. Impact of RIM-BPs in neuronal vesicles release. Brain Res Bull 2021; 170:129-136. [PMID: 33581313 DOI: 10.1016/j.brainresbull.2021.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Accurate signal transmission between neurons is accomplished by vesicle release with high spatiotemporal resolution in the central nervous system. The vesicle release occurs mainly in the active zone (AZ), a unique area on the presynaptic membrane. Many structural proteins expressed in the AZ connect with other proteins nearby. They can also regulate the precise release of vesicles through protein-protein interactions. RIM-binding proteins (RIM-BPs) are one of the essential proteins in the AZ. This review summarizes the structures and functions of three subtypes of RIM-BPs, including the interaction between RIM-BPs and other proteins such as Bassoon and voltage-gated calcium channel, their significance in stabilizing the AZ structure in the presynaptic region and collecting ion channels, and ultimately regulating the fusion and release of neuronal vesicles.
Collapse
Affiliation(s)
- Tianyu Gao
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Zhengyao Zhang
- School of Life and Pharmaceutical Sciences, Panjin Campus of Dalian University of Technology, Panjin, 124221, China
| | - Yunong Yang
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Na Li
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China.
| | - Bo Liu
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|