1
|
Iorkula TH, Jude-Kelly Osayawe O, Odogwu DA, Ganiyu LO, Faderin E, Awoyemi RF, Akodu BO, Ifijen IH, Aworinde OR, Agyemang P, Onyinyechi OL. Advances in pyrazolo[1,5- a]pyrimidines: synthesis and their role as protein kinase inhibitors in cancer treatment. RSC Adv 2025; 15:3756-3828. [PMID: 39911541 PMCID: PMC11795850 DOI: 10.1039/d4ra07556k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025] Open
Abstract
Pyrazolo[1,5-a]pyrimidines are a notable class of heterocyclic compounds with potent protein kinase inhibitor (PKI) activity, playing a critical role in targeted cancer therapy. Protein kinases, key regulators in cellular signalling, are frequently disrupted in cancers, making them important targets for small-molecule inhibitors. This review explores recent advances in pyrazolo[1,5-a]pyrimidine synthesis and their application as PKIs, with emphasis on inhibiting kinases such as CK2, EGFR, B-Raf, MEK, PDE4, BCL6, DRAK1, CDK1 and CDK2, Pim-1, among others. Several synthetic strategies have been developed for the efficient synthesis of pyrazolo[1,5-a]pyrimidines, including cyclization, condensation, three-component reactions, microwave-assisted methods, and green chemistry approaches. Palladium-catalyzed cross-coupling and click chemistry have enabled the introduction of diverse functional groups, enhancing the biological activity and structural diversity of these compounds. Structure-activity relationship (SAR) studies highlight the influence of substituent patterns on their pharmacological properties. Pyrazolo[1,5-a]pyrimidines act as ATP-competitive and allosteric inhibitors of protein kinases, with EGFR-targeting derivatives showing promise in non-small cell lung cancer (NSCLC) treatment. Their inhibitory effects on B-Raf and MEK kinases are particularly relevant in melanoma. Biological evaluations, including in vitro and in vivo studies, have demonstrated their cytotoxicity, kinase selectivity, and antiproliferative effects. Despite these advances, challenges such as drug resistance, off-target effects, and toxicity persist. Future research will focus on optimizing synthetic approaches, improving drug selectivity, and enhancing bioavailability to increase clinical efficacy.
Collapse
Affiliation(s)
- Terungwa H Iorkula
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | | - Daniel A Odogwu
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | | - Emmanuel Faderin
- Department of Pharmaceutical Sciences, Southern Illinois University 1Harirpin Dr Edwardsville IL 62026 USA
| | | | - Busayo Odunayo Akodu
- Department of Pharmaceutical Sciences, Southern Illinois University 1Harirpin Dr Edwardsville IL 62026 USA
| | | | | | - Peter Agyemang
- Department of Chemistry, Michigan Technological University 1400 Townsend Dr Houghton MI 49931 USA
| | | |
Collapse
|
2
|
Can Cyclic Nucleotide Phosphodiesterase Inhibitors Be Drugs for Parkinson's Disease? Mol Neurobiol 2017; 55:822-834. [PMID: 28062949 DOI: 10.1007/s12035-016-0355-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) has no known cure; available therapies are only capable of offering temporary, symptomatic relief to the patients. Varied therapeutic strategies that are clinically used for PD are pharmacological therapies including dopamine replacement therapies (with or without adjuvant), postsynaptic dopamine receptor stimulation, dopamine catabolism inhibitors and also anticholinergics. Surgical therapies like deep brain stimulation and ablative surgical techniques are also employed. Phosphodiesterases (PDEs) are enzymes that degrade the phosphodiester bond in the second messenger molecules, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). A number of PDE families are highly expressed in the striatum including PDE1-4, PDE7, PDE9 and PDE10. There are growing evidences to suggest that these enzymes play a critical role in modulating cAMP-mediated dopamine signalling at the postsynaptic region. Therefore, it is clear that PDEs, given the broad range of subtypes and their varied tissue- and region-specific distributions, will be able to provide a range of possibilities as drug targets. There is no phosphodiesterase inhibitor currently approved for use against PD. The development of small molecule inhibitors against cyclic nucleotide PDE is a particularly hot area of investigation, and a lot of research and development is geared in this direction with major players in the pharmaceutical industry investing heavily in developing such potential drug entities. This review, while critically assessing the existing body of literature on brain PDEs with particular interest in the striatum in the context of motor function regulation, indicates it is certainly likely that PDE inhibitors could be developed as therapeutic agents against PD.
Collapse
|
3
|
Phosphodiesterase-4B as a Therapeutic Target for Cognitive Impairment and Obesity-Related Metabolic Diseases. ADVANCES IN NEUROBIOLOGY 2017; 17:103-131. [DOI: 10.1007/978-3-319-58811-7_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
McGirr A, Lipina TV, Mun HS, Georgiou J, Al-Amri AH, Ng E, Zhai D, Elliott C, Cameron RT, Mullins JGL, Liu F, Baillie GS, Clapcote SJ, Roder JC. Specific Inhibition of Phosphodiesterase-4B Results in Anxiolysis and Facilitates Memory Acquisition. Neuropsychopharmacology 2016; 41:1080-92. [PMID: 26272049 PMCID: PMC4748432 DOI: 10.1038/npp.2015.240] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 01/07/2023]
Abstract
Cognitive dysfunction is a core feature of dementia and a prominent feature in psychiatric disease. As non-redundant regulators of intracellular cAMP gradients, phosphodiesterases (PDE) mediate fundamental aspects of brain function relevant to learning, memory, and higher cognitive functions. Phosphodiesterase-4B (PDE4B) is an important phosphodiesterase in the hippocampal formation, is a major Disrupted in Schizophrenia 1 (DISC1) binding partner and is itself a risk gene for psychiatric illness. To define the effects of specific inhibition of the PDE4B subtype, we generated mice with a catalytic domain mutant form of PDE4B (Y358C) that has decreased ability to hydrolyze cAMP. Structural modeling predictions of decreased function and impaired binding with DISC1 were confirmed in cell assays. Phenotypic characterization of the PDE4B(Y358C) mice revealed facilitated phosphorylation of CREB, decreased binding to DISC1, and upregulation of DISC1 and β-Arrestin in hippocampus and amygdala. In behavioral assays, PDE4B(Y358C) mice displayed decreased anxiety and increased exploration, as well as cognitive enhancement across several tests of learning and memory, consistent with synaptic changes including enhanced long-term potentiation and impaired depotentiation ex vivo. PDE4B(Y358C) mice also demonstrated enhanced neurogenesis. Contextual fear memory, though intact at 24 h, was decreased at 7 days in PDE4B(Y358C) mice, an effect replicated pharmacologically with a non-selective PDE4 inhibitor, implicating cAMP signaling by PDE4B in a very late phase of consolidation. No effect of the PDE4B(Y358C) mutation was observed in the prepulse inhibition and forced swim tests. Our data establish specific inhibition of PDE4B as a promising therapeutic approach for disorders of cognition and anxiety, and a putative target for pathological fear memory.
Collapse
Affiliation(s)
- Alexander McGirr
- Department of Psychiatry, University of
British Columbia, Vancouver, British Columbia,
Canada,Lunenfeld-Tanenbaum Research Institute,
Mount Sinai Hospital, Toronto, Ontario,
Canada,Department of Psychiatry, University of British
Columbia, Vancouver, British Columbia,
Canada
V6T 2A1, E-mail:
| | - Tatiana V Lipina
- Lunenfeld-Tanenbaum Research Institute,
Mount Sinai Hospital, Toronto, Ontario,
Canada
| | - Ho-Suk Mun
- Lunenfeld-Tanenbaum Research Institute,
Mount Sinai Hospital, Toronto, Ontario,
Canada,Department of Medical Genetics,
University of Toronto, Toronto, Ontario,
Canada
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute,
Mount Sinai Hospital, Toronto, Ontario,
Canada
| | - Ahmed H Al-Amri
- School of Biomedical Sciences, University
of Leeds, Leeds, UK,National Genetic Centre, Royal
Hospital, Muscat, Oman
| | - Enoch Ng
- Lunenfeld-Tanenbaum Research Institute,
Mount Sinai Hospital, Toronto, Ontario,
Canada,Institute of Medical Science, University
of Toronto, Toronto, Ontario,
Canada
| | - Dongxu Zhai
- Department of Neuroscience, Centre for
Addiction and Mental Health, Toronto, Ontario,
Canada
| | - Christina Elliott
- Institute of Cardiovascular and Medical
Sciences, College of Medical, Veterinary and Life Sciences, University of
Glasgow, Glasgow, UK
| | - Ryan T Cameron
- Institute of Cardiovascular and Medical
Sciences, College of Medical, Veterinary and Life Sciences, University of
Glasgow, Glasgow, UK
| | - Jonathan GL Mullins
- Institute of Life Science, College of
Medicine, Swansea University, Swansea, UK
| | - Fang Liu
- Department of Neuroscience, Centre for
Addiction and Mental Health, Toronto, Ontario,
Canada
| | - George S Baillie
- Institute of Cardiovascular and Medical
Sciences, College of Medical, Veterinary and Life Sciences, University of
Glasgow, Glasgow, UK
| | - Steven J Clapcote
- School of Biomedical Sciences, University
of Leeds, Leeds, UK,School of Biomedical Sciences, University of Leeds,
Leeds
LS2 9JT, UK, Tel: +44 (0)113 3433041,
E-mail:
| | - John C Roder
- Lunenfeld-Tanenbaum Research Institute,
Mount Sinai Hospital, Toronto, Ontario,
Canada,Department of Physiology, University of
Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta. Sci Rep 2016; 6:19252. [PMID: 26786712 PMCID: PMC4726125 DOI: 10.1038/srep19252] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/04/2015] [Indexed: 01/15/2023] Open
Abstract
Although sexual reproduction is believed to play a major role in the high diversification rates and species richness of diatoms, a mechanistic understanding of diatom life cycle control is virtually lacking. Diatom sexual signalling is controlled by a complex, yet largely unknown, pheromone system. Here, a sex-inducing pheromone (SIP+) of the benthic pennate diatom Seminavis robusta was identified by comparative metabolomics, subsequently purified, and physicochemically characterized. Transcriptome analysis revealed that SIP+ triggers the switch from mitosis-to-meiosis in the opposing mating type, coupled with the transcriptional induction of proline biosynthesis genes, and the release of the proline-derived attraction pheromone. The induction of cell cycle arrest by a pheromone, chemically distinct from the one used to attract the opposite mating type, highlights the existence of a sophisticated mechanism to increase chances of mate finding, while keeping the metabolic losses associated with the release of an attraction pheromone to a minimum.
Collapse
|
6
|
Serya RAT, Abbas AH, Ismail NSM, Esmat A, Abou El Ella DA. Design, Synthesis and Biological Evaluation of Novel Quinazoline-Based Anti-inflammatory Agents Acting as PDE4B Inhibitors. Chem Pharm Bull (Tokyo) 2015; 63:102-16. [DOI: 10.1248/cpb.c14-00737] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Abeer Hussin Abbas
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University
| | | | - Ahmed Esmat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University
| | | |
Collapse
|
7
|
Norman P. PDE4 inhibitors 2001. Patent and literature activity 2000 - September 2001. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.12.1.93] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Johnston LA, Erdogan S, Cheung YF, Sullivan M, Barber R, Lynch MJ, Baillie GS, Van Heeke G, Adams DR, Huston E, Houslay MD. Expression, intracellular distribution and basis for lack of catalytic activity of the PDE4A7 isoform encoded by the human PDE4A cAMP-specific phosphodiesterase gene. Biochem J 2004; 380:371-84. [PMID: 15025561 PMCID: PMC1224194 DOI: 10.1042/bj20031662] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 02/19/2004] [Accepted: 03/04/2004] [Indexed: 12/23/2022]
Abstract
PDE4A7 is an isoform encoded by the human PDE4A cAMP-specific phosphodiesterase gene that fails to hydrolyse cAMP and whose transcripts are widely expressed. Removal of either the N- or C-terminal unique portions of PDE4A7 did not reconstitute catalytic activity, showing that they did not exert a chronic inhibitory effect. A chimera (Hyb2), formed by swapping the unique N-terminal portion of PDE4A7 with that of the active PDE4A4C form, was not catalytically active. However, one formed (Hyb1) by swapping the unique C-terminal portion of PDE4A7 with that common to all active PDE4 isoforms was catalytically active. Compared with the active PDE4A4B isoform, Hyb1 exhibited a similar K(m) value for cAMP and IC50 value for rolipram inhibition, but was less sensitive to inhibition by Ro-20-1724 and denbufylline, and considerably more sensitive to thermal denaturation. The unique C-terminal region of PDE4A7 was unable to support an active catalytic unit, whereas its unique N-terminal region can. The N-terminal portion of the PDE4 catalytic unit is essential for catalytic activity and can be supplied by either highly conserved sequence found in active PDE4 isoforms from all four PDE4 subfamilies or the unique N-terminal portion of PDE4A7. A discrete portion of the conserved C-terminal region in active PDE4A isoforms underpins their aberrant migration on SDS/PAGE. Unlike active PDE4A isoforms, PDE4A7 is exclusively localized to the P1 particulate fraction in cells. A region located within the C-terminal portion of active PDE4 isoforms prevents such exclusive targeting. Three functional regions in PDE4A isoforms are identified, which influence catalytic activity, subcellular targeting and conformational status.
Collapse
Affiliation(s)
- Lee Ann Johnston
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Wolfson Building, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Phosphodiesterases (PDE) belong to an important family of proteins that regulate the intracellular levels of cyclic nucleotide second messengers. Targeting PDE with selective inhibitors may offer novel therapeutic strategies in the treatment of various conditions, and in the context of respiratory disease these include asthma and chronic obstructive pulmonary disease (COPD). The rationale for such an approach stems, in part, from the clinical efficacy of theophylline, an orally active drug that is purportedly a nonselective PDE inhibitor. In addition, intracellular cyclic adenosine monophosphate (cAMP) levels regulate the function of many of the cells thought to contribute to the pathogenesis of respiratory diseases such as asthma and COPD, and these cells also selectively express PDE4. This has offered pharmaceutical companies the opportunity to selectively targeting these enzymes for the treatment of these diseases. Finally, the success of targeting PDE5 in the treatment of erectile dysfunction provides clinical proof of concept for the targeting of PDE in disease. Whether a 'Viagra' of the airways can be found for the treatment of asthma and COPD remains to be seen, but positive results from recent clinical studies examining the efficacy of selective PDE4 inhibitors such as cilomilast and roflumilast offer some optimism. However, one of the major issues to be resolved is the tolerability profile associated with this drug class that is a consequence of PDE4 inhibition. While cilomilast and roflumilast have low emetic potential they are not free from emesis and various strategies are being investigated in the hope of developing a PDE4 inhibitor without this adverse effect.
Collapse
Affiliation(s)
- Domenico Spina
- The Sackler Institute of Pulmonary Pharmacology, GKT School of Biomedical Science, King's College London, London, UK.
| |
Collapse
|
10
|
Xu RX, Rocque WJ, Lambert MH, Vanderwall DE, Luther MA, Nolte RT. Crystal structures of the catalytic domain of phosphodiesterase 4B complexed with AMP, 8-Br-AMP, and rolipram. J Mol Biol 2004; 337:355-65. [PMID: 15003452 DOI: 10.1016/j.jmb.2004.01.040] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Revised: 12/23/2003] [Accepted: 01/09/2004] [Indexed: 10/26/2022]
Abstract
Phosphodiesterase catalyzes the hydrolysis of the intracellular second messenger 3',5'-cyclic AMP (cAMP) into the corresponding 5'-nucleotide. Phosphodiesterase 4 (PDE4), the major cAMP-specific PDE in inflammatory and immune cells, is an attractive target for the treatment of asthma and COPD. We have determined crystal structures of the catalytic domain of PDE4B complexed with AMP (2.0 A), 8-Br-AMP (2.13 A) and the potent inhibitor rolipram (2.0 A). All the ligands bind in the same hydrophobic pocket and can interact directly with the active site metal ions. The identity of these metal ions was examined using X-ray anomalous difference data. The structure of the AMP complex confirms the location of the catalytic site and allowed us to speculate about the detailed mechanism of catalysis. The high-resolution structures provided the experimental insight into the nucleotide selectivity of phosphodiesterase. 8-Br-AMP binds in the syn conformation to the enzyme and demonstrates an alternative nucleotide-binding mode. Rolipram occupies much of the AMP-binding site and forms two hydrogen bonds with Gln443 similar to the nucleotides.
Collapse
Affiliation(s)
- Robert X Xu
- Department of Computational, Analytical and Structural Sciences, GlaxoSmithKline, 5 Moore Drive, V-180, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | |
Collapse
|
11
|
MacKenzie SJ. Phosphodiesterase 4 cAMP phosphodiesterases as targets for novel anti-inflammatory therapeutics. Allergol Int 2004. [DOI: 10.1111/j.1323-8930.2004.00318.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Huai Q, Wang H, Sun Y, Kim HY, Liu Y, Ke H. Three-dimensional structures of PDE4D in complex with roliprams and implication on inhibitor selectivity. Structure 2003; 11:865-73. [PMID: 12842049 DOI: 10.1016/s0969-2126(03)00123-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Selective inhibitors against the 11 families of cyclic nucleotide phosphodiesterases (PDEs) are used to treat various human diseases. How the inhibitors selectively bind the conserved PDE catalytic domains is unknown. The crystal structures of the PDE4D2 catalytic domain in complex with (R)- or (R,S)-rolipram suggest that inhibitor selectivity is determined by the chemical nature of amino acids and subtle conformational changes of the binding pockets. The conformational states of Gln369 in PDE4D2 may play a key role in inhibitor recognition. The corresponding Y329S mutation in PDE7 may lead to loss of the hydrogen bonds between rolipram and Gln369 and is thus a possible reason explaining PDE7's insensitivity to rolipram inhibition. Docking of the PDE5 inhibitor sildenafil into the PDE4 catalytic pocket further helps understand inhibitor selectivity.
Collapse
Affiliation(s)
- Qing Huai
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
13
|
Frame MJ, Tate R, Adams DR, Morgan KM, Houslay MD, Vandenabeele P, Pyne NJ. Interaction of caspase-3 with the cyclic GMP binding cyclic GMP specific phosphodiesterase (PDE5a1). EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:962-70. [PMID: 12603329 DOI: 10.1046/j.1432-1033.2003.03464.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we show that recombinant bovine PDE5A1 is proteolysed by recombinant caspase-3 in in vitro and transfected Cos-7 cells. In addition, the treatment of PDE5A1-transfected Cos-7 and PC12 cells with staurosporine, an apoptotic agent that activates endogenous caspase-3, also induced proteolysis and inactivation of PDE5A1. These findings suggest that there is specificity in the interaction between caspase-3 and PDE5A1 that requires application of an apoptotic stimulus. The potential proteolysis of the [778]DQGD[781] site in PDE5A1 by caspase-3 might affect cGMP's hydrolyzing activity as this is within the boundary of the active site. We therefore created a truncated D781 mutant corresponding exactly to the potential cleavage product. This mutant was expressed equally well compared with the wild-type enzyme in transfected Cos-7 cells and was inactive. Inactivity of the truncated mutant was not due to potential misfolding of the enzyme as it eluted from gel filtration chromatography in the same fraction as the wild-type enzyme. Homology model comparison with the catalytic domain of PDE4B2 was used to probe a functional role for the region in PDE5A1 that might be cleaved by caspase-3. From this, we can predict that a caspase-3-mediated cleavage of the [778]DQGD[781] motif would result in removal of the C-terminal tail containing Q807 and F810, which are potentially important amino acids required for substrate binding.
Collapse
Affiliation(s)
- Mhairi J Frame
- Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Houslay MD, Adams DR. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem J 2003; 370:1-18. [PMID: 12444918 PMCID: PMC1223165 DOI: 10.1042/bj20021698] [Citation(s) in RCA: 589] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2002] [Revised: 11/13/2002] [Accepted: 11/22/2002] [Indexed: 11/17/2022]
Abstract
cAMP is a second messenger that controls many key cellular functions. The only way to inactivate cAMP is to degrade it through the action of cAMP phosphodiesterases (PDEs). PDEs are thus poised to play a key regulatory role. PDE4 cAMP-specific phosphodiesterases appear to have specific functions with selective inhibitors serving as potent anti-inflammatory agents. The recent elucidation of the structure of the PDE4 catalytic unit allows for molecular insight into the mode of catalysis as well as substrate and inhibitor selectivity. The four PDE4 genes encode over 16 isoforms, each of which is characterized by a unique N-terminal region. PDE4 isoforms play a pivotal role in controlling functionally and spatially distinct pools of cAMP by virtue of their unique intracellular targeting. Targeting occurs by association with proteins, such as arrestins, SRC family tyrosyl kinases, A-kinase anchoring proteins ('AKAPs') and receptor for activated C kinase 1 ('RACK1'), and, in the case of isoform PDE4A1, by a specific interaction (TAPAS-1) with phosphatidic acid. PDE4 isoforms are 'designed' to be regulated by extracellular-signal-related protein kinase (ERK), which binds to anchor sites on the PDE4 catalytic domain that it phosphorylates. The upstream conserved region 1 (UCR1) and 2 (UCR2) modules that abut the PDE4 catalytic unit confer regulatory functions by orchestrating the functional outcome of phosphorylation by cAMP-dependent protein kinase ('PKA') and ERK. PDE4 enzymes stand at a crossroads that allows them to integrate various signalling pathways with that of cAMP in spatially distinct compartments.
Collapse
Affiliation(s)
- Miles D Houslay
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Davidson Building, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | | |
Collapse
|
15
|
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) regulate physiological processes by degrading intracellular second messengers, adenosine-3',5'-cyclic phosphate or guanosine-3',5'-cyclic phosphate. The first crystal structure of PDE4D catalytic domain and a bound inhibitor, zardaverine, was determined. Zardaverine binds to a highly conserved pocket that includes the catalytic metal binding site. Zardaverine fills only a portion of the active site pocket. More selective PDE4 inhibitors including rolipram, cilomilast and roflumilast have additional functional groups that can utilize the remaining empty space for increased binding energy and selectivity. In the crystal structure, the catalytic domain of PDE4D possesses an extensive dimerization interface containing residues that are highly conserved in PDE1, 3, 4, 8 and 9. Mutations of R358D or D322R among these interface residues prohibit dimerization of the PDE4D catalytic domain in solution.
Collapse
Affiliation(s)
- Mi Eun Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, Daejon 305-701, South Korea
| | | | | | | |
Collapse
|
16
|
Zhang W, Ke H, Colman RW. Identification of interaction sites of cyclic nucleotide phosphodiesterase type 3A with milrinone and cilostazol using molecular modeling and site-directed mutagenesis. Mol Pharmacol 2002; 62:514-20. [PMID: 12181427 DOI: 10.1124/mol.62.3.514] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To identify amino acid residues involved in PDE3-selective inhibitor binding, we selected eight presumed interacting residues in the substrate-binding pocket of PDE3A using a model created on basis of homology to the PDE4B crystal structure. We changed the residues to alanine using site-directed mutagenesis technique, expressed the mutants in a baculovirus/Sf9 cell system, and analyzed the kinetic characteristics of inhibition of the mutant enzymes by milrinone and cilostazol, specific inhibitors of PDE3. The mutants displayed differential sensitivity to the inhibitors. Mutants Y751A, D950A, and F1004A had reduced sensitivity to milrinone (K(i) changed from 0.66 microM for the recombinant PDE3A to 7.5 to 156 microM for the mutants), and diminished sensitivity to cilostazol (K(i) of the mutants were 18- to 371-fold higher than that of the recombinant PDE3A). In contrast, the mutants T844A, F972A and Q975A showed increased K(i) for cilostazol but no difference for milrinone from the recombinant PDE3A. Molecular models show that the PDE3 inhibitors cilostazol and milrinone share some of common residues but interact with distinct residues at the active site, suggesting that selective inhibitors can be designed with flexible size against PDE3 active site. Our study implies that highly conserved residuals Y751, D950 and F1004 in the PDE families are key residues for binding of both substrate and inhibitors, and nonconserved T844 may be responsible for the cilostazol selectivity of PDE3A. Detailed knowledge of the structure of inhibitory sites should contribute to development of more potent and specific inhibitory drugs.
Collapse
Affiliation(s)
- W Zhang
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
17
|
Mehats C, Andersen CB, Filopanti M, Jin SLC, Conti M. Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling. Trends Endocrinol Metab 2002; 13:29-35. [PMID: 11750860 DOI: 10.1016/s1043-2760(01)00523-9] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The discovery that degradation and inactivation of the second messengers cAMP and cGMP are mediated by a complex enzymatic machinery has changed our perspective on cyclic nucleotide-mediated processes. In the cell, these second messengers are inactivated by no fewer than 11 distinct families of phosphodiesterases (PDEs). Much is known about the structure and function of these enzymes, their complex subcellular distribution and regulation. Yet, their potential as targets for therapeutic intervention in a broad range of endocrine abnormalities still needs to be investigated. This review explores the involvement of PDEs in the regulation of intracellular signaling and focuses on the known and potential roles that are of interest to endocrinologists.
Collapse
Affiliation(s)
- Celine Mehats
- Division of Reproductive Biology, Dept Gynecology and Obstetrics, Stanford University School of Medicine, 300 Pasteur Drive, Room A344, Stanford, CA 94305-5317, USA
| | | | | | | | | |
Collapse
|
18
|
Dym O, Xenarios I, Ke H, Colicelli J. Molecular docking of competitive phosphodiesterase inhibitors. Mol Pharmacol 2002; 61:20-5. [PMID: 11752202 DOI: 10.1124/mol.61.1.20] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian phosphodiesterases types 3 and 4 (PDE3 and PDE4) hydrolyze cAMP and are essential for the regulation of this intracellular second messenger. These enzymes share structural and biochemical similarities, but each can be distinguished by its sensitivity to isoenzyme-specific, substrate-competitive inhibitors. We present a model configuration for the PDE4 substrate (cAMP) and a PDE4-specific inhibitor (rolipram) within the active site of the enzyme. The docked models were also used to examine the structural consequences of mutations that confer resistance to rolipram and other PDE4-specific inhibitors. The proposed rolipram-binding configuration is consistent with the substrate-competitive nature of inhibition and also provides a structural basis for the observed specificity of binding to the R- versus S-enantiomer. For mutations that render the enzyme rolipram-insensitive, there was generally an inverse relationship between the magnitude of the drug resistance and the distance of the altered residue from the predicted binding site. We observed a direct correlation between the net loss of protein residue interactions (van der Waals contacts and hydrogen bond interactions) and the degree of rolipram resistance. The positions of several drug sensitivity-determinant residues define a surface leading to the substrate- and drug-binding sites, suggesting a possible approach channel leading to the enzyme active site. The binding of other PDE4 inhibitors (high- and low-affinity) was also modeled and used to predict the involvement of residues that were not previously implicated in pharmacological interactions.
Collapse
Affiliation(s)
- Orly Dym
- University of California Los Angeles-Department of Energy Laboratory of Structural Biology and Molecular Medicine, University of California Los Angeles, Los Angeles, California, USA
| | | | | | | |
Collapse
|
19
|
Abstract
A number of highly potent PDE4 inhibitors are being developed for the treatment of asthma, chronic obstructive pulmonary disease, rheumatoid arthritis, multiple sclerosis and Crohn's disease. Cilomilast (Ariflo, SB 207499, SmithKline Beecham), the most advanced member of the class in Phase III clinical trials, was reported to have a limited therapeutic window. Other inhibitors with improved profiles in preclinical models are entering into (or are in) clinical trials. The recent developments in understanding PDE4 catalysis, inhibitor binding and their emetic response should facilitate the design of the next generation of PDE4 inhibitors.
Collapse
Affiliation(s)
- Z Huang
- Merck Frosst Centre for Therapeutic Research, PO Box 1005, Pointe Claire, Dorval, Quebec, H9R 4P8, Canada.
| | | | | | | |
Collapse
|