1
|
Nakamura K, Yamamoto R, Higashibeppu N, Yoshida M, Tatsumi H, Shimizu Y, Izumino H, Oshima T, Hatakeyama J, Ouchi A, Tsutsumi R, Tsuboi N, Yamamoto N, Nozaki A, Asami S, Takatani Y, Yamada K, Matsuishi Y, Takauji S, Tampo A, Terasaka Y, Sato T, Okamoto S, Sakuramoto H, Miyagi T, Aki K, Ota H, Watanabe T, Nakanishi N, Ohbe H, Narita C, Takeshita J, Sagawa M, Tsunemitsu T, Matsushima S, Kobashi D, Yanagita Y, Watanabe S, Murata H, Taguchi A, Hiramoto T, Ichimaru S, Takeuchi M, Kotani J. The Japanese Critical Care Nutrition Guideline 2024. J Intensive Care 2025; 13:18. [PMID: 40119480 PMCID: PMC11927338 DOI: 10.1186/s40560-025-00785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 02/23/2025] [Indexed: 03/24/2025] Open
Abstract
Nutrition therapy is important in the management of critically ill patients and is continuously evolving as new evidence emerges. The Japanese Critical Care Nutrition Guideline 2024 (JCCNG 2024) is specific to Japan and is the latest set of clinical practice guidelines for nutrition therapy in critical care that was revised from JCCNG 2016 by the Japanese Society of Intensive Care Medicine. An English version of these guidelines was created based on the contents of the original Japanese version. These guidelines were developed to help health care providers understand and provide nutrition therapy that will improve the outcomes of children and adults admitted to intensive care units or requiring intensive care, regardless of the disease. The intended users of these guidelines are all healthcare professionals involved in intensive care, including those who are not familiar with nutrition therapy. JCCNG 2024 consists of 37 clinical questions and 24 recommendations, covering immunomodulation therapy, nutrition therapy for special conditions, and nutrition therapy for children. These guidelines were developed in accordance with the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) system by experts from various healthcare professionals related to nutrition therapy and/or critical care. All GRADE-based recommendations, good practice statements (GPS), future research questions, and answers to background questions were finalized by consensus using the modified Delphi method. Strong recommendations for adults include early enteral nutrition (EN) within 48 h and the provision of pre/synbiotics. Weak recommendations for adults include the use of a nutrition protocol, EN rather than parenteral nutrition, the provision of higher protein doses, post-pyloric EN, continuous EN, omega-3 fatty acid-enriched EN, the provision of probiotics, and indirect calorimetry use. Weak recommendations for children include early EN within 48 h, bolus EN, and energy/protein-dense EN formulas. A nutritional assessment is recommended by GPS for both adults and children. JCCNG 2024 will be disseminated through educational activities mainly by the JCCNG Committee at various scientific meetings and seminars. Since studies on nutritional treatment for critically ill patients are being reported worldwide, these guidelines will be revised in 4 to 6 years. We hope that these guidelines will be used in clinical practice for critically ill patients and in future research.
Collapse
Affiliation(s)
- Kensuke Nakamura
- Department of Critical Care Medicine, Yokohama City University Hospital, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
| | - Ryo Yamamoto
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Higashibeppu
- Department of Anesthesia and Critical Care, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Minoru Yoshida
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Hiroomi Tatsumi
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshiyuki Shimizu
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Hiroo Izumino
- Acute and Critical Care Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Taku Oshima
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba City, Japan
| | - Junji Hatakeyama
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Akira Ouchi
- Department of Adult Health Nursing, College of Nursing, Ibaraki Christian University, Hitachi, Japan
| | - Rie Tsutsumi
- Department of Anesthesiology and Critical Care, Hiroshima University Hospital, Hiroshima, Japan
| | - Norihiko Tsuboi
- Department of Critical Care Medicine and Anesthesia, National Center for Child Health and Development, Tokyo, Japan
| | - Natsuhiro Yamamoto
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University School of Medicine, Kanagawa, Japan
| | - Ayumu Nozaki
- Department of Pharmacy, Kyoto-Katsura Hospital, Kyoto, Japan
| | - Sadaharu Asami
- Department of Cardiology, Musashino Tokushukai Hospital, Tokyo, Japan
| | - Yudai Takatani
- Department of Primary Care and Emergency Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Kohei Yamada
- Department of Traumatology and Critical Care Medicine, National Defense Medical College Hospital, Saitama, Japan
| | - Yujiro Matsuishi
- Adult and Elderly Nursing, Faculty of Nursing, Tokyo University of Information Science, Chiba, Japan
| | - Shuhei Takauji
- Department of Emergency Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Akihito Tampo
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yusuke Terasaka
- Department of Emergency Medicine, Kyoto Katsura Hospital, Kyoto, Japan
| | - Takeaki Sato
- Tohoku University Hospital Emergency Center, Miyagi, Japan
| | - Saiko Okamoto
- Department of Nursing, Hitachi General Hospital, Hitachi, Japan
| | - Hideaki Sakuramoto
- Department of Acute Care Nursing, Japanese Red Cross Kyushu International College of Nursing, Munakata, Japan
| | - Tomoka Miyagi
- Anesthesiology and Critical Care Medicine, Master's Degree Program, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Keisei Aki
- Department of Pharmacy, Kokura Memorial Hospital, Fukuoka, Japan
| | - Hidehito Ota
- Department of Pediatrics, School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taro Watanabe
- Department of Intensive Care Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Nobuto Nakanishi
- Division of Disaster and Emergency Medicine, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroyuki Ohbe
- Department of Emergency and Critical Care Medicine, Tohoku University Hospital, Sendai, Japan
| | - Chihiro Narita
- Department of Emergency Medicine, Shizuoka General Hospital, Shizuoka, Japan
| | - Jun Takeshita
- Department of Anesthesiology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Masano Sagawa
- Department of Surgery, Tokyo Women's Medical University Adachi Medical Center, Tokyo, Japan
| | - Takefumi Tsunemitsu
- Department of Preventive Services, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinya Matsushima
- Department of Physical Therapy, Faculty of Health Science, Kyorin University, Tokyo, Japan
| | - Daisuke Kobashi
- Department of Critical Care and Emergency Medicine, Japanese Red Cross Maebashi Hospital, Gunma, Japan
| | - Yorihide Yanagita
- Department of Health Sciences, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shinichi Watanabe
- Department of Physical Therapy, Faculty of Rehabilitation, Gifu University of Health Science, Gifu, Japan
| | - Hiroyasu Murata
- Department of Rehabilitation Medicine, Kyorin University Hospital, Tokyo, Japan
| | - Akihisa Taguchi
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| | - Takuya Hiramoto
- Department of Internal Medicine, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu, Japan
| | - Satomi Ichimaru
- Food and Nutrition Service Department, Fujita Health University Hospital, Aichi, Japan
| | - Muneyuki Takeuchi
- Department of Critical Care Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Joji Kotani
- Division of Disaster and Emergency Medicine, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
2
|
Sabatino A, Fiaccadori E, Barazzoni R, Carrero JJ, Cupisti A, De Waele E, Jonckheer J, Cuerda C, Bischoff SC. ESPEN practical guideline on clinical nutrition in hospitalized patients with acute or chronic kidney disease. Clin Nutr 2024; 43:2238-2254. [PMID: 39178492 DOI: 10.1016/j.clnu.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/25/2024]
Abstract
BACKGROUND AND AIMS Hospitalized patients often have acute kidney disease (AKD) or chronic kidney disease (CKD), with important metabolic and nutritional consequences. Moreover, in case kidney replacement therapy (KRT) is started, the possible impact on nutritional requirements cannot be neglected. On this regard, the present guideline aims to provide evidence-based recommendations for clinical nutrition in hospitalized patients with KD. METHODS The standard operating procedure for ESPEN guidelines was used. Clinical questions were defined in both the PICO format, and organized in subtopics when needed, and in non-PICO questions for the more general topics. The literature search was from January 1st, 1999 until January 1st, 2020. Each question led to one or more recommendation/statement and related commentaries. Existing evidence was graded, as well as recommendations and statements were developed and agreed upon in a multistage consensus process. RESULTS The present guideline provides 32 evidence-based recommendations and 8 statements, defining how to assess nutritional status, how to define patients at risk, how to choose the route of feeding, and how to integrate nutrition with KRT. In the final online voting, a strong consensus was reached in 84% at least of recommendations and 100% of statements. CONCLUSION The presence of KD in hospitalized patients identifies a highly heterogeneous group of subjects with widely varying nutrient needs and intakes. Considering the high nutritional risk related with this clinical condition, an individualized approach consisting of nutritional status evaluation and monitoring, frequent evaluation of nutritional requirements, and careful integration with KRT should be planned to avoid both underfeeding and overfeeding. Practical recommendations and statements were developed, aiming at defining suggestions for everyday clinical practice in the individualization of nutritional support in this patient setting. Literature areas with scarce or without evidence were also identified, thus requiring further basic or clinical research.
Collapse
Affiliation(s)
- Alice Sabatino
- Division of Renal Medicine, Baxter Novum. Department of Clinical Science, Intervention and Technology. Karolinska Institute, Stockholm, Sweden.
| | - Enrico Fiaccadori
- Nephrology Unit, Parma University Hospital, & Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rocco Barazzoni
- Internal Medicine, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Juan Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Adamasco Cupisti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisabeth De Waele
- Department of Intensive Care Medicine, Universitair Ziekenhuis Brussel, Department of Clinical Nutrition, Vitality Research Group, Faculty of Medicine and Pharmacy, Vrije Unversiteit Brussel (VUB), Brussels, Belgium
| | - Joop Jonckheer
- Department of intensive Care Medicine, University Hospital Brussel (UZB), Brussels, Belgium; Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussel, Belgium
| | - Cristina Cuerda
- Nutrition Unit, Hospital General Universitario Gregorio Marañon, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Department of Medicine. Universidad Complutense. Madrid, Spain
| | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
3
|
Kashiwagi S, Kanda N, Yoshida M, Wakimoto Y, Ohbe H, Nakamura K. Effects of early enteral nutrition on persistent inflammation, immunosuppression, and catabolism syndrome in critically ill patients: A claims database study using a propensity score analysis. Clin Nutr 2024; 43:1872-1879. [PMID: 38968719 DOI: 10.1016/j.clnu.2024.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND & AIMS Early enteral nutrition (EEN) potentially improves immune-related outcomes via the maintenance of intestinal immunity; however, the effects of EEN on clinical outcomes, including infectious complications, are controversial. Therefore, we herein investigated whether EEN affected persistent inflammation, immunosuppression, and catabolism syndrome (PICS), which represents the immunocompromised state after critical illness. METHODS This retrospective cohort study utilized the administrative claims database of inpatients and laboratory findings. Patients admitted to and treated in the intensive care unit (ICU) for more than 3 consecutive days were included. The primary outcome, a composite of PICS or mortality on day 14 after admission, was compared between the EEN group, which received enteral nutrition (EN) on the first 3 days (day 0, 1, or 2), and the late enteral nutrition (LEN) group, which did not receive EN on the first 3 days, but then received EN on days 3 through 7, using a propensity score-matched analysis. Secondary outcomes included the composite outcome on day 28, in-hospital mortality, the Barthel index, and laboratory data. Patients who met at least two of the following conditions were diagnosed with PICS: CRP >2.0 mg/dL, albumin <3.0 g/dL, and a lymphocyte count <800/μL. RESULTS A total of 7530 matched pairs were generated after propensity score matching. The primary outcome was significantly lower in the EEN group (risk difference -3.0%, 95% confidence interval (CI) -4.5 to -1.4%), whereas mortality did not significantly differ. The 28-day composite outcome was similar in the 2 groups (risk difference -1.5%, 95% CI -2.8% to -0.2%, no significant difference in mortality). There was no significant difference in in-hospital mortality between the EEN and LEN groups; however, the Barthel index at discharge was higher in the EEN group (the medians, 50 vs 45, P = 0.001). Laboratory data showed lower Albumin and CRP on day 14 in the EEN group, but no other significant differences. CONCLUSIONS In patients admitted to the ICU, EEN was associated with a lower incidence of PICS on days 14 and 28, but was not associated with mortality. This positive association was not observed in sepsis, cardiac diseases, or gastrointestinal diseases.
Collapse
Affiliation(s)
- Shizuka Kashiwagi
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naoki Kanda
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, Ibaraki, Japan; Division of General Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Minoru Yoshida
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yuji Wakimoto
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, Ibaraki, Japan
| | - Hiroyuki Ohbe
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kensuke Nakamura
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Emergency and Critical Care Medicine, Hitachi General Hospital, Ibaraki, Japan; Department of Critical Care Medicine, Yokohama City University Hospital, Yokohama, Japan.
| |
Collapse
|
4
|
Singer P, Blaser AR, Berger MM, Calder PC, Casaer M, Hiesmayr M, Mayer K, Montejo-Gonzalez JC, Pichard C, Preiser JC, Szczeklik W, van Zanten ARH, Bischoff SC. ESPEN practical and partially revised guideline: Clinical nutrition in the intensive care unit. Clin Nutr 2023; 42:1671-1689. [PMID: 37517372 DOI: 10.1016/j.clnu.2023.07.011] [Citation(s) in RCA: 203] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
Following the new ESPEN Standard Operating Procedures, the previous 2019 guideline to provide best medical nutritional therapy to critically ill patients has been shortened and partially revised. Following this update, we propose this publication as a practical guideline based on the published scientific guideline, but shortened and illustrated by flow charts. The main goal of this practical guideline is to increase understanding and allow the practitioner to implement the Nutrition in the ICU guidelines. All the items discussed in the previous guidelines are included as well as special conditions.
Collapse
Affiliation(s)
- Pierre Singer
- Intensive Care Unit, Herzlia Medical Center and Department of General Intensive Care and Institute for Nutrition Research, Rabin Medical Center, Beilinson Hospital, Sackler School of Medicine, Tel Aviv University, Tel Aviv, and Intensive Care Unit, Herzlia Medical Center, Israel.
| | - Annika Reintam Blaser
- Department of Anaesthesiology and Intensive Care, University of Tartu, Tartu, Estonia; Department of Intensive Care Medicine, Lucerne Cantonal Hospital, Lucerne, Switzerland
| | - Mette M Berger
- Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Michael Casaer
- Clinical Department and Laboratory of Intensive Care Medicine, Catholic University Hospitals (UZLeuven) and Catholic University Leuven, Leuven, Belgium
| | - Michael Hiesmayr
- Division Cardiac-, Thoracic-, Vascular Anaesthesia and Intensive Care, Medical University Vienna, Vienna, Austria
| | - Konstantin Mayer
- Department of Pneumonology, Infectious Diseases and Sleep Medicine, St. Vincentius Kliniken gAG, Karlsruhe, Germany
| | | | - Claude Pichard
- Department of Clinical Nutrition, Geneva University Hospital, Geneva, Switzerland
| | - Jean-Charles Preiser
- Medical Direction, Hopital Universitaire de Bruxelles, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Wojciech Szczeklik
- Centre for Intensive Care and Perioperative Medicine, Jagiellonian University Medical College & Anesthesia and Intensive Care Department, 5th Military Hospital, Krakow, Poland
| | - Arthur R H van Zanten
- Department of Intensive Care, Gelderse Vallei Hospital, Ede, The Netherlands & Wageningen University & Research, Wageningen, the Netherlands
| | - Stephan C Bischoff
- Department of Nutritional Medicine/Prevention, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
5
|
De Lucia SS, Candelli M, Polito G, Maresca R, Mezza T, Schepis T, Pellegrino A, Zileri Dal Verme L, Nicoletti A, Franceschi F, Gasbarrini A, Nista EC. Nutrition in Acute Pancreatitis: From the Old Paradigm to the New Evidence. Nutrients 2023; 15:1939. [PMID: 37111158 PMCID: PMC10144915 DOI: 10.3390/nu15081939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The nutritional management of acute pancreatitis (AP) patients has widely changed over time. The "pancreatic rest" was the cornerstone of the old paradigm, and nutritional support was not even included in AP management. Traditional management of AP was based on intestinal rest, with or without complete parenteral feeding. Recently, evidence-based data underlined the superiority of early oral or enteral feeding with significantly decreased multiple-organ failure, systemic infections, surgery need, and mortality rate. Despite the current recommendations, experts still debate the best route for enteral nutritional support and the best enteral formula. The aim of this work is to collect and analyze evidence over the nutritional aspects of AP management to investigate its impact. Moreover, the role of immunonutrition and probiotics in modulating inflammatory response and gut dysbiosis during AP was extensively studied. However, we have no significant data for their use in clinical practice. This is the first work to move beyond the mere opposition between the old and the new paradigm, including an analysis of several topics still under debate in order to provide a comprehensive overview of nutritional management of AP.
Collapse
Affiliation(s)
- Sara Sofia De Lucia
- Department of Medical and Surgical Sciences, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Giorgia Polito
- Department of Medical and Surgical Sciences, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Rossella Maresca
- Department of Medical and Surgical Sciences, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Teresa Mezza
- Department of Medical and Surgical Sciences, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Tommaso Schepis
- Department of Medical and Surgical Sciences, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Antonio Pellegrino
- Department of Medical and Surgical Sciences, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Lorenzo Zileri Dal Verme
- Department of Medical and Surgical Sciences, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Alberto Nicoletti
- Department of Medical and Surgical Sciences, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Francesco Franceschi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Enrico Celestino Nista
- Department of Medical and Surgical Sciences, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| |
Collapse
|
6
|
Sadeghi JK, Hollis RJ, Cerise JE, Li LT, Cal M, Patel VM, Coppa GF, Barrera R. Pre-hospital caloric deficits in surgical patients. Nutr Health 2022:2601060221113409. [PMID: 35818767 DOI: 10.1177/02601060221113409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The timing, route, and amount of nutrition for surgical patients with substantial caloric deficits remain active areas of study. Current guidelines are based on in-hospital days NPO after admission to the hospital. This historic process neglects the multiple days of caloric deficit patients experience prior to hospital admission. AIM To determine the impact of pre-hospital caloric deficit (PHCD) for surgical patients on their outcomes. METHODS 313 patients admitted with a diagnosis of small bowel obstruction, pancreatitis, or diverticulitis were analyzed for their PHCD's. PHCD's were estimated using patient-reported days with significant emesis, and absent oral intake. Patients with PHCD's were compared to patients with no PHCD for length of stay, status on discharge, disposition, and 30-day readmission rate. RESULTS There were 313 patients and 42% of the patients were male. The median age was 65 years. Median number of days sick prior to hospital admission was 1 (IQR: 1 to 2). Median PHCD was 1882 kcal (IQR: 1355 to 3650). Median number of days NPO while in-hospital was 3 (IQR: 2 to 5). Median in-hospital caloric deficit was 4268 kcal (IQR: 2825 to 6610). No significant association was observed between discharge disposition, complication rate, ambulatory status, 30-day readmission rate and PHCD. In-hospital caloric deficit was associated with complications after surgery (p < 0.0001). CONCLUSION Small PHCD's in patients with SBO's, pancreatitis, or diverticulitis do not negatively affect their outcomes. Further research of patients with large PHCD's is needed to best treat surgical patients at risk for malnutrition.
Collapse
Affiliation(s)
- John K Sadeghi
- 5799Northwell Health North Shore/Long Island Jewish General Surgery, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Rusell J Hollis
- 5799Northwell Health North Shore/Long Island Jewish General Surgery, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Jane E Cerise
- 5799Northwell Health North Shore/Long Island Jewish General Surgery, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Leo T Li
- 5799Northwell Health North Shore/Long Island Jewish General Surgery, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Matthew Cal
- 5799Northwell Health North Shore/Long Island Jewish General Surgery, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Vihas M Patel
- 5799Northwell Health North Shore/Long Island Jewish General Surgery, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Gene F Coppa
- 5799Northwell Health North Shore/Long Island Jewish General Surgery, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Rafael Barrera
- 5799Northwell Health North Shore/Long Island Jewish General Surgery, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
7
|
Liu WJ, Zhong J, Luo JC, Zheng JL, Ma JF, Ju MJ, Su Y, Liu K, Tu GW, Luo Z. Early Enteral Nutrition Tolerance in Patients With Cardiogenic Shock Requiring Mechanical Circulatory Support. Front Med (Lausanne) 2021; 8:765424. [PMID: 34938748 PMCID: PMC8685379 DOI: 10.3389/fmed.2021.765424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Enteral nutrition (EN) is recommended within the first 24-48 h for patients with hemodynamic stability, following admission to an intensive care unit (ICU). However, for patients with approximate stable hemodynamics requiring mechanical circulatory support and vasoactive drugs, the application of early EN remains controversial. We sought to evaluate the tolerance of early EN in patients with cardiogenic shock who required vasoactive drugs and mechanical circulatory support after cardiac surgery. Methods: This single-center, prospective observational study included patients with cardiogenic shock, requiring vasoactive drugs and mechanical circulatory support after cardiac surgery, undergoing EN. The primary endpoint was EN tolerance and secondary endpoints were mortality, length of mechanical ventilation, and length of ICU stay. Results: From February 2019 to December 2020, 59 patients were enrolled, of which 25 (42.37%) developed intolerance within 3 days of starting EN. Patients in the EN intolerant group had a longer median length of mechanical ventilation (380 vs. 128 h, p = 0.006), a longer median ICU stay (20 vs. 11.5 days, p = 0.03), and a higher proportion of bloodstream infections (44 vs. 14.71%, p = 0.018). The median EN calorie levels for all patients in the first 3 days of EN were 4.00, 4.13, and 4.28 kcal/kg/day, respectively. Median protein intake levels of EN in the first 3 days were 0.18, 0.17, and 0.17 g/kg/day, respectively. No significant difference was observed in the median dose of vasoactive drugs between the groups (0.035 vs. 0.05 μg/kg/min, p = 0.306). Conclusions: Patients with cardiogenic shock after cardiac surgery had a high proportion of early EN intolerance, and patients with EN intolerance had a worse prognosis, but no significant correlation was identified between EN tolerance and the dose of vasoactive drugs.
Collapse
Affiliation(s)
- Wen-jun Liu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Zhong
- Department of Nursing, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing-chao Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ji-li Zheng
- Department of Nursing, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie-fei Ma
- Department of Critical Care Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Min-jie Ju
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Su
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kai Liu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guo-wei Tu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Critical Care Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Shanghai Key Lab of Pulmonary Inflammation and Injury, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Egi M, Ogura H, Yatabe T, Atagi K, Inoue S, Iba T, Kakihana Y, Kawasaki T, Kushimoto S, Kuroda Y, Kotani J, Shime N, Taniguchi T, Tsuruta R, Doi K, Doi M, Nakada TA, Nakane M, Fujishima S, Hosokawa N, Masuda Y, Matsushima A, Matsuda N, Yamakawa K, Hara Y, Sakuraya M, Ohshimo S, Aoki Y, Inada M, Umemura Y, Kawai Y, Kondo Y, Saito H, Taito S, Takeda C, Terayama T, Tohira H, Hashimoto H, Hayashida K, Hifumi T, Hirose T, Fukuda T, Fujii T, Miura S, Yasuda H, Abe T, Andoh K, Iida Y, Ishihara T, Ide K, Ito K, Ito Y, Inata Y, Utsunomiya A, Unoki T, Endo K, Ouchi A, Ozaki M, Ono S, Katsura M, Kawaguchi A, Kawamura Y, Kudo D, Kubo K, Kurahashi K, Sakuramoto H, Shimoyama A, Suzuki T, Sekine S, Sekino M, Takahashi N, Takahashi S, Takahashi H, Tagami T, Tajima G, Tatsumi H, Tani M, Tsuchiya A, Tsutsumi Y, Naito T, Nagae M, Nagasawa I, Nakamura K, Nishimura T, Nunomiya S, Norisue Y, Hashimoto S, Hasegawa D, Hatakeyama J, Hara N, Higashibeppu N, Furushima N, Furusono H, Matsuishi Y, Matsuyama T, Minematsu Y, Miyashita R, Miyatake Y, Moriyasu M, Yamada T, et alEgi M, Ogura H, Yatabe T, Atagi K, Inoue S, Iba T, Kakihana Y, Kawasaki T, Kushimoto S, Kuroda Y, Kotani J, Shime N, Taniguchi T, Tsuruta R, Doi K, Doi M, Nakada TA, Nakane M, Fujishima S, Hosokawa N, Masuda Y, Matsushima A, Matsuda N, Yamakawa K, Hara Y, Sakuraya M, Ohshimo S, Aoki Y, Inada M, Umemura Y, Kawai Y, Kondo Y, Saito H, Taito S, Takeda C, Terayama T, Tohira H, Hashimoto H, Hayashida K, Hifumi T, Hirose T, Fukuda T, Fujii T, Miura S, Yasuda H, Abe T, Andoh K, Iida Y, Ishihara T, Ide K, Ito K, Ito Y, Inata Y, Utsunomiya A, Unoki T, Endo K, Ouchi A, Ozaki M, Ono S, Katsura M, Kawaguchi A, Kawamura Y, Kudo D, Kubo K, Kurahashi K, Sakuramoto H, Shimoyama A, Suzuki T, Sekine S, Sekino M, Takahashi N, Takahashi S, Takahashi H, Tagami T, Tajima G, Tatsumi H, Tani M, Tsuchiya A, Tsutsumi Y, Naito T, Nagae M, Nagasawa I, Nakamura K, Nishimura T, Nunomiya S, Norisue Y, Hashimoto S, Hasegawa D, Hatakeyama J, Hara N, Higashibeppu N, Furushima N, Furusono H, Matsuishi Y, Matsuyama T, Minematsu Y, Miyashita R, Miyatake Y, Moriyasu M, Yamada T, Yamada H, Yamamoto R, Yoshida T, Yoshida Y, Yoshimura J, Yotsumoto R, Yonekura H, Wada T, Watanabe E, Aoki M, Asai H, Abe T, Igarashi Y, Iguchi N, Ishikawa M, Ishimaru G, Isokawa S, Itakura R, Imahase H, Imura H, Irinoda T, Uehara K, Ushio N, Umegaki T, Egawa Y, Enomoto Y, Ota K, Ohchi Y, Ohno T, Ohbe H, Oka K, Okada N, Okada Y, Okano H, Okamoto J, Okuda H, Ogura T, Onodera Y, Oyama Y, Kainuma M, Kako E, Kashiura M, Kato H, Kanaya A, Kaneko T, Kanehata K, Kano KI, Kawano H, Kikutani K, Kikuchi H, Kido T, Kimura S, Koami H, Kobashi D, Saiki I, Sakai M, Sakamoto A, Sato T, Shiga Y, Shimoto M, Shimoyama S, Shoko T, Sugawara Y, Sugita A, Suzuki S, Suzuki Y, Suhara T, Sonota K, Takauji S, Takashima K, Takahashi S, Takahashi Y, Takeshita J, Tanaka Y, Tampo A, Tsunoyama T, Tetsuhara K, Tokunaga K, Tomioka Y, Tomita K, Tominaga N, Toyosaki M, Toyoda Y, Naito H, Nagata I, Nagato T, Nakamura Y, Nakamori Y, Nahara I, Naraba H, Narita C, Nishioka N, Nishimura T, Nishiyama K, Nomura T, Haga T, Hagiwara Y, Hashimoto K, Hatachi T, Hamasaki T, Hayashi T, Hayashi M, Hayamizu A, Haraguchi G, Hirano Y, Fujii R, Fujita M, Fujimura N, Funakoshi H, Horiguchi M, Maki J, Masunaga N, Matsumura Y, Mayumi T, Minami K, Miyazaki Y, Miyamoto K, Murata T, Yanai M, Yano T, Yamada K, Yamada N, Yamamoto T, Yoshihiro S, Tanaka H, Nishida O. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020). J Intensive Care 2021; 9:53. [PMID: 34433491 PMCID: PMC8384927 DOI: 10.1186/s40560-021-00555-7] [Show More Authors] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023] Open
Abstract
The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members.As a result, 79 GRADE-based recommendations, 5 Good Practice Statements (GPS), 18 expert consensuses, 27 answers to background questions (BQs), and summaries of definitions and diagnosis of sepsis were created as responses to 118 CQs. We also incorporated visual information for each CQ according to the time course of treatment, and we will also distribute this as an app. The J-SSCG 2020 is expected to be widely used as a useful bedside guideline in the field of sepsis treatment both in Japan and overseas involving multiple disciplines.
Collapse
Affiliation(s)
- Moritoki Egi
- Department of Surgery Related, Division of Anesthesiology, Kobe University Graduate School of Medicine, Kusunoki-cho 7-5-2, Chuo-ku, Kobe, Hyogo, Japan.
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Medical School, Yamadaoka 2-15, Suita, Osaka, Japan.
| | - Tomoaki Yatabe
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kazuaki Atagi
- Department of Intensive Care Unit, Nara Prefectural General Medical Center, Nara, Japan
| | - Shigeaki Inoue
- Department of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University, Tokyo, Japan
| | - Yasuyuki Kakihana
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tatsuya Kawasaki
- Department of Pediatric Critical Care, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Shigeki Kushimoto
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Kuroda
- Department of Emergency, Disaster, and Critical Care Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Joji Kotani
- Department of Surgery Related, Division of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takumi Taniguchi
- Department of Anesthesiology and Intensive Care Medicine, Kanazawa University, Kanazawa, Japan
| | - Ryosuke Tsuruta
- Acute and General Medicine, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Kent Doi
- Department of Acute Medicine, The University of Tokyo, Tokyo, Japan
| | - Matsuyuki Doi
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Taka-Aki Nakada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaki Nakane
- Department of Emergency and Critical Care Medicine, Yamagata University Hospital, Yamagata, Japan
| | - Seitaro Fujishima
- Center for General Medicine Education, Keio University School of Medicine, Tokyo, Japan
| | - Naoto Hosokawa
- Department of Infectious Diseases, Kameda Medical Center, Kamogawa, Japan
| | - Yoshiki Masuda
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Asako Matsushima
- Department of Advancing Acute Medicine, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuma Yamakawa
- Department of Emergency Medicine, Osaka Medical College, Osaka, Japan
| | - Yoshitaka Hara
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masaaki Sakuraya
- Department of Emergency and Intensive Care Medicine, JA Hiroshima General Hospital, Hatsukaichi, Japan
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshitaka Aoki
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mai Inada
- Member of Japanese Association for Acute Medicine, Tokyo, Japan
| | - Yutaka Umemura
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Yusuke Kawai
- Department of Nursing, Fujita Health University Hospital, Toyoake, Japan
| | - Yutaka Kondo
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Hiroki Saito
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Yokohama City Seibu Hospital, Yokohama, Japan
| | - Shunsuke Taito
- Division of Rehabilitation, Department of Clinical Support and Practice, Hiroshima University Hospital, Hiroshima, Japan
| | - Chikashi Takeda
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| | - Takero Terayama
- Department of Psychiatry, School of Medicine, National Defense Medical College, Tokorozawa, Japan
| | | | - Hideki Hashimoto
- Department of Emergency and Critical Care Medicine/Infectious Disease, Hitachi General Hospital, Hitachi, Japan
| | - Kei Hayashida
- The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Toru Hifumi
- Department of Emergency and Critical Care Medicine, St. Luke's International Hospital, Tokyo, Japan
| | - Tomoya Hirose
- Emergency and Critical Care Medical Center, Osaka Police Hospital, Osaka, Japan
| | - Tatsuma Fukuda
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Tomoko Fujii
- Intensive Care Unit, Jikei University Hospital, Tokyo, Japan
| | - Shinya Miura
- The Royal Children's Hospital Melbourne, Melbourne, Australia
| | - Hideto Yasuda
- Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Toshikazu Abe
- Department of Emergency and Critical Care Medicine, Tsukuba Memorial Hospital, Tsukuba, Japan
| | - Kohkichi Andoh
- Division of Anesthesiology, Division of Intensive Care, Division of Emergency and Critical Care, Sendai City Hospital, Sendai, Japan
| | - Yuki Iida
- Department of Physical Therapy, School of Health Sciences, Toyohashi Sozo University, Toyohashi, Japan
| | - Tadashi Ishihara
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Kentaro Ide
- Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kenta Ito
- Department of General Pediatrics, Aichi Children's Health and Medical Center, Obu, Japan
| | - Yusuke Ito
- Department of Infectious Disease, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Yu Inata
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Akemi Utsunomiya
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Unoki
- Department of Acute and Critical Care Nursing, School of Nursing, Sapporo City University, Sapporo, Japan
| | - Koji Endo
- Department of Pharmacoepidemiology, Kyoto University Graduate School of Medicine and Public Health, Kyoto, Japan
| | - Akira Ouchi
- College of Nursing, Ibaraki Christian University, Hitachi, Japan
| | - Masayuki Ozaki
- Department of Emergency and Critical Care Medicine, Komaki City Hospital, Komaki, Japan
| | - Satoshi Ono
- Gastroenterological Center, Shinkuki General Hospital, Kuki, Japan
| | | | | | - Yusuke Kawamura
- Department of Rehabilitation, Showa General Hospital, Tokyo, Japan
| | - Daisuke Kudo
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenji Kubo
- Department of Emergency Medicine and Department of Infectious Diseases, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Kiyoyasu Kurahashi
- Department of Anesthesiology and Intensive Care Medicine, International University of Health and Welfare School of Medicine, Narita, Japan
| | | | - Akira Shimoyama
- Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Takeshi Suzuki
- Department of Anesthesiology, Tokai University School of Medicine, Isehara, Japan
| | - Shusuke Sekine
- Department of Anesthesiology, Tokyo Medical University, Tokyo, Japan
| | - Motohiro Sekino
- Division of Intensive Care, Nagasaki University Hospital, Nagasaki, Japan
| | - Nozomi Takahashi
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Sei Takahashi
- Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Takahashi
- Department of Cardiology, Steel Memorial Muroran Hospital, Muroran, Japan
| | - Takashi Tagami
- Department of Emergency and Critical Care Medicine, Nippon Medical School Musashi Kosugi Hospital, Kawasaki, Japan
| | - Goro Tajima
- Nagasaki University Hospital Acute and Critical Care Center, Nagasaki, Japan
| | - Hiroomi Tatsumi
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masanori Tani
- Division of Critical Care Medicine, Saitama Children's Medical Center, Saitama, Japan
| | - Asuka Tsuchiya
- Department of Emergency and Critical Care Medicine, National Hospital Organization Mito Medical Center, Ibaraki, Japan
| | - Yusuke Tsutsumi
- Department of Emergency and Critical Care Medicine, National Hospital Organization Mito Medical Center, Ibaraki, Japan
| | - Takaki Naito
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Masaharu Nagae
- Department of Intensive Care Medicine, Kobe University Hospital, Kobe, Japan
| | | | - Kensuke Nakamura
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, Hitachi, Japan
| | - Tetsuro Nishimura
- Department of Traumatology and Critical Care Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shin Nunomiya
- Department of Anesthesiology and Intensive Care Medicine, Division of Intensive Care, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Yasuhiro Norisue
- Department of Emergency and Critical Care Medicine, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu, Japan
| | - Satoru Hashimoto
- Department of Anesthesiology and Intensive Care Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Hasegawa
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Junji Hatakeyama
- Department of Emergency and Critical Care Medicine, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Naoki Hara
- Department of Pharmacy, Yokohama Rosai Hospital, Yokohama, Japan
| | - Naoki Higashibeppu
- Department of Anesthesiology and Nutrition Support Team, Kobe City Medical Center General Hospital, Kobe City Hospital Organization, Kobe, Japan
| | - Nana Furushima
- Department of Anesthesiology, Kobe University Hospital, Kobe, Japan
| | - Hirotaka Furusono
- Department of Rehabilitation, University of Tsukuba Hospital/Exult Co., Ltd., Tsukuba, Japan
| | - Yujiro Matsuishi
- Doctoral program in Clinical Sciences. Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tasuku Matsuyama
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yusuke Minematsu
- Department of Clinical Engineering, Osaka University Hospital, Suita, Japan
| | - Ryoichi Miyashita
- Department of Intensive Care Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yuji Miyatake
- Department of Clinical Engineering, Kakogawa Central City Hospital, Kakogawa, Japan
| | - Megumi Moriyasu
- Division of Respiratory Care and Rapid Response System, Intensive Care Center, Kitasato University Hospital, Sagamihara, Japan
| | - Toru Yamada
- Department of Nursing, Toho University Omori Medical Center, Tokyo, Japan
| | - Hiroyuki Yamada
- Department of Primary Care and Emergency Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Ryo Yamamoto
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Yoshida
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuhei Yoshida
- Nursing Department, Osaka General Medical Center, Osaka, Japan
| | - Jumpei Yoshimura
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | | | - Hiroshi Yonekura
- Department of Clinical Anesthesiology, Mie University Hospital, Tsu, Japan
| | - Takeshi Wada
- Department of Anesthesiology and Critical Care Medicine, Division of Acute and Critical Care Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Eizo Watanabe
- Department of Emergency and Critical Care Medicine, Eastern Chiba Medical Center, Togane, Japan
| | - Makoto Aoki
- Department of Emergency Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideki Asai
- Department of Emergency and Critical Care Medicine, Nara Medical University, Kashihara, Japan
| | - Takakuni Abe
- Department of Anesthesiology and Intensive Care, Oita University Hospital, Yufu, Japan
| | - Yutaka Igarashi
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Naoya Iguchi
- Department of Anesthesiology and Intensive Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masami Ishikawa
- Department of Anesthesiology, Emergency and Critical Care Medicine, Kure Kyosai Hospital, Kure, Japan
| | - Go Ishimaru
- Department of General Internal Medicine, Soka Municipal Hospital, Soka, Japan
| | - Shutaro Isokawa
- Department of Emergency and Critical Care Medicine, St. Luke's International Hospital, Tokyo, Japan
| | - Ryuta Itakura
- Department of Emergency and Critical Care Medicine, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Hisashi Imahase
- Department of Biomedical Ethics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruki Imura
- Department of Infectious Diseases, Rakuwakai Otowa Hospital, Kyoto, Japan
- Department of Health Informatics, School of Public Health, Kyoto University, Kyoto, Japan
| | | | - Kenji Uehara
- Department of Anesthesiology, National Hospital Organization Iwakuni Clinical Center, Iwakuni, Japan
| | - Noritaka Ushio
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Japan
| | - Takeshi Umegaki
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan
| | - Yuko Egawa
- Advanced Emergency and Critical Care Center, Saitama Red Cross Hospital, Saitama, Japan
| | - Yuki Enomoto
- Department of Emergency and Critical Care Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kohei Ota
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshifumi Ohchi
- Department of Anesthesiology and Intensive Care, Oita University Hospital, Yufu, Japan
| | - Takanori Ohno
- Department of Emergency and Critical Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Hiroyuki Ohbe
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan
| | | | - Nobunaga Okada
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohei Okada
- Department of Primary care and Emergency medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiromu Okano
- Department of Anesthesiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Jun Okamoto
- Department of ER, Hashimoto Municipal Hospital, Hashimoto, Japan
| | - Hiroshi Okuda
- Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Takayuki Ogura
- Tochigi prefectural Emergency and Critical Care Center, Imperial Gift Foundation Saiseikai, Utsunomiya Hospital, Utsunomiya, Japan
| | - Yu Onodera
- Department of Anesthesiology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Yuhta Oyama
- Department of Internal Medicine, Dialysis Center, Kichijoji Asahi Hospital, Tokyo, Japan
| | - Motoshi Kainuma
- Anesthesiology, Emergency Medicine, and Intensive Care Division, Inazawa Municipal Hospital, Inazawa, Japan
| | - Eisuke Kako
- Department of Anesthesiology and Intensive Care Medicine, Nagoya-City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masahiro Kashiura
- Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Hiromi Kato
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akihiro Kanaya
- Department of Anesthesiology, Sendai Medical Center, Sendai, Japan
| | - Tadashi Kaneko
- Emergency and Critical Care Center, Mie University Hospital, Tsu, Japan
| | - Keita Kanehata
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Japan
| | - Ken-Ichi Kano
- Department of Emergency Medicine, Fukui Prefectural Hospital, Fukui, Japan
| | - Hiroyuki Kawano
- Department of Gastroenterological Surgery, Onga Hospital, Fukuoka, Japan
| | - Kazuya Kikutani
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hitoshi Kikuchi
- Department of Emergency and Critical Care Medicine, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Takahiro Kido
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
| | - Sho Kimura
- Division of Critical Care Medicine, Saitama Children's Medical Center, Saitama, Japan
| | - Hiroyuki Koami
- Center for Translational Injury Research, University of Texas Health Science Center at Houston, Houston, USA
| | - Daisuke Kobashi
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Japan
| | - Iwao Saiki
- Department of Anesthesiology, Tokyo Medical University, Tokyo, Japan
| | - Masahito Sakai
- Department of General Medicine Shintakeo Hospital, Takeo, Japan
| | - Ayaka Sakamoto
- Department of Emergency and Critical Care Medicine, University of Tsukuba Hospital, Tsukuba, Japan
| | - Tetsuya Sato
- Tohoku University Hospital Emergency Center, Sendai, Japan
| | - Yasuhiro Shiga
- Department of Orthopaedic Surgery, Center for Advanced Joint Function and Reconstructive Spine Surgery, Graduate school of Medicine, Chiba University, Chiba, Japan
| | - Manabu Shimoto
- Department of Primary care and Emergency medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinya Shimoyama
- Department of Pediatric Cardiology and Intensive Care, Gunma Children's Medical Center, Shibukawa, Japan
| | - Tomohisa Shoko
- Department of Emergency and Critical Care Medicine, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Yoh Sugawara
- Department of Anesthesiology, Yokohama City University, Yokohama, Japan
| | - Atsunori Sugita
- Department of Acute Medicine, Division of Emergency and Critical Care Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Suzuki
- Department of Intensive Care, Okayama University Hospital, Okayama, Japan
| | - Yuji Suzuki
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomohiro Suhara
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Sonota
- Department of Intensive Care Medicine, Miyagi Children's Hospital, Sendai, Japan
| | - Shuhei Takauji
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kohei Takashima
- Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Sho Takahashi
- Department of Cardiology, Fukuyama City Hospital, Fukuyama, Japan
| | - Yoko Takahashi
- Department of General Internal Medicine, Koga General Hospital, Koga, Japan
| | - Jun Takeshita
- Department of Anesthesiology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Yuuki Tanaka
- Fukuoka Prefectural Psychiatric Center, Dazaifu Hospital, Dazaifu, Japan
| | - Akihito Tampo
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Taichiro Tsunoyama
- Department of Emergency Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Kenichi Tetsuhara
- Emergency and Critical Care Center, Kyushu University Hospital, Fukuoka, Japan
| | - Kentaro Tokunaga
- Department of Intensive Care Medicine, Kumamoto University Hospital, Kumamoto, Japan
| | - Yoshihiro Tomioka
- Department of Anesthesiology and Intensive Care Unit, Todachuo General Hospital, Toda, Japan
| | - Kentaro Tomita
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Tominaga
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Mitsunobu Toyosaki
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yukitoshi Toyoda
- Department of Emergency and Critical Care Medicine, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Hiromichi Naito
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Isao Nagata
- Intensive Care Unit, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Tadashi Nagato
- Department of Respiratory Medicine, Tokyo Yamate Medical Center, Tokyo, Japan
| | - Yoshimi Nakamura
- Department of Emergency and Critical Care Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Yuki Nakamori
- Department of Clinical Anesthesiology, Mie University Hospital, Tsu, Japan
| | - Isao Nahara
- Department of Anesthesiology and Critical Care Medicine, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Hiromu Naraba
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, Hitachi, Japan
| | - Chihiro Narita
- Department of Emergency Medicine and Intensive Care Medicine, Shizuoka General Hospital, Shizuoka, Japan
| | - Norihiro Nishioka
- Department of Preventive Services, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoya Nishimura
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Japan
| | - Kei Nishiyama
- Division of Emergency and Critical Care Medicine Niigata University Graduate School of Medical and Dental Science, Niigata, Japan
| | - Tomohisa Nomura
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Taiki Haga
- Department of Pediatric Critical Care Medicine, Osaka City General Hospital, Osaka, Japan
| | - Yoshihiro Hagiwara
- Department of Emergency and Critical Care Medicine, Saiseikai Utsunomiya Hospital, Utsunomiya, Japan
| | - Katsuhiko Hashimoto
- Research Associate of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, Fukushima, Japan
| | - Takeshi Hatachi
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Toshiaki Hamasaki
- Department of Emergency Medicine, Japanese Red Cross Society Wakayama Medical Center, Wakayama, Japan
| | - Takuya Hayashi
- Division of Critical Care Medicine, Saitama Children's Medical Center, Saitama, Japan
| | - Minoru Hayashi
- Department of Emergency Medicine, Fukui Prefectural Hospital, Fukui, Japan
| | - Atsuki Hayamizu
- Department of Emergency Medicine, Saitama Saiseikai Kurihashi Hospital, Kuki, Japan
| | - Go Haraguchi
- Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan
| | - Yohei Hirano
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Ryo Fujii
- Department of Emergency Medicine and Critical Care Medicine, Tochigi Prefectural Emergency and Critical Care Center, Imperial Foundation Saiseikai Utsunomiya Hospital, Utsunomiya, Japan
| | - Motoki Fujita
- Acute and General Medicine, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Naoyuki Fujimura
- Department of Anesthesiology, St. Mary's Hospital, Our Lady of the Snow Social Medical Corporation, Kurume, Japan
| | - Hiraku Funakoshi
- Department of Emergency and Critical Care Medicine, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu, Japan
| | - Masahito Horiguchi
- Department of Emergency and Critical Care Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Jun Maki
- Department of Critical Care Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Naohisa Masunaga
- Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yosuke Matsumura
- Department of Intensive Care, Chiba Emergency Medical Center, Chiba, Japan
| | - Takuya Mayumi
- Department of Internal Medicine, Kanazawa Municipal Hospital, Kanazawa, Japan
| | - Keisuke Minami
- Ishikawa Prefectual Central Hospital Emergency and Critical Care Center, Kanazawa, Japan
| | - Yuya Miyazaki
- Department of Emergency and General Internal Medicine, Saiseikai Kawaguchi General Hospital, Kawaguchi, Japan
| | - Kazuyuki Miyamoto
- Department of Emergency and Disaster Medicine, Showa University, Tokyo, Japan
| | - Teppei Murata
- Department of Cardiology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Machi Yanai
- Department of Emergency Medicine, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Takao Yano
- Department of Critical Care and Emergency Medicine, Miyazaki Prefectural Nobeoka Hospital, Nobeoka, Japan
| | - Kohei Yamada
- Department of Traumatology and Critical Care Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Naoki Yamada
- Department of Emergency Medicine, University of Fukui Hospital, Fukui, Japan
| | - Tomonori Yamamoto
- Department of Intensive Care Unit, Nara Prefectural General Medical Center, Nara, Japan
| | - Shodai Yoshihiro
- Pharmaceutical Department, JA Hiroshima General Hospital, Hatsukaichi, Japan
| | - Hiroshi Tanaka
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Osamu Nishida
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
9
|
Herrero Meseguer JI, Lopez-Delgado JC, Martínez García MP. Recommendations for specialized nutritional-metabolic management of the critical patient: Indications, timing and access routes. Metabolism and Nutrition Working Group of the Spanish Society of Intensive and Critical Care Medicine and Coronary Units (SEMICYUC). Med Intensiva 2021; 44 Suppl 1:33-38. [PMID: 32532408 DOI: 10.1016/j.medin.2019.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/13/2019] [Accepted: 12/21/2019] [Indexed: 11/26/2022]
Affiliation(s)
| | - J C Lopez-Delgado
- Hospital Universitario de Bellvitge, Hospitalet de Llobregat, Barcelona, España.
| | | |
Collapse
|
10
|
Fiaccadori E, Sabatino A, Barazzoni R, Carrero JJ, Cupisti A, De Waele E, Jonckheer J, Singer P, Cuerda C. ESPEN guideline on clinical nutrition in hospitalized patients with acute or chronic kidney disease. Clin Nutr 2021; 40:1644-1668. [PMID: 33640205 DOI: 10.1016/j.clnu.2021.01.028] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute kidney disease (AKD) - which includes acute kidney injury (AKI) - and chronic kidney disease (CKD) are highly prevalent among hospitalized patients, including those in nephrology and medicine wards, surgical wards, and intensive care units (ICU), and they have important metabolic and nutritional consequences. Moreover, in case kidney replacement therapy (KRT) is started, whatever is the modality used, the possible impact on nutritional profiles, substrate balance, and nutritional treatment processes cannot be neglected. The present guideline is aimed at providing evidence-based recommendations for clinical nutrition in hospitalized patients with AKD and CKD. Due to the significant heterogeneity of this patient population as well as the paucity of high-quality evidence data, the present guideline is to be intended as a basic framework of both evidence and - in most cases - expert opinions, aggregated in a structured consensus process, in order to update the two previous ESPEN Guidelines on Enteral (2006) and Parenteral (2009) Nutrition in Adult Renal Failure. Nutritional care for patients with stable CKD (i.e., controlled protein content diets/low protein diets with or without amino acid/ketoanalogue integration in outpatients up to CKD stages four and five), nutrition in kidney transplantation, and pediatric kidney disease will not be addressed in the present guideline.
Collapse
Affiliation(s)
- Enrico Fiaccadori
- Nephrology Unit, Parma University Hospital, & Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Alice Sabatino
- Nephrology Unit, Parma University Hospital, & Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rocco Barazzoni
- Internal Medicine, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Juan Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Adamasco Cupisti
- Nephrology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisabeth De Waele
- Intensive Care, University Hospital Brussels (UZB), Department of Nutrition, UZ Brussel, Faculty of Medicine and Pharmacy, Vrije Unversiteit Brussel (VUB), Bruxelles, Belgium
| | | | - Pierre Singer
- General Intensive Care Department and Institute for Nutrition Research, Rabin Medical Center, Beilinson Hospital, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Cristina Cuerda
- Nutrition Unit, Hospital General Universitario Gregorio Marañon, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
11
|
Egi M, Ogura H, Yatabe T, Atagi K, Inoue S, Iba T, Kakihana Y, Kawasaki T, Kushimoto S, Kuroda Y, Kotani J, Shime N, Taniguchi T, Tsuruta R, Doi K, Doi M, Nakada T, Nakane M, Fujishima S, Hosokawa N, Masuda Y, Matsushima A, Matsuda N, Yamakawa K, Hara Y, Sakuraya M, Ohshimo S, Aoki Y, Inada M, Umemura Y, Kawai Y, Kondo Y, Saito H, Taito S, Takeda C, Terayama T, Tohira H, Hashimoto H, Hayashida K, Hifumi T, Hirose T, Fukuda T, Fujii T, Miura S, Yasuda H, Abe T, Andoh K, Iida Y, Ishihara T, Ide K, Ito K, Ito Y, Inata Y, Utsunomiya A, Unoki T, Endo K, Ouchi A, Ozaki M, Ono S, Katsura M, Kawaguchi A, Kawamura Y, Kudo D, Kubo K, Kurahashi K, Sakuramoto H, Shimoyama A, Suzuki T, Sekine S, Sekino M, Takahashi N, Takahashi S, Takahashi H, Tagami T, Tajima G, Tatsumi H, Tani M, Tsuchiya A, Tsutsumi Y, Naito T, Nagae M, Nagasawa I, Nakamura K, Nishimura T, Nunomiya S, Norisue Y, Hashimoto S, Hasegawa D, Hatakeyama J, Hara N, Higashibeppu N, Furushima N, Furusono H, Matsuishi Y, Matsuyama T, Minematsu Y, Miyashita R, Miyatake Y, Moriyasu M, Yamada T, et alEgi M, Ogura H, Yatabe T, Atagi K, Inoue S, Iba T, Kakihana Y, Kawasaki T, Kushimoto S, Kuroda Y, Kotani J, Shime N, Taniguchi T, Tsuruta R, Doi K, Doi M, Nakada T, Nakane M, Fujishima S, Hosokawa N, Masuda Y, Matsushima A, Matsuda N, Yamakawa K, Hara Y, Sakuraya M, Ohshimo S, Aoki Y, Inada M, Umemura Y, Kawai Y, Kondo Y, Saito H, Taito S, Takeda C, Terayama T, Tohira H, Hashimoto H, Hayashida K, Hifumi T, Hirose T, Fukuda T, Fujii T, Miura S, Yasuda H, Abe T, Andoh K, Iida Y, Ishihara T, Ide K, Ito K, Ito Y, Inata Y, Utsunomiya A, Unoki T, Endo K, Ouchi A, Ozaki M, Ono S, Katsura M, Kawaguchi A, Kawamura Y, Kudo D, Kubo K, Kurahashi K, Sakuramoto H, Shimoyama A, Suzuki T, Sekine S, Sekino M, Takahashi N, Takahashi S, Takahashi H, Tagami T, Tajima G, Tatsumi H, Tani M, Tsuchiya A, Tsutsumi Y, Naito T, Nagae M, Nagasawa I, Nakamura K, Nishimura T, Nunomiya S, Norisue Y, Hashimoto S, Hasegawa D, Hatakeyama J, Hara N, Higashibeppu N, Furushima N, Furusono H, Matsuishi Y, Matsuyama T, Minematsu Y, Miyashita R, Miyatake Y, Moriyasu M, Yamada T, Yamada H, Yamamoto R, Yoshida T, Yoshida Y, Yoshimura J, Yotsumoto R, Yonekura H, Wada T, Watanabe E, Aoki M, Asai H, Abe T, Igarashi Y, Iguchi N, Ishikawa M, Ishimaru G, Isokawa S, Itakura R, Imahase H, Imura H, Irinoda T, Uehara K, Ushio N, Umegaki T, Egawa Y, Enomoto Y, Ota K, Ohchi Y, Ohno T, Ohbe H, Oka K, Okada N, Okada Y, Okano H, Okamoto J, Okuda H, Ogura T, Onodera Y, Oyama Y, Kainuma M, Kako E, Kashiura M, Kato H, Kanaya A, Kaneko T, Kanehata K, Kano K, Kawano H, Kikutani K, Kikuchi H, Kido T, Kimura S, Koami H, Kobashi D, Saiki I, Sakai M, Sakamoto A, Sato T, Shiga Y, Shimoto M, Shimoyama S, Shoko T, Sugawara Y, Sugita A, Suzuki S, Suzuki Y, Suhara T, Sonota K, Takauji S, Takashima K, Takahashi S, Takahashi Y, Takeshita J, Tanaka Y, Tampo A, Tsunoyama T, Tetsuhara K, Tokunaga K, Tomioka Y, Tomita K, Tominaga N, Toyosaki M, Toyoda Y, Naito H, Nagata I, Nagato T, Nakamura Y, Nakamori Y, Nahara I, Naraba H, Narita C, Nishioka N, Nishimura T, Nishiyama K, Nomura T, Haga T, Hagiwara Y, Hashimoto K, Hatachi T, Hamasaki T, Hayashi T, Hayashi M, Hayamizu A, Haraguchi G, Hirano Y, Fujii R, Fujita M, Fujimura N, Funakoshi H, Horiguchi M, Maki J, Masunaga N, Matsumura Y, Mayumi T, Minami K, Miyazaki Y, Miyamoto K, Murata T, Yanai M, Yano T, Yamada K, Yamada N, Yamamoto T, Yoshihiro S, Tanaka H, Nishida O. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020). Acute Med Surg 2021; 8:e659. [PMID: 34484801 PMCID: PMC8390911 DOI: 10.1002/ams2.659] [Show More Authors] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members. As a result, 79 GRADE-based recommendations, 5 Good Practice Statements (GPS), 18 expert consensuses, 27 answers to background questions (BQs), and summaries of definitions and diagnosis of sepsis were created as responses to 118 CQs. We also incorporated visual information for each CQ according to the time course of treatment, and we will also distribute this as an app. The J-SSCG 2020 is expected to be widely used as a useful bedside guideline in the field of sepsis treatment both in Japan and overseas involving multiple disciplines.
Collapse
|
12
|
Effect of nutritional support in patients with lower respiratory tract infection: Secondary analysis of a randomized clinical trial. Clin Nutr 2020; 40:1843-1850. [PMID: 33081983 PMCID: PMC7547398 DOI: 10.1016/j.clnu.2020.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 02/05/2023]
Abstract
Background In polymorbid patients with bronchopulmonary infection, malnutrition is an independent risk factor for mortality. There is a lack of interventional data investigating whether providing nutritional support during the hospital stay in patients at risk for malnutrition presenting with lower respiratory tract infection lowers mortality. Methods For this secondary analysis of a randomized clinical trial (EFFORT), we analyzed data of a subgroup of patients with confirmed lower respiratory tract infection from an initial cohort of 2028 patients. Patients at nutritional risk (Nutritional Risk Screening [NRS] score ≥3 points) were randomized to receive protocol-guided individualized nutritional support to reach protein and energy goals (intervention group) or standard hospital food (control group). The primary endpoint of this analysis was all-cause 30-day mortality. Results We included 378 of 2028 EFFORT patients (mean age 74.4 years, 24% with COPD) into this analysis. Compared to usual care hospital nutrition, individualized nutritional support to reach caloric and protein goals showed a similar beneficial effect of on the risk of mortality in the subgroup of respiratory tract infection patients as compared to the main EFFORT trial (odds ratio 0.47 [95%CI 0.17 to 1.27, p = 0.136] vs 0.65 [95%CI 0.47 to 0.91, p = 0.011]) with no evidence of a subgroup effect (p for interaction 0.859). Effects were also similar among different subgroups based on etiology and type of respiratory tract infection and for other secondary endpoints. Conclusion This subgroup analysis from a large nutrition support trial suggests that patients at nutritional risk as assessed by NRS 2002 presenting with bronchopulmonary infection to the hospital likely have a mortality benefit from individualized inhospital nutritional support. The small sample size and limited statistical power calls for larger nutritional studies focusing on this highly vulnerable patient population. Clinical trial registration Registered under ClinicalTrials.gov Identifier no. NCT02517476.
Collapse
|
13
|
Impact of Intravenous Fluids and Enteral Nutrition on the Severity of Gastrointestinal Dysfunction: A Systematic Review and Meta-analysis. ACTA ACUST UNITED AC 2020; 6:5-24. [PMID: 32104727 PMCID: PMC7029405 DOI: 10.2478/jccm-2020-0009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022]
Abstract
Introduction Gastrointestinal dysfunction (GDF) is one of the primary causes of morbidity and mortality in critically ill patients. Intensive care interventions, such as intravenous fluids and enteral feeding, can exacerbate GDF. There exists a paucity of high-quality literature on the interaction between these two modalities (intravenous fluids and enteral feeding) as a combined therapy on its impact on GDF. Aim To review the impact of intravenous fluids and enteral nutrition individually on determinants of gut function and implications in clinical practice. Methods Randomized controlled trials on intravenous fluids and enteral feeding on GDF were identified by a comprehensive database search of MEDLINE and EMBASE. Extraction of data was conducted for study characteristics, provision of fluids or feeding in both groups and quality of studies was assessed using the Cochrane criteria. A random-effects model was applied to estimate the impact of these interventions across the spectrum of GDF severity. Results Restricted/ goal-directed intravenous fluid therapy is likely to reduce ‘mild’ GDF such as vomiting (p = 0.03) compared to a standard/ liberal intravenous fluid regime. Enterally fed patients experienced increased episodes of vomiting (p = <0.01) but were less likely to develop an anastomotic leak (p = 0.03) and peritonitis (p = 0.03) compared to parenterally fed patients. Vomiting (p = <0.01) and anastomotic leak (p = 0.04) were significantly lower in the early enteral feeding group. Conclusions There is less emphasis on the combined approach of intravenous fluid resuscitation and enteral feeding in critically ill patients. Conservative fluid resuscitation and aggressive enteral feeding are presumably key factors contributing to severe life-threatening GDF. Future trials should evaluate the impact of cross-interaction between conservative and aggressive modes of these two interventions on the severity of GDF.
Collapse
|
14
|
Li H, Yang Z, Tian F. Risk factors associated with intolerance to enteral nutrition in moderately severe acute pancreatitis: A retrospective study of 568 patients. Saudi J Gastroenterol 2019; 25:362-368. [PMID: 30900608 PMCID: PMC6941459 DOI: 10.4103/sjg.sjg_550_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIMS To assess the frequency of and risk factors for intolerance to enteral nutrition through nasogastric (NG) or nasojejunal (NJ) tube feeding in patients with moderately severe acute pancreatitis. PATIENTS AND METHODS Patients who underwent enteral nutrition via the nasojejunal tube or nasogastric tube, from January 2012 to December 2017, were enrolled. Demographic and etiological data, admission variables, enteral nutrition related variables, and radiological variables were evaluated using univariate and multivariate analysis. RESULTS A total of 568 patients were included, with 235 (41.4%) receiving nasojejunal tube feeding and 333 (56.8%) receiving nasogastric tube feeding. Tube-feeding intolerance was observed in 184 patients (32.4%), occurring at a median of 3 days (range, 1-5 days) after the start of enteral nutrition. The variables independently associated with risk of intolerance to tube feeding were hypertriglyceridemia (odds ratio, 8.13;95% CI, 5.21-10.07; P = 0.002), the presence of systemic inflammatory response syndrome (odds ratio, 6.58;95% CI, 3.03-8.34; P = 0.002), acute gastrointestinal injury-III status (odds ratio, 5.51;95% CI, 2.30-7.33; P = 0.02), the time from admission to commencement of enteral nutrition (odds ratio, 7.21;95% CI, 2.16-9.77; P = 0.001), and pancreatic infection (odds ratio, 6.15;95% CI, 4.94-8.75; P = 0.002) Patients with tube-feeding intolerance required prolonged enteral nutrition (P < 0.001) and had longer hospitalizations (P < 0.001). CONCLUSIONS Tube-feeding intolerance accounts for a considerable proportion in patients with moderately severe acute pancreatitis. The presence of hypertriglyceridemia, systemic inflammatory response syndrome and acute gastrointestinal injury grade III or pancreatic infection and the time from admission to commencing enteral nutrition increase the risk for tube-feeding intolerance.
Collapse
Affiliation(s)
- Hui Li
- Department of Gastroenterology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China
| | - Zhenyu Yang
- Intensive Care Unit, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China
| | - Feng Tian
- Department of Gastroenterology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China,Address for correspondence: Dr. Feng Tian, Department of gastroenterology, Shengjing Hospital Affiliated to China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning - 110004, China. E-mail:
| |
Collapse
|
15
|
Fuentes Padilla P, Martínez G, Vernooij RWM, Urrútia G, Roqué i Figuls M, Bonfill Cosp X, Cochrane Emergency and Critical Care Group. Early enteral nutrition (within 48 hours) versus delayed enteral nutrition (after 48 hours) with or without supplemental parenteral nutrition in critically ill adults. Cochrane Database Syst Rev 2019; 2019:CD012340. [PMID: 31684690 PMCID: PMC6820694 DOI: 10.1002/14651858.cd012340.pub2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Early enteral nutrition support (within 48 hours of admission or injury) is frequently recommended for the management of patients in intensive care units (ICU). Early enteral nutrition is recommended in many clinical practice guidelines, although there appears to be a lack of evidence for its use and benefit. OBJECTIVES To evaluate the efficacy and safety of early enteral nutrition (initiated within 48 hours of initial injury or ICU admission) versus delayed enteral nutrition (initiated later than 48 hours after initial injury or ICU admission), with or without supplemental parenteral nutrition, in critically ill adults. SEARCH METHODS We searched CENTRAL (2019, Issue 4), MEDLINE Ovid (1946 to April 2019), Embase Ovid SP (1974 to April 2019), CINAHL EBSCO (1982 to April 2019), and ISI Web of Science (1945 to April 2019). We also searched Turning Research Into Practice (TRIP), trial registers (ClinicalTrials.gov, ISRCTN registry), and scientific conference reports, including the American Society for Parenteral and Enteral Nutrition and the European Society for Clinical Nutrition and Metabolism. We applied no restrictions by language or publication status. SELECTION CRITERIA We included all randomized controlled trials (RCTs) that compared early versus delayed enteral nutrition, with or without supplemental parenteral nutrition, in adults who were in the ICU for longer than 72 hours. This included individuals admitted for medical, surgical, and trauma diagnoses, and who required any type of enteral nutrition. DATA COLLECTION AND ANALYSIS Two review authors extracted study data and assessed the risk of bias in the included studies. We expressed results as risk ratios (RR) for dichotomous data, and as mean differences (MD) for continuous data, both with 95% confidence intervals (CI). We assessed the certainty of the evidence using GRADE. MAIN RESULTS We included seven RCTs with a total of 345 participants. Outcome data were limited, and we judged many trials to have an unclear risk of bias in several domains. Early versus delayed enteral nutrition Six trials (318 participants) assessed early versus delayed enteral nutrition in general, medical, and trauma ICUs in the USA, Australia, Greece, India, and Russia. Primary outcomes Five studies (259 participants) measured mortality. It is uncertain whether early enteral nutrition affects the risk of mortality within 30 days (RR 1.00, 95% CI 0.16 to 6.38; 1 study, 38 participants; very low-quality evidence). Four studies (221 participants) reported mortality without describing the timeframe; we did not pool these results. None of the studies reported a clear difference in mortality between groups. Three studies (156 participants) reported infectious complications. We were unable to pool the results due to unreported data and substantial clinical heterogeneity. The results were inconsistent across studies. One trial measured feed intolerance or gastrointestinal complications; it is uncertain whether early enteral nutrition affects this outcome (RR 0.84, 95% CI 0.35 to 2.01; 59 participants; very low-quality evidence). Secondary outcomes One trial assessed hospital length of stay and reported a longer stay in the early enteral group (median 15 days (interquartile range (IQR) 9.5 to 20) versus 12 days (IQR 7.5 to15); P = 0.05; 59 participants; very low-quality evidence). Three studies (125 participants) reported the duration of mechanical ventilation. We did not pool the results due to clinical and statistical heterogeneity. The results were inconsistent across studies. It is uncertain whether early enteral nutrition affects the risk of pneumonia (RR 0.77, 95% CI 0.55 to 1.06; 4 studies, 192 participants; very low-quality evidence). Early enteral nutrition with supplemental parenteral nutrition versus delayed enteral nutrition with supplemental parenteral nutrition We identified one trial in a burn ICU in the USA (27 participants). Primary outcomes It is uncertain whether early enteral nutrition with supplemental parenteral nutrition affects the risk of mortality (RR 0.74, 95% CI 0.25 to 2.18; very low-quality evidence), or infectious complications (MD 0.00, 95% CI -1.94 to 1.94; very low-quality evidence). There were no data available for feed intolerance or gastrointestinal complications. Secondary outcomes It is uncertain whether early enteral nutrition with supplemental parenteral nutrition reduces the duration of mechanical ventilation (MD 9.00, 95% CI -10.99 to 28.99; very low-quality evidence). There were no data available for hospital length of stay or pneumonia. AUTHORS' CONCLUSIONS Due to very low-quality evidence, we are uncertain whether early enteral nutrition, compared with delayed enteral nutrition, affects the risk of mortality within 30 days, feed intolerance or gastrointestinal complications, or pneumonia. Due to very low-quality evidence, we are uncertain if early enteral nutrition with supplemental parenteral nutrition compared with delayed enteral nutrition with supplemental parenteral nutrition reduces mortality, infectious complications, or duration of mechanical ventilation. There is currently insufficient evidence; there is a need for large, multicentred studies with rigorous methodology, which measure important clinical outcomes.
Collapse
Affiliation(s)
- Paulina Fuentes Padilla
- Iberoamerican Cochrane CentreC/ Sant Antoni Maria Claret 167Pavelló 18 Planta 0BarcelonaBarcelonaSpain08025
- Universidad de AntofagastaFaculty of Medicine and DentistryAntofagastaChile
- Servicio de Salud AntofagastaAntofagastaChile
| | - Gabriel Martínez
- Iberoamerican Cochrane CentreC/ Sant Antoni Maria Claret 167Pavelló 18 Planta 0BarcelonaBarcelonaSpain08025
- Universidad de AntofagastaFaculty of Medicine and DentistryAntofagastaChile
- Servicio de Salud AntofagastaAntofagastaChile
| | - Robin WM Vernooij
- University Medical Center UtrechtDepartment of Nephrology and Hypertension and Julius Center for Health Sciences and Primary CareHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Gerard Urrútia
- CIBER Epidemiología y Salud Pública (CIBERESP)Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau)Sant Antoni Maria Claret, 167Pavilion 18 (D‐53)BarcelonaCataloniaSpain08025
| | - Marta Roqué i Figuls
- CIBER Epidemiología y Salud Pública (CIBERESP)Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau)Sant Antoni Maria Claret, 167Pavilion 18 (D‐53)BarcelonaCataloniaSpain08025
| | - Xavier Bonfill Cosp
- CIBER Epidemiología y Salud Pública (CIBERESP)Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau)Sant Antoni Maria Claret, 167Pavilion 18 (D‐53)BarcelonaCataloniaSpain08025
- Universitat Autònoma de BarcelonaSant Antoni Maria Claret, 167Pavilion 18 (D‐13)BarcelonaCatalunyaSpain08025
| | | |
Collapse
|
16
|
ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr 2018; 38:48-79. [PMID: 30348463 DOI: 10.1016/j.clnu.2018.08.037] [Citation(s) in RCA: 1490] [Impact Index Per Article: 212.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023]
Abstract
Following the new ESPEN Standard Operating Procedures, the previous guidelines to provide best medical nutritional therapy to critically ill patients have been updated. These guidelines define who are the patients at risk, how to assess nutritional status of an ICU patient, how to define the amount of energy to provide, the route to choose and how to adapt according to various clinical conditions. When to start and how to progress in the administration of adequate provision of nutrients is also described. The best determination of amount and nature of carbohydrates, fat and protein are suggested. Special attention is given to glutamine and omega-3 fatty acids. Particular conditions frequently observed in intensive care such as patients with dysphagia, frail patients, multiple trauma patients, abdominal surgery, sepsis, and obesity are discussed to guide the practitioner toward the best evidence based therapy. Monitoring of this nutritional therapy is discussed in a separate document.
Collapse
|
17
|
|
18
|
|
19
|
Lewis SR, Schofield‐Robinson OJ, Alderson P, Smith AF, Cochrane Emergency and Critical Care Group. Enteral versus parenteral nutrition and enteral versus a combination of enteral and parenteral nutrition for adults in the intensive care unit. Cochrane Database Syst Rev 2018; 6:CD012276. [PMID: 29883514 PMCID: PMC6353207 DOI: 10.1002/14651858.cd012276.pub2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Critically ill people are at increased risk of malnutrition. Acute and chronic illness, trauma and inflammation induce stress-related catabolism, and drug-induced adverse effects may reduce appetite or increase nausea and vomiting. In addition, patient management in the intensive care unit (ICU) may also interrupt feeding routines. Methods to deliver nutritional requirements include provision of enteral nutrition (EN), or parenteral nutrition (PN), or a combination of both (EN and PN). However, each method is problematic. This review aimed to determine the route of delivery that optimizes uptake of nutrition. OBJECTIVES To compare the effects of enteral versus parenteral methods of nutrition, and the effects of enteral versus a combination of enteral and parenteral methods of nutrition, among critically ill adults, in terms of mortality, number of ICU-free days up to day 28, and adverse events. SEARCH METHODS We searched CENTRAL, MEDLINE, and Embase on 3 October 2017. We searched clinical trials registries and grey literature, and handsearched reference lists of included studies and related reviews. SELECTION CRITERIA We included randomized controlled studies (RCTs) and quasi-randomized studies comparing EN given to adults in the ICU versus PN or versus EN and PN. We included participants that were trauma, emergency, and postsurgical patients in the ICU. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for inclusion, extracted data, and assessed risk of bias. We assessed the certainty of evidence with GRADE. MAIN RESULTS We included 25 studies with 8816 participants; 23 studies were RCTs and two were quasi-randomized studies. All included participants were critically ill in the ICU with a wide range of diagnoses; mechanical ventilation status between study participants varied. We identified 11 studies awaiting classification for which we were unable to assess eligibility, and two ongoing studies.Seventeen studies compared EN versus PN, six compared EN versus EN and PN, two were multi-arm studies comparing EN versus PN versus EN and PN. Most studies reported randomization and allocation concealment inadequately. Most studies reported no methods to blind personnel or outcome assessors to nutrition groups; one study used adequate methods to reduce risk of performance bias.Enteral nutrition versus parenteral nutritionWe found that one feeding route rather than the other (EN or PN) may make little or no difference to mortality in hospital (risk ratio (RR) 1.19, 95% confidence interval (CI) 0.80 to 1.77; 361 participants; 6 studies; low-certainty evidence), or mortality within 30 days (RR 1.02, 95% CI 0.92 to 1.13; 3148 participants; 11 studies; low-certainty evidence). It is uncertain whether one feeding route rather than the other reduces mortality within 90 days because the certainty of the evidence is very low (RR 1.06, 95% CI 0.95 to 1.17; 2461 participants; 3 studies). One study reported mortality at one to four months and we did not combine this in the analysis; we reported this data as mortality within 180 days and it is uncertain whether EN or PN affects the number of deaths within 180 days because the certainty of the evidence is very low (RR 0.33, 95% CI 0.04 to 2.97; 46 participants).No studies reported number of ICU-free days up to day 28, and one study reported number of ventilator-free days up to day 28 and it is uncertain whether one feeding route rather than the other reduces the number of ventilator-free days up to day 28 because the certainty of the evidence is very low (mean difference, inverse variance, 0.00, 95% CI -0.97 to 0.97; 2388 participants).We combined data for adverse events reported by more than one study. It is uncertain whether EN or PN affects aspiration because the certainty of the evidence is very low (RR 1.53, 95% CI 0.46 to 5.03; 2437 participants; 2 studies), and we found that one feeding route rather than the other may make little or no difference to pneumonia (RR 1.10, 95% CI 0.82 to 1.48; 415 participants; 7 studies; low-certainty evidence). We found that EN may reduce sepsis (RR 0.59, 95% CI 0.37 to 0.95; 361 participants; 7 studies; low-certainty evidence), and it is uncertain whether PN reduces vomiting because the certainty of the evidence is very low (RR 3.42, 95% CI 1.15 to 10.16; 2525 participants; 3 studies).Enteral nutrition versus enteral nutrition and parenteral nutritionWe found that one feeding regimen rather than another (EN or combined EN or PN) may make little or no difference to mortality in hospital (RR 0.99, 95% CI 0.84 to 1.16; 5111 participants; 5 studies; low-certainty evidence), and at 90 days (RR 1.00, 95% CI 0.86 to 1.18; 4760 participants; 2 studies; low-certainty evidence). It is uncertain whether combined EN and PN leads to fewer deaths at 30 days because the certainty of the evidence is very low (RR 1.64, 95% CI 1.06 to 2.54; 409 participants; 3 studies). It is uncertain whether one feeding regimen rather than another reduces mortality within 180 days because the certainty of the evidence is very low (RR 1.00, 95% CI 0.65 to 1.55; 120 participants; 1 study).No studies reported number of ICU-free days or ventilator-free days up to day 28. It is uncertain whether either feeding method reduces pneumonia because the certainty of the evidence is very low (RR 1.40, 95% CI 0.91 to 2.15; 205 participants; 2 studies). No studies reported aspiration, sepsis, or vomiting. AUTHORS' CONCLUSIONS We found insufficient evidence to determine whether EN is better or worse than PN, or than combined EN and PN for mortality in hospital, at 90 days and at 180 days, and on the number of ventilator-free days and adverse events. We found fewer deaths at 30 days when studies gave combined EN and PN, and reduced sepsis for EN rather than PN. We found no studies that reported number of ICU-free days up to day 28. Certainty of the evidence for all outcomes is either low or very low. The 11 studies awaiting classification may alter the conclusions of the review once assessed.
Collapse
Affiliation(s)
- Sharon R Lewis
- Royal Lancaster InfirmaryLancaster Patient Safety Research UnitPointer Court 1, Ashton RoadLancasterUKLA1 4RP
| | - Oliver J Schofield‐Robinson
- Royal Lancaster InfirmaryLancaster Patient Safety Research UnitPointer Court 1, Ashton RoadLancasterUKLA1 4RP
| | - Phil Alderson
- National Institute for Health and Care ExcellenceLevel 1A, City Tower,Piccadilly PlazaManchesterUKM1 4BD
| | - Andrew F Smith
- Royal Lancaster InfirmaryDepartment of AnaesthesiaAshton RoadLancasterLancashireUKLA1 4RP
| | | |
Collapse
|
20
|
Latour-Pérez J. Clinical research in critical care. Difficulties and perspectives. Med Intensiva 2017; 42:184-195. [PMID: 28943024 DOI: 10.1016/j.medin.2017.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/10/2017] [Accepted: 07/27/2017] [Indexed: 12/30/2022]
Abstract
In the field of Intensive Care Medicine, improved survival has resulted from better patient care, the early detection of clinical deterioration, and the prevention of iatrogenic complications, while research on new treatments has been followed by an overwhelming number of disappointments. The origins of these fiascos must be sought in the conjunction of methodological problems - common to other disciplines - and the particularities of critically ill patients. The present article discusses both aspects and suggests some options for progress.
Collapse
Affiliation(s)
- J Latour-Pérez
- Servicio de Medicina Intensiva, Hospital General Universitario de Elche, Elche, España; Departamento de Medicina Clínica, Universidad Miguel Hernández, Sant Joan d'Alacant, España.
| |
Collapse
|
21
|
Feinberg J, Nielsen EE, Korang SK, Halberg Engell K, Nielsen MS, Zhang K, Didriksen M, Lund L, Lindahl N, Hallum S, Liang N, Xiong W, Yang X, Brunsgaard P, Garioud A, Safi S, Lindschou J, Kondrup J, Gluud C, Jakobsen JC, Cochrane Hepato‐Biliary Group. Nutrition support in hospitalised adults at nutritional risk. Cochrane Database Syst Rev 2017; 5:CD011598. [PMID: 28524930 PMCID: PMC6481527 DOI: 10.1002/14651858.cd011598.pub2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND The prevalence of disease-related malnutrition in Western European hospitals is estimated to be about 30%. There is no consensus whether poor nutritional status causes poorer clinical outcome or if it is merely associated with it. The intention with all forms of nutrition support is to increase uptake of essential nutrients and improve clinical outcome. Previous reviews have shown conflicting results with regard to the effects of nutrition support. OBJECTIVES To assess the benefits and harms of nutrition support versus no intervention, treatment as usual, or placebo in hospitalised adults at nutritional risk. SEARCH METHODS We searched Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library, MEDLINE (Ovid SP), Embase (Ovid SP), LILACS (BIREME), and Science Citation Index Expanded (Web of Science). We also searched the World Health Organization International Clinical Trials Registry Platform (www.who.int/ictrp); ClinicalTrials.gov; Turning Research Into Practice (TRIP); Google Scholar; and BIOSIS, as well as relevant bibliographies of review articles and personal files. All searches are current to February 2016. SELECTION CRITERIA We include randomised clinical trials, irrespective of publication type, publication date, and language, comparing nutrition support versus control in hospitalised adults at nutritional risk. We exclude trials assessing non-standard nutrition support. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane and the Cochrane Hepato-Biliary Group. We used trial domains to assess the risks of systematic error (bias). We conducted Trial Sequential Analyses to control for the risks of random errors. We considered a P value of 0.025 or less as statistically significant. We used GRADE methodology. Our primary outcomes were all-cause mortality, serious adverse events, and health-related quality of life. MAIN RESULTS We included 244 randomised clinical trials with 28,619 participants that met our inclusion criteria. We considered all trials to be at high risk of bias. Two trials accounted for one-third of all included participants. The included participants were heterogenous with regard to disease (20 different medical specialties). The experimental interventions were parenteral nutrition (86 trials); enteral nutrition (tube-feeding) (80 trials); oral nutrition support (55 trials); mixed experimental intervention (12 trials); general nutrition support (9 trials); and fortified food (2 trials). The control interventions were treatment as usual (122 trials); no intervention (107 trials); and placebo (15 trials). In 204/244 trials, the intervention lasted three days or more.We found no evidence of a difference between nutrition support and control for short-term mortality (end of intervention). The absolute risk was 8.3% across the control groups compared with 7.8% (7.1% to 8.5%) in the intervention groups, based on the risk ratio (RR) of 0.94 (95% confidence interval (CI) 0.86 to 1.03, P = 0.16, 21,758 participants, 114 trials, low quality of evidence). We found no evidence of a difference between nutrition support and control for long-term mortality (maximum follow-up). The absolute risk was 13.2% in the control group compared with 12.2% (11.6% to 13%) following nutritional interventions based on a RR of 0.93 (95% CI 0.88 to 0.99, P = 0.03, 23,170 participants, 127 trials, low quality of evidence). Trial Sequential Analysis showed we only had enough information to assess a risk ratio reduction of approximately 10% or more. A risk ratio reduction of 10% or more could be rejected.We found no evidence of a difference between nutrition support and control for short-term serious adverse events. The absolute risk was 9.9% in the control groups versus 9.2% (8.5% to 10%), with nutrition based on the RR of 0.93 (95% CI 0.86 to 1.01, P = 0.07, 22,087 participants, 123 trials, low quality of evidence). At long-term follow-up, the reduction in the risk of serious adverse events was 1.5%, from 15.2% in control groups to 13.8% (12.9% to 14.7%) following nutritional support (RR 0.91, 95% CI 0.85 to 0.97, P = 0.004, 23,413 participants, 137 trials, low quality of evidence). However, the Trial Sequential Analysis showed we only had enough information to assess a risk ratio reduction of approximately 10% or more. A risk ratio reduction of 10% or more could be rejected.Trial Sequential Analysis of enteral nutrition alone showed that enteral nutrition might reduce serious adverse events at maximum follow-up in people with different diseases. We could find no beneficial effect of oral nutrition support or parenteral nutrition support on all-cause mortality and serious adverse events in any subgroup.Only 16 trials assessed health-related quality of life. We performed a meta-analysis of two trials reporting EuroQoL utility score at long-term follow-up and found very low quality of evidence for effects of nutritional support on quality of life (mean difference (MD) -0.01, 95% CI -0.03 to 0.01; 3961 participants, two trials). Trial Sequential Analyses showed that we did not have enough information to confirm or reject clinically relevant intervention effects on quality of life.Nutrition support may increase weight at short-term follow-up (MD 1.32 kg, 95% CI 0.65 to 2.00, 5445 participants, 68 trials, very low quality of evidence). AUTHORS' CONCLUSIONS There is low-quality evidence for the effects of nutrition support on mortality and serious adverse events. Based on the results of our review, it does not appear to lead to a risk ratio reduction of approximately 10% or more in either all-cause mortality or serious adverse events at short-term and long-term follow-up.There is very low-quality evidence for an increase in weight with nutrition support at the end of treatment in hospitalised adults determined to be at nutritional risk. The effects of nutrition support on all remaining outcomes are unclear.Despite the clinically heterogenous population and the high risk of bias of all included trials, our analyses showed limited signs of statistical heterogeneity. Further trials may be warranted, assessing enteral nutrition (tube-feeding) for different patient groups. Future trials ought to be conducted with low risks of systematic errors and low risks of random errors, and they also ought to assess health-related quality of life.
Collapse
Affiliation(s)
- Joshua Feinberg
- Department 7812, Rigshospitalet, Copenhagen University HospitalCopenhagen Trial Unit, Centre for Clinical Intervention ResearchBlegdamsvej 9CopenhagenDenmark2100
| | - Emil Eik Nielsen
- Department 7812, Rigshospitalet, Copenhagen University HospitalCopenhagen Trial Unit, Centre for Clinical Intervention ResearchBlegdamsvej 9CopenhagenDenmark2100
| | - Steven Kwasi Korang
- Department 7812, Rigshospitalet, Copenhagen University HospitalCopenhagen Trial Unit, Centre for Clinical Intervention ResearchBlegdamsvej 9CopenhagenDenmark2100
| | - Kirstine Halberg Engell
- Department 7812, Rigshospitalet, Copenhagen University HospitalCopenhagen Trial Unit, Centre for Clinical Intervention ResearchBlegdamsvej 9CopenhagenDenmark2100
| | - Marie Skøtt Nielsen
- Department 7812, Rigshospitalet, Copenhagen University HospitalCopenhagen Trial Unit, Centre for Clinical Intervention ResearchBlegdamsvej 9CopenhagenDenmark2100
| | - Kang Zhang
- Beijing University of Chinese MedicineCentre for Evidence‐Based Chinese MedicineBeijingChina
| | - Maria Didriksen
- Department 7812, Rigshospitalet, Copenhagen University HospitalCopenhagen Trial Unit, Centre for Clinical Intervention ResearchBlegdamsvej 9CopenhagenDenmark2100
| | - Lisbeth Lund
- Danish Committee for Health Education5. sal, Classensgade 71CopenhagenDenmark2100
| | - Niklas Lindahl
- Department 7812, Rigshospitalet, Copenhagen University HospitalCopenhagen Trial Unit, Centre for Clinical Intervention ResearchBlegdamsvej 9CopenhagenDenmark2100
| | - Sara Hallum
- Cochrane Colorectal Cancer Group23 Bispebjerg BakkeBispebjerg HospitalCopenhagenDenmarkDK 2400 NV
| | - Ning Liang
- Beijing University of Chinese MedicineCentre for Evidence‐Based Chinese MedicineBeijingChina
| | - Wenjing Xiong
- Beijing University of Chinese MedicineCentre for Evidence‐Based Chinese MedicineBeijingChina
| | - Xuemei Yang
- Fujian University of Traditional Chinese MedicineResearch Base of TCM syndromeNo。1,Qiu Yang RoadShangjie town,Minhou CountyFuzhouFujian ProvinceChina350122
| | - Pernille Brunsgaard
- Department 7812, Rigshospitalet, Copenhagen University HospitalCopenhagen Trial Unit, Centre for Clinical Intervention ResearchBlegdamsvej 9CopenhagenDenmark2100
| | - Alexandre Garioud
- Department 7812, Rigshospitalet, Copenhagen University HospitalCopenhagen Trial Unit, Centre for Clinical Intervention ResearchBlegdamsvej 9CopenhagenDenmark2100
| | - Sanam Safi
- Department 7812, Rigshospitalet, Copenhagen University HospitalCopenhagen Trial Unit, Centre for Clinical Intervention ResearchBlegdamsvej 9CopenhagenDenmark2100
| | - Jane Lindschou
- Department 7812, Rigshospitalet, Copenhagen University HospitalCopenhagen Trial Unit, Centre for Clinical Intervention ResearchBlegdamsvej 9CopenhagenDenmark2100
| | - Jens Kondrup
- Rigshospitalet University HospitalClinical Nutrition UnitAmager Boulevard 127, 2th9 BlegdamsvejKøbenhavn ØDenmark2100
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalThe Cochrane Hepato‐Biliary GroupBlegdamsvej 9CopenhagenDenmarkDK‐2100
| | - Janus C Jakobsen
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalThe Cochrane Hepato‐Biliary GroupBlegdamsvej 9CopenhagenDenmarkDK‐2100
- Holbaek HospitalDepartment of CardiologyHolbaekDenmark4300
| | | |
Collapse
|
22
|
Boumitri C, Brown E, Kahaleh M. Necrotizing Pancreatitis: Current Management and Therapies. Clin Endosc 2017; 50:357-365. [PMID: 28516758 PMCID: PMC5565044 DOI: 10.5946/ce.2016.152] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/10/2017] [Accepted: 02/22/2017] [Indexed: 12/16/2022] Open
Abstract
Acute necrotizing pancreatitis accounts for 10% of acute pancreatitis (AP) cases and is associated with a higher mortality and morbidity. Necrosis within the first 4 weeks of disease onset is defined as an acute necrotic collection (ANC), while walled off pancreatic necrosis (WOPN) develops after 4 weeks of disease onset. An infected or symptomatic WOPN requires drainage. The management of pancreatic necrosis has shifted away from open necrosectomy, as it is associated with a high morbidity, to less invasive techniques. In this review, we summarize the current management and therapies for acute necrotizing pancreatitis.
Collapse
Affiliation(s)
- Christine Boumitri
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Elizabeth Brown
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Michel Kahaleh
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
23
|
Worthington P, Balint J, Bechtold M, Bingham A, Chan LN, Durfee S, Jevenn AK, Malone A, Mascarenhas M, Robinson DT, Holcombe B. When Is Parenteral Nutrition Appropriate? JPEN J Parenter Enteral Nutr 2017; 41:324-377. [PMID: 28333597 DOI: 10.1177/0148607117695251] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Parenteral nutrition (PN) represents one of the most notable achievements of modern medicine, serving as a therapeutic modality for all age groups across the healthcare continuum. PN offers a life-sustaining option when intestinal failure prevents adequate oral or enteral nutrition. However, providing nutrients by vein is an expensive form of nutrition support, and serious adverse events can occur. In an effort to provide clinical guidance regarding PN therapy, the Board of Directors of the American Society for Parenteral and Enteral Nutrition (ASPEN) convened a task force to develop consensus recommendations regarding appropriate PN use. The recommendations contained in this document aim to delineate appropriate PN use and promote clinical benefits while minimizing the risks associated with the therapy. These consensus recommendations build on previous ASPEN clinical guidelines and consensus recommendations for PN safety. They are intended to guide evidence-based decisions regarding appropriate PN use for organizations and individual professionals, including physicians, nurses, dietitians, pharmacists, and other clinicians involved in providing PN. They not only support decisions related to initiating and managing PN but also serve as a guide for developing quality monitoring tools for PN and for identifying areas for further research. Finally, the recommendations contained within the document are also designed to inform decisions made by additional stakeholders, such as policy makers and third-party payers, by providing current perspectives regarding the use of PN in a variety of healthcare settings.
Collapse
Affiliation(s)
| | - Jane Balint
- 2 Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | | | - Angela Bingham
- 4 University of the Sciences, Philadelphia, Pennsylvania, USA
| | | | - Sharon Durfee
- 6 Central Admixture Pharmacy Services, Inc, Denver, Colorado, USA
| | | | | | - Maria Mascarenhas
- 9 The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel T Robinson
- 10 Ann & Robert H. Lurie Children's Hospital, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Beverly Holcombe
- 11 American Society for Parenteral and Enteral Nutrition, Silver Spring, Maryland, USA
| |
Collapse
|
24
|
Stimac D, Poropat G, Hauser G, Licul V, Franjic N, Valkovic Zujic P, Milic S. Early nasojejunal tube feeding versus nil-by-mouth in acute pancreatitis: A randomized clinical trial. Pancreatology 2016; 16:523-528. [PMID: 27107634 DOI: 10.1016/j.pan.2016.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 03/28/2016] [Accepted: 04/02/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES There is substantial evidence of superiority of enteral nutrition (EN) to parenteral nutrition in acute pancreatitis (AP) treatment, but few studies evaluated its effectiveness compared to no intervention. The objective of our trial was to compare the effects of EN to a nil-by-mouth (NBM) regimen in patients with AP. METHODS Patients with AP were randomized to receive either EN via a nasojejunal tube initiated within 24 h of admission or no nutritional support. Systemic inflammatory response syndrome (SIRS) was assessed as the primary outcome. Secondary outcomes included mortality, organ failure, local complications, infected pancreatic necrosis, surgical interventions, length of hospital stay, adverse events and inflammatory response intensity. Outcomes were compared using Student's t-test and Mann-Whitney U test as appropriate. RESULTS 214 patients were randomized in total, 107 to each group. SIRS occurrence was similar between groups, with 48 (45%) versus 51 (48%), respectively (RR 0.94; 95% CI 0.71-1.26). No significant reduction of persistent organ failure (RR 0.81; 95% CI 0.52-1.27) and mortality (RR 0.59; 95% CI 0.28-1.23) was present in the EN group. There were no significant differences in other outcomes between the groups. When analyzing the occurrence of SIRS and mortality in subgroup of patients with severe disease no significant differences were noted. CONCLUSION Our results showed no significant reduction of persistent organ failure and mortality in patients with AP receiving early EN compared to patients treated with no nutritional support (NCT01965873).
Collapse
Affiliation(s)
- D Stimac
- Department of Gastroenterology, Faculty of Medicine Rijeka, University Hospital Rijeka, Rijeka, Croatia
| | - G Poropat
- Department of Gastroenterology, Faculty of Medicine Rijeka, University Hospital Rijeka, Rijeka, Croatia.
| | - G Hauser
- Department of Gastroenterology, Faculty of Medicine Rijeka, University Hospital Rijeka, Rijeka, Croatia
| | - V Licul
- Department of Gastroenterology, Faculty of Medicine Rijeka, University Hospital Rijeka, Rijeka, Croatia
| | - N Franjic
- Department of Gastroenterology, Faculty of Medicine Rijeka, University Hospital Rijeka, Rijeka, Croatia
| | - P Valkovic Zujic
- Department of Radiology, Faculty of Medicine Rijeka, University Hospital Rijeka, Rijeka, Croatia
| | - S Milic
- Department of Gastroenterology, Faculty of Medicine Rijeka, University Hospital Rijeka, Rijeka, Croatia
| |
Collapse
|
25
|
Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). Crit Care Med 2016; 44:390-438. [PMID: 26771786 DOI: 10.1097/ccm.0000000000001525] [Citation(s) in RCA: 426] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
McClave SA, Taylor BE, Martindale RG, Warren MM, Johnson DR, Braunschweig C, McCarthy MS, Davanos E, Rice TW, Cresci GA, Gervasio JM, Sacks GS, Roberts PR, Compher C. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr 2016; 40:159-211. [PMID: 26773077 DOI: 10.1177/0148607115621863] [Citation(s) in RCA: 1833] [Impact Index Per Article: 203.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Stephen A McClave
- Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Beth E Taylor
- Nutrition Support Specialist, Barnes Jewish Hospital, St Louis, Missouri
| | - Robert G Martindale
- Chief Division of General Surgery, Oregon Health and Science University, Portland, Oregon
| | - Malissa M Warren
- Critical Care Dietitian, Portland VA Medical Center, Portland, Oregon
| | - Debbie R Johnson
- Clinical Nurse Specialist: Wound, Skin, Ostomy, UW Health University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Carol Braunschweig
- Professor, Department of Kinesiology and Nutrition and Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois
| | - Mary S McCarthy
- Senior Nurse Scientist, Center for Nursing Science and Clinical Inquiry, Madigan Healthcare System, Tacoma, Washington
| | - Evangelia Davanos
- Pharmacotherapy Specialist, Nutrition Support, The Brooklyn Hospital Center, Brooklyn, New York
| | - Todd W Rice
- Assistant Professor of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Gail A Cresci
- Project Research Staff, Digestive Disease Institute, Gastroenterology and Pathobiology, Cleveland, Ohio
| | - Jane M Gervasio
- Chair and Professor of Pharmacy Practice, Butler University College of Pharmacy and Health Science, Indianapolis, Indiana
| | - Gordon S Sacks
- Professor and Head, Department of Pharmacy Practice, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Pamela R Roberts
- Professor and Vice Chair, Division Chief of Critical Care Medicine, Director of Research John A. Moffitt Endowed Chair, Department of Anesthesiology, Oklahoma City, Oklahoma
| | - Charlene Compher
- Professor of Nutrition Science, University of Pennsylvania School of Nursing, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
27
|
Mansfield C, Beths T. Management of acute pancreatitis in dogs: a critical appraisal with focus on feeding and analgesia. J Small Anim Pract 2015; 56:27-39. [PMID: 25586804 DOI: 10.1111/jsap.12296] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 12/31/2022]
Abstract
Knowledge about acute pancreatitis has increased recently in both the medical and veterinary fields. Despite this expansion of knowledge, there are very few studies on treatment interventions in naturally occurring disease in dogs. As a result, treatment recommendations are largely extrapolated from experimental rodent models or general critical care principles. General treatment principles involve replacing fluid losses, maintaining hydrostatic pressure, controlling nausea and providing pain relief. Specific interventions recently advocated in human medicine include the use of neurokinin-1 antagonists for analgesia and early interventional feeding. The premise for early feeding is to improve the health of the intestinal tract, as unhealthy enterocytes are thought to perpetuate systemic inflammation. The evidence for early interventional feeding is not supported by robust clinical trials to date, but in humans there is evidence that it reduces hospitalisation time and in dogs it is well tolerated. This article summarises the major areas of management of acute pancreatitis in dogs and examines the level of evidence for each recommendation.
Collapse
Affiliation(s)
- C Mansfield
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
| | | |
Collapse
|
28
|
Lee SH, Jang JY, Kim HW, Jung MJ, Lee JG. Effects of early enteral nutrition on patients after emergency gastrointestinal surgery: a propensity score matching analysis. Medicine (Baltimore) 2014; 93:e323. [PMID: 25526487 PMCID: PMC4603119 DOI: 10.1097/md.0000000000000323] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 01/24/2023] Open
Abstract
Early postoperative enteral feeding has been demonstrated to improve the outcome of patients who underwent surgery for gastrointestinal (GI) malignancies, trauma, perforation, and/or obstruction. Thus, this study was conducted to assess the efficacy of early postoperative enteral nutrition (EN) after emergency surgery in patients with GI perforation or strangulation. The medical records of 484 patients, admitted between January 2007 and December 2012, were reviewed retrospectively. Patients were divided into 2 groups: the early EN (EEN, N=77) group and the late EN (LEN, N=407) group. The morbidity, mortality, length of hospital, and intensive care unit (ICU) stays were compared between the 2 groups. Propensity score matching was performed in order to adjust for any baseline differences. Patients receiving EEN had reduced in-hospital mortality rates (EEN 4.5% vs LEN 19.4%; P=0.008), pulmonary complications (EEN 4.5% vs LEN 19.4%; P=0.008), lengths of hospital stay (median: 14.0, interquartile range: 8.0-24.0 vs median: 17.0, interquartile range: 11.0-26.0, P=0.048), and more 28-day ICU-free days (median: 27.0, interquartile range: 25.0-27.0 vs median: 25.0, interquartile range: 22.0-27.0, P=0.042) than those receiving LEN in an analysis using propensity score matching. The significant difference in survival between the 2 groups was also shown in the Kaplan-Meier survival curve (P=0.042). In a further analysis using the Cox proportional hazard ratio after matching on the propensity score, EEN was associated with reduced in-hospital mortality (hazard ratio, 0.03; 95% confidence interval, 0.01-0.49; P=0.015). EEN is associated with beneficial effects, such as reduced in-hospital mortality rates, pulmonary complications, lengths of hospital stay, and more 28-day ICU-free days, after emergency GI surgery.
Collapse
Affiliation(s)
- Seung Hwan Lee
- From the Department of Surgery (SHL, HWK, MJJ, JGL), Yonsei University College of Medicine, Seoul; and Department of Surgery (JYJ), Yonsei University Wonju College of Medicine, Wonju, Korea
| | | | | | | | | |
Collapse
|
29
|
Li X, Ma F, Jia K. Early enteral nutrition within 24 hours or between 24 and 72 hours for acute pancreatitis: evidence based on 12 RCTs. Med Sci Monit 2014; 20:2327-35. [PMID: 25399541 PMCID: PMC4247233 DOI: 10.12659/msm.892770] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although (EEN) is a relatively safer route by which to feed patients with severe acute pancreatitis (SAP) or predicted SAP (pSAP) compared to total parental nutrition (TPN), the appropriate starting time for EEN administration after admission is still controversial. This study pooled all relevant studies to assess the complications associated with EEN by stratifying relevant RCTs into subgroups according to the starting time (<24 h or between 24 and 72 h after admission). MATERIAL/METHODS Relevant studies were searched for among 5 databases. The association between intervention and complications, including pancreatic infection, mortality, hyperglycemia, organ failure, and catheter-related septic complications, were assessed by using pooled risk ratio (RR) and the corresponding 95% confidential interval (CI). RESULTS Twelve RCTs were identified through our literature search. Pooled analysis showed that EEN, but not TPN or delayed enteral nutrition (DEN), is associated with reduced risk of pancreatic infection, mortality, organ failure, hyperglycemia, and catheter-related septic complications. EEN within 24 h of admission presented significantly better outcome in morality than EEN between 24 and 72 h. However, no significant heterogeneity was observed in the risk of pancreatic infection, organ failure, hyperglycemia, and catheter-related septic complications between the 2 subgroups. CONCLUSIONS If the patients are reasonably expected to have high compliance to EN therapy, it could be considered as early as possible.
Collapse
Affiliation(s)
- Xueping Li
- Department of Gastroenterology, Shouguang People’s Hospital, Weifang, Shandong, China
| | - Fengbo Ma
- Department of Gastroenterology, People’s Hospital of Binzhou, Binzhou, Shandong, China
| | - Kezhi Jia
- Department of ICU, Laiyang Central Hospital, Yantai, Shandong, China
| |
Collapse
|
30
|
Oda S, Aibiki M, Ikeda T, Imaizumi H, Endo S, Ochiai R, Kotani J, Shime N, Nishida O, Noguchi T, Matsuda N, Hirasawa H. The Japanese guidelines for the management of sepsis. J Intensive Care 2014; 2:55. [PMID: 25705413 PMCID: PMC4336273 DOI: 10.1186/s40560-014-0055-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 09/16/2014] [Indexed: 02/08/2023] Open
Abstract
This is a guideline for the management of sepsis, developed by the Sepsis Registry Committee of The Japanese Society of Intensive Care Medicine (JSICM) launched in March 2007. This guideline was developed on the basis of evidence-based medicine and focuses on unique treatments in Japan that have not been included in the Surviving Sepsis Campaign guidelines (SSCG), as well as treatments that are viewed differently in Japan and in Western countries. Although the methods in this guideline conform to the 2008 SSCG, the Japanese literature and the results of the Sepsis Registry Survey, which was performed twice by the Sepsis Registry Committee in intensive care units (ICUs) registered with JSICM, are also referred. This is the first and original guideline for sepsis in Japan and is expected to be properly used in daily clinical practice. This article is translated from Japanese, originally published as “The Japanese Guidelines for the Management of Sepsis” in the Journal of the Japanese Society of Intensive Care Medicine (J Jpn Soc Intensive Care Med), 2013; 20:124–73. The original work is at http://dx.doi.org/10.3918/jsicm.20.124.
Collapse
Affiliation(s)
- Shigeto Oda
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba 260-8677 Japan
| | - Mayuki Aibiki
- Department of Emergency Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| | - Toshiaki Ikeda
- Division of Critical Care and Emergency Medicine, Tokyo Medical University Hachioji Medical Center, 1163 Tatemachi, Hachioji, Tokyo 193-0998 Japan
| | - Hitoshi Imaizumi
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556 Japan
| | - Shigeatsu Endo
- Department of Emergency Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate 020-0023 Japan
| | - Ryoichi Ochiai
- First Department of Anesthesia, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo 143-8541 Japan
| | - Joji Kotani
- Department of Emergency, Disaster and Critical Care Medicine, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8131 Japan
| | - Nobuaki Shime
- Division of Intensive Care Unit, University Hospital, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566 Japan
| | - Osamu Nishida
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192 Japan
| | - Takayuki Noguchi
- Department of Anesthesiology and Intensive Care Medicine, Oita University School of Medicine, 1-1 Idaigaoka, Hazamacho, Yufu, Oita 879-5593 Japan
| | - Naoyuki Matsuda
- Emergency and Critical Care Medicine, Graduate School of Medicine Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 Japan
| | | | | |
Collapse
|
31
|
Affiliation(s)
- Ronald L. Koretz
- Olive View–UCLA Medical Center, David Geffen–UCLA School of Medicine, Sylmar and Los Angeles, California
| |
Collapse
|
32
|
|
33
|
Lee HS, Shim H, Jang JY, Lee H, Lee JG. Early feeding is feasible after emergency gastrointestinal surgery. Yonsei Med J 2014; 55:395-400. [PMID: 24532509 PMCID: PMC3936612 DOI: 10.3349/ymj.2014.55.2.395] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/27/2013] [Accepted: 07/11/2013] [Indexed: 12/30/2022] Open
Abstract
PURPOSE This study was undertaken to assess the feasibility of early feeding in patients that have undergone emergency gastrointestinal (GI) surgery. MATERIALS AND METHODS The authors retrospectively reviewed 84 patients that underwent emergency bowel resection and/or anastomosis from March 2008 to December 2011. Patients with severe shock, intestinal ischemia, sustained bowel perforation, or short bowel syndrome were excluded. Patients were divided into the early (group E; n=44) or late (group L; n=40) group according to the time of feeding commencement. Early feeding was defined as enteral feeding that started within 48 hours after surgery. Early and late feeding groups were compared with respect to clinical data and surgical outcomes. RESULTS The most common cause of operation was bowel perforation, and the small bowel was the most commonly involved site. No significant intergroup differences were found for causes, sites, or types of operation. However, length of stay (LOS) in the intensive care unit (1 day vs. 2 days, p=0.038) and LOS in the hospital after surgery were significantly greater (9 days vs. 12 days, p=0.012) in group L than group E; pulmonary complications were also significantly more common (13.6% vs. 47.5%, p=0.001) in group L than group E. CONCLUSION After emergency GI surgery, early feeding may be feasible in patients without severe shock or bowel anastomosis instability.
Collapse
Affiliation(s)
- Hyung Soon Lee
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea.
| | | | | | | | | |
Collapse
|
34
|
|
35
|
Doig GS, Chevrou-Séverac H, Simpson F. Early enteral nutrition in critical illness: a full economic analysis using US costs. CLINICOECONOMICS AND OUTCOMES RESEARCH 2013; 5:429-36. [PMID: 24003308 PMCID: PMC3755543 DOI: 10.2147/ceor.s50722] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Although published meta-analyses demonstrate patient survival may be improved if enteral nutrition (EN) is provided to critically ill patients within 24 hours of injury or admission to the intensive care unit (ICU), these publications did not investigate the impact of early EN on measures of health care resource consumption and total costs. MATERIALS AND METHODS From the perspective of the US acute care hospital system, a cost-effectiveness analysis was undertaken based on a large-scale Monte Carlo simulation (N = 1,000,000 trials) of a 1,000-patient stochastic model, developed using clinical outcomes and measures of resource consumption reported by published meta-analyses combined with cost distributions obtained from the published literature. The mean cost differences between early EN and standard care, along with respective 95% confidence intervals, were obtained using the percentile method. RESULTS AND CONCLUSION THE PROVISION OF EARLY EN TO CRITICALLY ILL PATIENTS IS A DOMINANT TECHNOLOGY: Patient survival is significantly improved and total costs of care reduced meaningfully. Under conservative assumptions, the total costs of acute hospital care were reduced by US$14,462 per patient (95% confidence interval US$5,464 to US$23,669). These results were robust, with all sensitivity analyses demonstrating significant savings attributable to the use of early EN, including sensitivity analysis conducted using European cost data.
Collapse
Affiliation(s)
- Gordon S Doig
- Northern Clinical School Intensive Care Research Unit, University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
36
|
Koretz RL, Lipman TO. The presence and effect of bias in trials of early enteral nutrition in critical care. Clin Nutr 2013; 33:240-5. [PMID: 23845382 DOI: 10.1016/j.clnu.2013.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 06/07/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Randomized trials suggest that early enteral nutrition is beneficial in critically ill adults. However, methodologic bias can overestimate benefit. OBJECTIVE To assess the potential effect of methodologic bias on these trials. STUDY DESIGN Systematic review and meta-analysis. DATA SOURCE Randomized trials identified in electronic searches of PUBMED, EMBASE, and the Cochrane Library, and in various handsearches. METHODS The primary (mortality, morbidity) and secondary (time on ventilator or in intensive care unit/hospital, cost) outcomes were abstracted from each identified trial comparing early enteral nutrition to no/delayed enteral nutrition. Each trial was assessed for six domains of methodologic bias (sequence generation, allocation concealment, blinding, intention-to-treat, selective outcome reporting, other). No low risk of bias trial (adequate in all six domains) was identified, so such trials could not be compared to the others. Instead, meta-analyses of trials with more or fewer risks were compared in the following ways: adequate methodology to deal with ≥3 or ≤2 domains; Jadad scores ≥3 or ≤2; adequate versus not adequate for each domain. DATA SYNTHESIS In the 15 identified trials, early enteral nutrition appeared to improve mortality and infectious morbidity. Mortality benefit was observed only in trials with more risks of bias; infectious morbidity benefit was observed in some analyses of trials with fewer bias risks. LIMITATIONS Small numbers of trials and missing information. CONCLUSIONS The benefits attributed to early enteral nutrition were either seen only in trials with high risks of bias or may result from residual risks of bias.
Collapse
Affiliation(s)
- Ronald L Koretz
- Department of Medicine, Olive View-UCLA Medical Center, Sylmar, CA, USA.
| | - Timothy O Lipman
- Gastroenterology, Hepatology, and Nutrition Section, Veterans Affairs Medical Center, Washington, D.C., USA.
| |
Collapse
|
37
|
Li JY, Yu T, Chen GC, Yuan YH, Zhong W, Zhao LN, Chen QK. Enteral nutrition within 48 hours of admission improves clinical outcomes of acute pancreatitis by reducing complications: a meta-analysis. PLoS One 2013; 8:e64926. [PMID: 23762266 PMCID: PMC3675100 DOI: 10.1371/journal.pone.0064926] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/21/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Enteral nutrition is increasingly advocated in the treatment of acute pancreatitis, but its timing is still controversial. The aim of this meta-analysis was to find out the feasibility of early enteral nutrition within 48 hours of admission and its possible advantages. METHODS AND FINDINGS We searched PubMed, EMBASE Databases, Web of Science, the Cochrane library, and scholar.google.com for all the relevant articles about the effect of enteral nutrition initiated within 48 hours of admission on the clinical outcomes of acute pancreatitis from inception to December 2012. Eleven studies containing 775 patients with acute pancreatitis were analyzed. Results from a pooled analysis of all the studies demonstrated that early enteral nutrition was associated with significant reductions in all the infections as a whole (OR 0.38; 95%CI 0.21-0.68, P<0.05), in catheter-related septic complications (OR 0.26; 95%CI 0.11-0.58, P<0.05), in pancreatic infection (OR 0.49; 95%CI 0.31-0.78, P<0.05), in hyperglycemia (OR 0.24; 95%CI 0.11-0.52, P<0.05), in the length of hospitalization (mean difference -2.18; 95%CI -3.48-(-0.87); P<0.05), and in mortality (OR 0.31; 95%CI 0.14-0.71, P<0.05), but no difference was found in pulmonary complications (P>0.05). The stratified analysis based on the severity of disease revealed that, even in predicted severe or severe acute pancreatitis patients, early enteral nutrition still showed a protective power against all the infection complications as a whole, catheter-related septic complications, pancreatic infection complications, and organ failure that was only reported in the severe attack of the disease (all P<0.05). CONCLUSION Enteral nutrition within 48 hours of admission is feasible and improves the clinical outcomes in acute pancreatitis as well as in predicted severe or severe acute pancreatitis by reducing complications.
Collapse
Affiliation(s)
- Jie-Yao Li
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
38
|
Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 2013; 41:580-637. [PMID: 23353941 DOI: 10.1097/ccm.0b013e31827e83af] [Citation(s) in RCA: 3967] [Impact Index Per Article: 330.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," last published in 2008. DESIGN A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. METHODS The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Some recommendations were ungraded (UG). Recommendations were classified into three groups: 1) those directly targeting severe sepsis; 2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and 3) pediatric considerations. RESULTS Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 hrs after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 hr of recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 hrs of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1C); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients) (1C); fluid challenge technique continued as long as hemodynamic improvement, as based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥ 65 mm Hg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7-9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a PaO2/FIO2 ratio of ≤ 100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 hrs) for patients with early ARDS and a Pao2/Fio2 < 150 mm Hg (2C); a protocolized approach to blood glucose management commencing insulin dosing when two consecutive blood glucose levels are > 180 mg/dL, targeting an upper blood glucose ≤ 180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 hrs after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 hrs of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5 to 10 mins (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven "absolute"' adrenal insufficiency (2C). CONCLUSIONS Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients.
Collapse
|
39
|
Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent JL, Moreno R. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 2013; 39:165-228. [PMID: 23361625 PMCID: PMC7095153 DOI: 10.1007/s00134-012-2769-8] [Citation(s) in RCA: 3156] [Impact Index Per Article: 263.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 11/12/2012] [Indexed: 12/02/2022]
Abstract
OBJECTIVE To provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," last published in 2008. DESIGN A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. METHODS The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. RESULTS Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7-9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a PaO (2)/FiO (2) ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a PaO (2)/FI O (2) <150 mm Hg (2C); a protocolized approach to blood glucose management commencing insulin dosing when two consecutive blood glucose levels are >180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5-10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven "absolute"' adrenal insufficiency (2C). CONCLUSIONS Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients.
Collapse
|
40
|
Lee HS, Shim HJ, Lee HS, Lee JG, Kim KS. [The safety of early enteral feeding after emergency gastrointestinal surgery]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2012; 58:318-22. [PMID: 22198229 DOI: 10.4166/kjg.2011.58.6.318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND/AIMS Postoperative early feeding has many advantages, and current guidelines recommend the early diet or enteral feeding after gastrointestinal surgery. However, there are controversies in emergency situation. The aim of this study was to assess the safety of early enteral feeding in patients underwent emergency gastrointestinal (GI) surgery. METHODS We reviewed the patients underwent emergency GI surgery by single surgeon from March 2008 to December 2010, retrospectively. The early feeding was defined when feeding was started within 72 hours after operation. RESULTS Fifty-three patients were enrolled. Men were 31, with mean 60.6 (±18.5) years old age. Thirty-three patients were treated in the intensive-care unit after operation. The most common cause of operation was bowel perforation, and followed by intestinal obstruction. Segmental resection with primary anastomosis of small bowel is the most common operation. Thirty-two of them started the diet within 48 hours postoperatively. Twenty-nine patients had post-operative complications. Wound complications were the most common, and followed by the abdominal pain, and ileus. Wound complications were developed in 18 patients, and the post-feeding abdominal pain was in 7 patients. Anastomotic leakage and intraabdominal abscess were developed in 2 patients, and 1 patient required reoperation to treat the anastomotic disruption. One patient developed pneumonia and sepsis, and resolved under conservative treatment. There was no mortality in these patients. CONCLUSIONS Early enteral feeding may be safe in cases of emergency GI surgery. However, it may require further studies to confirm the safety and feasibility of the early feeding in emergency situations.
Collapse
Affiliation(s)
- Hyung Soon Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
41
|
Vieira JP, Araújo GFD, Azevedo JRAD, Goldenberg A, Linhares MM. Parenteral nutrition versus enteral nutrition in severe acute pancreatitis. Acta Cir Bras 2011; 25:449-54. [PMID: 20877957 DOI: 10.1590/s0102-86502010000500012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 05/18/2010] [Indexed: 01/21/2023] Open
Abstract
PURPOSE To compare the effect of parenteral versus enteral nutritional support in severe acute pancreatitis, with respect to efficacy, safety, morbidity, mortality and length of hospitalization. METHODS The study was comprised of 31 patients, divided into a parenteral group (n=16) and an enteral group (n=15), who met severity criteria for abdominal tomography (Balthazar classes C, D, and E). The patients were compared by demographics, disease etiology, antibiotic prophylaxis, use or not of somatostatin, nutritional support, complications and disease progression. RESULTS There was no statistical difference in the average duration of nutritional support, somatostatin, or antibiotics in the two groups. Imipenem was the drug of choice for prophylaxis of pancreatic infections in both groups. More complications occurred in the parenteral group, although the difference was not statistically significant (p=0.10). Infectious complications, such as catheter sepsis and infections of the pancreatic tissue, were significantly more frequent in the parenteral group (p=0.006). There was no difference in average length of hospitalization in the two groups. There were three deaths in the parenteral group and none in the enteral group. CONCLUSION Enteral nutritional support is associated with fewer septic complications compared to parenteral nutritional support.
Collapse
|
42
|
|
43
|
Li J, Ji Z, Yuan C, Zhang Y, Chen W, Ju X, Tang W. Limited Efficacy of Early Enteral Nutrition in Patients after Total Gastrectomy. J INVEST SURG 2011; 24:103-8. [DOI: 10.3109/08941939.2011.557469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Abstract
MOTIVATION The American Society of Parenteral and Enteral Nutrition (ASPEN) guidelines advise use of enteral nutrition (EN) for critically ill hospital patients requiring nutritional support, but no studies have comprehensively estimated economic benefits from adherence to this recommendation. METHODS We systematically reviewed studies comparing EN to alternative nutritional support therapies among adult, critically ill patients. We reviewed 1200 abstracts, selected 243 for further review, and included 48 studies in our analysis. Most retained studies compared EN and parenteral nutrition (PN). Using meta-analysis, we estimated the absolute impact of EN on adverse event risk and its impact on treatment duration and length of stay. These estimates were converted to population economic impacts by assuming 10% of PN patients are suitable candidates for EN. RESULTS Compared to PN, EN reduces the risk of major, potentially life-threatening infections (RR = 0.58, 95% confidence interval [CI] 0.44 to 0.77), the risk of major, potentially life-threatening non-infection events (RR = 0.73, CI 0.59 to 0.91), and suggests a reduction in mortality, although this result did not achieve statistical significance (RR = 0.70, CI 0.45 to 1.09). EN also reduces inpatient length of stay, time in the ICU, and length of nutritional treatment. Compared to PN, EN savings from reduced adverse event risks average nearly $1500 per patient; savings from reduced hospital length of stay amount to nearly $2500 per patient. Shifting 10% of parenterally treated adult patients in the U.S. to EN would save $35 million annually due to reduced adverse events and another $57 million due to shorter hospital stays. CONCLUSION The evidence of both clinical and economic gains from EN is consistent with ASPEN guidelines recommending use of EN in critically ill hospital patients when possible.
Collapse
Affiliation(s)
- Michael J Cangelosi
- Center for Evaluation of Value and Risk in Health, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA 02111, USA
| | | | | |
Collapse
|
45
|
Krause L, Becker MO, Brueckner CS, Bellinghausen CJ, Becker C, Schneider U, Haeupl T, Hanke K, Hensel-Wiegel K, Ebert H, Ziemer S, Ladner UM, Pirlich M, Burmester GR, Riemekasten G. Nutritional status as marker for disease activity and severity predicting mortality in patients with systemic sclerosis. Ann Rheum Dis 2010; 69:1951-7. [PMID: 20511612 DOI: 10.1136/ard.2009.123273] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To assess and analyse nutritional status in patients with systemic sclerosis (SSc) and identify possible associations with clinical symptoms and its prognostic value. METHODS Body mass index (BMI) and parameters of bioelectrical impedance analysis (BIA) were assessed in 124 patients with SSc and 295 healthy donors and matched for sex, age and BMI for comparisons. In patients with SSc, BMI and BIA values were compared with clinical symptoms in a cross-sectional study. In a prospective open analysis, survival and changes in the nutritional status and energy uptake induced by nutritional treatment were evaluated. RESULTS Patients with SSc had reduced phase angle (PhA) values, body cell mass (BCM), percentages of cells, increased extracellular mass (ECM) and ECM/BCM values compared with healthy donors. Malnutrition was best reflected by the PhA values. Of the patients with SSc, 69 (55.7%) had malnutrition that was associated with severe disease and activity. As assessed by multivariate analysis, low predicted forced vital capacity and high N-terminal(NT)-proBNP values discriminated best between good and bad nutritional status. Among different clinical parameters, low PhA values were the best predictors for SSc-related mortality. BMI values were not related to disease symptoms or mortality. Fifty per cent of patients with SSc had a lower energy uptake related to their energy requirement, 19.8% related to their basal metabolism. Nutritional treatment improved the patients' nutritional status. CONCLUSIONS In patients with SSc, malnutrition is common and not identified by BMI. BIA parameters reflect disease severity and provide best predictors for patient survival. Therefore, an assessment of nutritional status should be performed in patients with SSc.
Collapse
Affiliation(s)
- Lijana Krause
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lee JS, Jwa CS, Yi HJ, Chun HJ. Impact of early enteral nutrition on in-hospital mortality in patients with hypertensive intracerebral hemorrhage. J Korean Neurosurg Soc 2010; 48:99-104. [PMID: 20856655 DOI: 10.3340/jkns.2010.48.2.99] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 07/08/2010] [Accepted: 08/03/2010] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE We conducted this study to evaluate the clinical impact of early enteral nutrition (EN) on in-hospital mortality and outcome in patients with critical hypertensive intracerebral hemorrhage (ICH). METHODS We retrospectively analyzed 123 ICH patients with Glasgow Coma Scale (GCS) score of 3-12. We divided the subjects into two groups : early EN group (< 48 hours, n = 89) and delayed EN group (≥ 48 hours, n = 34). Body weight, total intake and output, serum albumin, C-reactive protein, infectious complications, morbidity at discharge and in-hospital mortality were compared with statistical analysis. RESULTS The incidence of nosocomial pneumonia and length of intensive care unit stay were significantly lower in the early EN group than in the delayed EN group (p < 0.05). In-hospital mortality was less in the early EN group than in the delayed EN group (10.1% vs. 35.3%, respectively; p = 0.001). By multivariate analysis, early EN [odds ratio (OR) 0.229, 95% CI : 0.066-0.793], nosocomial pneumonia (OR = 5.381, 95% CI : 1.621-17.865) and initial GCS score (OR = 1.482 95% CI : 1.160-1.893) were independent predictors of in-hospital mortality in patients with critical hypertensive ICH. CONCLUSION These findings indicate that early EN is an important predictor of outcome in patients with critical hypertensive ICH.
Collapse
Affiliation(s)
- Jeong-Shik Lee
- Department of Neurosurgery, National Medical Center, Seoul, Korea
| | | | | | | |
Collapse
|
47
|
Abstract
Introduction. In patients with acute pancreatitis (AP), nutritional support is required if normal food cannot be tolerated within several days. Enteral nutrition is preferred over parenteral nutrition. We reviewed the literature about enteral nutrition in AP. Methods. A MEDLINE search of the English language literature between 1999-2009. Results. Nasogastric tube feeding appears to be safe and well tolerated in the majority of patients with severe AP, rendering the concept of pancreatic rest less probable. Enteral nutrition has a beneficial influence on the outcome of AP and should probably be initiated as early as possible (within 48 hours). Supplementation of enteral formulas with glutamine or prebiotics and probiotics cannot routinely be recommended. Conclusions. Nutrition therapy in patients with AP emerged from supportive adjunctive therapy to a proactive primary intervention. Large multicentre studies are needed to confirm the safety and effectiveness of nasogastric feeding and to investigate the role of early nutrition support.
Collapse
|
48
|
Early enteral nutrition in critically ill patients: authors’ response. Intensive Care Med 2010. [DOI: 10.1007/s00134-010-1792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Affiliation(s)
- Ronald Lee Koretz
- Department of Medicine, Olive View-UCLA Medical Center, 14445 Olive View Drive, Sylmar, CA 91342 USA
| |
Collapse
|
50
|
Petrov MS, Loveday BPT, Pylypchuk RD, McIlroy K, Phillips ARJ, Windsor JA. Systematic review and meta-analysis of enteral nutrition formulations in acute pancreatitis. Br J Surg 2009; 96:1243-52. [PMID: 19847860 DOI: 10.1002/bjs.6862] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Although the benefits of enteral nutrition in acute pancreatitis are well established, the optimal composition of enteral feeding is largely unknown. The aim of the study was to compare the tolerance and safety of enteral nutrition formulations in patients with acute pancreatitis. METHODS Electronic databases (Scopus, MEDLINE, Cochrane Controlled Clinical Trials Register) and the proceedings of major pancreatology conferences were searched. RESULTS Twenty randomized controlled trials, including 1070 patients, met the inclusion criteria. None of the following was associated with a significant difference in feeding intolerance: the use of (semi)elemental versus polymeric formulation (relative risk (RR) 0.62 (95 per cent confidence interval (c.i.) 0.10 to 3.97); P = 0.611); supplementation of enteral nutrition with probiotics (RR 0.69 (95 per cent c.i. 0.43 to 1.09); P = 0.110); or immunonutrition (RR 1.60 (95 per cent c.i. 0.31 to 8.29); P = 0.583). The risk of infectious complications and death did not differ significantly in any of the comparisons. CONCLUSION The use of polymeric, compared with (semi)elemental, formulation does not lead to a significantly higher risk of feeding intolerance, infectious complications or death in patients with acute pancreatitis. Neither the supplementation of enteral nutrition with probiotics nor the use of immunonutrition significantly improves the clinical outcomes.
Collapse
Affiliation(s)
- M S Petrov
- Department of Surgery, School of Medicine, University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | |
Collapse
|