1
|
Xu YW, Lin P, Zheng SF, Huang W, Lin ZY, Shang-Guan HC, Lin YX, Yao PS, Kang DZ. Acetylation Profiles in the Metabolic Process of Glioma-Associated Seizures. Front Neurol 2021; 12:713293. [PMID: 34664012 PMCID: PMC8519730 DOI: 10.3389/fneur.2021.713293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: We test the hypothesis that lysine acetylation is involved in the metabolic process of glioma-associated seizures (GAS). Methods: We used label-free mass spectrometry-based quantitative proteomics to quantify dynamic changes of protein acetylation between gliomas with seizure (CA1 group) and gliomas without seizure (CA2 group). Furthermore, differences of acetyltransferase and deacetylase expression between CA1 and CA2 groups were performed by a quantitative proteomic study. We further classified acetylated proteins into groups according to cell component, molecular function, and biological process. In addition, metabolic pathways and protein interaction networks were analyzed. Regulated acetyltransferases and acetylated profiles were validated by PRM and Western blot. Results: We detected 169 downregulated lysine acetylation sites of 134 proteins and 39 upregulated lysine acetylation sites of 35 proteins in glioma with seizures based on acetylome. We detected 407 regulated proteins by proteomics, from which ACAT2 and ACAA2 were the differentially regulated enzymes in the acetylation of GAS. According to the KEGG analysis, the upregulated acetylated proteins within the PPIs were mapped to pathways involved in the TCA cycle, oxidative phosphorylation, biosynthesis of amino acids, and carbon metabolism. The downregulated acetylated proteins within the PPIs were mapped to pathways involved in fatty acid metabolism, oxidative phosphorylation, TCA cycle, and necroptosis. Regulated ACAT2 expression and acetylated profiles were validated by PRM and Western blot. Conclusions: The data support the hypothesis that regulated protein acetylation is involved in the metabolic process of GAS, which may be induced by acetyl-CoA acetyltransferases.
Collapse
Affiliation(s)
- Ya-Wen Xu
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Peng Lin
- Department of Pain, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shu-Fa Zheng
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wen Huang
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhang-Ya Lin
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Huang-Cheng Shang-Guan
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yuan-Xiang Lin
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Pei-Sen Yao
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - De-Zhi Kang
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
Vegeto E, Villa A, Della Torre S, Crippa V, Rusmini P, Cristofani R, Galbiati M, Maggi A, Poletti A. The Role of Sex and Sex Hormones in Neurodegenerative Diseases. Endocr Rev 2020; 41:5572525. [PMID: 31544208 PMCID: PMC7156855 DOI: 10.1210/endrev/bnz005] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (NDs) are a wide class of disorders of the central nervous system (CNS) with unknown etiology. Several factors were hypothesized to be involved in the pathogenesis of these diseases, including genetic and environmental factors. Many of these diseases show a sex prevalence and sex steroids were shown to have a role in the progression of specific forms of neurodegeneration. Estrogens were reported to be neuroprotective through their action on cognate nuclear and membrane receptors, while adverse effects of male hormones have been described on neuronal cells, although some data also suggest neuroprotective activities. The response of the CNS to sex steroids is a complex and integrated process that depends on (i) the type and amount of the cognate steroid receptor and (ii) the target cell type-either neurons, glia, or microglia. Moreover, the levels of sex steroids in the CNS fluctuate due to gonadal activities and to local metabolism and synthesis. Importantly, biochemical processes involved in the pathogenesis of NDs are increasingly being recognized as different between the two sexes and as influenced by sex steroids. The aim of this review is to present current state-of-the-art understanding on the potential role of sex steroids and their receptors on the onset and progression of major neurodegenerative disorders, namely, Alzheimer's disease, Parkinson's diseases, amyotrophic lateral sclerosis, and the peculiar motoneuron disease spinal and bulbar muscular atrophy, in which hormonal therapy is potentially useful as disease modifier.
Collapse
Affiliation(s)
- Elisabetta Vegeto
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Alessandro Villa
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze della Salute (DiSS), Università degli Studi di Milano, Italy
| | - Sara Della Torre
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Valeria Crippa
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Paola Rusmini
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Riccardo Cristofani
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Mariarita Galbiati
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Angelo Poletti
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| |
Collapse
|
3
|
Heinosalo T, Saarinen N, Poutanen M. Role of hydroxysteroid (17beta) dehydrogenase type 1 in reproductive tissues and hormone-dependent diseases. Mol Cell Endocrinol 2019; 489:9-31. [PMID: 30149044 DOI: 10.1016/j.mce.2018.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/14/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
Abnormal synthesis and metabolism of sex steroids is involved in the pathogenesis of various human diseases, such as endometriosis and cancers arising from the breast and uterus. Steroid biosynthesis is a multistep enzymatic process proceeding from cholesterol to highly active sex steroids via different intermediates. Human Hydroxysteroid (17beta) dehydrogenase 1 (HSD17B1) enzyme shows a high capacity to produce the highly active estrogen, estradiol, from a precursor hormone, estrone. However, the enzyme may also play a role in other steps of the steroid biosynthesis pathway. In this article, we have reviewed the literature on HSD17B1, and summarize the role of the enzyme in hormone-dependent diseases in women as evidenced by preclinical studies.
Collapse
Affiliation(s)
- Taija Heinosalo
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| | - Niina Saarinen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland; Institute of Medicine, The Sahlgrenska Academy, Gothenburg University, 413 45, Gothenburg, Sweden
| |
Collapse
|
4
|
Huang M, Zolnoori M, Balls-Berry JE, Brockman TA, Patten CA, Yao L. Technological Innovations in Disease Management: Text Mining US Patent Data From 1995 to 2017. J Med Internet Res 2019; 21:e13316. [PMID: 31038462 PMCID: PMC6611693 DOI: 10.2196/13316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Patents are important intellectual property protecting technological innovations that inspire efficient research and development in biomedicine. The number of awarded patents serves as an important indicator of economic growth and technological innovation. Researchers have mined patents to characterize the focuses and trends of technological innovations in many fields. OBJECTIVE To expand patent mining to biomedicine and facilitate future resource allocation in biomedical research for the United States, we analyzed US patent documents to determine the focuses and trends of protected technological innovations across the entire disease landscape. METHODS We analyzed more than 5 million US patent documents between 1995 and 2017, using summary statistics and dynamic topic modeling. More specifically, we investigated the disease coverage and latent topics in patent documents over time. We also incorporated the patent data into the calculation of our recently developed Research Opportunity Index (ROI) and Public Health Index (PHI), to recalibrate the resource allocation in biomedical research. RESULTS Our analysis showed that protected technological innovations have been primarily focused on socioeconomically critical diseases such as "other cancers" (malignant neoplasm of head, face, neck, abdomen, pelvis, or limb; disseminated malignant neoplasm; Merkel cell carcinoma; and malignant neoplasm, malignant carcinoid tumors, neuroendocrine tumor, and carcinoma in situ of an unspecified site), diabetes mellitus, and obesity. The United States has significantly improved resource allocation to biomedical research and development over the past 17 years, as illustrated by the decreasing PHI. Diseases with positive ROI, such as ankle and foot fracture, indicate potential research opportunities for the future. Development of novel chemical or biological drugs and electrical devices for diagnosis and disease management is the dominating topic in patented inventions. CONCLUSIONS This multifaceted analysis of patent documents provides a deep understanding of the focuses and trends of technological innovations in disease management in patents. Our findings offer insights into future research and innovation opportunities and provide actionable information to facilitate policy makers, payers, and investors to make better evidence-based decisions regarding resource allocation in biomedicine.
Collapse
Affiliation(s)
- Ming Huang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | - Maryam Zolnoori
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | - Joyce E Balls-Berry
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | - Tabetha A Brockman
- Center for Clinical and Translational Science, Commuity Engagement Program, Mayo Clinic, Rochester, MN, United States.,Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Christi A Patten
- Center for Clinical and Translational Science, Commuity Engagement Program, Mayo Clinic, Rochester, MN, United States.,Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Lixia Yao
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
5
|
Peek CE, Cohen RE. Seasonal regulation of steroidogenic enzyme expression within the green anole lizard (Anolis carolinensis) brain and gonad. Gen Comp Endocrinol 2018; 268:88-95. [PMID: 30077794 DOI: 10.1016/j.ygcen.2018.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/12/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
Abstract
Steroid hormones, such as testosterone and estradiol, are necessary for reproductive behavior. Seasonally breeding animals have increased sex steroid hormone levels during the breeding compared to non-breeding season, with increased reproductive behaviors and altered brain morphology in breeding individuals. Similar to other seasonally breeding animals, green anole lizards (Anolis carolinensis) have high sex steroid hormone levels and increased reproductive behaviors in the breeding season. Relatively less is known regarding the regulation of steroidogenesis in reptiles and this experiment examined whether enzymes involved in sex steroid hormone synthesis vary seasonally within the brain and gonads in wild-caught anole lizards. Specifically, we examined mRNA expression of steroidogenic acute regulatory protein (StAR), P450 17α-hydroxylase/C17-20lyase (Cyp17α1), 17 beta-hydroxysteroid dehydrogenase type 3 (17βHSD 3), and aromatase (Cyp19α1). We found that the mRNA for each of these genes was expressed in the lizard brain. Interestingly, Cyp19α1 mRNA expression in the brain was increased during the non-breeding season, potentially revealing a role for aromatase expression in the non-breeding brain. In the anole gonads, StAR mRNA expression levels were increased in both males and females during the breeding season, while the mRNA expression levels of CYP17α1 and 17βHSD 3 are increased when StAR mRNA expression was decreased, suggesting that the enzymes in the steroidogenic pathway are potentially regulated independently of StAR. This work reveals the seasonal regulation of steroidogenesis in the reptilian brain and gonad, although more work is necessary to determine the regulatory mechanisms that control these expression patterns.
Collapse
Affiliation(s)
- Christine E Peek
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA
| | - Rachel E Cohen
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA.
| |
Collapse
|
6
|
Konings G, Brentjens L, Delvoux B, Linnanen T, Cornel K, Koskimies P, Bongers M, Kruitwagen R, Xanthoulea S, Romano A. Intracrine Regulation of Estrogen and Other Sex Steroid Levels in Endometrium and Non-gynecological Tissues; Pathology, Physiology, and Drug Discovery. Front Pharmacol 2018; 9:940. [PMID: 30283331 PMCID: PMC6157328 DOI: 10.3389/fphar.2018.00940] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Our understanding of the intracrine (or local) regulation of estrogen and other steroid synthesis and degradation expanded in the last decades, also thanks to recent technological advances in chromatography mass-spectrometry. Estrogen responsive tissues and organs are not passive receivers of the pool of steroids present in the blood but they can actively modify the intra-tissue steroid concentrations. This allows fine-tuning the exposure of responsive tissues and organs to estrogens and other steroids in order to best respond to the physiological needs of each specific organ. Deviations in such intracrine control can lead to unbalanced steroid hormone exposure and disturbances. Through a systematic bibliographic search on the expression of the intracrine enzymes in various tissues, this review gives an up-to-date view of the intracrine estrogen metabolisms, and to a lesser extent that of progestogens and androgens, in the lower female genital tract, including the physiological control of endometrial functions, receptivity, menopausal status and related pathological conditions. An overview of the intracrine regulation in extra gynecological tissues such as the lungs, gastrointestinal tract, brain, colon and bone is given. Current therapeutic approaches aimed at interfering with these metabolisms and future perspectives are discussed.
Collapse
Affiliation(s)
- Gonda Konings
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Linda Brentjens
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Bert Delvoux
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Karlijn Cornel
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Marlies Bongers
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Roy Kruitwagen
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Sofia Xanthoulea
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Andrea Romano
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
7
|
Ooishi Y, Kawato S, Hojo Y, Hatanaka Y, Higo S, Murakami G, Komatsuzaki Y, Ogiue-Ikeda M, Kimoto T, Mukai H. Modulation of synaptic plasticity in the hippocampus by hippocampus-derived estrogen and androgen. J Steroid Biochem Mol Biol 2012; 131:37-51. [PMID: 22075082 DOI: 10.1016/j.jsbmb.2011.10.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/27/2011] [Accepted: 10/12/2011] [Indexed: 12/29/2022]
Abstract
The hippocampus synthesizes estrogen and androgen in addition to the circulating sex steroids. Synaptic modulation by hippocampus-derived estrogen or androgen is essential to maintain healthy memory processes. Rapid actions (1-2h) of 17β-estradiol (17β-E2) occur via synapse-localized receptors (ERα or ERβ), while slow genomic E2 actions (6-48h) occur via classical nuclear receptors (ERα or ERβ). The long-term potentiation (LTP), induced by strong tetanus or theta-burst stimulation, is not further enhanced by E2 perfusion in adult rats. Interestingly, E2 perfusion can rescue corticosterone (stress hormone)-induced suppression of LTP. The long-term depression is modulated rapidly by E2 perfusion. Elevation of the E2 concentration changes rapidly the density and head structure of spines in neurons. ERα, but not ERβ, drives this enhancement of spinogenesis. Kinase networks are involved downstream of ERα. Testosterone (T) or dihydrotestosterone (DHT) also rapidly modulates spinogenesis. Newly developed Spiso-3D mathematical analysis is used to distinguish these complex effects by sex steroids and kinases. It has been doubted that the level of hippocampus-derived estrogen and androgen may not be high enough to modulate synaptic plasticity. Determination of the accurate concentration of E2, T or DHT in the hippocampus is enabled by mass-spectrometric analysis in combination with new steroid-derivatization methods. The E2 level in the hippocampus is approximately 8nM for the male and 0.5-2nM for the female, which is much higher than that in circulation. The level of T and DHT is also higher than that in circulation. Taken together, hippocampus-derived E2, T, and DHT play a major role in modulation of synaptic plasticity.
Collapse
Affiliation(s)
- Yuuki Ooishi
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Schonemann MD, Muench MO, Tee MK, Miller WL, Mellon SH. Expression of P450c17 in the human fetal nervous system. Endocrinology 2012; 153:2494-505. [PMID: 22434081 PMCID: PMC3339640 DOI: 10.1210/en.2011-1545] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
P450c17 catalyzes steroid 17α-hydroxylase and 17,20 lyase activities. P450c17 is expressed in human fetal and postnatal adrenals and gonads and in the developing mouse nervous system, but little is known about its expression in the human nervous system. We obtained portions of 9-, 10-, and 11-wk gestation human fetuses and delineated the pattern of expression of P450c17 in their peripheral nervous systems by immunocytochemistry using the P450c17 antiserum previously used to characterize P450c17 in the mouse brain. P450c17 was readily detected in the dorsal root ganglia (DRG) and spinal cord. Neural structures were identified with antisera to the cytoskeletal protein neural cell adhesion molecule; DRG were identified with antisera to the neuronal transcription factor BRN3A and neurotrophin receptor tropomyosin-receptor-kinase B. The identification of P450c17 was confirmed using commercial antisera directed against different domains of P450c17 and by using antisera immunodepleted with authentic human P450c17. We also found expression of the P450 cholesterol side-chain cleavage enzyme (P450scc) in the spinal cord and DRG. Expression of P450scc is limited to cell bodies; unlike P450c17, we never detected P450scc in fiber tracts. Catalysis by P450c17 requires electron donation from P450 oxidoreductase (POR). Dual-label immunohistochemistry detected P450c17 and POR colocalized in DRG bundles, but some fibers containing P450c17 lacked POR. These data suggest that neurosteroids synthesized via these two enzymes may act in the developing human nervous system. The expression of P450c17 in structures lacking POR means that P450c17 may not be steroidogenic in those locations, suggesting that P450c17 may have additional functions that do not require POR.
Collapse
Affiliation(s)
- Marcus D Schonemann
- Department of Obstetrics, Gynecology, and Reproductive Science, University of California, San Francisco, 513 Parnassus Avenue, Box 0556, San Francisco, California 94143-0556, USA
| | | | | | | | | |
Collapse
|
9
|
Mukai H, Kimoto T, Hojo Y, Kawato S, Murakami G, Higo S, Hatanaka Y, Ogiue-Ikeda M. Modulation of synaptic plasticity by brain estrogen in the hippocampus. Biochim Biophys Acta Gen Subj 2010; 1800:1030-44. [DOI: 10.1016/j.bbagen.2009.11.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/15/2009] [Accepted: 11/02/2009] [Indexed: 12/31/2022]
|
10
|
Do Rego JL, Seong JY, Burel D, Leprince J, Luu-The V, Tsutsui K, Tonon MC, Pelletier G, Vaudry H. Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front Neuroendocrinol 2009; 30:259-301. [PMID: 19505496 DOI: 10.1016/j.yfrne.2009.05.006] [Citation(s) in RCA: 286] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/12/2009] [Accepted: 05/21/2009] [Indexed: 01/09/2023]
Abstract
Neuroactive steroids synthesized in neuronal tissue, referred to as neurosteroids, are implicated in proliferation, differentiation, activity and survival of nerve cells. Neurosteroids are also involved in the control of a number of behavioral, neuroendocrine and metabolic processes such as regulation of food intake, locomotor activity, sexual activity, aggressiveness, anxiety, depression, body temperature and blood pressure. In this article, we summarize the current knowledge regarding the existence, neuroanatomical distribution and biological activity of the enzymes responsible for the biosynthesis of neurosteroids in the brain of vertebrates, and we review the neuronal mechanisms that control the activity of these enzymes. The observation that the activity of key steroidogenic enzymes is finely tuned by various neurotransmitters and neuropeptides strongly suggests that some of the central effects of these neuromodulators may be mediated via the regulation of neurosteroid production.
Collapse
Affiliation(s)
- Jean Luc Do Rego
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 413, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hojo Y, Murakami G, Mukai H, Higo S, Hatanaka Y, Ogiue-Ikeda M, Ishii H, Kimoto T, Kawato S. Estrogen synthesis in the brain--role in synaptic plasticity and memory. Mol Cell Endocrinol 2008; 290:31-43. [PMID: 18541362 DOI: 10.1016/j.mce.2008.04.017] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 04/16/2008] [Indexed: 12/23/2022]
Abstract
Estrogen and androgen are synthesized from cholesterol locally in hippocampal neurons of adult animals. These neurosteroids are synthesized by cytochrome P450s and hydroxysteroid dehydrogenases (HSDs) and 5alpha-reductase. The expression levels of enzymes are as low as 1/200-1/50,000 of those in endocrine organs, however these numbers are high enough for local synthesis. Localization of P450(17alpha), P450arom, 17beta-HSD and 5alpha-reductase is observed in principal glutamatergic neurons in CA1, CA3 and the dendate gyrus. Several nanomolar levels of estrogen and androgen are observed in the hippocampus. Estrogen modulates memory-related synaptic plasticity not only slowly but also rapidly in the hippocampus. Rapid action of 17beta-estradiol via membrane receptors is demonstrated for spinogenesis and long-term depression (LTD). The enhancement of LTD by 1-10nM estradiol occurs within 1 h. The density of spine is increased in CA1 pyramidal neurons within 2h after application of estradiol. The density of spine-like structure is, however, decreased by estradiol in CA3 pyramidal neurons. ERalpha, but not ERbeta, induces the same enhancement/suppression effects on both spinogenesis and LTD.
Collapse
Affiliation(s)
- Yasushi Hojo
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang XP, Ding HL, Geng CM, Jiang YM. Migraine as a sex-conditioned inherited disorder: evidences from China and the world. Neurosci Bull 2008; 24:110-6. [PMID: 18369391 DOI: 10.1007/s12264-008-0110-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Migraine is a complex and heterogeneous disorder. Although several genetic models has been proposed including autosomal-dominant/autosomal recessive, sex-linked, sex-limited, mitochondrial, and multi-gene, none of these models can well-explain the transmission of the disease. We hypothesied that migraine is a sex-conditioned inherited disorder (autosomal dominant in females and autosomal recessive in males). This hypothesis is supported by the evidence such as the locations of genes associated with familial hemiplegic migraine, possibly "typical" migraine as well (dominantly on chromosome 19p, 1q, and 2q), male:female ratio of prevalence (1:2-1:4), the mostly youth-onset, the provocation by the contraceptives, the induction by menstruation, and the self-limitation after menopause. Female sex-hormones appear to be the key contributor to a higher prevalence of migraine in female. Socio-environmental factors may also play an important role.
Collapse
Affiliation(s)
- Xiao-Ping Wang
- Department of Neurology, Shanghai First People's Hospital, Shanghai Jiao-Tong University, Shanghai 200080, China.
| | | | | | | |
Collapse
|
13
|
Ishii H, Tsurugizawa T, Ogiue-Ikeda M, Asashima M, Mukai H, Murakami G, Hojo Y, Kimoto T, Kawato S. Local production of sex hormones and their modulation of hippocampal synaptic plasticity. Neuroscientist 2007; 13:323-34. [PMID: 17644764 DOI: 10.1177/10738584070130040601] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is believed that sex hormones are synthesized in the gonads and reach the brain via the blood circulation. In contrast with this view, the authors have demonstrated that sex hormones are also synthesized locally in the hippocampus and that these steroids act rapidly to modulate neuronal synaptic plasticity. The authors demonstrated that estrogens are locally synthesized from cholesterol through dehydroepiandrosterone and testosterone in adult hippocampal neurons. Significant expression of mRNA for P450(17alpha), P450arom, and other steroidogenic enzymes was demonstrated. Localization of P450(17alpha) and P450arom was observed in synapses of principal neurons. In contrast to the slow action of gonadal estradiol, hippocampal neuron-derived estradiol may act locally and rapidly within the neurons. For example, 1 to 10 nM estradiol rapidly enhances long-term depression (LTD). The density of thin spines is selectively increased within two hours upon application of estradiol in pyramidal neurons. Estrogen receptor ERalpha agonist has the same enhancing effect as estradiol on both LTD and spinogenesis. Localization of ERalpha in spines in addition to nuclei of principal neurons implies that synaptic ERalpha is responsible for rapid modulation of synaptic plasticity by endogenous estradiol. Activin A, a peptide sex hormone, may also play a role as a local endogenous modulator of synaptic plasticity.
Collapse
Affiliation(s)
- Hirotaka Ishii
- Department of Biophysics and Life Sciences, Graduate School ofArts and Sciences ,University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
It has been known for more than 30 years that estrogen can alter the intrinsic and synaptic physiology of neurons within minutes. The physiological significance of these acute effects has been unclear, however, because some effects require higher concentrations of estrogen than are detected in plasma, and because estrogen secreted by the ovary rises and falls over a time course of days, not minutes. These concerns may be answered by new research demonstrating that estrogen is produced at high levels within the brain itself, and that production of estrogen in the brain may be regulated by neuronal activity. Additionally, recent studies indicate that classical estrogen receptor proteins are found not only in the nucleus where they regulate gene expression but also at extranuclear sites, including at synapses. These findings, together with evidence for new types of extranuclear estrogen receptors, suggest that estrogen might act directly at synapses to activate second messenger signaling, thereby rapidly altering neuronal excitability, synaptic transmission, and/or synaptic plasticity.
Collapse
Affiliation(s)
- Catherine S Woolley
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
15
|
Murakami G, Tanabe N, Ishii HT, Ogiue-Ikeda M, Tsurugizawa T, Mukai H, Hojo Y, Takata N, Furukawa A, Kimoto T, Kawato S. Role of cytochrome p450 in synaptocrinology: endogenous estrogen synthesis in the brain hippocampus. Drug Metab Rev 2006; 38:353-69. [PMID: 16877257 DOI: 10.1080/03602530600724068] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the hippocampus, the center for learning and memory, cytochrome P450s (P450scc, P450(17alpha), and P450arom) as well as 17beta-, 3beta-hydroxysteroid dehydrogenases, and 5alpha-reductase participate in the synthesis of brain steroids from endogenous cholesterol. These brain steroids include pregnenolone, dehydroepiandrosterone, testosterone, dihydrotestosterone, and 17beta-estradiol. Both estrogens and androgens are synthesized in the adult male hippocampal neurons. Although the expression levels of steroidogenic enzymes are as low as 1/200 to 1/50,000 of those in testis or ovary, the levels of synthesized steroids are sufficient for the local usage within small neurons (i.e., intracrine system). This intracrine system contrasts with the endocrine system in which high expression levels of steroidogenic enzymes are necessary in endocrine organs in order to supply steroids to many other organs via blood circulation. Endogenous synthesis of sex steroids in the hypothalamus is also discussed. Rapid modulation by estrogens and xenoestrogens is discussed concerning synaptic plasticity such as the long-term potentiation, the long-term depression, or spinogenesis. Synaptic expression of P450(17alpha), P450arom, and estrogen receptors suggests "synaptocrine" mechanisms of brain steroids, which are synthesized at synapses and act as synaptic modulators.
Collapse
Affiliation(s)
- Gen Murakami
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, University of Tokyo at Komaba, Meguro, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Huyghe S, Mannaerts GP, Baes M, Van Veldhoven PP. Peroxisomal multifunctional protein-2: the enzyme, the patients and the knockout mouse model. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:973-94. [PMID: 16766224 DOI: 10.1016/j.bbalip.2006.04.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 04/04/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
The mammalian multifunctional protein-2 (MFP-2, also called multifunctional enzyme 2, D-bifunctional enzyme or 17-beta-estradiol dehydrogenase type IV) was identified by several groups about a decade ago. It plays a central role in peroxisomal beta-oxidation as it handles most, if not all, peroxisomal beta-oxidation substrates. Deficiency of this enzyme in man causes a severe developmental syndrome with abnormalities in several organs but in particular in the brain, leading to death within the first year of life. Accumulation of branched-long-chain fatty acids and very-long-chain fatty acids and a disturbed synthesis of bile acids were documented in these patients. A mouse model with MFP-2 deficiency only partly phenocopies the human disease. Although the expected metabolic abnormalities are present, no neurodevelopmental aberrations are observed. However, the survival of these mice into adulthood allowed to document the importance of this enzyme for the normal functioning of the brain, eyes and testis. In the present review, the identification and biochemical characteristics of MFP-2, and the consequences of MFP-2 dysfunction in humans and in mice will be discussed.
Collapse
Affiliation(s)
- Steven Huyghe
- Laboratory of Cell Metabolism, Department of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Campus Gasthuisberg, Onderwijs en Navorsing II, bus 823, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
17
|
Mukai H, Tsurugizawa T, Ogiue-Ikeda M, Murakami G, Hojo Y, Ishii H, Kimoto T, Kawato S. Local neurosteroid production in the hippocampus: influence on synaptic plasticity of memory. Neuroendocrinology 2006; 84:255-63. [PMID: 17142999 DOI: 10.1159/000097747] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 10/17/2006] [Indexed: 12/27/2022]
Abstract
In neuroendocrinology, it is believed that steroid hormones are synthesized in the gonads and/or adrenal glands, and reach the brain via the blood circulation. In contrast to this view, we are in progress of demonstrating that estrogens and androgens are also synthesized locally by cytochrome P450s in the hippocampus, and that these steroids act rapidly to modulate neuronal synaptic plasticity. We demonstrated that estrogens were locally synthesized in the adult hippocampal neurons. In the pathway of steroidogenesis, cholesterol is converted to pregnenolone (by P450scc), dehydroepiandrosterone [by P450(17alpha)], androstenediol (by 17beta-hydroxysteroid dehydrogenase, 17beta-HSD), testosterone (by 3beta-HSD) and finally to estradiol (by P450arom) and dihydrotestosterone (by 5alpha-reductase). The basal concentration of estradiol in the hippocampus was approximately 1 nM, which was greater than that in blood plasma. Significant expression of mRNA for P450scc, P450(17alpha), P450arom, 17beta-HSD, 3beta-HSD and 5alpha-reductase was demonstrated by RT-PCR. Their mRNA levels in the hippocampus were 1/200-1/5,000 of those in the endocrine organs. Localization of P450(17alpha) and P450arom was observed in synapses in addition to endoplasmic reticulum of principal neurons using immunoelectron microscopy. Different from slow action of gonadal estradiol which reaches the brain via the blood circulation, hippocampal neuron-derived estradiol may act locally and rapidly within the neurons. For example, 1 nM 17beta-estradiol rapidly enhanced the long-term depression (LTD) not only in CA1 but also in CA3 and dentate gyrus. The density of thin spines was selectively increased within 2 h upon application of 1 nM estradiol in CA1 pyramidal neurons. Only ERalpha agonist propyl-pyrazole-trinyl-phenol induced the same enhancing effect as estradiol on both LTD and spinogenesis in the CA1. ERbeta agonist hydroxyphenyl-propionitrile suppressed LTD and did not affect spinogenesis. Localization of estrogen receptor ERalpha in spines in addition to nuclei of principal neurons implies that synaptic ERalpha can drive rapid modulation of synaptic plasticity by endogenous estradiol.
Collapse
Affiliation(s)
- Hideo Mukai
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Mukai H, Takata N, Ishii HT, Tanabe N, Hojo Y, Furukawa A, Kimoto T, Kawato S. Hippocampal synthesis of estrogens and androgens which are paracrine modulators of synaptic plasticity: synaptocrinology. Neuroscience 2005; 138:757-64. [PMID: 16310315 DOI: 10.1016/j.neuroscience.2005.09.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 08/18/2005] [Accepted: 09/08/2005] [Indexed: 01/04/2023]
Abstract
Hippocampal pyramidal neurons and granule neurons of adult male rats are equipped with a complete machinery for the synthesis of pregnenolone, dehydroepiandrosterone, testosterone, dihydrotestosterone and 17beta-estradiol. Both estrogens and androgens are synthesized in male hippocampus. These brain steroids are synthesized by cytochrome P450s (P450scc, P45017alpha and P450arom), hydroxysteroid dehydrogenases and reductases from endogenous cholesterol. The expression levels of enzymes are as low as 1/300-1/1000 of those in endocrine organs. Synthesis is dependent on the acute Ca(2+) influx upon neuron-neuron communication via NMDA receptors. Estradiol is particularly important because estradiol rapidly modulates neuronal synaptic transmission such as long-term potentiation via synaptic estrogen receptors. Xenoestrogens may also act via estrogen-driven signaling pathways.
Collapse
Affiliation(s)
- H Mukai
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo at Komaba, Meguro, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Grosso S, Luisi S, Berardi R, Mostardini R, Cordelli DM, Morgese G, Petraglia F, Balestri P. Post-ictal circulating levels of allopregnanolone in children with partial or generalized seizures. Epilepsy Res 2005; 63:97-102. [PMID: 15725389 DOI: 10.1016/j.eplepsyres.2004.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 12/10/2004] [Accepted: 12/12/2004] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Allopregnanolone (3alpha-hydroxy-5alpha-pregnan-20-one) is a neurosteroid with a potent modulating activity on the gamma-aminobutyric acid (GABA)(a) receptor complex. It plays a key role in the epileptogenesis of partial seizures. Serum allopregnanolone concentrations significantly increase in the postcritical phase. In the present study we investigated the post-ictal serum allopregnanolone levels in children with partial seizures and generalized seizures, respectively. PATIENTS AND METHODS Three groups of subjects were included in the study. Group 1 consisted of 18 children affected by complex partial seizures. Group 2 consisted of 11 children presenting with generalized epilepsy. Group 3 consisted of 20 healthy age-matched subjects. Serum allopregnanolone levels were assayed in the inter-ictal phase and within 30 min after an epileptic event. RESULTS The data we obtained suggest that circulating allopregnanolone level significantly increases in the post-ictal phase. However, we found no significant differences in the post-ictal serum allopregnanolone concentrations between patients with partial seizures and those with generalized seizures. CONCLUSIONS Further studies are needed to establish if allopregnanolone is a reliable circulating marker of epileptic seizures. However, our observations seem to indicate that post-ictal circulating allopregnanolone level is not useful in differentiating focal and generalized epilepsy events.
Collapse
Affiliation(s)
- Salvatore Grosso
- Department of Pediatrics, Obstetrics, and Reproductive Medicine, University of Siena, Viale M. Bracci, Le Scotte, 53100 Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Rhodes ME, Frye CA. Actions at GABA(A) receptors in the hippocampus may mediate some antiseizure effects of progestins. Epilepsy Behav 2005; 6:320-7. [PMID: 15820338 DOI: 10.1016/j.yebeh.2005.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 02/03/2005] [Accepted: 02/05/2005] [Indexed: 11/20/2022]
Abstract
Progestins can have antiseizure effects; however, the mechanisms and sites of action of these effects are not well-understood. Whether progesterone's actions at GABA(A) receptors in the hippocampus are important for its antiseizure effects was investigated. In Experiment 1, ovariectomized rats were administered sesame oil vehicle or a regimen of progesterone (500 microg sc, which produces physiological concentrations in plasma and the hippocampus), followed 2.5 hours later by administration of saline vehicle or a regimen of bicuculline (1 mg/kg, sc), a GABA(A) receptor antagonist, which does not produce any intrinsic effects on seizures. Progesterone, compared with vehicle, significantly increased the latency to, and decreased the number of, pentylenetetrazole-induced tonic seizures and increased GABA-stimulated chloride flux. Co-administration of bicuculline attenuated progesterone's antiseizure effects and decreased GABA-stimulated chloride flux in the hippocampus. Bicuculline did not alter ictal behavior compared with vehicle. In Experiment 2, ovariectomized rats were subcutaneously administered sesame oil or progesterone (500 microg), followed 2.5 hours later by bilateral infusions of bicuculline (100 ng) or vehicle (saline) into the hippocampus. Infusion of bicuculline into the hippocampus of progesterone-primed rats significantly increased ictal activity, compared with that induced by progesterone administration alone, but alone did not alter seizures compared with that produced by saline infusions into the hippocampus. These data suggest that actions of progesterone at GABA(A) receptors in the hippocampus are important for progesterone's antiseizure effects.
Collapse
Affiliation(s)
- Madeline E Rhodes
- Department of Psychology, University at Albany-SUNY, Albany, NY 12222, USA
| | | |
Collapse
|
21
|
Rhodes ME, Frye CA. Attenuating 5alpha-pregnane-3alpha-ol-20-one formation in the hippocampus of female rats increases pentylenetetrazole-induced seizures. Epilepsy Behav 2005; 6:140-6. [PMID: 15710296 DOI: 10.1016/j.yebeh.2004.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 11/29/2004] [Accepted: 11/29/2004] [Indexed: 10/25/2022]
Abstract
Progesterone has antiseizure effects, which may be due to the actions of its 5alpha-reduced metabolite, 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP). Whether metabolism of progesterone to 3alpha,5alpha-THP in the hippocampus is essential for its antiseizure effects was investigated. In Experiment 1, ovariectomized rats were administered subcutaneous progesterone (500 microg) or vehicle (sesame oil), followed 1 hour later by subcutaneous administration of an inhibitor of the 5alpha-reductase enzyme, finasteride (50 mg/kg), or vehicle (90% sesame oil, 10% ethanol). Administration of progesterone increased the latency to, and decreased the number of, tonic seizures and increased hippocampal 3alpha,5alpha-THP levels, compared with vehicle. Administration of finasteride with progesterone attenuated progesterone's antiseizure effects and decreased levels of 3alpha,5alpha-THP in the hippocampus. Finasteride administration alone did not alter ictal behavior or 3alpha,5alpha-THP levels compared with vehicle. In Experiment 2, ovariectomized rats were administered subcutaneous progesterone (500 microg) or vehicle (sesame oil), followed 1 hour later by bilateral infusions of finasteride (10 microg) or vehicle (beta-cyclodextran) into the hippocampus. Administration of finasteride to the hippocampus of progesterone-primed rats significantly increased ictal activity and decreased hippocampal 3alpha,5alpha-THP levels, compared with progesterone administration alone. These data suggest that formation of 3alpha,5alpha-THP in the hippocampus is important for progesterone's antiseizure effects.
Collapse
Affiliation(s)
- Madeline E Rhodes
- Department of Psychology, The University at Albany-SUNY, 1400 Washington Avenue, Albany, NY 12222, USA
| | | |
Collapse
|
22
|
Hojo Y, Hattori TA, Enami T, Furukawa A, Suzuki K, Ishii HT, Mukai H, Morrison JH, Janssen WGM, Kominami S, Harada N, Kimoto T, Kawato S. Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P45017alpha and P450 aromatase localized in neurons. Proc Natl Acad Sci U S A 2004; 101:865-70. [PMID: 14694190 PMCID: PMC321772 DOI: 10.1073/pnas.2630225100] [Citation(s) in RCA: 514] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2003] [Indexed: 11/18/2022] Open
Abstract
In adult mammalian brain, occurrence of the synthesis of estradiol from endogenous cholesterol has been doubted because of the inability to detect dehydroepiandrosterone synthase, P45017alpha. In adult male rat hippocampal formation, significant localization was demonstrated for both cytochromes P45017alpha and P450 aromatase, in pyramidal neurons in the CA1-CA3 regions, as well as in the granule cells in the dentate gyrus, by means of immunohistochemical staining of slices. Only a weak immunoreaction of these P450s was observed in astrocytes and oligodendrocytes. ImmunoGold electron microscopy revealed that P45017alpha and P450 aromatase were localized in pre- and postsynaptic compartments as well as in the endoplasmic reticulum in principal neurons. The expression of these cytochromes was further verified by using Western blot analysis and RT-PCR. Stimulation of hippocampal neurons with N-methyl-d-aspartate induced a significant net production of estradiol. Analysis of radioactive metabolites demonstrated the conversion from [(3)H]pregnenolone to [(3)H]estradiol through dehydroepiandrosterone and testosterone. This activity was abolished by the application of specific inhibitors of cytochrome P450s. Interestingly, estradiol was not significantly converted to other steroid metabolites. Taken together with our previous finding of a P450scc-containing neuronal system for pregnenolone synthesis, these results imply that 17beta-estradiol is synthesized by P45017alpha and P450 aromatase localized in hippocampal neurons from endogenous cholesterol. This synthesis may be regulated by a glutamate-mediated synaptic communication that evokes Ca(2+) signals.
Collapse
Affiliation(s)
- Yasushi Hojo
- Department of Biophysics and Life Sciences and Core Research for Evolutional Science and Technology Project of Japan Science and Technology Corporation, Graduate School of Arts and Sciences, University of Tokyo at Komaba, Meguro, Tokyo 153, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Schumacher M, Weill-Engerer S, Liere P, Robert F, Franklin RJM, Garcia-Segura LM, Lambert JJ, Mayo W, Melcangi RC, Parducz A, Suter U, Carelli C, Baulieu EE, Akwa Y. Steroid hormones and neurosteroids in normal and pathological aging of the nervous system. Prog Neurobiol 2003; 71:3-29. [PMID: 14611864 DOI: 10.1016/j.pneurobio.2003.09.004] [Citation(s) in RCA: 224] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Without medical progress, dementing diseases such as Alzheimer's disease will become one of the main causes of disability. Preventing or delaying them has thus become a real challenge for biomedical research. Steroids offer interesting therapeutical opportunities for promoting successful aging because of their pleiotropic effects in the nervous system: they regulate main neurotransmitter systems, promote the viability of neurons, play an important role in myelination and influence cognitive processes, in particular learning and memory. Preclinical research has provided evidence that the normally aging nervous system maintains some capacity for regeneration and that age-dependent changes in the nervous system and cognitive dysfunctions can be reversed to some extent by the administration of steroids. The aging nervous system also remains sensitive to the neuroprotective effects of steroids. In contrast to the large number of studies documenting beneficial effects of steroids on the nervous system in young and aged animals, the results from hormone replacement studies in the elderly are so far not conclusive. There is also little information concerning changes of steroid levels in the aging human brain. As steroids present in nervous tissues originate from the endocrine glands (steroid hormones) and from local synthesis (neurosteroids), changes in blood levels of steroids with age do not necessarily reflect changes in their brain levels. There is indeed strong evidence that neurosteroids are also synthesized in human brain and peripheral nerves. The development of a very sensitive and precise method for the analysis of steroids by gas chromatography/mass spectrometry (GC/MS) offers new possibilities for the study of neurosteroids. The concentrations of a range of neurosteroids have recently been measured in various brain regions of aged Alzheimer's disease patients and aged non-demented controls by GC/MS, providing reference values. In Alzheimer's patients, there was a general trend toward lower levels of neurosteroids in different brain regions, and neurosteroid levels were negatively correlated with two biochemical markers of Alzheimer's disease, the phosphorylated tau protein and the beta-amyloid peptides. The metabolism of dehydroepiandrosterone has also been analyzed for the first time in the aging brain from Alzheimer patients and non-demented controls. The conversion of dehydroepiandrosterone to Delta5-androstene-3beta,17beta-diol and to 7alpha-OH-dehydroepiandrosterone occurred in frontal cortex, hippocampus, amygdala, cerebellum and striatum of both Alzheimer's patients and controls. The formation of these metabolites within distinct brain regions negatively correlated with the density of beta-amyloid deposits.
Collapse
Affiliation(s)
- M Schumacher
- Inserm U488, 80 rue du Général Leclerc, Kremlin-Bicêtre 94276, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shibuya K, Takata N, Hojo Y, Furukawa A, Yasumatsu N, Kimoto T, Enami T, Suzuki K, Tanabe N, Ishii H, Mukai H, Takahashi T, Hattori TA, Kawato S. Hippocampal cytochrome P450s synthesize brain neurosteroids which are paracrine neuromodulators of synaptic signal transduction. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1619:301-16. [PMID: 12573490 DOI: 10.1016/s0304-4165(02)00489-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hippocampal pyramidal neurons and granule neurons of adult male rats are equipped with a complete machinery for the synthesis of pregnenolone, dehydroepiandrosterone, 17beta-estradiol and testosterone as well as their sulfate esters. These brain neurosteroids are synthesized by cytochrome P450s (P450scc, P45017alpha and P450arom) from endogenous cholesterol. Synthesis is acutely dependent on the Ca(2+) influx attendant upon neuron-neuron communication via N-methyl-D-aspartate (NMDA) receptors. Pregnenolone sulfate, estradiol and corticosterone rapidly modulate neuronal signal transduction and the induction of long-term potentiation via NMDA receptors and putative membrane steroid receptors. Brain neurosteroids are therefore promising neuromodulators that may either activate or inactivate neuron-neuron communication, thereby mediating learning and memory in the hippocampus.
Collapse
Affiliation(s)
- Keisuke Shibuya
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, University of Tokyo at Komaba, Meguro, 153, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mellon SH, Vaudry H. Biosynthesis of neurosteroids and regulation of their synthesis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2002; 46:33-78. [PMID: 11599305 DOI: 10.1016/s0074-7742(01)46058-2] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The brain, like the gonads, adrenal glands, and placenta, is a steroidogenic organ. The steroids synthesized by the brain and by the nervous system, given the name neurosteroids, have a wide variety of diverse functions. In general, they mediate their actions not through classic steroid hormone nuclear receptors but through ion-gated neurotransmitter receptors. This chapter summarizes the biochemistry of the enzymes involved in the biosynthesis of neurosteroids, their localization during development and in adulthood, and the regulation of their expression, highlighting both similarities and differences between expression in the brain and in classic steroidogenic tissues.
Collapse
Affiliation(s)
- S H Mellon
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, Metabolic Research Unit, University of California-San Francisco, San Francisco, California 94143-0556, USA
| | | |
Collapse
|
26
|
Beyenburg S, Stoffel-Wagner B, Bauer J, Watzka M, Blümcke I, Bidlingmaier F, Elger CE. Neuroactive steroids and seizure susceptibility. Epilepsy Res 2001; 44:141-53. [PMID: 11325570 DOI: 10.1016/s0920-1211(01)00194-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There is increasing clinical and experimental evidence that hormones, in particular sex steroid hormones, influence neuronal excitability and other brain functions. The term 'neuroactive steroids' has been coined for steroids that interact with neurotransmitter receptors. One of the best characterized actions of neuroactive steroids is the allosteric modulation of GABA(A)-receptor function via binding to a putative steroid-binding site. Since neuroactive steroids may interact with a variety of other membrane receptors, excitatory as well as inhibitory, they may have an impact on the excitability of specific brain regions. Neuronal excitability is enhanced by estrogen, whereas progesterone and its metabolites exert anticonvulsant effects. Testosterone and corticosteroids have less consistent effects on seizure susceptibility. Apart from these particular properties, neuroactive steroids may regulate gene expression via progesterone receptors. Based on their molecular properties, these compounds appear to have a promising therapeutical profile for the treatment of different neuropsychiatric diseases including epilepsy. This review focuses on the effects of neuroactive steroids on neuronal excitability and their putative impact on the physiology of epileptic disorders.
Collapse
Affiliation(s)
- S Beyenburg
- Department of Epileptology, University of Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
| | | | | | | | | | | | | |
Collapse
|
27
|
Beyenburg S, Watzka M, Clusmann H, Blümcke I, Bidlingmaier F, Elger CE, Stoffel-Wagner B. Androgen receptor mRNA expression in the human hippocampus. Neurosci Lett 2000; 294:25-8. [PMID: 11044578 DOI: 10.1016/s0304-3940(00)01542-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The androgen receptor (AR) plays a central role in mediating androgen action. Since the hippocampus is a target of steroid modulation, we studied the expression of AR mRNAs in hippocampal tissue specimens from patients undergoing epilepsy surgery (n=42). AR mRNA expression was in the same order of magnitude than in prostate tissue, known for its high expression of AR. AR mRNA concentrations showed no significant difference in AR mRNA expression between men (49.3+/-8.0 arbitrary units (aU); mean+/-SEM) and women (54.3+/-11.2 aU) and no sex-specific hippocampal lateralization pattern was observed. No relationship could be detected between duration of epilepsy, individual seizure frequency, age of the patients and the expression levels of AR. The high expression of AR in the hippocampus suggests that this human brain area is an important target for androgen action.
Collapse
Affiliation(s)
- S Beyenburg
- Department of Epileptology, University of Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany.
| | | | | | | | | | | | | |
Collapse
|