1
|
Dahawi M, de Sainte Agathe JM, Elmagzoub MS, Ahmed EA, Buratti J, Courtin T, Noé E, Bogoin J, Copin B, Elmugadam FA, Abdelgadir WA, Ahmed AKMA, Daldoum MA, Altayeb RMI, Bashir M, Khalid LM, Gamil S, Baldassari S, Elsayed L, Keren B, Nuel G, Ahmed AE, Leguern E. Genetic heterogeneity in familial forms of genetic generalized epilepsy: from mono- to oligogenism. Hum Genomics 2024; 18:130. [PMID: 39574152 PMCID: PMC11583555 DOI: 10.1186/s40246-024-00659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/16/2024] [Indexed: 11/24/2024] Open
Abstract
Genetic generalized epilepsy (GGE) including childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy (JME), and GGE with tonic-clonic seizures (TCS) (GGE-TCS), is genetically influenced with a two- to four- fold increased risk in the first-degree relatives of patients. Since large families with GGE are very rare, international studies have focused on sporadic GGE patients using whole exome sequencing, suggesting that GGE are highly genetically heterogeneous and rather involve rare or ultra-rare variants. Moreover, a polygenic mode of inheritance is suspected in most cases. We performed SNP microarrays and whole exome sequencing in 20 families from Sudan, focusing on those with at least four affected members. Standard genetic filters and Endeavour algorithm for functional prioritization of genes selected likely susceptibility variants in FAT1, DCHS1 or ASTN2 genes. FAT1 and DCHS1 are adhesion transmembrane proteins interacting during brain development, while ASTN2 is involved in dendrite development. Our approach on familial forms of GGE is complementary to large-scale collaborative consortia studies of sporadic cases. Our study reinforces the hypothesis that GGE is genetically heterogeneous, even in a relatively limited geographic area, and mainly oligogenic, as supported by the low familial penetrance of GGE and by the Bayesian algorithm that we developed in a large pedigree with JME. Since populations with founder effect and endogamy are appropriate to study autosomal recessive pathologies, they would be also adapted to decipher genetic components of complex diseases, using the reported bayesian model.
Collapse
Affiliation(s)
- Maha Dahawi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France.
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan.
| | - Jean-Madeleine de Sainte Agathe
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| | - Mohamed S Elmagzoub
- Faculty of Medicine, National Ribat University, Khartoum, Sudan
- Neuroscience Department, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Elhami A Ahmed
- Faculty of Dentistry, Shendi University, Shendi, Sudan
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Julien Buratti
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Thomas Courtin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| | - Eric Noé
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
| | - Julie Bogoin
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Bruno Copin
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | | | - Wasma A Abdelgadir
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
| | - Ahmed K M A Ahmed
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mohamed A Daldoum
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Division of Neurology, Sudan Medical Council, Khartoum, Sudan
| | | | - Mohamed Bashir
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Sahar Gamil
- Department of Basic Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, AL-Kharj, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Sara Baldassari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
| | - Liena Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Boris Keren
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Gregory Nuel
- Stochastics and Biology Group (MAV), Probability and Statistics (LPSM, CNRS 8001), Sorbonne Université, Paris, France
| | - Ammar E Ahmed
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Eric Leguern
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| |
Collapse
|
2
|
Waldron R, Rodriguez MDLAB, Williams JM, Ning Z, Ahmed A, Lindsay A, Moore T. JRK binds satellite III DNA and is necessary for the heat shock response. Cell Biol Int 2024; 48:1212-1222. [PMID: 38946594 DOI: 10.1002/cbin.12216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/19/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
JRK is a DNA-binding protein of the pogo superfamily of transposons, which includes the well-known centromere binding protein B (CENP-B). Jrk null mice exhibit epilepsy, and growth and reproductive disorders, consistent with its relatively high expression in the brain and reproductive tissues. Human JRK DNA variants and gene expression levels are implicated in cancers and neuropsychiatric disorders. JRK protein modulates β-catenin-TCF activity but little is known of its cellular functions. Based on its homology to CENP-B, we determined whether JRK binds centromeric or other satellite DNAs. We show that human JRK binds satellite III DNA, which is abundant at the chromosome 9q12 juxtacentromeric region and on Yq12, both sites of nuclear stress body assembly. Human JRK-GFP overexpressed in HeLa cells strongly localises to 9q12. Using an anti-JRK antiserum we show that endogenous JRK co-localises with a subset of centromeres in non-stressed cells, and with heat shock factor 1 following heat shock. Knockdown of JRK in HeLa cells proportionately reduces heat shock protein gene expression in heat-shocked cells. A role for JRK in regulating the heat shock response is consistent with the mouse Jrk null phenotype and suggests that human JRK may act as a modifier of diseases with a cellular stress component.
Collapse
Affiliation(s)
- Rosalie Waldron
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | | | - John M Williams
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Zhenfei Ning
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Abrar Ahmed
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew Lindsay
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Tom Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Thakran S, Guin D, Singh P, Singh P, Kukal S, Rawat C, Yadav S, Kushwaha SS, Srivastava AK, Hasija Y, Saso L, Ramachandran S, Kukreti R. Genetic Landscape of Common Epilepsies: Advancing towards Precision in Treatment. Int J Mol Sci 2020; 21:E7784. [PMID: 33096746 PMCID: PMC7589654 DOI: 10.3390/ijms21207784] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Epilepsy, a neurological disease characterized by recurrent seizures, is highly heterogeneous in nature. Based on the prevalence, epilepsy is classified into two types: common and rare epilepsies. Common epilepsies affecting nearly 95% people with epilepsy, comprise generalized epilepsy which encompass idiopathic generalized epilepsy like childhood absence epilepsy, juvenile myoclonic epilepsy, juvenile absence epilepsy and epilepsy with generalized tonic-clonic seizure on awakening and focal epilepsy like temporal lobe epilepsy and cryptogenic focal epilepsy. In 70% of the epilepsy cases, genetic factors are responsible either as single genetic variant in rare epilepsies or multiple genetic variants acting along with different environmental factors as in common epilepsies. Genetic testing and precision treatment have been developed for a few rare epilepsies and is lacking for common epilepsies due to their complex nature of inheritance. Precision medicine for common epilepsies require a panoramic approach that incorporates polygenic background and other non-genetic factors like microbiome, diet, age at disease onset, optimal time for treatment and other lifestyle factors which influence seizure threshold. This review aims to comprehensively present a state-of-art review of all the genes and their genetic variants that are associated with all common epilepsy subtypes. It also encompasses the basis of these genes in the epileptogenesis. Here, we discussed the current status of the common epilepsy genetics and address the clinical application so far on evidence-based markers in prognosis, diagnosis, and treatment management. In addition, we assessed the diagnostic predictability of a few genetic markers used for disease risk prediction in individuals. A combination of deeper endo-phenotyping including pharmaco-response data, electro-clinical imaging, and other clinical measurements along with genetics may be used to diagnose common epilepsies and this marks a step ahead in precision medicine in common epilepsies management.
Collapse
Affiliation(s)
- Sarita Thakran
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Department of Bioinformatics, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India;
| | - Pooja Singh
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Priyanka Singh
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Saroj Yadav
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Suman S. Kushwaha
- Department of Neurology, Institute of Human Behaviour and Allied Sciences, Dilshad Garden, Delhi 110095, India;
| | - Achal K. Srivastava
- Department of Neurology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India;
| | - Yasha Hasija
- Department of Bioinformatics, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Srinivasan Ramachandran
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
- G N Ramachandran Knowledge Centre, Council of Scientific and Industrial Research (CSIR)—Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| |
Collapse
|
4
|
De-novo interstitial 2.33 Mb deletion in 8q24.3: new insights on a very rare partial monosomy syndrome. Clin Dysmorphol 2018; 27:97-100. [PMID: 29738340 DOI: 10.1097/mcd.0000000000000224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Clinical and genetic study of Tunisian families with genetic generalized epilepsy: contribution of CACNA1H and MAST4 genes. Neurogenetics 2018; 19:165-178. [PMID: 29948376 DOI: 10.1007/s10048-018-0550-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 12/11/2022]
Abstract
Genetic generalized epilepsies (GGE) (childhood absence epilepsy (CAE), juvenile myoclonic epilepsy (JME) and epilepsy with generalized tonic-clonic seizures (GTCS)) are mainly determined by genetic factors. Since few mutations were identified in rare families with autosomal dominant GGE, a polygenic inheritance was suspected in most patients. Recent studies on large American or European cohorts of sporadic cases showed that susceptibility genes were numerous although their variants were rare, making their identification difficult. Here, we reported clinical and genetic characteristics of 30 Tunisian GGE families, including 71 GGE patients. The phenotype was close to that in sporadic cases. Nineteen pedigrees had a homogeneous type of GGE (JME-CAE-CGTS), and 11 combined these epileptic syndromes. Rare non-synonymous variants were selected in probands using a targeted panel of 30 candidate genes and their segregation was determined in families. Molecular studies incriminated different genes, mainly CACNA1H and MAST4. The segregation of at least two variants in different genes in some pedigrees was compatible with the hypothesis of an oligogenic inheritance, which was in accordance with the relatively low frequency of consanguineous probands. Since at least 2 susceptibility genes were likely shared by different populations, genetic factors involved in the majority of Tunisian GGE families remain to be discovered. Their identification should be easier in families with a homogeneous type of GGE, in which an intra-familial genetic homogeneity could be suspected.
Collapse
|
6
|
Wingless/Wnt Signaling in Intestinal Development, Homeostasis, Regeneration and Tumorigenesis: A Drosophila Perspective. J Dev Biol 2018; 6:jdb6020008. [PMID: 29615557 PMCID: PMC6026893 DOI: 10.3390/jdb6020008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 02/06/2023] Open
Abstract
In mammals, the Wnt/β-catenin signal transduction pathway regulates intestinal stem cell maintenance and proliferation, whereas Wnt pathway hyperactivation, resulting primarily from the inactivation of the tumor suppressor Adenomatous polyposis coli (APC), triggers the development of the vast majority of colorectal cancers. The Drosophila adult gut has recently emerged as a powerful model to elucidate the mechanisms by which Wingless/Wnt signaling regulates intestinal development, homeostasis, regeneration, and tumorigenesis. Herein, we review recent insights on the roles of Wnt signaling in Drosophila intestinal physiology and pathology.
Collapse
|
7
|
Afawi Z, Gamirova RG, Jaxybayeva AK, Esin RG. Modern achievements in genetic studies of idiopathic generalized epilepsies. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:56-60. [DOI: 10.17116/jnevro201811810256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Tian A, Benchabane H, Wang Z, Zimmerman C, Xin N, Perochon J, Kalna G, Sansom OJ, Cheng C, Cordero JB, Ahmed Y. Intestinal stem cell overproliferation resulting from inactivation of the APC tumor suppressor requires the transcription cofactors Earthbound and Erect wing. PLoS Genet 2017; 13:e1006870. [PMID: 28708826 PMCID: PMC5510812 DOI: 10.1371/journal.pgen.1006870] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/15/2017] [Indexed: 12/30/2022] Open
Abstract
Wnt/β-catenin signal transduction directs intestinal stem cell (ISC) proliferation during homeostasis. Hyperactivation of Wnt signaling initiates colorectal cancer, which most frequently results from truncation of the tumor suppressor Adenomatous polyposis coli (APC). The β-catenin-TCF transcription complex activates both the physiological expression of Wnt target genes in the normal intestinal epithelium and their aberrantly increased expression in colorectal tumors. Whether mechanistic differences in the Wnt transcription machinery drive these distinct levels of target gene activation in physiological versus pathological states remains uncertain, but is relevant for the design of new therapeutic strategies. Here, using a Drosophila model, we demonstrate that two evolutionarily conserved transcription cofactors, Earthbound (Ebd) and Erect wing (Ewg), are essential for all major consequences of Apc1 inactivation in the intestine: the hyperactivation of Wnt target gene expression, excess number of ISCs, and hyperplasia of the epithelium. In contrast, only Ebd, but not Ewg, mediates the Wnt-dependent regulation of ISC proliferation during homeostasis. Therefore, in the adult intestine, Ebd acts independently of Ewg in physiological Wnt signaling, but cooperates with Ewg to induce the hyperactivation of Wnt target gene expression following Apc1 loss. These findings have relevance for human tumorigenesis, as Jerky (JRK/JH8), the human Ebd homolog, promotes Wnt pathway hyperactivation and is overexpressed in colorectal, breast, and ovarian cancers. Together, our findings reveal distinct requirements for Ebd and Ewg in physiological Wnt pathway activation versus oncogenic Wnt pathway hyperactivation following Apc1 loss. Such differentially utilized transcription cofactors may offer new opportunities for the selective targeting of Wnt-driven cancers.
Collapse
Affiliation(s)
- Ai Tian
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Hassina Benchabane
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Zhenghan Wang
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Chloe Zimmerman
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Nan Xin
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Jessica Perochon
- Wolfson Wohl Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gabriela Kalna
- CRUK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| | - Owen J. Sansom
- CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, United Kingdom
| | - Chao Cheng
- Department of Biomedical Data Science, Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Julia B. Cordero
- Wolfson Wohl Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| |
Collapse
|
9
|
JRK is a positive regulator of β-catenin transcriptional activity commonly overexpressed in colon, breast and ovarian cancer. Oncogene 2015; 35:2834-41. [DOI: 10.1038/onc.2015.347] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/22/2015] [Accepted: 07/24/2015] [Indexed: 12/21/2022]
|
10
|
Hu J, Sathanoori M, Kochmar S, Azage M, Mann S, Madan-Khetarpal S, Goldstein A, Surti U. A novel maternally inherited 8q24.3 and a rare paternally inherited 14q23.3 CNVs in a family with neurodevelopmental disorders. Am J Med Genet A 2015; 167A:1921-6. [DOI: 10.1002/ajmg.a.37110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/21/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Jie Hu
- Pittsburgh Cytogenetics Laboratory; Magee- Womens Hospital of UPMC; Pittsburgh Pennsylvania
- Department of Obstetrics; Gynecology and Reproductive Sciences; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| | - Malini Sathanoori
- Pittsburgh Cytogenetics Laboratory; Magee- Womens Hospital of UPMC; Pittsburgh Pennsylvania
- Department of Obstetrics; Gynecology and Reproductive Sciences; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| | - Sally Kochmar
- Pittsburgh Cytogenetics Laboratory; Magee- Womens Hospital of UPMC; Pittsburgh Pennsylvania
| | - Meron Azage
- Department of Pediatrics; University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC; Pittsburgh Pennsylvania
| | - Susan Mann
- Pittsburgh Cytogenetics Laboratory; Magee- Womens Hospital of UPMC; Pittsburgh Pennsylvania
| | - Suneeta Madan-Khetarpal
- Department of Pediatrics; University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC; Pittsburgh Pennsylvania
| | - Amy Goldstein
- Department of Neurology; Children's Hospital of Pittsburgh of UPMC; Pittsburgh Pennsylvania
| | - Urvashi Surti
- Pittsburgh Cytogenetics Laboratory; Magee- Womens Hospital of UPMC; Pittsburgh Pennsylvania
- Department of Obstetrics; Gynecology and Reproductive Sciences; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
- Department of Pathology; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| |
Collapse
|
11
|
Baykan B, Martínez-Juárez IE, Altindag EA, Camfield CS, Camfield PR. Lifetime prognosis of juvenile myoclonic epilepsy. Epilepsy Behav 2013; 28 Suppl 1:S18-24. [PMID: 23756474 DOI: 10.1016/j.yebeh.2012.06.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 06/25/2012] [Indexed: 11/25/2022]
Abstract
Juvenile myoclonic epilepsy (JME) is among the most common types of genetic epilepsies, displaying a good prognosis when treated with appropriate drugs, but with a well-known tendency to relapse after withdrawal. The majority of patients with JME have continuing seizures after a follow-up of two decades. However, 17% are able to discontinue medication and remain seizure-free thereafter. Clinicians should remember that there is a small but still considerable subgroup of JME patients whose seizures are difficult to treat before informing patients with newly-diagnosed JME about their "benign" prognosis. This resistant course is not fully explained, though there are many suggested factors. The dominating myoclonic seizures disappear or diminish in severity in the fourth decade of life. Despite the favorable seizure outcome in most of the cases, 3/4 of patients with JME have at least one major unfavorable social outcome. The possible subsyndromes of JME, its genetic background, and its pathophysiological and neuroimaging correlates should be further investigated.
Collapse
Affiliation(s)
- Betul Baykan
- Istanbul University Epilepsy Center and Istanbul Faculty of Medicine, Department of Neurology, Istanbul, Turkey.
| | | | | | | | | |
Collapse
|
12
|
Wagnon JL, Briese M, Sun W, Mahaffey CL, Curk T, Rot G, Ule J, Frankel WN. CELF4 regulates translation and local abundance of a vast set of mRNAs, including genes associated with regulation of synaptic function. PLoS Genet 2012; 8:e1003067. [PMID: 23209433 PMCID: PMC3510034 DOI: 10.1371/journal.pgen.1003067] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/20/2012] [Indexed: 11/25/2022] Open
Abstract
RNA–binding proteins have emerged as causal agents of complex neurological diseases. Mice deficient for neuronal RNA–binding protein CELF4 have a complex neurological disorder with epilepsy as a prominent feature. Human CELF4 has recently been associated with clinical features similar to those seen in mutant mice. CELF4 is expressed primarily in excitatory neurons, including large pyramidal cells of the cerebral cortex and hippocampus, and it regulates excitatory but not inhibitory neurotransmission. We examined mechanisms underlying neuronal hyperexcitability in Celf4 mutants by identifying CELF4 target mRNAs and assessing their fate in the absence of CELF4 in view of their known functions. CELF4 binds to at least 15%–20% of the transcriptome, with striking specificity for the mRNA 3′ untranslated region. CELF4 mRNA targets encode a variety of proteins, many of which are well established in neuron development and function. While the overall abundance of these mRNA targets is often dysregulated in Celf4 deficient mice, the actual expression changes are modest at the steady-state level. In contrast, by examining the transcriptome of polysome fractions and the mRNA distribution along the neuronal cell body-neuropil axis, we found that CELF4 is critical for maintaining mRNA stability and availability for translation. Among biological processes associated with CELF4 targets that accumulate in neuropil of mutants, regulation of synaptic plasticity and transmission are the most prominent. Together with a related study of the impact of CELF4 loss on sodium channel Nav1.6 function, we suggest that CELF4 deficiency leads to abnormal neuronal function by combining a specific effect on neuronal excitation with a general impairment of synaptic transmission. These results also expand our understanding of the vital roles RNA–binding proteins play in regulating and shaping the activity of neural circuits. Epilepsy is a devastating brain disorder whereby a loss of regulation of electrochemical signals between neurons causes too much excitation and ultimately results in an “electrical storm” known as a seizure. Epilepsy can be heritable, but it is usually genetically complex, resulting from a collaboration of many genes. It is also a frequent feature of other common brain diseases, such as autism spectrum disorder and intellectual disability, likely because these diseases have a similar dysregulation of neuronal communication. To understand more about how the brain regulates electrical activity, we focused on an RNA–binding protein called CELF4, because a) mice that lack CELF4 have a complex form of epilepsy that includes features of other neurological diseases and b) this kind of protein has the potential to be a master regulator. We show that CELF4 binds to a vast array of mRNAs, and without CELF4 these mRNAs accumulate in the wrong places and can produce the wrong amount of protein. Moreover, many of these mRNAs encode key players in electrochemical signaling between neurons. Although the defects in individual mRNAs are modest, like a genetically complex disease, together these alterations collude to cause neurological symptoms including recurrent seizures.
Collapse
Affiliation(s)
- Jacy L. Wagnon
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Michael Briese
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Wenzhi Sun
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Tomaž Curk
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Rot
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Ule
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Wayne N. Frankel
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
13
|
Sun W, Wagnon JL, Mahaffey CL, Briese M, Ule J, Frankel WN. Aberrant sodium channel activity in the complex seizure disorder of Celf4 mutant mice. J Physiol 2012; 591:241-55. [PMID: 23090952 DOI: 10.1113/jphysiol.2012.240168] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mice deficient for CELF4, a neuronal RNA-binding protein, have a complex seizure disorder that includes both convulsive and non-convulsive seizures, and is dependent upon Celf4 gene dosage and mouse strain background. It was previously shown that Celf4 is expressed predominantly in excitatory neurons, and that deficiency results in abnormal excitatory synaptic neurotransmission. To examine the physiological and molecular basis of this, we studied Celf4-deficient neurons in brain slices. Assessment of intrinsic properties of layer V cortical pyramidal neurons showed that neurons from mutant heterozygotes and homozygotes have a lower action potential (AP) initiation threshold and a larger AP gain when compared with wild-type neurons. Celf4 mutant neurons also demonstrate an increase in persistent sodium current (I(NaP)) and a hyperpolarizing shift in the voltage dependence of activation. As part of a related study, we find that CELF4 directly binds Scn8a mRNA, encoding sodium channel Na(v)1.6, the primary instigator of AP at the axon initial segment (AIS) and the main carrier of I(NaP). In the present study we find that CELF4 deficiency results in a dramatic elevation in the expression of Na(v)1.6 protein at the AIS in both null and heterozygous neurons. Together these results suggest that activation of Na(v)1.6 plays a crucial role in seizure generation in this complex model of neurological disease.
Collapse
Affiliation(s)
- Wenzhi Sun
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609-1500, USA
| | | | | | | | | | | |
Collapse
|
14
|
Yalçın O. Genes and molecular mechanisms involved in the epileptogenesis of idiopathic absence epilepsies. Seizure 2011; 21:79-86. [PMID: 22206818 DOI: 10.1016/j.seizure.2011.12.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 12/02/2011] [Accepted: 12/04/2011] [Indexed: 11/16/2022] Open
Abstract
Idiopathic absence epilepsies (IAE), that have high prevalence particularly among children and adolescents, are complex disorders mainly caused by genetic factors. Childhood absence epilepsy and juvenile absence epilepsy are among the most common subtypes of IAEs. While the role of ion channels has been the primary focus of epilepsy research, the analysis of mutation and association in both patients with absence epilepsies and animal models revealed the involvement of GABA receptors and calcium channels, but also of novel non-ion channel proteins in inducing spike wave discharges (SWD). Functional studies on a mutated variant of these proteins also support their role in the epileptogenesis of absence seizures. Studies in animal models point to both the thalamus and cortex as the origin of SWDs: the abnormalities in the components of these circuits leading to seizure activity. This review examines the current research on mutations and susceptibility alleles determined in the genes that code for the subunits of GABA receptors (GABRG2, GABRA1, GABRB3, GABRA5, GABA(B1) and GABA(B2)), calcium channels (CACNA1A, CACNA1G, CACNA1H, CACNA1I, CACNAB4, CACNAG2 and CACNG3), and novel non-ion channel proteins, taking into account the results of functional studies on these variants.
Collapse
Affiliation(s)
- Ozlem Yalçın
- Department of Molecular Biology and Genetics, T.C. Istanbul Arel University, Tepekent-Buyukcekmece, Istanbul, Turkey.
| |
Collapse
|
15
|
Wagnon JL, Mahaffey CL, Sun W, Yang Y, Chao HT, Frankel WN. Etiology of a genetically complex seizure disorder in Celf4 mutant mice. GENES, BRAIN, AND BEHAVIOR 2011; 10:765-77. [PMID: 21745337 PMCID: PMC3190060 DOI: 10.1111/j.1601-183x.2011.00717.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mice deficient for the gene encoding the RNA-binding protein CELF4 (CUGBP, ELAV-like family member 4) have a complex seizure phenotype that includes both convulsive and non-convulsive seizures, depending upon gene dosage and strain background, modeling genetically complex epilepsy. Invertebrate CELF is associated with translational control in fruit fly ovary epithelium and with neurogenesis and neuronal function in the nematode. Mammalian CELF4 is expressed widely during early development, but is restricted to the central nervous system in adults. To better understand the etiology of the seizure disorder of Celf4 deficient mice, we studied seizure incidence with spatial and temporal conditional knockout Celf4 alleles. For convulsive seizure phenotypes, it is sufficient to delete Celf4 in adulthood at the age of 7 weeks. This timing is in contrast to absence-like non-convulsive seizures, which require deletion before the end of the first postnatal week. Interestingly, selective deletion of Celf4 from cerebral cortex and hippocampus excitatory neurons, but not from inhibitory neurons, is sufficient to lower seizure threshold and to promote spontaneous convulsions. Correspondingly, Celf4 deficient mice have altered excitatory, but not inhibitory, neurotransmission as measured by patch-clamp recordings of cortical layer V pyramidal neurons. Finally, immunostaining in conjunction with an inhibitory neuron-specific reporter shows that CELF4 is expressed predominantly in excitatory neurons. Our results suggest that CELF4 plays a specific role in regulating excitatory neurotransmission. We posit that altered excitatory neurotransmission resulting from Celf4 deficiency underlies the complex seizure disorder in Celf4 mutant mice.
Collapse
Affiliation(s)
| | | | - Wenzhi Sun
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Yan Yang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Hsiao-Tuan Chao
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
16
|
Benchabane H, Xin N, Tian A, Hafler BP, Nguyen K, Ahmed A, Ahmed Y. Jerky/Earthbound facilitates cell-specific Wnt/Wingless signalling by modulating β-catenin-TCF activity. EMBO J 2011; 30:1444-58. [PMID: 21399610 PMCID: PMC3102276 DOI: 10.1038/emboj.2011.67] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 02/10/2011] [Indexed: 12/29/2022] Open
Abstract
Wnt/Wingless signal transduction directs fundamental developmental processes, and upon hyperactivation triggers colorectal adenoma/carcinoma formation. Responses to Wnt stimulation are cell specific and diverse; yet, how cell context modulates Wnt signalling outcome remains obscure. In a Drosophila genetic screen for components that promote Wingless signalling, we identified Earthbound 1 (Ebd1), a novel member in a protein family containing Centromere Binding Protein B (CENPB)-type DNA binding domains. Ebd1 is expressed in only a subset of Wingless responsive cell types, and is required for only a limited number of Wingless-dependent processes. In addition, Ebd1 shares sequence similarity and can be functionally replaced with the human CENPB domain protein Jerky, previously implicated in juvenile myoclonic epilepsy development. Both Jerky and Ebd1 interact directly with the Wnt/Wingless pathway transcriptional co-activators β-catenin/Armadillo and T-cell factor (TCF). In colon carcinoma cells, Jerky facilitates Wnt signalling by promoting association of β-catenin with TCF and recruitment of β-catenin to chromatin. These findings indicate that tissue-restricted transcriptional co-activators facilitate cell-specific Wnt/Wingless signalling responses by modulating β-catenin-TCF activity.
Collapse
Affiliation(s)
- Hassina Benchabane
- Department of Genetics and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH, USA
| | - Nan Xin
- Department of Genetics and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH, USA
| | - Ai Tian
- Department of Genetics and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH, USA
| | - Brian P Hafler
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Kerrie Nguyen
- Department of Genetics and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH, USA
| | - Ayah Ahmed
- Department of Genetics and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH, USA
| | - Yashi Ahmed
- Department of Genetics and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH, USA
| |
Collapse
|
17
|
Ferraro TN, Smith GG, Schwebel CL, Doyle GA, Ruiz SE, Oleynick JU, Lohoff FW, Berrettini WH, Buono RJ. Confirmation of multiple seizure susceptibility QTLs on chromosome 15 in C57BL/6J and DBA/2J inbred mice. Physiol Genomics 2010; 42A:1-7. [PMID: 20571108 DOI: 10.1152/physiolgenomics.00096.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To confirm seizure susceptibility (SZS) quantitative trait loci (QTLs) on chromosome (chr) 15 identified previously using C57BL/6J (B6) and DBA/2J (D2) mice and to refine their genomic map position, we studied a set of three congenic strains in which overlapping segments of chr 15 from D2 were transferred onto the B6 background. We measured thresholds for generalized electroshock seizure (GEST) and maximal electroshock seizure (MEST) in congenic strains and B6-like littermates and also tested their responses to kainic acid (KA) and pentylenetetrazol (PTZ). Results document that MEST is significantly lower in strains 15M and 15D, which harbor medial and distal (telomeric) segments of chr 15 (respectively) from D2, compared with strain 15P, which harbors the proximal (acromeric) segment of chr 15 from D2, and with control littermates. Congenic strains 15P and 15M exhibited greater KA SZS compared with strain 15D and B6-like controls. All congenic strains were similar to controls with regard to PTZ SZS. Taken together, results suggest there are multiple SZS QTLs on chr 15 and that two QTLs harbor gene variants that affect MEST and KA SZS independently. The MEST QTL is refined to a 19 Mb region flanked by rs13482630 and D15Mit159. This interval contains 350 genes, 183 of which reside in areas where the polymorphism rate between B6 and D2 is high. The KA QTL interval spans a 65 Mb region flanked by markers D15Mit13 and rs31271969. It harbors 83 genes in highly polymorphic areas, 310 genes in all. Complete dissection of these loci will lead to identification of genetic variants that influence SZS in mice and provide a better understanding of seizure biology.
Collapse
Affiliation(s)
- T N Ferraro
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-3403, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sirén A, Polvi A, Chahine L, Labuda M, Bourgoin S, Anttonen AK, Kousi M, Hirvonen K, Simola KOJ, Andermann E, Laiho A, Soini J, Koivikko M, Laaksonen R, Pandolfo M, Lehesjoki AE. Suggestive evidence for a new locus for epilepsy with heterogeneous phenotypes on chromosome 17q. Epilepsy Res 2009; 88:65-75. [PMID: 19914042 DOI: 10.1016/j.eplepsyres.2009.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 09/10/2009] [Accepted: 09/25/2009] [Indexed: 12/31/2022]
Abstract
PURPOSE To characterize the clinical features and molecular genetic background in a family with various epilepsy phenotypes including febrile seizures, childhood absence epilepsy, and possible temporal lobe epilepsy. METHODS Clinical data were collected. DNA and RNA were extracted from peripheral blood. A genome-wide microsatellite marker scan was performed and regions with a multipoint location score > or =1.5 were fine mapped. Functional candidate genes identified from databases and by comparing gene expression profiles of genes between affected and unaffected individuals were sequenced. Copy number variation was evaluated with array-based comparative genomic hybridization. RESULTS The seizure phenotype was benign. Inheritance was consistent with an autosomal dominant model and reduced penetrance. The highest two-point LOD score of 2.8 was identified at marker D17S1606 in a 37cM interval on chromosome 17q12-q24. Loci on 5q11.2 and on 18p11-q11, showed LOD scores > or =1.5 after fine mapping. Sequencing of nine ion-channel genes and two (RPIP8 and SLC25A39) differentially expressed genes from 17q12-q24, as well as IMPA2 from 18p11-q11 did not reveal a pathogenic alteration. No clinically relevant copy number variation was identified. CONCLUSIONS Our findings suggest complex inheritance of seizure susceptibility in the family with contribution from three loci, including a possible new locus on chromosome 17q. The underlying molecular defects remain unknown.
Collapse
Affiliation(s)
- Auli Sirén
- Department of Pediatrics, Tampere University Hospital, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
An 8.35 Mb overlapping interstitial deletion of 8q24 in two patients with coloboma, congenital heart defect, limb abnormalities, psychomotor retardation and convulsions. Eur J Med Genet 2009; 52:353-7. [PMID: 19464398 DOI: 10.1016/j.ejmg.2009.05.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 05/09/2009] [Indexed: 11/20/2022]
Abstract
Chromosome analysis in two young patients with multiple congenital anomalies revealed a de novo interstitial deletion of 8q that has not been reported before. The deletions were overlapping by 8.35 Mb (8q24.21q24.23). The clinical features shared by our patients were coloboma, VSD, digital abnormalities, congenital dislocation of a hip, feeding problems, psychomotor delay and convulsions. The deletion included the region for Langer-Giedion syndrome (TRPS1 and EXT1) in the girl only. However, she is too young to present features of this syndrome, apart from dysmorphic features like a bulbous nose and notched alae nasi. Several genes are present in the commonly deleted region, including genes with unknown function, and genes for which haploinsufficiency is known to have no phenotypic effect in mice (Wnt1). A gene that might play a role in the convulsions of our patients is KCNQ3.
Collapse
|
20
|
Yang Y, Mahaffey CL, Bérubé N, Maddatu TP, Cox GA, Frankel WN. Complex seizure disorder caused by Brunol4 deficiency in mice. PLoS Genet 2007; 3:e124. [PMID: 17677002 PMCID: PMC1934399 DOI: 10.1371/journal.pgen.0030124] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 06/11/2007] [Indexed: 11/18/2022] Open
Abstract
Idiopathic epilepsy is a common human disorder with a strong genetic component, usually exhibiting complex inheritance. We describe a new mouse mutation in C57BL/6J mice, called frequent-flyer (Ff), in which disruption of the gene encoding RNA-binding protein Bruno-like 4 (Brunol4) leads to limbic and severe tonic–clonic seizures in heterozygous mutants beginning in their third month. Younger heterozygous adults have a reduced seizure threshold. Although homozygotes do not survive well on the C57BL/6J background, on mixed backgrounds homozygotes and some heterozygotes also display spike-wave discharges, the electroencephalographic manifestation of absence epilepsy. Brunol4 is widely expressed in the brain with enrichment in the hippocampus. Gene expression profiling and subsequent analysis revealed the down-regulation of at least four RNA molecules encoding proteins known to be involved in neuroexcitability, particularly in mutant hippocampus. Genetic and phenotypic assessment suggests that Brunol4 deficiency in mice results in a complex seizure phenotype, likely due to the coordinate dysregulation of several molecules, providing a unique new animal model of epilepsy that mimics the complex genetic architecture of common disease. Epilepsy is a very common brain disorder characterized by recurrent seizures, resulting from abnormal nerve cell activity in the brain. Some cases of epilepsy are caused by brain trauma, such as stroke, infection, tumor, or head injury. Others—so called “idiopathic”—do not have a clear cause. Many idiopathic epilepsies run in families, but the inheritance patterns and complex seizure types suggest that they are not due to a single defective gene but instead are caused by multiple gene defects that are inherited simultaneously in a patient. This complex inheritance makes it difficult to pinpoint the underlying defects. Here, we describe a new mutant mouse, called “frequent-flyer,” which has several different types of seizures. Although these seizures are caused by a mutation in a single gene, because this gene regulates the expression of many other genes, which, in turn, cause abnormal nerve cell activity, frequent-flyer mice provide a unique animal model of epilepsy—mimicking the complex genetic architecture of common disease.
Collapse
Affiliation(s)
- Yan Yang
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Nathalie Bérubé
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Terry P Maddatu
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Gregory A Cox
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Wayne N Frankel
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Liu D, Bischerour J, Siddique A, Buisine N, Bigot Y, Chalmers R. The human SETMAR protein preserves most of the activities of the ancestral Hsmar1 transposase. Mol Cell Biol 2007; 27:1125-32. [PMID: 17130240 PMCID: PMC1800679 DOI: 10.1128/mcb.01899-06] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Revised: 11/06/2006] [Accepted: 11/10/2006] [Indexed: 12/11/2022] Open
Abstract
Transposons have contributed protein coding sequences to a unexpectedly large number of human genes. Except for the V(D)J recombinase and telomerase, all remain of unknown function. Here we investigate the activity of the human SETMAR protein, a highly expressed fusion between a histone H3 methylase and a mariner family transposase. Although SETMAR has demonstrated methylase activity and a DNA repair phenotype, its mode of action and the role of the transposase domain remain obscure. As a starting point to address this problem, we have dissected the activity of the transposase domain in the context of the full-length protein and the isolated transposase domain. Complete transposition of an engineered Hsmar1 transposon by the transposase domain was detected, although the extent of the reaction was limited by a severe defect for cleavage at the 3' ends of the element. Despite this problem, SETMAR retains robust activity for the other stages of the Hsmar1 transposition reaction, namely, site-specific DNA binding to the transposon ends, assembly of a paired-ends complex, cleavage of the 5' end of the element in Mn(2+), and integration at a TA dinucleotide target site. SETMAR is unlikely to catalyze transposition in the human genome, although the nicking activity may have a role in the DNA repair phenotype. The key activity for the mariner domain is therefore the robust DNA-binding and looping activity which has a high potential for targeting the histone methylase domain to the many thousands of specific binding sites in the human genome provided by copies of the Hsmar1 transposon.
Collapse
Affiliation(s)
- Danxu Liu
- University of Oxford, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | |
Collapse
|
22
|
Martínez-Juárez IE, Alonso ME, Medina MT, Durón RM, Bailey JN, López-Ruiz M, Ramos-Ramírez R, León L, Pineda G, Castroviejo IP, Silva R, Mija L, Perez-Gosiengfiao K, Machado-Salas J, Delgado-Escueta AV. Juvenile myoclonic epilepsy subsyndromes: family studies and long-term follow-up. ACTA ACUST UNITED AC 2006; 129:1269-80. [PMID: 16520331 DOI: 10.1093/brain/awl048] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The 2001 classification subcommittee of the International League Against Epilepsy (ILAE) proposed to 'group JME, juvenile absence epilepsy, and epilepsy with tonic clonic seizures only under the sole heading of idiopathic generalized epilepsies (IGE) with variable phenotype'. The implication is that juvenile myoclonic epilepsy (JME) does not exist as the sole phenotype of family members and that it should no longer be classified by itself or considered a distinct disease entity. Although recognized as a common form of epilepsy and presumed to be a lifelong trait, a long-term follow-up of JME has not been performed. To address these two issues, we studied 257 prospectively ascertained JME patients and encountered four groups: (i) classic JME (72%), (ii) CAE (childhood absence epilepsy) evolving to JME (18%), (iii) JME with adolescent absence (7%), and (iv) JME with astatic seizures (3%). We examined clinical and EEG phenotypes of family members and assessed clinical course over a mean of 11 +/- 6 years and as long as 52 years. Forty per cent of JME families had JME as their sole clinical phenotype. Amongst relatives of classic JME families, JME was most common (40%) followed by grand mal (GM) only (35%). In contrast, 66% of families with CAE evolving to JME expressed the various phenotypes of IGE in family members. Absence seizures were more common in family members of CAE evolving to JME than in those of classic JME families (P < 0.001). Female preponderance, maternal transmission and poor response to treatment further characterized CAE evolving to JME. Only 7% of those with CAE evolving to JME were seizure-free compared with 58% of those with classic JME (P < 0.001), 56% with JME plus adolescent pyknoleptic absence and 62% with JME plus astatic seizures. Long-term follow-up (1-40 years for classic JME; 5-52 years for CAE evolving to JME, 5-26 years for JME with adolescent absence and 3-18 years for JME with astatic seizures) indicates that all subsyndromes are chronic and perhaps lifelong. Seven chromosome loci, three epilepsy-causing mutations and two genes with single nucleotide polymorphisms (SNPs) associating with JME reported in literature provide further evidence for JME as a distinct group of diseases.
Collapse
Affiliation(s)
- Iris E Martínez-Juárez
- David Geffen School of Medicine at UCLA and VA GLAHS Epilepsy Center of Excellence, Epilepsy Genetics/Genomics Laboratories, Comprehensive Epilepsy Program, Los Angeles, CA 90073, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The mouse jerky gene and its human orthologue, JRK/JH8, encode a putative DNA-binding protein with homology to the CENP-B (centromere-binding protein B). Disruption of the mouse jerky gene by transgene insertion causes generalized recurrent seizures reminiscent of human idiopathic generalized epilepsy. In addition (and similar to a cenp-b null mouse) jerky null mice exhibit postnatal weight loss and reduced fertility. Using fluorescence confocal microscopy, the cellular localization of a JRK-GFP fusion (where GFP stands for green fluorescent protein) was investigated in HeLa cells. JRK-GFP has a dynamic expression pattern in the interphase nucleus, localizing in a small number of punctate nuclear foci and in the nucleolus. The JRK-GFP foci number changes during the cell cycle, but a distinct pattern of three JRK-GFP foci is observed at G(2). The endogenous protein behaves in a similar manner to the GFP-fusion protein. JRK-GFP was found to co-localize with CREST antigens (which recognize the centromere-binding proteins, CENP-A, -B and -C) through S and G(2) phases of interphase and co-localized completely with a subset of PML nuclear bodies at G(2). We speculate that JRK protein associates with a specific chromosomal centromeric locus in G(2), where it associates fully with PML bodies. Research is underway to identify this locus.
Collapse
Affiliation(s)
- R Waldron
- Department of Biochemistry, Biosciences Institute, University College Cork, Ireland
| | | |
Collapse
|
24
|
Abstract
Mutations in over 70 genes now define biological pathways leading to epilepsy, an episodic dysrhythmia of the cerebral cortex marked by abnormal network synchronization. Some of the inherited errors destabilize neuronal signaling by inflicting primary disorders of membrane excitability and synaptic transmission, whereas others do so indirectly by perturbing critical control points that balance the developmental assembly of inhibitory and excitatory circuits. The genetic diversity is now sufficient to discern short- and long-range functional convergence of epileptogenic molecular pathways, reducing the broad spectrum of primary molecular defects to a few common processes regulating cortical synchronization. Synaptic inhibition appears to be the most frequent target; however, each gene mutation retains unique phenotypic features. This review selects exemplary members of several gene families to illustrate principal categories of the disease and trace the biological pathways to epileptogenesis in the developing brain.
Collapse
Affiliation(s)
- Jeffrey L Noebels
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Liu W, Seto J, Sibille E, Toth M. The RNA binding domain of Jerky consists of tandemly arranged helix-turn-helix/homeodomain-like motifs and binds specific sets of mRNAs. Mol Cell Biol 2003; 23:4083-93. [PMID: 12773553 PMCID: PMC156124 DOI: 10.1128/mcb.23.12.4083-4093.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A deficit in the Jerky protein in mice causes recurrent seizures reminiscent of temporal lobe epilepsy. Jerky is present in mRNA particles in neurons. We show that the N-terminal 168 amino acids of Jerky are necessary and sufficient for mRNA binding. The binding domain is similar to the two tandemly arranged homeodomain-like helix-turn-helix DNA binding motifs of centromere binding protein B. The putative helix-turn-helix motifs of Jerky can also bind double-stranded DNA and represent a novel mammalian RNA/DNA binding domain. Microarray analysis identified mRNAs encoding proteins involved in ribosome assembly and cellular stress response that specifically bound to the RNA binding domain of Jerky both in vitro and in vivo. These data suggest that epileptogenesis in Jerky-deficient mice most likely involves pathways associated with ribosome biogenesis and neuronal survival and/or apoptosis.
Collapse
Affiliation(s)
- Wencheng Liu
- Department of Pharmacology, Weill Medical College of Cornell University. Graduate Program in Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Specific epilepsy syndromes begin during adolescence and create a significant neurologic burden. Knowledge of these syndromes has important treatment and prognostic implications, which usually extend into adulthood. Little is known about the effect of menarche on seizures, even though a relationship of seizures to the menstrual cycle has been observed for many years. In general, puberty is not thought to influence seizure frequency. However, estrogen is thought to activate epileptiform activity; testosterone may decrease seizure activity; and progesterone decreases epileptiform discharges. These effects are mediated by effecting gammaaminobutyric acid (GABA) transmission. Idiopathic generalized epilepsies are the most frequent group with adolescent onset. These are probably polygenic in origin and represent a biologic continuum. Juvenile myoclonic epilepsy (JME) is the most common form. This contrasts with a variety of progressive myoclonic epilepsies that also are first seen in adolescence and have a genetic origin and specific treatments. Finally, although temporal lobe epilepsy associated with hippocampal sclerosis may have its origin in childhood, often the child does not come to surgical evaluation until adolescence or young adulthood. The characteristic clinical history, seizure semiology, and magnetic resonance imaging findings have allowed a discrete epilepsy syndrome to be established. Applying these same criteria to children and adolescents reveals that hippocampal sclerosis is the most common lesion responsible for their intractable temporal lobe epilepsy. Hippocampal sclerosis is probably underdiagnosed in children. The safety and efficacy of epilepsy surgery in the age group is excellent. Knowledge of the epilepsy syndromes that remit before adolescence, may persist into adolescence, or begin in adolescence is central to the treatment of this age group.
Collapse
Affiliation(s)
- James W Wheless
- Texas Comprehensive Epilepsy Program, University of Texas-Houston, 77030, USA.
| | | |
Collapse
|
27
|
Crunelli V, Leresche N. Childhood absence epilepsy: genes, channels, neurons and networks. Nat Rev Neurosci 2002; 3:371-82. [PMID: 11988776 DOI: 10.1038/nrn811] [Citation(s) in RCA: 439] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Childhood absence epilepsy is an idiopathic, generalized non-convulsive epilepsy with a multifactorial genetic aetiology. Molecular-genetic analyses of affected human families and experimental models, together with neurobiological investigations, have led to important breakthroughs in the identification of candidate genes and loci, and potential pathophysiological mechanisms for this type of epilepsy. Here, we review these results, and compare the human and experimental phenotypes that have been investigated. Continuing efforts and comparisons of this type will help us to elucidate the multigenetic traits and pathophysiology of this form of generalized epilepsy.
Collapse
Affiliation(s)
- Vincenzo Crunelli
- School of Bioscience, Cardiff University, Museum Avenue, Cardiff CF10 3US, Wales, UK.
| | | |
Collapse
|
28
|
Jerky, a protein deficient in a mouse epilepsy model, is associated with translationally inactive mRNA in neurons. J Neurosci 2002. [PMID: 11756500 DOI: 10.1523/jneurosci.22-01-00176.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is a common seizure disorder, but the underlying molecular mechanisms are unknown. We reported previously that inactivation of the jerky gene in mice causes recurrent limbic seizures highly similar to TLE. Electrophysiological studies showed abnormal firing in hippocampal neurons in these mice, but it is not known how a deficiency in the Jerky protein leads to neuronal hyperexcitability. Here we show that Jerky is a brain-specific protein with a high expression level in neurons. Jerky binds mRNAs with high affinity, and it is a component of messenger ribonucleoprotein complexes in vivo. However, Jerky is not associated with ribosomes and actively translating mRNAs. These data suggest that Jerky may regulate mRNA use in neurons, and its deficiency could lead to perturbations in the regulated use of preexisting mRNAs.
Collapse
|