1
|
Dornfeld K, Madden M, Skildum A, Wallace KB. Aspartate facilitates mitochondrial function, growth arrest and survival during doxorubicin exposure. Cell Cycle 2016; 14:3282-91. [PMID: 26317891 PMCID: PMC4825578 DOI: 10.1080/15384101.2015.1087619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Genomic screens of doxorubicin toxicity in S. cerevisiae have identified numerous mutants in amino acid and carbon metabolism which express increased doxorubicin sensitivity. This work examines the effect of amino acid metabolism on doxorubicin toxicity. S. cerevisiae were treated with doxorubicin in combination with a variety of amino acid supplements. Strains of S. cerevisiae with mutations in pathways utilizing aspartate and other metabolites were examined for sensitivity to doxorubicin. S. cerevisiae cultures exposed to doxorubicin in minimal media showed significantly more toxicity than cultures exposed in rich media. Supplementing minimal media with aspartate, glutamate or alanine reduced doxorubicin toxicity. Cell cycle response was assessed by examining the budding pattern of treated cells. Cultures exposed to doxorubicin in minimal media arrested growth with no apparent cell cycle progression. Aspartate supplementation allowed cultures exposed to doxorubicin in minimal media to arrest after one division with a budding pattern and survival comparable to cultures exposed in rich media. Aspartate provides less protection from doxorubicin in cells mutant in either mitochondrial citrate synthase (CIT1) or NADH oxidase (NDI1), suggesting aspartate reduces doxorubicin toxicity by facilitating mitochondrial function. These data suggest glycolysis becomes less active and mitochondrial respiration more active following doxorubicin exposure.
Collapse
Affiliation(s)
- Ken Dornfeld
- a Department of Biomedical Sciences ; University of Minnesota Medical School, Duluth campus ; Duluth , MN USA.,b Department of Radiation Oncology ; Essentia Health ; Duluth , MN USA
| | - Michael Madden
- a Department of Biomedical Sciences ; University of Minnesota Medical School, Duluth campus ; Duluth , MN USA
| | - Andrew Skildum
- a Department of Biomedical Sciences ; University of Minnesota Medical School, Duluth campus ; Duluth , MN USA
| | - Kendall B Wallace
- a Department of Biomedical Sciences ; University of Minnesota Medical School, Duluth campus ; Duluth , MN USA
| |
Collapse
|
2
|
Abstract
Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell.
Collapse
|
3
|
Ricaud L, Proux C, Renou JP, Pichon O, Fochesato S, Ortet P, Montané MH. ATM-mediated transcriptional and developmental responses to gamma-rays in Arabidopsis. PLoS One 2007; 2:e430. [PMID: 17487278 PMCID: PMC1855986 DOI: 10.1371/journal.pone.0000430] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 04/19/2007] [Indexed: 11/19/2022] Open
Abstract
ATM (Ataxia Telangiectasia Mutated) is an essential checkpoint kinase that signals DNA double-strand breaks in eukaryotes. Its depletion causes meiotic and somatic defects in Arabidopsis and progressive motor impairment accompanied by several cell deficiencies in patients with ataxia telangiectasia (AT). To obtain a comprehensive view of the ATM pathway in plants, we performed a time-course analysis of seedling responses by combining confocal laser scanning microscopy studies of root development and genome-wide expression profiling of wild-type (WT) and homozygous ATM-deficient mutants challenged with a dose of γ-rays (IR) that is sublethal for WT plants. Early morphologic defects in meristematic stem cells indicated that AtATM, an Arabidopsis homolog of the human ATM gene, is essential for maintaining the quiescent center and controlling the differentiation of initial cells after exposure to IR. Results of several microarray experiments performed with whole seedlings and roots up to 5 h post-IR were compiled in a single table, which was used to import gene information and extract gene sets. Sequence and function homology searches; import of spatio-temporal, cell cycling, and mutant-constitutive expression characteristics; and a simplified functional classification system were used to identify novel genes in all functional classes. The hundreds of radiomodulated genes identified were not a random collection, but belonged to functional pathways such as those of the cell cycle; cell death and repair; DNA replication, repair, and recombination; and transcription; translation; and signaling, indicating the strong cell reprogramming and double-strand break abrogation functions of ATM checkpoints. Accordingly, genes in all functional classes were either down or up-regulated concomitantly with downregulation of chromatin deacetylases or upregulation of acetylases and methylases, respectively. Determining the early transcriptional indicators of prolonged S-G2 phases that coincided with cell proliferation delay, or an anticipated subsequent auxin increase, accelerated cell differentiation or death, was used to link IR-regulated hallmark functions and tissue phenotypes after IR. The transcription burst was almost exclusively AtATM-dependent or weakly AtATR-dependent, and followed two major trends of expression in atm: (i)-loss or severe attenuation and delay, and (ii)-inverse and/or stochastic, as well as specific, enabling one to distinguish IR/ATM pathway constituents. Our data provide a large resource for studies on the interaction between plant checkpoints of the cell cycle, development, hormone response, and DNA repair functions, because IR-induced transcriptional changes partially overlap with the response to environmental stress. Putative connections of ATM to stem cell maintenance pathways after IR are also discussed.
Collapse
Affiliation(s)
- Lilian Ricaud
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | - Caroline Proux
- Unité de Recherche en Génomique Végétale, UMR INRA 1165 - CNRS 8114 - UEVE, Evry, France
| | - Jean-Pierre Renou
- Unité de Recherche en Génomique Végétale, UMR INRA 1165 - CNRS 8114 - UEVE, Evry, France
| | - Olivier Pichon
- Unité de Recherche en Génomique Végétale, UMR INRA 1165 - CNRS 8114 - UEVE, Evry, France
| | - Sylvain Fochesato
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | - Philippe Ortet
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | - Marie-Hélène Montané
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
4
|
Rapaport F, Zinovyev A, Dutreix M, Barillot E, Vert JP. Classification of microarray data using gene networks. BMC Bioinformatics 2007; 8:35. [PMID: 17270037 PMCID: PMC1797191 DOI: 10.1186/1471-2105-8-35] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Accepted: 02/01/2007] [Indexed: 11/18/2022] Open
Abstract
Background Microarrays have become extremely useful for analysing genetic phenomena, but establishing a relation between microarray analysis results (typically a list of genes) and their biological significance is often difficult. Currently, the standard approach is to map a posteriori the results onto gene networks in order to elucidate the functions perturbed at the level of pathways. However, integrating a priori knowledge of the gene networks could help in the statistical analysis of gene expression data and in their biological interpretation. Results We propose a method to integrate a priori the knowledge of a gene network in the analysis of gene expression data. The approach is based on the spectral decomposition of gene expression profiles with respect to the eigenfunctions of the graph, resulting in an attenuation of the high-frequency components of the expression profiles with respect to the topology of the graph. We show how to derive unsupervised and supervised classification algorithms of expression profiles, resulting in classifiers with biological relevance. We illustrate the method with the analysis of a set of expression profiles from irradiated and non-irradiated yeast strains. Conclusion Including a priori knowledge of a gene network for the analysis of gene expression data leads to good classification performance and improved interpretability of the results.
Collapse
Affiliation(s)
- Franck Rapaport
- lnstitut Curie, Service de Bioinformatique, 26 rue d'Ulm, F-75248 Paris Cedex 05, France
- Ecole des Mines de Paris, Centre for Computational Biology, 35 rue Saint-Honoré, 77300 Fontainebleau, France
| | - Andrei Zinovyev
- lnstitut Curie, Service de Bioinformatique, 26 rue d'Ulm, F-75248 Paris Cedex 05, France
| | - Marie Dutreix
- lnstitut Curie, CNRS-UMR 2027, Bâtiment 110, Centre Universitaire, F-91405 Orsay, France
| | - Emmanuel Barillot
- lnstitut Curie, Service de Bioinformatique, 26 rue d'Ulm, F-75248 Paris Cedex 05, France
| | - Jean-Philippe Vert
- Ecole des Mines de Paris, Centre for Computational Biology, 35 rue Saint-Honoré, 77300 Fontainebleau, France
| |
Collapse
|
5
|
Osakabe K, Abe K, Yoshioka T, Osakabe Y, Todoriki S, Ichikawa H, Hohn B, Toki S. Isolation and characterization of the RAD54 gene from Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:827-42. [PMID: 17227544 DOI: 10.1111/j.1365-313x.2006.02927.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Homologous recombination (HR) is an essential process in maintaining genome integrity and variability. In eukaryotes, the Rad52 epistasis group proteins are involved in meiotic recombination and/or HR repair. One member of this group, Rad54, belongs to the SWI2/SNF2 family of DNA-stimulated ATPases. Recent studies indicate that Rad54 has important functions in HR, both as a chromatin remodelling factor and as a mediator of the Rad51 nucleoprotein filament. Despite the importance of Rad54 in HR, no study of Rad54 from plants has yet been performed. Here, we cloned the full-length AtRAD54 cDNA sequence; an open reading frame of 910 amino acids encodes a protein with a predicted molecular mass of 101.9 kDa. Western blotting analysis showed that the AtRad54 protein was indeed expressed as a protein of approximately 110 kDa in Arabidopsis. The predicted protein sequence of AtRAD54 contains seven helicase domains, which are conserved in all other Rad54s. Yeast two-hybrid analysis revealed an interaction between Arabidopsis Rad51 and Rad54. AtRAD54 transcripts were found in all tissues examined, with the highest levels of expression in flower buds. Expression of AtRAD54 was induced by gamma-irradiation. A T-DNA insertion mutant of AtRAD54 devoid of full-length AtRAD54 expression was viable and fertile; however, it showed increased sensitivity to gamma-irradiation and the cross-linking reagent cisplatin. In addition, the efficiency of somatic HR in the mutant plants was reduced relative to that in wild-type plants. Our findings point to an important role for Rad54 in HR repair in higher plants.
Collapse
Affiliation(s)
- Keishi Osakabe
- Plant Genetic Engineering Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Endo M, Ishikawa Y, Osakabe K, Nakayama S, Kaya H, Araki T, Shibahara KI, Abe K, Ichikawa H, Valentine L, Hohn B, Toki S. Increased frequency of homologous recombination and T-DNA integration in Arabidopsis CAF-1 mutants. EMBO J 2006; 25:5579-90. [PMID: 17110925 PMCID: PMC1679757 DOI: 10.1038/sj.emboj.7601434] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 10/11/2006] [Indexed: 11/08/2022] Open
Abstract
Chromatin assembly factor 1 (CAF-1) is involved in nucleo some assembly following DNA replication and nucleotide excision repair. In Arabidopsis thaliana, the three CAF-1 subunits are encoded by FAS1, FAS2 and, most likely, MSI1, respectively. In this study, we asked whether genomic stability is altered in fas1 and fas2 mutants that are lacking CAF-1 activity. Depletion of either subunit increased the frequency of somatic homologous recombination (HR) in planta approximately 40-fold. The frequency of transferred DNA (T-DNA) integration was also elevated. A delay in loading histones onto newly replicated or repaired DNA might make these DNA stretches more accessible, both to repair enzymes and to foreign DNA. Furthermore, fas mutants exhibited increased levels of DNA double-strand breaks, a G2-phase retardation that accelerates endoreduplication, and elevated levels of mRNAs coding for proteins involved in HR-all factors that could also contribute to upregulation of HR frequency in fas mutants.
Collapse
Affiliation(s)
- Masaki Endo
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki, Japan
- Graduate School of Life Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Yuichi Ishikawa
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki, Japan
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Keishi Osakabe
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki, Japan
| | - Shigeki Nakayama
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki, Japan
| | - Hidetaka Kaya
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takashi Araki
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kei-ichi Shibahara
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kiyomi Abe
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki, Japan
| | - Hiroaki Ichikawa
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki, Japan
| | - Lisa Valentine
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Barbara Hohn
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Seiichi Toki
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki, Japan
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan. Tel.: +81 29 838 8450; Fax: +81 29 838 8450; E-mail:
| |
Collapse
|
7
|
Guo Y, Breeden LL, Fan W, Zhao LP, Eaton DL, Zarbl H. Analysis of cellular responses to aflatoxin B(1) in yeast expressing human cytochrome P450 1A2 using cDNA microarrays. Mutat Res 2006; 593:121-42. [PMID: 16122766 DOI: 10.1016/j.mrfmmm.2005.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 06/22/2005] [Accepted: 07/01/2005] [Indexed: 05/04/2023]
Abstract
Aflatoxin B1 (AFB(1)) is a potent human hepatotoxin and hepatocarcinogen produced by the mold Aspergillus flavus. In human, AFB(1) is bioactivated by cytochrome P450 (CYP450) enzymes, primarily CYP1A2, to the genotoxic epoxide that forms N(7)-guanine DNA adducts. To characterize the transcriptional responses to genotoxic insults from AFB(1), a strain of Saccharomyces cerevisiae engineered to express human CYP1A2 was exposed to doses of AFB(1) that resulted in minimal lethality, but substantial genotoxicity. Flow cytometric analysis demonstrated a dose and time dependent S phase delay under the same treatment conditions, indicating a checkpoint response to DNA damage. Replicate cDNA microarray analyses of AFB(1) treated cells showed that about 200 genes were significantly affected by the exposure. The genes activated by AFB(1)-treatment included RAD51, DUN1 and other members of the DNA damage response signature reported in a previous study with methylmethane sulfonate and ionizing radiation [A.P. Gasch, M. Huang, S. Metzner, D. Botstein, S.J. Elledge, P.O. Brown, Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p, Mol. Biol. Cell 12 (2001) 2987-3003]. However, unlike previous studies using highly cytotoxic doses, environmental stress response genes [A.P. Gasch, P.T. Spellman, C.M. Kao, O. Carmel-Harel, M.B. Eisen, G. Storz, D. Botstein, P.O. Brown, Genomic expression programs in the response of yeast cells to environmental changes, Mol. Biol. Cell 11 (2000) 4241-4257] were largely unaffected by our dosing regimen. About half of the transcripts affected are also known to be cell cycle regulated. The most strongly repressed transcripts were those encoding the histone genes and a group of genes that are cell cycle regulated and peak in M phase and early G1. These include most of the known daughter-specific genes. The rapid and coordinated repression of histones and M/G1-specific transcripts cannot be explained by cell cycle arrest, and suggested that there are additional signaling pathways that directly repress these genes in cells under genotoxic stress.
Collapse
Affiliation(s)
- Yingying Guo
- Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
8
|
Silva WLDS, Cavalcanti ARDO, Guimarães KS, Morais Jr. MAD. Identification in silico of putative damage responsive elements (DRE) in promoter regions of the yeast genome. Genet Mol Biol 2005. [DOI: 10.1590/s1415-47572005000500025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Mercier G, Berthault N, Touleimat N, Képès F, Fourel G, Gilson E, Dutreix M. A haploid-specific transcriptional response to irradiation in Saccharomyces cerevisiae. Nucleic Acids Res 2005; 33:6635-43. [PMID: 16321968 PMCID: PMC1298924 DOI: 10.1093/nar/gki959] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 10/26/2005] [Accepted: 10/26/2005] [Indexed: 11/27/2022] Open
Abstract
Eukaryotic cells respond to DNA damage by arresting the cell cycle and modulating gene expression to ensure efficient DNA repair. We used global transcriptome analysis to investigate the role of ploidy and mating-type in inducing the response to damage in various Saccharomyces cerevisiae strains. We observed a response to DNA damage specific to haploid strains that seemed to be controlled by chromatin regulatory proteins. Consistent with these microarray data, we found that mating-type factors controlled the chromatin-dependent silencing of a reporter gene. Both these analyses demonstrate the existence of an irradiation-specific response in strains (haploid or diploid) with only one mating-type factor. This response depends on the activities of Hdf1 and Sir2. Overall, our results suggest the existence of a new regulation pathway dependent on mating-type factors, chromatin structure remodeling, Sir2 and Hdf1 and independent of Mec1 kinase.
Collapse
Affiliation(s)
- G. Mercier
- CNRS-UMR 2027, Institut CurieBât. 110, Centre Universitaire, F-91405 Orsay, France
- Programme d'Épigénomique, Bât. G393 rue Henri Rochefort, F- 91000 Evry, France
- Laboratoire de Biologie Moléculaire de la Cellule, l'Ecole Normale Supérieure de LyonCNRS-ENS UMR5161, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - N. Berthault
- CNRS-UMR 2027, Institut CurieBât. 110, Centre Universitaire, F-91405 Orsay, France
- Programme d'Épigénomique, Bât. G393 rue Henri Rochefort, F- 91000 Evry, France
- Laboratoire de Biologie Moléculaire de la Cellule, l'Ecole Normale Supérieure de LyonCNRS-ENS UMR5161, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - N. Touleimat
- CNRS-UMR 2027, Institut CurieBât. 110, Centre Universitaire, F-91405 Orsay, France
- Programme d'Épigénomique, Bât. G393 rue Henri Rochefort, F- 91000 Evry, France
- Laboratoire de Biologie Moléculaire de la Cellule, l'Ecole Normale Supérieure de LyonCNRS-ENS UMR5161, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - F. Képès
- Programme d'Épigénomique, Bât. G393 rue Henri Rochefort, F- 91000 Evry, France
| | - G. Fourel
- Laboratoire de Biologie Moléculaire de la Cellule, l'Ecole Normale Supérieure de LyonCNRS-ENS UMR5161, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - E. Gilson
- Laboratoire de Biologie Moléculaire de la Cellule, l'Ecole Normale Supérieure de LyonCNRS-ENS UMR5161, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - M. Dutreix
- To whom correspondence should be addressed. Tel: +33 1 69 86 71 86; Fax: +33 1 69 86 94 29;
| |
Collapse
|
10
|
Guo Y, Breeden LL, Zarbl H, Preston BD, Eaton DL. Expression of a human cytochrome p450 in yeast permits analysis of pathways for response to and repair of aflatoxin-induced DNA damage. Mol Cell Biol 2005; 25:5823-33. [PMID: 15988000 PMCID: PMC1168797 DOI: 10.1128/mcb.25.14.5823-5833.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 03/11/2005] [Accepted: 04/25/2005] [Indexed: 01/21/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a human hepatotoxin and hepatocarcinogen produced by the mold Aspergillus flavus. In humans, AFB1 is primarily bioactivated by cytochrome P450 1A2 (CYP1A2) and 3A4 to a genotoxic epoxide that forms N7-guanine DNA adducts. A series of yeast haploid mutants defective in DNA repair and cell cycle checkpoints were transformed with human CYP1A2 to investigate how these DNA adducts are repaired. Cell survival and mutagenesis following aflatoxin B1 treatment was assayed in strains defective in nucleotide excision repair (NER) (rad14), postreplication repair (PRR) (rad6, rad18, mms2, and rad5), homologous recombinational repair (HRR) (rad51 and rad54), base excision repair (BER) (apn1 apn2), nonhomologous end-joining (NHEJ) (yku70), mismatch repair (MMR) (pms1), translesion synthesis (TLS) (rev3), and checkpoints (mec1-1, mec1-1 rad53, rad9, and rad17). Together our data suggest the involvement of homologous recombination and nucleotide excision repair, postreplication repair, and checkpoints in the repair and/or tolerance of AFB1-induced DNA damage in the yeast model. Rev3 appears to mediate AFB1-induced mutagenesis when error-free pathways are compromised. The results further suggest unique roles for Rad5 and abasic endonuclease-dependent DNA intermediates in regulating AFB1-induced mutagenicity.
Collapse
Affiliation(s)
- Yingying Guo
- Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105-6099, USA
| | | | | | | | | |
Collapse
|
11
|
Michán C, Monje-Casas F, Pueyo C. Transcript copy number of genes for DNA repair and translesion synthesis in yeast: contribution of transcription rate and mRNA stability to the steady-state level of each mRNA along with growth in glucose-fermentative medium. DNA Repair (Amst) 2005; 4:469-78. [PMID: 15725627 DOI: 10.1016/j.dnarep.2004.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 12/02/2004] [Accepted: 12/06/2004] [Indexed: 11/24/2022]
Abstract
We quantitated the copy number of mRNAs (NTG1, NTG2, OGG1, APN1, APN2, MSH2, MSH6, REV3, RAD30) encoding different DNA repair enzymes and translesion-synthesis polymerases in yeast. Quantitations reported examine how the steady-state number of each transcript is modulated in association with the growth in glucose-fermentative medium, and evaluate the respective contribution of the rate of mRNA degradation and transcription initiation to the specific mRNA level profile of each gene. Each transcript displayed a unique growth-related profile, therefore altering the relative abundance of mRNAs coding for proteins with similar functions, as cells proceed from exponential to stationary phase. Nonetheless, as general trend, they exhibited maximal levels when cells proliferate rapidly and minimal values when cells cease proliferation. We found that previous calculations on the stability of the investigated mRNAs might be biased, in particular regarding those that respond to heat shock stress. Overall, the mRNAs experienced drastic increments in their stabilities in response to gradual depletion of essential nutrients in the culture. However, differences among the mRNA stability profiles suggest a dynamic modulation rather than a passive process. As general rule, the investigated genes were much more frequently transcribed during the fermentative growth than later during the diauxic arrest and the stationary phase, this finding conciliating low steady-state levels with increased mRNA stabilities. Interestingly, while the rate at which each gene is transcribed appeared as the only determinant of the number of mRNA copies at the exponential growth, later, when cell growth is arrested, the rate of mRNA degradation becomes also a key factor for gene expression. In short, our results raise the question of how important the respective contribution of transcription and mRNA stability mechanisms is for the steady-state profile of a given transcript, and how this contribution may change in response to nutrient-availability.
Collapse
Affiliation(s)
- Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, edificio Severo Ochoa, planta 2a, Carretera Madrid-Cádiz Km 396-a, Universidad de Córdoba, 14071-Córdoba, Spain
| | | | | |
Collapse
|
12
|
Sacerdot C, Mercier G, Todeschini AL, Dutreix M, Springer M, Lesage P. Impact of ionizing radiation on the life cycle ofSaccharomyces cerevisiae Ty1 retrotransposon. Yeast 2005; 22:441-55. [PMID: 15849797 DOI: 10.1002/yea.1222] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Ty1 elements, LTR-retrotransposons of Saccharomyces cerevisiae, are known to be activated by genetic and environmental stress. Several DNA-damaging agents have been shown to increase both Ty1 transcription and retrotransposition. To explore further the relationship between Ty1 mobility and DNA damage, we have studied the impact of ionizing radiation at different steps of the Ty1 life cycle. We have shown that Ty1 transposition is strongly activated by gamma-irradiation and we have analysed its effect on Ty1 transcription, TyA1 protein and Ty1 cDNA levels. The activation of transposition rises with increasing doses of gamma-rays and is stronger for Ty1 elements than for the related Ty2 elements. Ty1 RNA levels are markedly elevated upon irradiation; however, no significant increase of TyA1 protein was detected as measured by TYA1-lacZ fusions and by Western blot. A moderate increase in Ty1 cDNA levels was also observed, indicating that ionizing radiation can induce the synthesis of Ty1 cDNA. In diploid cells and ste12 mutants, where both Ty1 transcription and transposition are repressed, gamma-irradiation is able to activate Ty1 transposition and increases Ty1 RNA levels. These results suggest the existence of a specific regulatory pathway involved in Ty1 response to the gamma-irradiation that would be independent of Ste12 and mating-type factors. Our findings also indicate that ionizing radiation acts on several steps of the Ty1 life cycle.
Collapse
Affiliation(s)
- Christine Sacerdot
- UPR 9073 du CNRS, Institut de Biologie Physico-Chimique, F-75005 Paris, France.
| | | | | | | | | | | |
Collapse
|
13
|
Jensen LH, Dejligbjerg M, Hansen LT, Grauslund M, Jensen PB, Sehested M. Characterisation of cytotoxicity and DNA damage induced by the topoisomerase II-directed bisdioxopiperazine anti-cancer agent ICRF-187 (dexrazoxane) in yeast and mammalian cells. BMC Pharmacol 2004; 4:31. [PMID: 15575955 PMCID: PMC545072 DOI: 10.1186/1471-2210-4-31] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 12/02/2004] [Indexed: 12/17/2022] Open
Abstract
Background Bisdioxopiperazine anti-cancer agents are inhibitors of eukaryotic DNA topoisomerase II, sequestering this protein as a non-covalent protein clamp on DNA. It has been suggested that such complexes on DNA represents a novel form of DNA damage to cells. In this report, we characterise the cytotoxicity and DNA damage induced by the bisdioxopiperazine ICRF-187 by a combination of genetic and molecular approaches. In addition, the well-established topoisomerase II poison m-AMSA is used for comparison. Results By utilizing a panel of Saccharomyces cerevisiae single-gene deletion strains, homologous recombination was identified as the most important DNA repair pathway determining the sensitivity towards ICRF-187. However, sensitivity towards m-AMSA depended much more on this pathway. In contrast, disrupting the post replication repair pathway only affected sensitivity towards m-AMSA. Homologous recombination (HR) defective irs1SF chinese hamster ovary (CHO) cells showed increased sensitivity towards ICRF-187, while their sensitivity towards m-AMSA was increased even more. Furthermore, complementation of the XRCC3 deficiency in irs1SF cells fully abrogated hypersensitivity towards both drugs. DNA-PKcs deficient V3-3 CHO cells having reduced levels of non-homologous end joining (NHEJ) showed slightly increased sensitivity to both drugs. While exposure of human small cell lung cancer (SCLC) OC-NYH cells to m-AMSA strongly induced γH2AX, exposure to ICRF-187 resulted in much less induction, showing that ICRF-187 generates fewer DNA double strand breaks than m-AMSA. Accordingly, when yeast cells were exposed to equitoxic concentrations of ICRF-187 and m-AMSA, the expression of DNA damage-inducible genes showed higher levels of induction after exposure to m-AMSA as compared to ICRF-187. Most importantly, ICRF-187 stimulated homologous recombination in SPD8 hamster lung fibroblast cells to lower levels than m-AMSA at all cytotoxicity levels tested, showing that the mechanism of action of bisdioxopiperazines differs from that of classical topoisomerase II poisons in mammalian cells. Conclusion Our results point to important differences in the mechanism of cytotoxicity induced by bisdioxopiperazines and topoisomerase II poisons, and suggest that bisdioxopiperazines kill cells by a combination of DNA break-related and DNA break-unrelated mechanisms.
Collapse
Affiliation(s)
- Lars H Jensen
- Department of Pathology, Diagnostic Centre, Rigshospitalet 5444, Frederik V's Vej 11, DK-2100 Copenhagen, Denmark
- Laboratory of Experimental Medical Oncology, Finsen Centre, Rigshospitalet 5074, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Marielle Dejligbjerg
- Department of Pathology, Diagnostic Centre, Rigshospitalet 5444, Frederik V's Vej 11, DK-2100 Copenhagen, Denmark
| | - Lasse T Hansen
- Institute of Molecular Pathology, University of Copenhagen, Frederik V's Vej 11, DK-2100, Copenhagen, Denmark
| | - Morten Grauslund
- Department of Pathology, Diagnostic Centre, Rigshospitalet 5444, Frederik V's Vej 11, DK-2100 Copenhagen, Denmark
| | - Peter B Jensen
- Laboratory of Experimental Medical Oncology, Finsen Centre, Rigshospitalet 5074, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Maxwell Sehested
- Department of Pathology, Diagnostic Centre, Rigshospitalet 5444, Frederik V's Vej 11, DK-2100 Copenhagen, Denmark
| |
Collapse
|
14
|
Zaim J, Speina E, Kierzek AM. Identification of new genes regulated by the Crt1 transcription factor, an effector of the DNA damage checkpoint pathway in Saccharomyces cerevisiae. J Biol Chem 2004; 280:28-37. [PMID: 15494396 DOI: 10.1074/jbc.m404669200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Crt1 (RFX1) protein in Saccharomyces cerevisiae is an effector of the DNA damage checkpoint pathway. It recognizes a 13-bp cis-regulatory element in the 5'-untranslated region (5'-UTR) of the ribonucleotide reductase genes RNR2, RNR3, and RNR4; the HUG1 gene; and itself. We calculated the weight matrix representing the Crt1p binding site motif according to analysis of the 5'-UTR sequences of the genes that are under its regulation. We subsequently searched the 5'-UTR sequences of all the genes in the yeast genome for the occurrence of this motif. The motif was found in regulatory regions of 30 genes. A statistical analysis showed that it is unlikely that a random gene cluster contains the motif conserved as well as the Crt1p binding site. Analysis of microarray data provided supporting evidence for five putative Crt1p targets: FSH3, YLR345W, UBC5, NDE2, and NTH2. We used reverse transcription-PCR to compare the expression levels of these genes in wild-type and crt1Delta strains. Our results indicated that FSH3, YLR345W, and NTH2 are indeed under the regulation of Crt1p. Sequence analysis of the FSH3p indicated that this protein may be involved in folate metabolism either by carrying serine hydrolase activity required for the novel metabolic pathway involving dihydrofolate reductase (DHFR) or by directly interacting with the DHFR enzyme. We postulate that Crt1p may influence deoxyribonucleotide synthesis not only by regulating expression of the RNR genes but also by modulating DHFR activity. FSH3p shares significant sequence similarity with the product of the human tumor suppressor gene OVCA2. YLR345Wp and NTH2p are enzymes involved in the central metabolism under stress conditions.
Collapse
Affiliation(s)
- Jolanta Zaim
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | | | | |
Collapse
|
15
|
Rieger KE, Chu G. Portrait of transcriptional responses to ultraviolet and ionizing radiation in human cells. Nucleic Acids Res 2004; 32:4786-803. [PMID: 15356296 PMCID: PMC519099 DOI: 10.1093/nar/gkh783] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 08/03/2004] [Accepted: 08/03/2004] [Indexed: 11/14/2022] Open
Abstract
To understand the human response to DNA damage, we used microarrays to measure transcriptional responses of 10 000 genes to ionizing radiation (IR) and ultraviolet radiation (UV). To identify bona fide responses, we used cell lines from 15 individuals and a rigorous statistical method, Significance Analysis of Microarrays (SAM). By exploring how sample number affects SAM, we rendered a portrait of the human damage response with a degree of accuracy unmatched by previous studies. By showing how SAM can be used to estimate the total number of responsive genes, we discovered that 24% of all genes respond to IR and 32% respond to UV, although most responses were less than 2-fold. Many genes were involved in known damage-response pathways for cell cycling and proliferation, apoptosis, DNA repair or the stress response. However, the majority of genes were involved in unexpected pathways, with functions in signal transduction, RNA binding and editing, protein synthesis and degradation, energy metabolism, metabolism of macromolecular precursors, cell structure and adhesion, vesicle transport, or lysosomal metabolism. Although these functions were not previously associated with the damage response in mammals, many were conserved in yeast. These insights reveal new directions for studying the human response to DNA damage.
Collapse
Affiliation(s)
- Kerri E Rieger
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
16
|
Smith JJ, Cole ES, Romero DP. Transcriptional control of RAD51 expression in the ciliate Tetrahymena thermophila. Nucleic Acids Res 2004; 32:4313-21. [PMID: 15304567 PMCID: PMC514391 DOI: 10.1093/nar/gkh771] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 07/27/2004] [Accepted: 07/27/2004] [Indexed: 11/15/2022] Open
Abstract
The expression of Rad51p, a DNA repair protein that mediates homologous recombination, is induced by DNA damage and during both meiosis and exconjugant development in the ciliate Tetrahymena thermophila. To completely investigate the transcriptional regulation of Tetrahymena RAD51 expression, reporter genes consisting of the RAD51 5' non-translated sequence (5' NTS) positioned upstream of either the firefly luciferase or green fluorescent protein coding sequences have been targeted for recombination at the macronuclear btu1-1 (K350M) locus of T. thermophila strain CU522. Expression from RAD51-luciferase reporter constructs has been directly quantified from transformant whole cell lysates. Luciferase is induced to maximum levels in transformants harboring the full-length RAD51-luciferase reporter gene following exposure to DNA damaging UV irradiation. A series of truncations, deletions, insertions, substitutions and inversions of the RAD51 5' NTS have led to the identification of three distinct transcriptional promoter elements. The first of these sequence elements is required for basal levels of transcription. The second modulates expression in the absence of DNA damage, whereas the third ensures increased RAD51 transcription in response to DNA damage and during meiosis. Tetrahymena RAD51 is tightly regulated through these transcriptional elements to produce the appropriate expression during conjugation, and in response to DNA damage.
Collapse
Affiliation(s)
- Joshua J Smith
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
17
|
Keller-Seitz MU, Certa U, Sengstag C, Würgler FE, Sun M, Fasullo M. Transcriptional response of yeast to aflatoxin B1: recombinational repair involving RAD51 and RAD1. Mol Biol Cell 2004; 15:4321-36. [PMID: 15215318 PMCID: PMC515362 DOI: 10.1091/mbc.e04-05-0375] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The potent carcinogen aflatoxin B(1) is a weak mutagen but a strong recombinagen in Saccharomyces cerevisiae. Aflatoxin B(1) exposure greatly increases frequencies of both heteroallelic recombination and chromosomal translocations. We analyzed the gene expression pattern of diploid cells exposed to aflatoxin B(1) using high-density oligonucleotide arrays comprising specific probes for all 6218 open reading frames. Among 183 responsive genes, 46 are involved in either DNA repair or in control of cell growth and division. Inducible growth control genes include those in the TOR signaling pathway and SPO12, whereas PKC1 is downregulated. Eleven of the 15 inducible DNA repair genes, including RAD51, participate in recombination. Survival and translocation frequencies are reduced in the rad51 diploid after aflatoxin B(1) exposure. In mec1 checkpoint mutants, aflatoxin B(1) exposure does not induce RAD51 expression or increase translocation frequencies; however, when RAD51 is constitutively overexpressed in the mec1 mutant, aflatoxin B(1) exposure increased translocation frequencies. Thus the transcriptional profile after aflatoxin B(1) exposure may elucidate the genotoxic properties of aflatoxin B(1).
Collapse
Affiliation(s)
- Monika U Keller-Seitz
- Institute of Toxicology, Swiss Federal Institute of Technology ETH, CH-8603 Schwerzenbach, Switzerland
| | | | | | | | | | | |
Collapse
|
18
|
Dudásová Z, Dudás A, Alemayehu A, Vlasáková D, Marková E, Chovanec M, Vlcková V, Brozmanová J. Disruption of theRAD51 gene sensitizesS. cerevisiae cells to the toxic and mutagenic effects of hydrogen peroxide. Folia Microbiol (Praha) 2004; 49:259-64. [PMID: 15259765 DOI: 10.1007/bf02931040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The RAD51 gene was disrupted in three different parental wild-type strains to yield three rad51 null strains with different genetic background. The rad51 mutation sensitizes yeast cells to the toxic and mutagenic effects of H2O2, suggesting that Rad51-mediated repair, similarly to that of RecA-mediated, is relevant to the repair of oxidative damage in S. cerevisiae. Moreover, pulsed-field gel electrophoresis analysis demonstrated that increased sensitivity of the rad51 mutant to H2O2 is accompanied by its decreased ability to repair double-strand breaks induced by this agent. Our results show that ScRad51 protects yeast cells from H2O2-induced DNA double-strand breakage.
Collapse
Affiliation(s)
- Z Dudásová
- Laboratory of Molecular Genetics, Cancer Research Institute, Slovak Academy of Sciences, 833 91 Bratislava, Slovakia
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Mercier G, Berthault N, Mary J, Peyre J, Antoniadis A, Comet JP, Cornuejols A, Froidevaux C, Dutreix M. Biological detection of low radiation doses by combining results of two microarray analysis methods. Nucleic Acids Res 2004; 32:e12. [PMID: 14722227 PMCID: PMC373305 DOI: 10.1093/nar/gnh002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The accurate determination of the biological effects of low doses of pollutants is a major public health challenge. DNA microarrays are a powerful tool for investigating small intracellular changes. However, the inherent low reliability of this technique, the small number of replicates and the lack of suitable statistical methods for the analysis of such a large number of attributes (genes) impair accurate data interpretation. To overcome this problem, we combined results of two independent analysis methods (ANOVA and RELIEF). We applied this analysis protocol to compare gene expression patterns in Saccharomyces cerevisiae growing in the absence and continuous presence of varying low doses of radiation. Global distribution analysis highlights the importance of mitochondrial membrane functions in the response. We demonstrate that microarrays detect cellular changes induced by irradiation at doses that are 1000-fold lower than the minimal dose associated with mutagenic effects.
Collapse
Affiliation(s)
- G Mercier
- CNRS-UMR 2027, Institut Curie, Bâtiment 110, Centre Universitaire, F-91405 Orsay, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Aylon Y, Kupiec M. The checkpoint protein Rad24 of Saccharomyces cerevisiae is involved in processing double-strand break ends and in recombination partner choice. Mol Cell Biol 2003; 23:6585-96. [PMID: 12944484 PMCID: PMC193701 DOI: 10.1128/mcb.23.18.6585-6596.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2003] [Revised: 05/08/2003] [Accepted: 06/24/2003] [Indexed: 11/20/2022] Open
Abstract
Upon chromosomal damage, cells activate a checkpoint response that includes cell cycle arrest and a stimulation of DNA repair. The checkpoint protein Rad24 is key to the survival of a single, repairable double-strand break (DSB). However, the low survival of rad24 cells is not due to their inability to arrest cell cycle progression. In rad24 mutants, processing of the broken ends is delayed and protracted, resulting in extended kinetics of DSB repair and in cell death. The limited resection of rad24 mutants also affects recombination partner choice by a mechanism dependent on the length of the interacting homologous donor sequences. Unexpectedly, rad24 cells with a DSB eventually accumulate and die at the G(2)/M phase of the cell cycle. This arrest depends on the spindle checkpoint protein Mad2.
Collapse
Affiliation(s)
- Yael Aylon
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
21
|
Chen MH, Citovsky V. Systemic movement of a tobamovirus requires host cell pectin methylesterase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:771-86. [PMID: 12887589 DOI: 10.1046/j.1365-313x.2003.01847.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Systemic movement of plant viruses through the host vasculature, one of the central events of the infection process, is essential for maximal viral accumulation and development of disease symptoms. The host plant proteins involved in this transport, however, remain unknown. Here, we examined whether or not pectin methylesterase (PME), one of the few cellular proteins known to be involved in local, cell-to-cell movement of tobacco mosaic virus (TMV), is also required for the systemic spread of viral infection through the plant vascular system. In a reverse genetics approach, PME levels were reduced in tobacco plants using antisense suppression. The resulting PME antisense plants displayed a significant degree of PME suppression in their vascular tissues but retained the wild-type pattern of phloem loading and unloading of a fluorescent solute. Systemic transport of TMV in these plants, however, was substantially delayed as compared to the wild-type tobacco, suggesting a role for PME in TMV systemic infection. Our analysis of virus distribution in the PME antisense plants suggested that TMV systemic movement may be a polar process in which the virions enter and exit the vascular system by two different mechanisms, and it is the viral exit out of the vascular system that involves PME.
Collapse
Affiliation(s)
- Min-Huei Chen
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | | |
Collapse
|
22
|
Current awareness on yeast. Yeast 2002; 19:651-8. [PMID: 11967835 DOI: 10.1002/yea.824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
23
|
Current awareness on yeast. Yeast 2002; 19:565-72. [PMID: 11921105 DOI: 10.1002/yea.823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|