1
|
Camaya I, Mok TY, Lund M, To J, Braidy N, Robinson MW, Santos J, O'Brien B, Donnelly S. The parasite-derived peptide FhHDM-1 activates the PI3K/Akt pathway to prevent cytokine-induced apoptosis of β-cells. J Mol Med (Berl) 2021; 99:1605-1621. [PMID: 34374810 DOI: 10.1007/s00109-021-02122-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 12/31/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterised by the destruction of the insulin-producing beta (β)-cells within the pancreatic islets. We have previously identified a novel parasite-derived molecule, termed Fasciola hepatica helminth defence molecule 1 (FhHDM-1), that prevents T1D development in non-obese diabetic (NOD) mice. In this study, proteomic analyses of pancreas tissue from NOD mice suggested that FhHDM-1 activated the PI3K/Akt signalling pathway, which is associated with β-cell metabolism, survival and proliferation. Consistent with this finding, FhHDM-1 preserved β-cell mass in NOD mice. Examination of the biodistribution of FhHDM-1 after intraperitoneal administration in NOD mice revealed that the parasite peptide localised to the pancreas, suggesting that it exerted a direct effect on the survival/function of β-cells. This was confirmed in vitro, as the interaction of FhHDM-1 with the NOD-derived β-cell line, NIT-1, resulted in increased levels of phosphorylated Akt, increased NADH and NADPH and reduced activity of the NAD-dependent DNA nick sensor, poly(ADP-ribose) polymerase (PARP-1). As a consequence, β-cell survival was enhanced and apoptosis was prevented in the presence of the pro-inflammatory cytokines that destroy β-cells during T1D pathogenesis. Similarly, FhHDM-1 protected primary human islets from cytokine-induced apoptosis. Importantly, while FhHDM-1 promoted β-cell survival, it did not induce proliferation. Collectively, these data indicate that FhHDM-1 has significant therapeutic applications to promote β-cell survival, which is required for T1D and T2D prevention and islet transplantation. KEY MESSAGES: FhHDM-1 preserves β-cell mass in NOD mice and prevents the development of T1D. FhHDM-1 enhances phosphorylation of Akt in mouse β-cell lines. FhHDM-1 increases levels of NADH/NADPH in mouse β-cell lines in vitro. FhHDM-1 prevents cytokine-induced cell death of mouse β-cell lines and primary human β-cells in vitro via activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Inah Camaya
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia
| | - Tsz Y Mok
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia
| | - Maria Lund
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia
| | - Joyce To
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, Randwick, Australia
| | - Mark W Robinson
- School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Jerran Santos
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia
| | - Bronwyn O'Brien
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia
| | - Sheila Donnelly
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
2
|
Queiroz LAD, Assis JB, Guimarães JPT, Sousa ESA, Milhomem AC, Sunahara KKS, Sá-Nunes A, Martins JO. Endangered Lymphocytes: The Effects of Alloxan and Streptozotocin on Immune Cells in Type 1 Induced Diabetes. Mediators Inflamm 2021; 2021:9940009. [PMID: 34712101 PMCID: PMC8548114 DOI: 10.1155/2021/9940009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 12/31/2022] Open
Abstract
Alloxan (ALX) and streptozotocin (STZ) are extensively used to induce type 1 diabetes (T1D) in animal models. This study is aimed at evaluating the differences in immune parameters caused by ALX and STZ. T1D was induced either with ALX or with STZ, and the animals were followed for up to 180 days. Both ALX and STZ induced a decrease in the total number of circulating leukocytes and lymphocytes, with an increase in granulocytes when compared to control mice (CT). STZ-treated mice also exhibited an increase in neutrophils and a reduction in the lymphocyte percentage in the bone marrow. In addition, while the STZ-treated group showed a decrease in total CD3+, CD4-CD8+, and CD4+CD8+ T lymphocytes in the thymus and CD19+ B lymphocytes in the pancreas and spleen, the ALX group showed an increase in CD4-CD8+ and CD19+ only in the thymus. Basal levels of splenic interleukin- (IL-) 1β and pancreatic IL-6 in the STZ group were decreased. Both diabetic groups showed atrophy of the thymic medulla and degeneration of pancreatic islets of Langerhans composed of inflammatory infiltration and hyperemia with vasodilation. ALX-treated mice showed a decrease in reticuloendothelial cells, enhanced lymphocyte/thymocyte cell death, and increased number of Hassall's corpuscles. Reduced in vitro activation of splenic lymphocytes was found in the STZ-treated group. Furthermore, mice immunized with ovalbumin (OVA) showed a more intense antigen-specific paw edema response in the STZ-treated group, while production of anti-OVA IgG1 antibodies was similar in both groups. Thereby, important changes in immune cell parameters in vivo and in vitro were found at an early stage of T1D in the STZ-treated group, whereas alterations in the ALX-treated group were mostly found in the chronic phase of T1D, including increased mortality rates. These findings suggest that the effects of ALX and STZ influenced, at different times, lymphoid organs and their cell populations.
Collapse
Affiliation(s)
- Luiz A. D. Queiroz
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, SP, Brazil
| | - Josiane B. Assis
- Laboratory of Experimental Immunology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil
| | - João P. T. Guimarães
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, SP, Brazil
| | - Emanuella S. A. Sousa
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, SP, Brazil
| | - Anália C. Milhomem
- Institute of Tropical Pathology and Public Health, Department of Microbiology, Immunology, Parasitology and Pathology, Federal University of Goiás, Goiânia, GO, Brazil
| | - Karen K. S. Sunahara
- Experimental Physiopathology, Department of Sciences/Experimental Physiopathology, Medical School, University of São Paulo, São Paulo, SP, Brazil
| | - Anderson Sá-Nunes
- Laboratory of Experimental Immunology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil
| | - Joilson O. Martins
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Chen J, Stimpson SE, Fernandez-Bueno GA, Mathews CE. Mitochondrial Reactive Oxygen Species and Type 1 Diabetes. Antioxid Redox Signal 2018; 29:1361-1372. [PMID: 29295631 PMCID: PMC6166689 DOI: 10.1089/ars.2017.7346] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
SIGNIFICANCE The complex etiology of type 1 diabetes (T1D) is the outcome of failures in regulating immunity in combination with beta cell perturbations. Mitochondrial dysfunction in beta cells and immune cells may be involved in T1D pathogenesis. Mitochondrial energy production is essential for the major task of beta cells (the secretion of insulin in response to glucose). Mitochondria are a major site of reactive oxygen species (ROS) production. Under immune attack, mitochondrial ROS (mtROS) participate in beta cell damage. Similarly, T cell fate during immune responses is tightly regulated by mitochondrial physiology, morphology, and metabolism. Production of mtROS is essential for signaling in antigen-specific T cell activation. Mitochondrial dysfunction in T cells has been noted as a feature of some human autoimmune diseases. Recent Advances: Preclinical and clinical studies indicate that mitochondrial dysfunction in beta cells sensitizes these cells to immune-mediated destruction via direct or indirect mechanisms. Sensitivity of beta cells to mtROS is associated with genetic T1D risk loci in human and the T1D-prone nonobese diabetic (NOD) mouse. Mitochondrial dysfunction and altered metabolism have also been observed in immune cells of NOD mice and patients with T1D. This immune cell mitochondrial dysfunction has been linked to deleterious functional changes. CRITICAL ISSUES It remains unclear how mitochondria control T cell receptor signaling and downstream events, including calcium flux and activation of transcription factors during autoimmunity. FUTURE DIRECTIONS Mechanistic studies are needed to investigate the mitochondrial pathways involved in autoimmunity, including T1D. These studies should seek to identify the role of mitochondria in regulating innate and adaptive immune cell activity and beta cell failure.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine , Gainesville, Florida
| | - Scott E Stimpson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine , Gainesville, Florida
| | - Gabriel A Fernandez-Bueno
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine , Gainesville, Florida
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine , Gainesville, Florida
| |
Collapse
|
4
|
Morgan NG. Bringing the human pancreas into focus: new paradigms for the understanding of Type 1 diabetes. Diabet Med 2017; 34:879-886. [PMID: 28429491 DOI: 10.1111/dme.13365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2017] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes affects increasingly large numbers of people globally (including at least half a million children under the age of 14 years) and it remains an illness with life-long and often devastating consequences. It is surprising, therefore, that the underlying aetiology of Type 1 diabetes remains poorly understood. This is largely because the cellular and molecular processes leading to the loss of β cells in the pancreas have rarely been studied at, or soon after, the onset of disease. Where such studies have been undertaken, a number of surprises have emerged which serve to challenge conventional wisdom. In particular, it is increasingly understood that the process of islet inflammation (insulitis) is much less florid in humans than in certain animal models. Moreover, the profile of immune cells involved in the inflammatory attack on β cells is variable and this variation occurs at the level of individual patients. As a result, two distinct profiles of insulitis have now been defined that are differentially aggressive and that might, therefore, require specifically tailored therapeutic approaches to slow the progression of disease. In addition, the outcomes are also different in that the more aggressive form (termed 'CD20Hi') is associated with extensive β-cell loss and an early age of disease onset (<7 years), while the less aggressive profile (known as 'CD20Lo') is associated with later onset (>13 years) and the retention of a higher proportion of residual β cells. In the present review, these new findings are explained and their implications evaluated in terms of future therapies.
Collapse
Affiliation(s)
- N G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
5
|
A multivalent vaccine for type 1 diabetes skews T cell subsets to Th2 phenotype in NOD mice. Immunol Res 2011; 50:213-20. [PMID: 21717080 DOI: 10.1007/s12026-011-8215-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Previous studies by our group, using an experimental autoimmune thyroiditis (EAT) model in Strain 13 inbred guinea pigs, resulted in T cell-mediated delayed hypersensitivity; however, autoantibodies proved not to be cytotoxic to thyroid epithelial cells in the presence or absence of complement proteins. Albeit, T cell-mediated lymphocyte cytotoxicity began to diminish sharply concomitantly with increasing titers of circulating autoantibodies, indicating a skewing of the self-reactive response and amelioration of the EAT. Furthermore, immunization of guinea pigs with thyroglobulin in incomplete Freund's adjuvant (IFA) generated a high titer of antithyroglobulin antibodies and proved to inhibit thyroiditis. These observations indicated that the shift in the immune response from Th1 to Th2 and the production of antibodies were likely responsible for ameliorating EAT. Based upon these results, we extrapolated our studies to design a multivalent vaccine, which shows promise in preventing/reversing T1D in NOD mice. A small pilot study was conducted in which a total of 34 mice, 20 non-immunized controls and 14 immunized with syngeneic islet lysate, were monitored for mean day to diabetes for a total of 28 weeks. Immunization of NOD animals with syngeneic islet lysates resulted in a significant delay in diabetes onset (P < 0.001) as compared to non-immunized controls. To further assess the vaccine's efficacy, robustness, and delay of disease, a large-scale experiment was conducted and monitored for 32 weeks using 106 mice, 64 non-immunized controls and 42 immunized with syngeneic islet lysate. At the end of the study, 90% of the non-immunized group developed diabetes, while less than 25% of the immunized group became diabetic (P < 0.0001). The protective effect, as a result of vaccination, correlated with an increase in the levels of IL-10 and IL-4 cytokines as well as a skewing to Th2-dependent isotype antibodies in serum. Strikingly, adoptive transfer of spleen cells from immunized animals into NOD.scid recipients provided protection against transfer of diabetes by diabetogenic spleen cells. The results of this study provide evidence that vaccination with islet lysate leads to a Th2-dependent skewing of the immune response to islet beta cells as a possible mechanism of protection. This strategy may be implemented as a possible vaccination protocol for arresting and/or preventing T1D in patients.
Collapse
|
6
|
Abstract
The cytotoxic granzyme B (GrB)/perforin pathway has been traditionally viewed as a primary mechanism that is used by cytotoxic lymphocytes to eliminate allogeneic, virally infected and/or transformed cells. Although originally proposed to have intracellular and extracellular functions, upon the discovery that perforin, in combination with GrB, could induce apoptosis, other potential functions for this protease were, for the most part, disregarded. As there are 5 granzymes in humans and 11 granzymes in mice, many studies used perforin knockout mice as an initial screen to evaluate the role of granzymes in disease. However, in recent years, emerging clinical and biochemical evidence has shown that the latter approach may have overlooked a critical perforin-independent, pathogenic role for these proteases in disease. This review focuses on GrB, the most characterized of the granzyme family, in disease. Long known to be a pro-apoptotic protease expressed by cytotoxic lymphocytes and natural killer cells, it is now accepted that GrB can be expressed in other cell types of immune and nonimmune origin. To the latter, an emerging immune-independent role for GrB has been forwarded due to recent discoveries that GrB may be expressed in nonimmune cells such as smooth muscle cells, keratinocytes, and chondrocytes in certain disease states. Given that GrB retains its activity in the blood, can cleave extracellular matrix, and its levels are often elevated in chronic inflammatory diseases, this protease may be an important contributor to certain pathologies. The implications of sustained elevations of intracellular and extracellular GrB in chronic vascular, dermatological, and neurological diseases, among others, are developing. This review examines, for the first time, the multiple roles of GrB in disease pathogenesis.
Collapse
|
7
|
Hübner MP, Stocker JT, Mitre E. Inhibition of type 1 diabetes in filaria-infected non-obese diabetic mice is associated with a T helper type 2 shift and induction of FoxP3+ regulatory T cells. Immunology 2008; 127:512-22. [PMID: 19016910 DOI: 10.1111/j.1365-2567.2008.02958.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We sought to determine whether Litomosoides sigmodontis, a filarial infection of rodents, protects against type 1 diabetes in non-obese diabetic (NOD) mice. Six-week-old NOD mice were sham-infected or infected with either L3 larvae, adult male worms, or adult female worms. Whereas 82% of uninfected NOD mice developed diabetes by 25 weeks of age, no L. sigmodontis-infected mice developed disease. Although all mice had evidence of ongoing islet cell inflammation by histology, L. sigmodontis-infected mice had greater numbers of total islets and non-infiltrated islets than control mice. Protection against diabetes was associated with a T helper type 2 (Th2) shift, as interleukin-4 (IL-4) and IL-5 release from alpha-CD3/alpha-CD28-stimulated splenocytes was greater in L. sigmodontis-infected mice than in uninfected mice. Increased circulating levels of insulin-specific immunoglobulin G1, showed that this Th2 shift occurs in response to one of the main autoantigens in diabetes. Multicolour flow cytometry studies demonstrated that protection against diabetes in L. sigmodontis-infected NOD mice was associated with significantly increased numbers of splenic CD4(+) CD25(+) FoxP3(+) regulatory T cells. Interestingly, injection of crude worm antigen into NOD mice also resulted in protection against type 1 diabetes, though to a lesser degree than infection with live L. sigmodontis worms. In conclusion, these studies demonstrate that filarial worms can protect against the onset of type 1 diabetes in NOD mice. This protection is associated with a Th2 shift, as demonstrated by cytokine and antibody production, and with an increase in CD4(+) CD25(+) FoxP3(+) regulatory T cells.
Collapse
Affiliation(s)
- Marc P Hübner
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | | | |
Collapse
|
8
|
Vieira KP, de Almeida e Silva Lima Zollner AR, Malaguti C, Vilella CA, de Lima Zollner R. Ganglioside GM1 effects on the expression of nerve growth factor (NGF), Trk-A receptor, proinflammatory cytokines and on autoimmune diabetes onset in non-obese diabetic (NOD) mice. Cytokine 2008; 42:92-104. [DOI: 10.1016/j.cyto.2008.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 01/04/2008] [Accepted: 01/20/2008] [Indexed: 11/16/2022]
|
9
|
Kaminitz A, Stein J, Yaniv I, Askenasy N. The vicious cycle of apoptotic beta-cell death in type 1 diabetes. Immunol Cell Biol 2007; 85:582-9. [PMID: 17637698 DOI: 10.1038/sj.icb.7100093] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autoimmune insulitis, the cause of type 1 diabetes, evolves through several discrete stages that culminate in beta-cell death. In the first stage, antigenic epitopes of B-cell-specific peptides are processed by antigen presenting cells in local lymph nodes, and auto-reactive lymphocyte clones are propagated. Subsequently, cell-mediated and direct cytokine-mediated reactions are generated against the beta-cells, and the beta-cells are sensitized to apoptosis. Ironically, the beta-cells themselves contribute some of the cytokines and chemokines that provoke the immune reaction within the islets. Once this vicious cycle of autoimmunity is fully developed, the fate of the beta-cells in the islets is sealed, and clinical diabetes inevitably ensues. Differences in various aspects of these concurrent events appear to underlie the significant discrepancies in experimental data observed in experimental models that simulate autoimmune insulitis.
Collapse
Affiliation(s)
- Ayelet Kaminitz
- Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | | | | | | |
Collapse
|
10
|
Saunders KA, Raine T, Cooke A, Lawrence CE. Inhibition of autoimmune type 1 diabetes by gastrointestinal helminth infection. Infect Immun 2006; 75:397-407. [PMID: 17043101 PMCID: PMC1828378 DOI: 10.1128/iai.00664-06] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gastrointestinal nematode infections are prevalent worldwide and are potent inducers of T helper 2 responses with the capacity to modulate the immune response to heterologous antigens. Parasitic helminth infection has even been shown to modulate the immune response associated with autoimmune diseases. Nonobese diabetic (NOD) mice provide a model for studying human autoimmune diabetes; as in humans, the development of diabetes in NOD mice has been linked to the loss of self-tolerance to beta cell autoantigens. Previous studies with the NOD mouse have shown that helminth and bacterial infection appears to inhibit type 1 diabetes by disrupting the pathways leading to the Th1-mediated destruction of insulin-producing beta cells. The aim of our study was to examine whether infection with the gastrointestinal helminths Trichinella spiralis or Heligmosomoides polygyrus could inhibit the development of autoimmune diabetes in NOD mice and to analyze the mechanisms involved in protection and the role of Th2 responses. Protection from diabetes was afforded by helminth infection, appeared to inhibit autoimmune diabetes by disrupting pathways leading to the destruction of beta cells, and was mediated by seemingly independent mechanisms depending on the parasite but which may be to be related to the capacity of the host to mount a Th2 response.
Collapse
Affiliation(s)
- Karin A Saunders
- Department of Immunology, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, United Kingdom
| | | | | | | |
Collapse
|
11
|
Every AL, Kramer DR, Mannering SI, Lew AM, Harrison LC. Intranasal Vaccination with Proinsulin DNA Induces Regulatory CD4+ T Cells That Prevent Experimental Autoimmune Diabetes. THE JOURNAL OF IMMUNOLOGY 2006; 176:4608-15. [PMID: 16585551 DOI: 10.4049/jimmunol.176.8.4608] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin, an autoantigen in type 1 diabetes, when administered mucosally to diabetes-prone NOD mice induces regulatory T cells (T(reg)) that protect against diabetes. Compared with protein, Ag encoded as DNA has potential advantages as a therapeutic agent. We found that intranasal vaccination of NOD mice with plasmid DNA encoding mouse proinsulin II-induced CD4+ T(reg) that suppressed diabetes development, both after adoptive cotransfer with "diabetogenic" spleen cells and after transfer into NOD mice given cyclophosphamide to accelerate diabetes onset. In contrast to prototypic CD4+ CD25+ T(reg), CD4+ T(reg) induced by proinsulin DNA were both CD25+ and CD25- and not defined by markers such as glucocorticoid-induced TNFR-related protein (GITR), CD103, or Foxp3. Intriguingly, despite induction of T(reg) and reduced islet inflammation, diabetes incidence in proinsulin DNA-treated mice was unchanged. However, diabetes was prevented when DNA vaccination was performed under the cover of CD40 ligand blockade, known to prevent priming of CTL by mucosal Ag. Thus, intranasal vaccination with proinsulin DNA has therapeutic potential to prevent diabetes, as demonstrated by induction of protective T(reg), but further modifications are required to improve its efficacy, which could be compromised by concomitant induction of pathogenic immunity.
Collapse
MESH Headings
- Administration, Intranasal
- Adoptive Transfer
- Amino Acid Sequence
- Animals
- Autoantigens/genetics
- CD4-Positive T-Lymphocytes/immunology
- CD40 Ligand/metabolism
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/prevention & control
- Female
- Forkhead Transcription Factors/genetics
- Gene Expression
- Interferon-gamma/biosynthesis
- Islets of Langerhans/immunology
- Islets of Langerhans/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Proinsulin/genetics
- Proinsulin/immunology
- Receptors, Interleukin-2/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
Collapse
Affiliation(s)
- Alison L Every
- Autoimmunity and Transplantation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | | | | | | | | |
Collapse
|
12
|
Steer SA, Scarim AL, Chambers KT, Corbett JA. Interleukin-1 stimulates beta-cell necrosis and release of the immunological adjuvant HMGB1. PLoS Med 2006; 3:e17. [PMID: 16354107 PMCID: PMC1316065 DOI: 10.1371/journal.pmed.0030017] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 10/10/2005] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND There are at least two phases of beta-cell death during the development of autoimmune diabetes: an initiation event that results in the release of beta-cell-specific antigens, and a second, antigen-driven event in which beta-cell death is mediated by the actions of T lymphocytes. In this report, the mechanisms by which the macrophage-derived cytokine interleukin (IL)-1 induces beta-cell death are examined. IL-1, known to inhibit glucose-induced insulin secretion by stimulating inducible nitric oxide synthase expression and increased production of nitric oxide by beta-cells, also induces beta-cell death. METHODS AND FINDINGS To ascertain the mechanisms of cell death, the effects of IL-1 and known activators of apoptosis on beta-cell viability were examined. While IL-1 stimulates beta-cell DNA damage, this cytokine fails to activate caspase-3 or to induce phosphatidylserine (PS) externalization; however, apoptosis inducers activate caspase-3 and the externalization of PS on beta-cells. In contrast, IL-1 stimulates the release of the immunological adjuvant high mobility group box 1 protein (HMGB1; a biochemical maker of necrosis) in a nitric oxide-dependent manner, while apoptosis inducers fail to stimulate HMGB1 release. The release of HMGB1 by beta-cells treated with IL-1 is not sensitive to caspase-3 inhibition, while inhibition of this caspase attenuates beta-cell death in response to known inducers of apoptosis. CONCLUSIONS These findings indicate that IL-1 induces beta-cell necrosis and support the hypothesis that macrophage-derived cytokines may participate in the initial stages of diabetes development by inducing beta-cell death by a mechanism that promotes antigen release (necrosis) and islet inflammation (HMGB1 release).
Collapse
Affiliation(s)
- Sarah A Steer
- 1The Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Anna L Scarim
- 1The Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Kari T Chambers
- 1The Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - John A Corbett
- 1The Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri, United States of America
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Miyazaki K, Takeda N, Ishimaru N, Omotehara F, Arakaki R, Hayashi Y. Analysis of in vivo role of alpha-fodrin autoantigen in primary Sjogren's syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:1051-9. [PMID: 16192640 PMCID: PMC1603665 DOI: 10.1016/s0002-9440(10)61194-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The alpha-fodrin N-terminal portion (AFN) autoantigen mediates in vivo immunoregulation of autoimmune responses in primary Sjögren's syndrome (SS). We further examined this process and found that cleavage products of AFN were frequently detected in the salivary gland duct cells of SS patients. In in vitro studies using human salivary gland HSY cells, anti-Fas-induced apoptosis resulted in specific cleavage of alpha-fodrin into the 120-kd fragment, in association of alpha-fodrin with mu-calpain, and activation of caspase 3. Significant proliferative responses against AlphaFN autoantigen were observed in the peripheral blood mononuclear cells (PBMCs) from SS patients with higher pathological score (grade 4) and with short duration from onset (within 5 years). In vivo roles of AFN peptides were investigated using PBMCs from patients with SS, systemic lupus erythematosus, and rheumatoid arthritis. Significant proliferative T-cell responses of PBMCs to AFN peptide were detected in SS but not in systemic lupus erythematosus or rheumatoid arthritis. AFN peptide induced Th1-immune responses and accelerated down-regulation of Fas-mediated T-cell apoptosis in SS. Our data further elucidate the in vivo role of AFN autoantigen on the development of SS and suggest that the AFN autoantigen is a novel participant in peripheral tolerance.
Collapse
Affiliation(s)
- Katsushi Miyazaki
- Department of Pathology, Tokushima University School of Dentistry, 3 Kuramotocho, Tokushima 770, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Skak K, Haase C, Michelsen BK. Preservation of β-cell function during immune-mediated, B7-1-dependent α-cell destruction. Eur J Immunol 2005; 35:2583-90. [PMID: 16078275 DOI: 10.1002/eji.200525978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which the pancreatic beta-cells are destroyed in an immune-mediated process. In one mouse model of T1D, the co-expression of the costimulatory molecule, B7-1, and the pro-inflammatory cytokine, tumor necrosis factor (TNF)-alpha, on the beta-cells leads to massive insulitis and loss of beta-cells, resulting in T1D. Here, we have investigated whether the specific loss of beta-cells is due to an intrinsic defect in the beta-cells or is a direct consequence of B7-1 expression. We show that transgenic mice expressing TNF-alpha on the beta-cells and B7-1 on the alpha-cells are resistant to the development of diabetes despite B7-1-dependent loss of alpha-cells and a massive islet inflammation consisting of T cells, B cells, macrophages and dendritic cells. Furthermore, islets with alpha-cell expression of B7-1 develop alpha-cell destruction and heavy infiltration, but maintain functional beta-cells when they are engrafted into diabetic mice that co-express TNF-alpha and B7-1 on the beta-cells. Thus, our results show that the beta-cells are able to survive in a severely inflamed organ where the neighboring alpha-cells are destroyed, suggesting that in this model B7-1 expression on the target cells is the primary determinant for the loss of islet cells.
Collapse
Affiliation(s)
- Kresten Skak
- Department of Diabetes Autoimmunity, Hagedorn Research Institute, Gentofte, Denmark
| | | | | |
Collapse
|
15
|
Ejrnaes M, Videbaek N, Christen U, Cooke A, Michelsen BK, von Herrath M. Different Diabetogenic Potential of Autoaggressive CD8+ Clones Associated with IFN-γ-Inducible Protein 10 (CXC Chemokine Ligand 10) Production but Not Cytokine Expression, Cytolytic Activity, or Homing Characteristics. THE JOURNAL OF IMMUNOLOGY 2005; 174:2746-55. [PMID: 15728483 DOI: 10.4049/jimmunol.174.5.2746] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type 1 diabetes mellitus is an autoimmune disease characterized by T cell-mediated destruction of the insulin-producing beta cells in the islets of Langerhans. From studies in animal models, CD8(+) T cells recognizing autoantigens such as islet-specific glucose-6-phosphatase catalytic subunit-related protein, insulin, or glutamic acid decarboxylase (GAD) are believed to play important roles in both the early and late phases of beta cell destruction. In this study, we investigated the factors governing the diabetogenic potential of autoreactive CD8(+) clones isolated from spleens of NOD mice that had been immunized with GAD65(515-524) or insulin B-chain(15-23) peptides. Although these two clones were identical in most phenotypic and functional aspects, for example cytokine production and killing of autologous beta cells, they differed in the expression of IFN-gamma-inducible protein-10, which was only produced at high levels by the insulin-specific clone, but not by the GAD65-specific clone, and other autoantigen-specific nonpathogenic CD8 T cell clones. Interestingly, upon i.p. injection into neonatal mice, only the insulin B-chain(15-23)-reactive CD8(+) T clone accelerated diabetes in all recipients after 4 wk, although both insulin- and GAD-reactive clones homed to pancreas and pancreatic lymph nodes with similar kinetics. Diabetes was associated with increased pancreatic T cell infiltration and, in particular, recruitment of macrophages. Thus, secretion of IFN-gamma-inducible protein-10 by autoaggressive CD8(+) lymphocytes might determine their diabetogenic capacity by affecting recruitment of cells to the insulitic lesion.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/enzymology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Cell Movement/immunology
- Cells, Cultured
- Chemokine CXCL10
- Chemokines/biosynthesis
- Chemokines/metabolism
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/metabolism
- Clone Cells
- Cytokines/biosynthesis
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Epitopes, T-Lymphocyte/immunology
- Female
- Glutamate Decarboxylase/administration & dosage
- Glutamate Decarboxylase/immunology
- Injections, Intraperitoneal
- Insulin/administration & dosage
- Insulin/immunology
- Islets of Langerhans/immunology
- Islets of Langerhans/pathology
- Islets of Langerhans Transplantation/immunology
- Isoenzymes/administration & dosage
- Isoenzymes/immunology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
Collapse
Affiliation(s)
- Mette Ejrnaes
- Department of Developmental Immunology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA
| | | | | | | | | | | |
Collapse
|
16
|
Sia C. Spotlight on ethnomedicine: usability of Sutherlandia frutescens in the treatment of diabetes. Rev Diabet Stud 2004; 1:145-9. [PMID: 17491678 PMCID: PMC1783542 DOI: 10.1900/rds.2004.1.145] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Charles Sia
- Department of Immunology, United Biomedical Inc., 25 Davids Drive, Hauppage, New York 11788, USA.
| |
Collapse
|
17
|
Oikawa Y, Shimada A, Kasuga A, Morimoto J, Osaki T, Tahara H, Miyazaki T, Tashiro F, Yamato E, Miyazaki JI, Saruta T. Systemic administration of IL-18 promotes diabetes development in young nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2004; 171:5865-75. [PMID: 14634096 DOI: 10.4049/jimmunol.171.11.5865] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
IL-18 is now identified as a pleiotropic cytokine that acts as a cofactor for both Th1 and Th2 cell development. Type 1 diabetes is considered a Th1-type autoimmune disease, and to date, the suppressive effect of exogenous IL-18 on the development of diabetes has been reported in 10-wk-old nonobese diabetic (NOD) mice. In the present study we administered exogenous IL-18 systemically in 4-wk-old NOD mice using i.m. injection of the IL-18 expression plasmid DNA (pCAGGS-IL-18) with electroporation. Contrary to previous reports, the incidence of diabetes development was significantly increased in NOD mice injected with pCAGGS-IL-18 compared with that in control mice. Systemic and pancreatic cytokine profiles deviated to a Th1-dominant state, and the the frequency of glutamic acid decarboxylase-reactive IFN-gamma-producing CD4(+) cells was also high in the IL-18 group. Moreover, it was suggested that the promoting effect of IL-18 might be associated with increased peripheral IL-12, CD86, and pancreatic IFN-inducible protein-10 mRNA expression levels. In conclusion, we demonstrate here that IL-18 plays a promoting role as an enhancer of Th1-type immune responses in diabetes development early in the spontaneous disease process, which may contribute to elucidating the pathogenesis of type 1 diabetes.
Collapse
MESH Headings
- Age Factors
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- B7-2 Antigen
- Chemokine CXCL10
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/genetics
- Cytokines/biosynthesis
- Diabetes Mellitus, Type 1/epidemiology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/physiopathology
- Female
- Genetic Vectors
- Glutamate Decarboxylase/metabolism
- Incidence
- Injections, Intramuscular
- Interferon-gamma/biosynthesis
- Interleukin-12/biosynthesis
- Interleukin-12/genetics
- Interleukin-12 Subunit p40
- Interleukin-18/administration & dosage
- Interleukin-18/blood
- Interleukin-18/genetics
- Islets of Langerhans/immunology
- Islets of Langerhans/pathology
- Lymphocyte Count
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Mice
- Mice, Inbred NOD
- Pancreas/immunology
- Pancreas/metabolism
- Plasmids
- Protein Subunits/biosynthesis
- Protein Subunits/genetics
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction
- Severity of Illness Index
- Th1 Cells/enzymology
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Yoichi Oikawa
- Department of Internal Medicine, Keio University School of Medicine, Department of Internal Medicine, Tokyo Denryoku Hospital, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Arakaki R, Ishimaru N, Saito I, Kobayashi M, Yasui N, Sumida T, Hayashi Y. Development of autoimmune exocrinopathy resembling Sjögren's syndrome in adoptively transferred mice with autoreactive CD4+ T cells. ACTA ACUST UNITED AC 2003; 48:3603-9. [PMID: 14674013 DOI: 10.1002/art.11352] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The pathologic mechanisms responsible for organ-specific tissue damage in primary Sjögren's syndrome (SS) remain unclear, but it has been suggested that the pathology is mediated by autoreactive CD4+ T cells infiltrating the salivary and lacrimal glands. This study was undertaken to investigate whether alpha-fodrin autoantigen-specific autoreactive CD4+ T cells are capable of inducing autoimmune lesions. METHODS A total of 45 synthetic alpha-fodrin peptides designed to be 20 amino acid residues in length were generated. To establish an autoreactive T cell line, limiting dilution analysis (LDA) was performed on lymph node cells (LNCs) in the presence of alpha-fodrin peptides. The effects of adoptive transfer of autoreactive CD4+ T cells into normal syngeneic recipients were investigated. RESULTS Autoreactive CD4+ T cell lines that recognize synthetic alpha-fodrin peptide, which produced Th1 cytokines and showed cytotoxic activities, were established in a murine model for SS. T cell receptor V(beta) usage and third complementarity-determining region (CDR3) sequences indicated that in some cases V(beta)6-CDR3 genes matched between the tissue-infiltrating T cells and the autoreactive T cell lines. Adoptive transfer of the autoreactive CD4+ T cells into normal syngeneic recipients induced autoimmune lesions quite similar to those of SS. CONCLUSION Our data help to elucidate the pathogenic mechanisms responsible for tissue destruction in autoimmune exocrinopathy and indicate that autoreactive CD4+ T cells play a pivotal role in the development of murine SS.
Collapse
Affiliation(s)
- Rieko Arakaki
- Tokushima University School of Dentistry, Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Ventura-Oliveira D, Vilella CA, Zanin ME, Castro GM, Moreira Filho DC, Zollner RL. Kinetics of TNF-alpha and IFN-gamma mRNA expression in islets and spleen of NOD mice. Braz J Med Biol Res 2002; 35:1347-55. [PMID: 12426635 DOI: 10.1590/s0100-879x2002001100013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insulin-dependent diabetes mellitus is caused by autoimmune destruction of pancreatic beta cells. Non-obese diabetic (NOD) mice spontaneously develop diabetes similar to the human disease. Cytokines produced by islet-infiltrating mononuclear cells may be directly cytotoxic and can be involved in islet destruction coordinated by CD4+ and CD8+ cells. We utilized a semiquantitative RT-PCR assay to analyze in vitro the mRNA expression of TNF-alpha and IFN-gamma cytokine genes in isolated islets (N = 100) and spleen cells (5 x 10(5) cells) from female NOD mice during the development of diabetes and from female CBA-j mice as a related control strain that does not develop diabetes. Cytokine mRNAs were measured at 2, 4, 8, 14 and 28 weeks of age from the onset of insulitis to the development of overt diabetes. An increase in IFN-gamma expression in islets was observed for females aged 28 weeks (149 +/- 29 arbitrary units (AU), P<0.05, Student t-test) with advanced destructive insulitis when compared with CBA-j mice, while TNF-alpha was expressed in both NOD and CBA-j female islets at the same level at all ages studied. In contrast, TNF-alpha in spleen was expressed at higher levels in NOD females at 14 weeks (99 +/- 8 AU, P<0.05) and 28 weeks (144 +/- 17 AU, P<0.05) of age when compared to CBA-j mice. The data suggest that IFN-gamma and TNF-alpha expression in pancreatic islets of female NOD mice is associated with beta cell destruction and overt diabetes.
Collapse
Affiliation(s)
- D Ventura-Oliveira
- Disciplina e Laboratório de Imunologia Clínica, Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | | | | | | | | | | |
Collapse
|
20
|
Steinbrenner H, Nguyen TBT, Wohlrab U, Scherbaum WA, Seissler J. Effect of proinflammatory cytokines on gene expression of the diabetes-associated autoantigen IA-2 in INS-1 cells. Endocrinology 2002; 143:3839-45. [PMID: 12239095 DOI: 10.1210/en.2002-220583] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytokines released from activated antigen-presenting cells and T-lymphocytes are crucially involved in the pathogenesis of type 1 diabetes. Previous studies have shown that proinflammatory cytokines play an important role in the induction of autoimmunity and beta-cell damage. Inhibition of insulin expression has been described, but their effects on other major target autoantigens, such as the tyrosine phosphatase-like protein IA-2, is not known. In the present study, we established sensitive real-time RT-PCR to measure IA-2, insulin, and inducible nitric oxide (NO) synthase (iNOS) mRNA expression. Rat insulinoma INS-1 cells were stimulated with IL-1beta, TNF-alpha, interferon (IFN)-gamma, and IL-2 as well as with two combinations of these cytokines (C1: IL-1beta + TNF-alpha + IFN-gamma; C2: TNF-alpha + IFN-gamma). Treatment with IL-1beta, TNF-alpha, or IFN-gamma alone caused a significant down-regulation of IA-2 and insulin mRNA levels in a time and dose-dependent manner, whereas IL-2 had no effect. Exposure to cytokine combinations strongly potentiates the inhibitory effects. Incubation of cells with C1 and C2 for 24 h induces a significant inhibition of IA-2 mRNA levels by 78% and 58%, respectively. Under these conditions, an up to 5 x 10(4)-fold increase of iNOS gene expression was observed. The hypothesis that the formation of NO is involved in IA-2 regulation was confirmed by the finding that the coincubation of C1 with 4 mM L-N(G)-monomethyL-L-arginine, an inhibitor of the iNOS, partly reversed the down-regulation of IA-2. Further, incubation with the synthetic NO-donor S-nitroso-N-acetyl-D-L-penicillamine significantly decreased IA-2 mRNA level to 51% of basal levels. In conclusion, we have demonstrated for the first time that IL-1beta, TNF-alpha, and IFN-gamma exert a strong inhibitory effect on expression of the diabetes autoantigen IA-2. The action of IL-1beta may be partly mediated by the activation of the NO pathway.
Collapse
Affiliation(s)
- Holger Steinbrenner
- German Diabetes Research Institute at the University of Duesseldorf, Germany
| | | | | | | | | |
Collapse
|
21
|
Takahashi K, Honeyman MC, Harrison LC. Cytotoxic T cells to an epitope in the islet autoantigen IA-2 are not disease-specific. Clin Immunol 2001; 99:360-4. [PMID: 11358432 DOI: 10.1006/clim.2001.5031] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytotoxic CD8 T lymphocytes (CTL) are effectors of pancreatic islet beta-cell destruction in type 1 diabetes but, with the exception of a single report, CTL to islet antigen peptides have not been identified. We used autologous blood monocyte-derived dendritic cells to elicit HLA-A2-restricted CTL to a peptide, MVWESGCTV (aa 797-805), that is contiguous with a dominant CD4 T-cell epitope in the islet antigen tyrosine phosphatase IA-2. IA-2 peptide-specific CTL activity measured as 51Cr release from autologous lymphoblasts was detected in 2/6 islet antibody-positive relatives at high risk for type 1 diabetes but also in 2/6 closely HLA-matched controls. All subjects had CTL activity to an HLA-A2-restricted Epstein-Barr virus peptide. CTL to the IA-2 self-peptide were therefore not disease-specific, consistent with other evidence that autoreactive T cells are present in healthy individuals.
Collapse
Affiliation(s)
- K Takahashi
- Autoimmunity and Transplantation Division, Royal Melbourne Hospital, Parkville, 3050, Australia
| | | | | |
Collapse
|
22
|
Hänninen A, Braakhuis A, Heath WR, Harrison LC. Mucosal antigen primes diabetogenic cytotoxic T-lymphocytes regardless of dose or delivery route. Diabetes 2001; 50:771-5. [PMID: 11289041 DOI: 10.2337/diabetes.50.4.771] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Administration of antigens via mucosal routes, such as orally or intranasally, can induce specific immunological tolerance and has been used as a rational basis for the treatment of autoimmune diseases, including type 1 diabetes. Recently, however, orally delivered antigens were shown to induce CD8 cytotoxic T-lymphocytes (CTLs) capable of causing autoimmune diabetes. In this report, we have examined several mucosal routes for their ability to induce CTLs and autoimmune diabetes, with the aim of identifying approaches that would maximize tolerance and minimize CTL generation. In normal C57BL/6 mice, ovalbumin (OVA) delivered by either the oral or nasal routes or by aerosol inhalation was able to prime CTL immunity in both high- and low-dose regimens. To address the relevance of these CTLs to autoimmune disease, OVA was given to mice that transgenically expressed this antigen in their pancreatic beta-cells. Irrespective of antigen dose or the route of delivery, mucosal OVA triggered diabetes, particularly after intranasal administration. These findings suggest that CTL immunity is likely to be a consequence of mucosal antigen delivery, regardless of the regimen, and should be considered in the clinical application of mucosal tolerance to autoimmune disease prevention.
Collapse
Affiliation(s)
- A Hänninen
- Autoimmunity and Transplantation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
23
|
Abstract
In the non-obese diabetic (NOD) mouse model of Type 1 (insulin-dependent) diabetes, evidence suggests that pancreatic beta cells are destroyed in part by apoptotic mechanisms. The precise mechanisms of beta cell destruction leading to diabetes remain unclear. The NOD mouse has been studied to gain insight into the cellular and molecular mediators of beta cell death, which are discussed in this review. Perforin, secreted by CD8(+) T cells, remains one of the only molecules confirmed to be implicated in beta cell death in the NOD mouse. There are many other molecules, including Fas ligand and cytokines such as interferon-gamma, interleukin-1 and tumor necrosis factor-alpha, which may lead to beta cell destruction either directly or indirectly via regulation of toxic molecules such as nitric oxide. As beta cell death can occur in the absence of perforin, these other factors, in addition to other as yet unidentified factors, may be important in the development of diabetes. Effective protection of NOD mice from beta cell destruction may therefore require inhibition of multiple effector mechanisms.
Collapse
Affiliation(s)
- H E Thomas
- The Walter and Eliza Hall Institute of Medical Research, PO Royal Melbourne Hospital, Victoria 3050, Australia
| | | |
Collapse
|
24
|
Kay TW, Thomas HE, Harrison LC, Allison J. The beta cell in autoimmune diabetes: many mechanisms and pathways of loss. Trends Endocrinol Metab 2000; 11:11-5. [PMID: 10652500 DOI: 10.1016/s1043-2760(99)00210-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Death of pancreatic beta cells is the final step in the pathogenesis of type 1 diabetes before it becomes clinically apparent. Applying recent basic research about how cells die to the clinical problem of diabetes is a current opportunity and challenge. To date, perforin is the only factor definitely implicated in beta-cell killing in the non-obese diabetic (NOD) mouse model, although some perforin-deficient NOD mice develop diabetes. Our results suggest that other factors that cause beta-cell death remain to be identified.
Collapse
Affiliation(s)
- T W Kay
- Autoimmunity and Transplantation Division, Walter and Eliza Hall Institute of Medical Research, PO Royal Melbourne Hospital, Victoria 3050, Australia
| | | | | | | |
Collapse
|
25
|
Dilts SM, Solvason N, Lafferty KJ. The role of CD4 and CD8 T cells in the development of autoimmune diabetes. J Autoimmun 1999; 13:285-90. [PMID: 10550215 DOI: 10.1006/jaut.1999.0323] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- S M Dilts
- The John Curtin School of Medical Research, Division of Molecular Medicine, Australian National University, Canberra, ACT, 0200, Australia
| | | | | |
Collapse
|
26
|
|
27
|
Thomas HE, Darwiche R, Corbett JA, Kay TWH. Evidence That β Cell Death in the Nonobese Diabetic Mouse Is Fas Independent. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.3.1562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Recent studies suggest that Fas expression on pancreatic β cells may be important in the development of autoimmune diabetes in the nonobese diabetic (NOD) mouse. To address this, pancreatic islets from NOD mice were analyzed by flow cytometry to directly identify which cells express Fas and Fas ligand (FasL) ex vivo and after in vitro culture with cytokines. Fas expression was not detected on β cells isolated from young (35 days) NOD mice. In vitro, incubation of NOD mouse islets with both IL-1 and IFN-γ was required to achieve sufficient Fas expression and sensitivity for islets to be susceptible to lysis by soluble FasL. In islets isolated from older (≥125 days) NOD mice, Fas expression was detected on a limited number of β cells (1–5%). FasL was not detected on β cells from either NOD or Fas-deficient MRLlpr/lpr islets. Also, both NOD and MRLlpr/lpr islets were equally susceptible to cytokine-induced cell death. This eliminates the possibility that cytokine-treated murine islet cells commit “suicide” due to simultaneous expression of Fas and FasL. Last, we show that NO is not required for cytokine-induced Fas expression and Fas-mediated apoptosis of islet cells. These findings indicate that β cells can be killed by Fas-dependent cytotoxicity; however, our results raise further doubts about the clinical significance of Fas-mediated β cell destruction because few Fas-positive cells were isolated immediately before the development of diabetes.
Collapse
Affiliation(s)
- Helen E. Thomas
- *Autoimmunity and Transplantation Division, The Walter and Eliza Hall Institute of Medical Research, P.O. Royal Melbourne Hospital, Victoria, Australia; and
| | - Rima Darwiche
- *Autoimmunity and Transplantation Division, The Walter and Eliza Hall Institute of Medical Research, P.O. Royal Melbourne Hospital, Victoria, Australia; and
| | - John A. Corbett
- †Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Thomas W. H. Kay
- *Autoimmunity and Transplantation Division, The Walter and Eliza Hall Institute of Medical Research, P.O. Royal Melbourne Hospital, Victoria, Australia; and
| |
Collapse
|
28
|
Stephens LA, Thomas HE, Ming L, Grell M, Darwiche R, Volodin L, Kay TW. Tumor necrosis factor-alpha-activated cell death pathways in NIT-1 insulinoma cells and primary pancreatic beta cells. Endocrinology 1999; 140:3219-27. [PMID: 10385418 DOI: 10.1210/endo.140.7.6873] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tumor necrosis factor-alpha (TNFalpha) is a potential mediator of beta cell destruction in insulin-dependent diabetes mellitus. We have studied TNF-responsive pathways leading to apoptosis in beta cells. Primary beta cells express low levels of the type I TNF receptor (TNFR1) but do not express the type 2 receptor (TNFR2). Evidence for TNFR1 expression on beta cells came from flow cytometry using monoclonal antibodies specific for TNFR1 and TNFR2 and from RT-PCR of beta cell RNA. NIT-1 insulinoma cells similarly expressed TNFR1 (at higher levels than primary beta cells) as detected by flow cytometry and radio-binding studies. TNF induced NF-kappaB activation in both primary islet cells and NIT-1 cells. Apoptosis in response to TNFalpha was observed in NIT-1 cells whereas apoptosis of primary beta cells required both TNFalpha and interferon-gamma (IFNgamma). Apoptosis could be prevented in NIT-1 cells by expression of dominant negative Fas-associating protein with death domain (dnFADD). Apoptosis in NIT-1 cells was increased by coincubation with IFNgamma, which also increased caspase 1 expression. These data show that TNF-activated pathways capable of inducing apoptotic cell death are present in beta cells. Caspase activation is the dominant pathway of TNF-induced cell death in NIT-1 cells and may be an important mechanism of beta cell damage in insulin-dependent diabetes mellitus.
Collapse
Affiliation(s)
- L A Stephens
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
29
|
Höglund P, Mintern J, Waltzinger C, Heath W, Benoist C, Mathis D. Initiation of autoimmune diabetes by developmentally regulated presentation of islet cell antigens in the pancreatic lymph nodes. J Exp Med 1999; 189:331-9. [PMID: 9892615 PMCID: PMC2192987 DOI: 10.1084/jem.189.2.331] [Citation(s) in RCA: 332] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Little is known about the events triggering lymphocyte invasion of the pancreatic islets in prelude to autoimmune diabetes. For example, where islet-reactive T cells first encounter antigen has not been identified. We addressed this issue using BDC2.5 T cell receptor transgenic mice, which express a receptor recognizing a natural islet beta cell antigen. In BDC2.5 animals, activated T cells were found only in the islets and the lymph nodes draining them, and there was a close temporal correlation between lymph node T cell activation and islet infiltration. When naive BDC2.5 T cells were transferred into nontransgenic recipients, proliferating cells were observed only in pancreatic lymph nodes, and this occurred significantly before insulitis was detectable. Surprisingly, proliferation was not seen in 10-day-old recipients. This age-dependent dichotomy was reproduced in a second transfer system based on an unrelated antigen artificially expressed on beta cells. We conclude that beta cell antigens are transported specifically to pancreatic lymph nodes, where they trigger reactive T cells to invade the islets. Systemic or extrapancreatic T cell priming, indicative of activation via molecular mimicry or superantigens, was not seen. Compromised presentation of beta cell antigens in the pancreatic lymph nodes of juvenile animals may be the root of a first "checkpoint" in diabetes progression.
Collapse
Affiliation(s)
- P Höglund
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/INSERM/ULP), Strasbourg, 67404 Illkirch Cedex, France
| | | | | | | | | | | |
Collapse
|
30
|
Thomas HE, Parker JL, Schreiber RD, Kay TW. IFN-gamma action on pancreatic beta cells causes class I MHC upregulation but not diabetes. J Clin Invest 1998; 102:1249-57. [PMID: 9739059 PMCID: PMC509108 DOI: 10.1172/jci2899] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We have generated transgenic nonobese diabetic (NOD) mice expressing dominant negative mutant IFN-gamma receptors on pancreatic beta cells to investigate whether the direct effects of IFN-gamma on beta cells contribute to autoimmune diabetes. We have also quantitated by flow cytometry the rise in class I MHC on beta cells of NOD mice with increasing age and degree of islet inflammatory infiltrate. Class I MHC expression increases gradually with age in wild-type NOD mice; however, no such increase is observed in the transgenic beta cells. The transgenic mice develop diabetes at a similar rate to that of wild-type animals. This study dissociates class I MHC upregulation from progression to diabetes, shows that the rise in class I MHC is due to local IFN-gamma action, and eliminates beta cells as the targets of IFN-gamma in autoimmune diabetes.
Collapse
Affiliation(s)
- H E Thomas
- Autoimmunity and Transplantation Division, Walter and Eliza Hall Institute of Medical Research, Victoria 3050, Australia
| | | | | | | |
Collapse
|
31
|
Delovitch TL, Singh B. The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity 1997; 7:727-38. [PMID: 9430219 DOI: 10.1016/s1074-7613(00)80392-1] [Citation(s) in RCA: 501] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- T L Delovitch
- The John P. Robarts Research Institute, Department of Microbiology and Immunology, University of Western Ontario, London, Canada.
| | | |
Collapse
|