1
|
Guan H, Jia Q, Guo Z, Han X, Zhang H, Hao L, Wu C, Liu J. Emissions of Semi-Volatile Organic Compounds from Architectural Coatings and Polyvinyl Chloride Floorings: Microchamber Method. Molecules 2024; 29:4445. [PMID: 39339440 PMCID: PMC11434159 DOI: 10.3390/molecules29184445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Semi-volatile organic compounds (SVOCs) are modern chemical substances that are present in large quantities in indoor environments. Understanding the emission of SVOCs from building materials is essential to identify the main sources of indoor SVOCs and to improve indoor air quality. In this study, a reference method employing custom-designed microchambers (630 mL) was optimized by improving the structure of the gas path and adding polytetrafluoroethylene inner coating to the chamber. After optimization, the recoveries of the microchamber method were significantly improved (75.4-96.7%), and the background in the microchamber was greatly reduced (<0.02 μg/h). By using the microchamber method, 33 SVOCs (including two alkanes, one aromatic, one nitrogen compound, and twenty-nine oxygenated compounds) and 32 SVOCs (including seven alkanes, eight aromatics, and seventeen oxygenated compounds) were detected in the emissions of the architectural coating and the PVC flooring samples, respectively. The area-specific emission rates (SERa) of total SVOCs emitted from architectural coatings and PVC floorings were in the range of 4.09-1309 μg/m2/h) (median: 10.3 μg/m2/h) and 0.508-345 μg/m2/h (median: 11.9 μg/m2/h), respectively. Propanoic acid had the highest SERa (3143 μg/m2/h) in architectural coatings, while methylbenzene (345 μg/m2/h), 2-methylnaphthalene (65.2 μg/m2/h), and naphthalene (60.3 μg/m2/h) were main SVOCs emitted from PVC floorings. Meanwhile, the average second-stage (adsorbed phase) emission mass of the total SVOCs accounts for 66.3% and 47.3% in architectural coatings and PVC floorings, respectively, suggesting that the SVOCs emitted from building materials have a strong tendency to be absorbed on the surface of the room, e.g., the interior wall, the desk or even the skin.
Collapse
Affiliation(s)
- Hongyan Guan
- China Testing & Certification International Group Co., Ltd., Beijing 100024, China; (H.G.); (Q.J.); (H.Z.); (L.H.)
| | - Qi Jia
- China Testing & Certification International Group Co., Ltd., Beijing 100024, China; (H.G.); (Q.J.); (H.Z.); (L.H.)
| | - Zhongbao Guo
- China Testing & Certification International Group Co., Ltd., Beijing 100024, China; (H.G.); (Q.J.); (H.Z.); (L.H.)
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (X.H.); (C.W.); (J.L.)
| | - Xu Han
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (X.H.); (C.W.); (J.L.)
| | - Huiyu Zhang
- China Testing & Certification International Group Co., Ltd., Beijing 100024, China; (H.G.); (Q.J.); (H.Z.); (L.H.)
| | - Liteng Hao
- China Testing & Certification International Group Co., Ltd., Beijing 100024, China; (H.G.); (Q.J.); (H.Z.); (L.H.)
| | - Chuandong Wu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (X.H.); (C.W.); (J.L.)
| | - Jiemin Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (X.H.); (C.W.); (J.L.)
- Beijing Institute of Graphic Communication, Beijing 102600, China
| |
Collapse
|
2
|
Melzi A, Zecchin S, Gomarasca S, Abruzzese A, Cavalca L. Ecological indicators and biological resources for hydrocarbon rhizoremediation in a protected area. Front Bioeng Biotechnol 2024; 12:1379947. [PMID: 38681962 PMCID: PMC11046468 DOI: 10.3389/fbioe.2024.1379947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Spillage from oil refineries, pipelines, and service stations consistently leads to soil, food and groundwater contamination. Bacterial-assisted phytoremediation is a non-invasive and sustainable solution to eliminate or decrease the concentration of xenobiotic contaminants in the environment. In the present study, a protected area interested by a fuel discharge was considered to assess a bioremediation intervention. From the spill point, a plume of contamination flowed South-West into the aquifer, eventually reaching a wetland area. Soils, groundwaters and plants belonging to the species Scirpus sylvaticus (L.) were sampled. In the majority of the soil samples, concentrations of total petroleum hydrocarbons, both C ≤ 12 and C > 12, exceeded legal limits set forth in Directive 2000/60/EC. The analysis of diatom populations, used as ecological indicators, evidenced morphology alterations and the presence of Ulnaria ulna and Ulnaria biceps species, previously detected in hydrocarbon-polluted waters. Tests for phytotoxicity and phytodegradation, carried out in soil mesocosms, planted with Zea mays and Helianthus annuus, demonstrated that both species significantly contributed to the removal of total petroleum hydrocarbons. Removal of C ≤ 12 and C > 12 petroleum hydrocarbons was in the range of 80%-82% for Z. mays and 71%-72% for H. annuus. Microbial communities inhabiting high organic carbon and vegetated soils were more active in hydrocarbon degradation than those inhabiting subsoils, as evidenced by soil slurry experiments. The abundance of functional genes encoding toluene-benzene monooxygenase (tbmD) and alkane hydroxylase (alkB), quantified in environmental samples, confirmed that the plant rhizosphere recruited a microbial community with higher biodegradation capacity. Bacterial strains isolated from the sampling site were able to grow on model hydrocarbons (hexane, hexadecane and o-, m-, p-xylene) as sole carbon and energy sources, indicating that a natural bio-attenuation process was on-going at the site. The bacterial strains isolated from rhizosphere soil, rhizoplane and endosphere showed plant growth promoting traits according to in vitro and in vivo tests on Z. mays and Oryza sativa, allowing to forecast a possible application of bacterial assisted rhizoremediation to recover the protected area.
Collapse
Affiliation(s)
- Alice Melzi
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Sarah Zecchin
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Stefano Gomarasca
- Dipartimento di Scienze e Politiche Ambientali (ESP), Università degli Studi di Milano, Milano, Italy
| | - Alessandro Abruzzese
- Dipartimento di Scienze Agrarie e Ambientali (DISAA), Università degli Studi di Milano, Milano, Italy
| | - Lucia Cavalca
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
3
|
Ravi A, Ravuri M, Krishnan R, Narenkumar J, Anu K, Alsalhi MS, Devanesan S, Kamala-Kannan S, Rajasekar A. Characterization of petroleum degrading bacteria and its optimization conditions on effective utilization of petroleum hydrocarbons. Microbiol Res 2022; 265:127184. [PMID: 36115172 DOI: 10.1016/j.micres.2022.127184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 11/27/2022]
Abstract
Hydrocarbon contamination is continuing to be a serious environmental problem because of their toxicity. Hydrocarbon components have been known to be carcinogens and neurotoxic organic pollutants. The physical and chemical methods of petroleum removal have become ineffective and also are very costly. Therefore, bioremediation is considered the promising technology for the treatment of these contaminated sites since it is cost-effective and will lead to complete mineralization.The current study also concentrates on bioremediation of petroleum products by bacterium isolated from petroleum hydrocarbon contaminated soil. The current work shows that bacterial strains obtained from a petroleum hydrocarbon contaminated environment may degrade petroleum compounds. Two strains Bacillus licheniformis ARMP2 and Pseudomonas aeruginosa ARMP8 were identified as petroleum-degrading bacteria of the isolated bacterial colonies. The best growth conditions for the ARMP2 strain were determined to be pH 9, temperature 29 °C with sodium nitrate as its nitrogen source, whereas for the ARMP8 strain the optimal growth was found at pH 7, temperature 39 °C, and ammonium chloride as the nitrogen source. Both strains were shown to be effective at degrading petroleum chemicals confirmed by GCMS. Overall petroleum product degradation efficiency of the strains ARMP2 and ARMP8 was about 88 % and 73 % respectively in 48 h.The strains Bacillus licheniformis ARMP2 and Pseudomonas aeruginosa ARMP8 were shown to be effective at degrading petroleum compounds in the current study. Even greater results might be obtained if the organisms were utilised in consortia or the degradation time period was extended.
Collapse
Affiliation(s)
- Ashwini Ravi
- Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous), Chennai, Tamilnadu 600106, India.
| | - Mounesh Ravuri
- Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous), Chennai, Tamilnadu 600106, India
| | - Ramkishore Krishnan
- Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous), Chennai, Tamilnadu 600106, India
| | - Jayaraman Narenkumar
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu 600073, India
| | - Kasi Anu
- PG and Research Department of Zoology, Auxilium College for Women (Autonomous), Gandhinagar, Vellore, Tamilnadu 632007, India
| | - Mohamad S Alsalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia.
| | - Seralathan Kamala-Kannan
- Division of Biotechnology Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Science, Jeonbuk National University, Iksan 54596, South Korea
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu 632115, India.
| |
Collapse
|
4
|
Peng L, Lin Y, Meng F, Wu J, Zheng Y, Sun T, Wang G. Environmental fate and aquatic effects of propylbenzenes and trimethylbenzenes: A review. CHEMOSPHERE 2021; 264:128533. [PMID: 33059290 DOI: 10.1016/j.chemosphere.2020.128533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Propylbenzenes (PBZs) and trimethylbenzenes (TMBs) are aromatic hydrocarbon compounds widely used in many industries with potential release to different environments. The fate and aquatic effects of these compounds in the environment were evaluated. Evidence suggests that PBZs and TMBs will rapidly volatilise from water and bioaccumulate in aquatic organisms. Under both aerobic and anaerobic conditions, these compounds are readily biodegradable, whereby 1,2,3-TMB is more stable than the others. In air, all five compounds have atmospheric photo-oxidation half-lives ranging from 0.31 to 1.55 d. The toxicity data collectively show that PBZs, 1,2,4- and 1,3,5-TMB pose high acute toxicity effects on aquatic organisms. Furthermore, freshwater species are more sensitive to these compounds than marine species. There is not much data on the occurrence of PZBs and TMBs in the aquatic environment. This review presents the current state of knowledge on the fate of PBZs and TMBs. Moreover, the acute and joint toxicity of these compounds to different aquatic organisms, especially in marine organisms, warrants further investigation.
Collapse
Affiliation(s)
- Lihong Peng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yufei Lin
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Jiangyue Wu
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, China
| | - Yang Zheng
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, China
| | - Tianli Sun
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, China
| | - Guoshan Wang
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, China
| |
Collapse
|
5
|
Iqbal A, Arshad M, Karthikeyan R, Gentry TJ, Rashid J, Ahmed I, Schwab AP. Diesel degrading bacterial endophytes with plant growth promoting potential isolated from a petroleum storage facility. 3 Biotech 2019; 9:35. [PMID: 30622873 PMCID: PMC6320702 DOI: 10.1007/s13205-018-1561-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/29/2018] [Indexed: 12/15/2022] Open
Abstract
Thirteen (13) endophytic bacterial strains were isolated from Echinochloa crus-galli (Cockspur grass) and Cynodon dactylon (Bermuda grass) growing in an oil-contaminated site at a petroleum storage and transportation facility. Of the 13 strains assessed for their potential to degrade monoaromatic compounds (phenol, toluene, and xylene) and diesel and for their plant growth promoting (PGP) ability (phosphate solubilization, siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase production), isolate J10 (identified as Pseudomonas sp. by 16S rRNA gene sequencing) was found to the best diesel biodegrader with the best PGP traits. The Monod model used for Pseudomonas sp. J10 growth kinetics on diesel fuel as the sole carbon source showed that the maximum specific bacterial growth rate was 0.0644 h- 1 and the half velocity constant (K s ) was estimated as 4570 mg L- 1. The overall growth yield coefficient and apparent growth yield were determined to be 0.271 g h- 1 and 0.127 g cells/g substrate, respectively. Pseudomonas sp. J10 removed 69% diesel in four days as determined by gas chromatographic (GC) analysis. These findings could assist in developing an endophyte assisted efficient diesel biodegradation system using Pseudomonas sp. J10 isolated from Echinochloa crus-galli.
Collapse
Affiliation(s)
- Aneela Iqbal
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Sector H-12, Islamabad, 44000 Pakistan
- Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843 USA
- Soil and Crop Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Sector H-12, Islamabad, 44000 Pakistan
| | - Raghupathy Karthikeyan
- Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Terry J. Gentry
- Soil and Crop Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Jamshaid Rashid
- Department of Environmental Science, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | - Iftikhar Ahmed
- Bio-resource Conservation Institute (BCI), National Culture Collection of Pakistan (NCCP), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500 Pakistan
| | - Arthur Paul Schwab
- Soil and Crop Sciences, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
6
|
Kinetics of diesel degradation by an acrylamide-degrading bacterium. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2014. [DOI: 10.1007/s12210-014-0344-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Improved PCR for identification of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2013; 97:3643-51. [PMID: 23504075 DOI: 10.1007/s00253-013-4709-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
The aim of the present study was to develop a noble and specific marker for a quantitative polymerase chain reaction (PCR) assay for the species-specific detection of Pseudomonas aeruginosa based on the O-antigen acetylase gene. It is an important challenge to characterize populations of the bacterium P. aeruginosa, an opportunist by virtue of its physiological and genetic adaptability. However, molecular and serological methods currently available for sensitive and specific detection of P. aeruginosa are by no means satisfactory because there have been critical defects in the diagnosis and identification of P. aeruginosa strains in that these assays also detect other Pseudomonas species, or do not obtain amplified products from P. aeruginosa strains. Therefore, a primer set was designed based on the O-antigen acetylase gene of P. aeruginosa PA01 because it has been known that this gene is structurally diverse among species. The specificity of the primer set was evaluated using genomic DNA from six isolates of P. aeruginosa, 18 different species of Pseudomonas, and 23 other reference pathogenic bacteria. The primer set used in the PCR assay amplified a 232-bp amplicon for only six P. aeruginosa strains. The assay was also able to detect at least 1.41 × 10(3) copies/μl of cloned amplified target DNA using purified DNA, or 2.7 × 10(2) colony-forming unit per reaction when using calibrated cell suspension. In conclusion, this assay can be applied as a practical diagnostic method for epidemiological research and the sanitary management of water with a low level or latent infection of P. aeruginosa.
Collapse
|
8
|
Das R, Tiwary BN. Isolation of a novel strain ofPlanomicrobium chinensefrom diesel contaminated soil of tropical environment. J Basic Microbiol 2013; 53:723-32. [DOI: 10.1002/jobm.201200131] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 07/03/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Reena Das
- Department of Biotechnology; Guru Ghasidas Vishwavidyalaya Central University; Bilaspur India
| | - Bhupendra N. Tiwary
- Department of Biotechnology; Guru Ghasidas Vishwavidyalaya Central University; Bilaspur India
| |
Collapse
|
9
|
You Y, Shim J, Cho CH, Ryu MH, Shea PJ, Kamala-Kannan S, Chae JC, Oh BT. Biodegradation of BTEX mixture byPseudomonas putidaYNS1 isolated from oil-contaminated soil. J Basic Microbiol 2012; 53:469-75. [DOI: 10.1002/jobm.201200067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/09/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Youngnam You
- Division of Biotechnology; Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University; Iksan; Korea
| | - Jaehong Shim
- Division of Biotechnology; Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University; Iksan; Korea
| | - Choa-Hyoung Cho
- Department of Food Science and Biotechnology; College of Environmental and Bioresource Sciences, Chonbuk National University; Iksan; Korea
| | - Moon-Hee Ryu
- Department of Food Science and Biotechnology; College of Environmental and Bioresource Sciences, Chonbuk National University; Iksan; Korea
| | - Patrick J. Shea
- School of Natural Resources, University of Nebraska-Lincoln; Lincoln; USA
| | - Seralathan Kamala-Kannan
- Division of Biotechnology; Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University; Iksan; Korea
| | - Jong-Chan Chae
- Division of Biotechnology; Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University; Iksan; Korea
| | - Byung-Taek Oh
- Division of Biotechnology; Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University; Iksan; Korea
| |
Collapse
|
10
|
Lee CS, Wetzel K, Buckley T, Wozniak D, Lee J. Rapid and sensitive detection of Pseudomonas aeruginosa in chlorinated water and aerosols targeting gyrB gene using real-time PCR. J Appl Microbiol 2011; 111:893-903. [PMID: 21794031 PMCID: PMC3173516 DOI: 10.1111/j.1365-2672.2011.05107.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AIMS For the rapid detection of Pseudomonas aeruginosa from chlorinated water and aerosols, gyrB gene-based real-time PCR assay was developed and investigated. METHODS AND RESULTS Two novel primer sets (pa722F/746MGB/899R and pa722F/746MGB/788R) were designed using the most updated 611 Pseudomonas and 748 other bacterial gyrB genes for achieving high specificity. Their specificity showed 100% accuracy when tested with various strains including clinical isolates from cystic fibrosis patients. The assay was tested with Ps. aeruginosa-containing chlorinated water and aerosols to simulate the waterborne and airborne transmission routes (detection limit 3·3 × 10² CFU per PCR-2·3 × 10³ CFU per PCR). No chlorine interference in real-time PCR was observed at drinking water level (c. 1 mg l⁻¹), but high level of chorine (12 mg l⁻¹) interfered the assay, and thus neutralization was needed. Pseudomonas aeruginosa in aerosol was successfully detected after capturing with gelatin filters with minimum 2 min of sampling time when the initial concentration of 10⁴ CFU ml⁻¹ bacteria existed in the nebulizer. CONCLUSIONS A highly specific and rapid assay (2-3 h) was developed by targeting gyrB gene for the detection of Ps. aeruginosa in chlorinated water and aerosols, combined with optimized sample collection methods and sample processing, so the direct DNA extraction from either water or aerosol was possible while achieving the desired sensitivity of the method. SIGNIFICANCE AND IMPACT OF THE STUDY The new assay can provide timely and accurate risk assessment to prevent Ps. aeruginosa exposure from water and aerosol, resulting in reduced disease burden, especially among immune-compromised and susceptible individuals. This approach can be easily utilized as a platform technology for the detection of other types of micro-organisms, especially for those that are transmitted via water and aerosol routes, such as Legionella pneumophila.
Collapse
Affiliation(s)
- C S Lee
- College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
11
|
Lee EH, Lee SH, Cho KS. Bacterial diversity dynamics in a long-term petroleum-contaminated soil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2011; 46:281-290. [PMID: 21308599 DOI: 10.1080/10934529.2011.535435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Bacterial diversity dynamics were investigated in the soil samples in different distances and depths from/at a long-term petroleum-contaminated site. Microbial activity in the soil samples showed ATP values closely correlated with organic matter content (OC) and total petroleum hydrocarbon (TPH). Bacterial community diversity (H) and evenness (J) using PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) and PCR-T-RFLP (terminal restriction fragment length polymorphism) results showed positive correlation with concentration of TPH or OC, but tmoA (toluene monooxygenase gene)-based bacterial H and J using a PCR-T-RFLP result did not. No significant difference of H and J values in the bacterial and the tmoA communities was observed. The bacterial community structure characterized by PCR-DGGE and PCR-T-RFLP techniques showed similarity according to soil sampling distance rather than soil sampling depth. Canonical correspondence analysis demonstrated that OC including TPH had the most significant effect on the bacterial community diversity at the long-term petroleum-contaminated site.
Collapse
Affiliation(s)
- Eun-Hee Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | | | | |
Collapse
|
12
|
Amer RA, Nasier MM, El-Helow ER. Biodegradation of Monocyclic Aromatic Hydrocarbons by a Newly Isolated Pseudomonas strain. ACTA ACUST UNITED AC 2008. [DOI: 10.3923/biotech.2008.630.640] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Piskonen R, Nyyssönen M, Itävaara M. Evaluating the biodegradation of aromatic hydrocarbons by monitoring of several functional genes. Biodegradation 2008; 19:883-95. [PMID: 18425625 DOI: 10.1007/s10532-008-9190-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
Abstract
Various microbial activities determine the effectiveness of bioremediation processes. In this work, we evaluated the feasibility of gene array hybridization for monitoring the efficiency of biodegradation processes. Biodegradation of 14C-labelled naphthalene and toluene by the aromatic hydrocarbon-degrading Pseudomonas putida F1, P. putida mt-2 and P. putida G7 was followed in mixed liquid culture microcosm by a preliminary, nylon membrane-based gene array. In the beginning of the study, toluene was degraded rapidly and increased amount of toluene degradation genes was detected by the preliminary gene array developed for the study. After toluene was degraded, naphthalene mineralization started and the amount of naphthalene degradation genes increased as biodegradation proceeded. The amount of toluene degradation genes decreased towards the end of the study. The hybridization signal intensities determined by preliminary gene array were in good agreement with mineralization of naphthalene and toluene and with the amount of naphthalene dioxygenase and toluene dioxygenase genes quantified by dot blot hybridization. The clear correlation between the results obtained by the preliminary array and the biodegradation process suggests that gene array methods can be considered as a promising tool for monitoring the efficiency of biodegradation processes.
Collapse
Affiliation(s)
- Reetta Piskonen
- VTT Technical Research Centre of Finland, Tietotie 2, P. O. Box 1000, 02044 VTT, Espoo, Finland.
| | | | | |
Collapse
|
14
|
Lavenir R, Jocktane D, Laurent F, Nazaret S, Cournoyer B. Improved reliability of Pseudomonas aeruginosa PCR detection by the use of the species-specific ecfX gene target. J Microbiol Methods 2007; 70:20-9. [PMID: 17490767 DOI: 10.1016/j.mimet.2007.03.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 03/14/2007] [Accepted: 03/20/2007] [Indexed: 10/23/2022]
Abstract
Reliability of the most widely used PCR screenings for the human opportunistic pathogen Pseudomonas aeruginosa was evaluated. Specificity analyses showed the gyrB, toxA, and 16S-23S rDNA internal transcribed spacer (ITS) but not the 16S rDNA, oprI, oprL, and fliC PCR screenings to discriminate P. aeruginosa cells from a collection of fifteen Pseudomonas species. Sensitivity analyses showed all these PCR except the toxA one to be reliable for 100% of the P. aeruginosa strains tested in this study. Specificity of the ITS and gyrB PCR screenings were further investigated on 9 soils and 29 freshwater DNA extracts of different origins, and on DNA extracted from 3 horse manures. The ITS PCR showed the highest efficacy on water and soil DNA extracts but only the gyrB one detected P. aeruginosa DNA in horse manure. DNA sequence analyses of ITS and gyrB PCR products revealed uncertainties and false positive results in these P. aeruginosa identification schemes. A novel PCR screening, targeting the ecfX gene, was thus developed. ecfX encodes an ECF (extracytoplasmic function) sigma factor which is restricted to P. aeruginosa, and might play a role in haem-uptake and virulence. Specificity and sensitivity analyses showed the ecfX PCR screening to be highly reliable, giving PCR products of the expected size for all P. aeruginosa strains tested and not amplifying DNA from any of the other Pseudomonas species tested. The ecfX PCR screening was validated on environmental DNA extracts. DNA sequence analyses of the ecfX PCR products confirmed their identity and allocation to P. aeruginosa. These investigations suggest a preferential colonization of water rather than soil environments by P. aeruginosa. Detection limits of P. aeruginosa in environmental samples were improved by the ecfX PCR screening.
Collapse
Affiliation(s)
- R Lavenir
- Research group on Bacterial Opportunistic Pathogens and Environment Université de Lyon, Lyon, F-69003, France
| | | | | | | | | |
Collapse
|
15
|
von der Weid I, Marques JM, Cunha CD, Lippi RK, Dos Santos SCC, Rosado AS, Lins U, Seldin L. Identification and biodegradation potential of a novel strain of Dietzia cinnamea isolated from a petroleum-contaminated tropical soil. Syst Appl Microbiol 2006; 30:331-9. [PMID: 17174505 DOI: 10.1016/j.syapm.2006.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Indexed: 11/22/2022]
Abstract
A bacterial strain, named P4, isolated previously from microcosms containing oil-contaminated soil collected from an environmentally protected area of a tropical Atlantic forest (Biological Reserve of Poço das Antas) located in Brazil was identified as Dietzia cinnamea by morphological, biochemical and genotypic tests. Arabian Light and Marlin oils were both degraded when strain P4 was tested for oil degradation ability in microplates. Total Petroleum Hydrocarbons (TPH) analysis, determined by gas chromatography, showed that strain P4 degraded a wide range of n-alkanes, and also pristane and phytane. Furthermore, this strain was also able to grow in mineral liquid media amended with carbazole, quinoline, naphthalene, toluene, gasoline and diesel as the sole carbon sources. The species D. cinnamea has been previously described with only one representative strain isolated from a perianal swab of a patient with a bone marrow transplant. With the results presented here this species is implicated not only as a human pathogen but also as a potential strain for further studies concerning its role for bioremediation of oil contaminated soil.
Collapse
Affiliation(s)
- Irene von der Weid
- Laboratório de Genética Microbiana, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Borin S, Marzorati M, Brusetti L, Zilli M, Cherif H, Hassen A, Converti A, Sorlini C, Daffonchio D. Microbial Succession in a Compost-packed Biofilter Treating Benzene-contaminated Air. Biodegradation 2006; 17:181-91. [PMID: 16502043 DOI: 10.1007/s10532-005-7565-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2005] [Indexed: 10/25/2022]
Abstract
Air artificially contaminated with increasing concentrations of benzene was treated in a laboratory scale compost-packed biofilter for 240 days with a removal efficiency of 81-100%. The bacterial community in the packing material (PM) at different heights of the biofilter was analysed every 60 days. Bacterial plate counts and ribosomal intergenic spacer analysis (RISA) of the isolated strains showed that the number of cultivable aerobic heterotrophic bacteria and the species diversity increased with benzene availability. Identification of the isolated species and the main bands in denaturing gradient gel electrophoresis (DGGE) profiles from total compost DNA during the treatment revealed that, at a relatively low volumetric benzene load (1.2< or =VBL< or =6.4 g m(-3) (PM) h(-1)), besides low G+C Gram positive bacteria, originally present in the packing compost, bacteroidetes and beta- and gamma-proteobacteria became detectable in the colonising population. At the VBL value (24.8 g m(-3) (PM) h(-1)) ensuring the maximum elimination capacity of the biofilter (20.1 g m(-3) (PM) h(-1)), strains affiliated to the genus Rhodococcus dominated the microflora, followed by beta-proteobacteria comprising the genera Bordetella and Neisseria. Under these conditions, more than 35% of the isolated strains were able to grow on benzene as the sole carbon source. Comparison of DGGE and automated RISA profiles of the total community and isolated strains showed that a complex bacterial succession occurred in the reactor in response to the increasing concentrations of the pollutant and that cultivable bacteria played a major role in benzene degradation under the adopted conditions.
Collapse
Affiliation(s)
- Sara Borin
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Taki H, Syutsubo K, Mattison RG, Harayama S. Identification and characterization of o-xylene-degrading Rhodococcus spp. which were dominant species in the remediation of o-xylene-contaminated soils. Biodegradation 2006; 18:17-26. [PMID: 16485082 DOI: 10.1007/s10532-005-9030-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 11/02/2005] [Indexed: 10/25/2022]
Abstract
Soils contaminated with o-xylene were more difficult to bioremediate than those contaminated with other BTEX hydrocarbons (benzene, toluene, ethylbenzene, m-xylene and p-xylene). In order to identify microorganisms responsible for o-xylene degradation in soil, microbial community structure analyses were carried out with two soil samples in the presence of o-xylene and mineral nutrients. In two different soil samples, Rhodococcus opacus became abundant. We were also able to isolate o-xylene degrading Rhodococcus species from these soil samples. A primer set was developed to specifically detect a cluster of this Rhodococcus group including isolated Rhodococcus strains, Rhodococcus opacus and Rhodococcus koreensis. The growth of this bacterial group in an o-xylene-contaminated soil was followed by competitive PCR (cPCR). The decrease in o-xylene clearly paralleled the growth of the Rhodococcus group.
Collapse
Affiliation(s)
- Hironori Taki
- Marine Biotechnology Institute, 3-75-1 Heita, Kamaishi, Iwate 026-0001, Japan.
| | | | | | | |
Collapse
|
18
|
Menezes Bento F, de Oliveira Camargo FA, Okeke BC, Frankenberger WT. Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiol Res 2005; 160:249-55. [PMID: 16035236 DOI: 10.1016/j.micres.2004.08.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Biosurfactant production is a desirable property of hydrocarbon-degrading microorganisms (HDM). We characterized biosurfactant producing microbial populations from a Long Beach soil, California (USA) and a Hong Kong soil (China), contaminated with diesel oil. A total of 33 hydrocarbon-utilizing microorganisms were isolated from the soils. Twelve isolates and three defined consortia were tested for biosurfactant production and emulsification activity. The highest reduction of surface tension was achieved with a consortium of L1, L2 and L3 isolates from a Long Beach soil (41.4mN m(-1)). Isolate L1 (Acinetobacter junii) displayed the highest reduction of surface tension (46.5 mN m(-1)). The emulsifying capacity evaluated by the E24 emulsification index was highest in the culture of isolate L5 (74%). No substantial emulsification was achieved with the cell-free extracts, indicating that the emulsifying activity was not extracellular. Based on surface tension and the E24 index results, isolates F1, F2, F3, F4, L1, L2, L3 and L4 were identified by 16S rRNA gene sequencing as Bacillus cereus, Bacillus sphaericus, B. fusiformis, Acinetobacter junii, a non-cultured bacterium, Pseudomonas sp. and B. pumilus, respectively. Cluster analyses of 16S rRNA gene sequences of the bacterial isolates revealed 70% similarity amongst hydrocarbon-degrading bacterial community present in both soils. Five isolates (isolates F1, F2, F3, F4 and L4) belong to the Firmicutes order, two isolates (L1 and L3) belong to the Proteobacteria order and one isolate (L2) is an Actinomyces sp. Simpson's index (1 - D) and the Shannon-Weaver index (H) revealed more diversity of HDM in the Hong Kong soil, while evenness (E) and the equitability (J) data indicated that there was not a dominant population. Bacterial isolates displaying substantial potential for production of biosurfactants can be applied in the bioremediation of soils contaminated with petroleum hydrocarbons.
Collapse
Affiliation(s)
- Fátima Menezes Bento
- Departament of Soils, University of Rio Grande Sul, Porto Alegre, CEP 91590-900, RS, Brazil
| | | | | | | |
Collapse
|
19
|
Kahraman H, Geckil H. Degradation of Benzene, Toluene and Xylene byPseudomonas aeruginosa Engineered with theVitreoscilla Hemoglobin Gene. Eng Life Sci 2005. [DOI: 10.1002/elsc.200520088] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
20
|
Hendrickx B, Junca H, Vosahlova J, Lindner A, Rüegg I, Bucheli-Witschel M, Faber F, Egli T, Mau M, Schlömann M, Brennerova M, Brenner V, Pieper DH, Top EM, Dejonghe W, Bastiaens L, Springael D. Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site. J Microbiol Methods 2005; 64:250-65. [PMID: 15949858 DOI: 10.1016/j.mimet.2005.04.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Revised: 04/06/2005] [Accepted: 05/11/2005] [Indexed: 11/20/2022]
Abstract
Eight new primer sets were designed for PCR detection of (i) mono-oxygenase and dioxygenase gene sequences involved in initial attack of bacterial aerobic BTEX degradation and of (ii) catechol 2,3-dioxygenase gene sequences responsible for meta-cleavage of the aromatic ring. The new primer sets allowed detection of the corresponding genotypes in soil with a detection limit of 10(3)-10(4) or 10(5)-10(6) gene copies g(-1) soil, assuming one copy of the gene per cell. The primer sets were used in PCR to assess the distribution of the catabolic genes in BTEX degrading bacterial strains and DNA extracts isolated from soils sampled from different locations and depths (vadose, capillary fringe and saturated zone) within a BTEX contaminated site. In both soil DNA and the isolates, tmoA-, xylM- and xylE1-like genes were the most frequently recovered BTEX catabolic genes. xylM and xylE1 were only recovered from material from the contaminated samples while tmoA was detected in material from both the contaminated and non-contaminated samples. The isolates, mainly obtained from the contaminated locations, belonged to the Actinobacteria or Proteobacteria (mainly Pseudomonas). The ability to degrade benzene was the most common BTEX degradation phenotype among them and its distribution was largely congruent with the distribution of the tmoA-like genotype. The presence of tmoA and xylM genes in phylogenetically distant strains indicated the occurrence of horizontal transfer of BTEX catabolic genes in the aquifer. Overall, these results show spatial variation in the composition of the BTEX degradation genes and hence in the type of BTEX degradation activity and pathway, at the examined site. They indicate that bacteria carrying specific pathways and primarily carrying tmoA/xylM/xylE1 genotypes, are being selected upon BTEX contamination.
Collapse
Affiliation(s)
- Barbara Hendrickx
- Environmental and Process Technology (Vito), Flemish Institute for Technological Research, B-2400 Mol, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Izzo V, Notomista E, Picardi A, Pennacchio F, Di Donato A. The thermophilic archaeon Sulfolobus solfataricus is able to grow on phenol. Res Microbiol 2005; 156:677-89. [PMID: 15921893 DOI: 10.1016/j.resmic.2005.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 04/05/2005] [Accepted: 04/07/2005] [Indexed: 11/16/2022]
Abstract
Many eubacteria use aromatic molecules as a carbon and energy source, but only a few archaea have been reported to grow on aromatics. Degradation of aromatic hydrocarbons by aerobic bacteria is generally divided into an upper pathway, which produces dihydroxylated aromatic intermediates by the action of monooxygenases, and a lower pathway that processes these intermediates down to molecules that enter the citric acid cycle. Recently, analysis of the genome of the thermophilic archaeon Sulfolobus solfataricus revealed the existence of orfs coding for putative enzymes of the degradation pathway of aromatics, i.e., a cluster of orfs coding for the subunits of a hypothetical bacterial multicomponent monooxygenase (SsoMO), an orf coding for a catechol 2,3-dioxygenase (SsoC2,3O), and an orf coding for an enzyme of the lower pathway of the catechol metabolism. In this paper we report that S. solfataricus can efficiently grow on phenol as the sole source of carbon and energy. To our knowledge this is the first report of a thermophilic archaeon able to grow on an aromatic compound under aerobic conditions. Moreover, the cloning and heterologous expression and characterization of the thermophilic SsoC2,3O are reported.
Collapse
Affiliation(s)
- Viviana Izzo
- Dipartimento di Biologia strutturale e funzionale, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| | | | | | | | | |
Collapse
|
22
|
Hong JH, Kim J, Choi OK, Cho KS, Ryu HW. Characterization of a diesel-degrading bacterium, Pseudomonas aeruginosa IU5, isolated from oil-contaminated soil in Korea. World J Microbiol Biotechnol 2005. [DOI: 10.1007/s11274-004-3630-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Moharikar A, Purohit HJ, Kumar R. Microbial population dynamics at effluent treatment plants. ACTA ACUST UNITED AC 2005; 7:552-8. [PMID: 15931414 DOI: 10.1039/b406576j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The requirements for treated wastewater are becoming increasingly more stringent, and therefore the improved efficiency of biological treatment processes is indispensable at industrial effluent treatment plants (ETPs). Microorganisms such as bacteria play an important role in the natural cycling of materials and particularly in the decomposition of organic wastes. The knowledge of the interactions among these microbial populations needs to be harnessed for optimum evaluation and functioning of effluent treatment plants. Modern molecular techniques have revolutionized the methods of assessing these microbial populations. The combination of the results of these microbial assessments along with the on-site parameters at ETPs would favor an efficient treatment. In this review, the various approaches and importance of correlating the microbial population dynamics and treatment of wastewater at industrial ETPs has been elaborated.
Collapse
Affiliation(s)
- Aditi Moharikar
- National Environmental Engineering Research Institute, Environmental Genomics Unit, Nehru Marg, Nagpur, India
| | | | | |
Collapse
|
24
|
Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms. FEMS Microbiol Ecol 2004; 49:295-305. [DOI: 10.1016/j.femsec.2004.04.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Junca H, Pieper DH. Functional gene diversity analysis in BTEX contaminated soils by means of PCR-SSCP DNA fingerprinting: comparative diversity assessment against bacterial isolates and PCR-DNA clone libraries. Environ Microbiol 2004; 6:95-110. [PMID: 14756875 DOI: 10.1046/j.1462-2920.2003.00541.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Developments in molecular biology based techniques have led to rapid and reliable tools to characterize microbial community structures and to monitor their dynamics under in situ conditions. However, there has been a distinct lack of emphasis on monitoring the functional diversity in the environment. Genes encoding catechol 2,3-dioxygenases (C23O), as key enzymes of various aerobic aromatic degradation pathways, were used as functional targets to assess the catabolic gene diversity in differentially BTEX contaminated environments by polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP). Site specific PCR-SSCP fingerprints were obtained, showing that gene diversity experienced shifts correlated to temporal changes and levels of contamination. PCR-SSCP enabled the recovery of predominant gene polymorphs, and results closely matched with the information retrieved from random sequencing of PCR-DNA clone libraries. A new method for isolating strains capable of growing on BTEX compounds was developed to diminish preselection or enrichment bias and to assess the function of predominant gene polymorphs. C23O abundance in isolates correlated with the levels of BTEX pollution in the soil samples analysed. Isolates harbouring C23O genes, identical to the gene polymorph predominant in all contaminated sites analysed, showed an unexpected benzene but not toluene mineralizing phenotype whereas isolates harbouring a C23O gene variant differing by a single point mutation and observed in highly polluted sites only, were capable, among some other isolates, to mineralize benzene and toluene, indicating a catabolically determined sharing of carbon sources on-site. The PCR-SSCP technique is thus a powerful tool for assessing the diversity of functional genes and the identification of predominant gene polymorphs in environmental samples as a prerequisite to understand the functioning of microbial communities.
Collapse
Affiliation(s)
- Howard Junca
- Department of Environmental Microbiology, GBF-German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | |
Collapse
|
26
|
Cavalca L, Dell'Amico E, Andreoni V. Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monoxygenase genes. Appl Microbiol Biotechnol 2003; 64:576-87. [PMID: 14624316 DOI: 10.1007/s00253-003-1449-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2003] [Revised: 08/11/2003] [Accepted: 09/07/2003] [Indexed: 10/26/2022]
Abstract
The functional and phylogenetic biodiversity of bacterial communities in a benzene, toluene, ethylbenzene and xylene (BTEX)-polluted groundwater was analysed. To evaluate the feasibility of using an air sparging treatment to enhance bacterial degradative capabilities, the presence of degrading microorganisms was monitored. The amplification of gene fragments corresponding to toluene monooxygenase (tmo), catechol 1,2-dioxygenase, catechol 2,3-dioxygenase and toluene dioxygenase genes in DNA extracted directly from the groundwater samples was associated with the presence of indigenous degrading bacteria. Five months of air injection reduced species diversity in the cultivable community (as calculated by the Shannon-Weaver index), while little change was noted in the degree of biodiversity in the total bacterial community, as characterised by denaturing gradient gel electrophoresis (DGGE) analysis. BTEX-degrading strains belonged to the genera Pseudomonas, Microbacterium, Azoarcus, Mycobacterium and Bradyrhizobium. The degrading capacities of three strains in batch liquid cultures were also studied. In some of these microorganisms different pathways for toluene degradation seemed to operate simultaneously. Pseudomonas strains of the P24 operational taxonomic unit, able to grow only on catechol and not on BTEX, were the most abundant, and were present in the groundwater community at all stages of treatment, as evidenced both by cultivation approaches and by DGGE profiles. The presence of different tmo-like genes in phylogenetically distant strains of Pseudomonas, Mycobacterium and Bradyrhizobium suggested recent horizontal gene transfer in the groundwater.
Collapse
MESH Headings
- Actinomycetales/classification
- Actinomycetales/enzymology
- Actinomycetales/genetics
- Actinomycetales/isolation & purification
- Azoarcus/classification
- Azoarcus/enzymology
- Azoarcus/genetics
- Azoarcus/isolation & purification
- Bacteria/classification
- Bacteria/enzymology
- Bacteria/genetics
- Bacteria/isolation & purification
- Benzene/metabolism
- Benzene Derivatives/metabolism
- Biodegradation, Environmental
- Biodiversity
- Bradyrhizobium/classification
- Bradyrhizobium/enzymology
- Bradyrhizobium/genetics
- Bradyrhizobium/isolation & purification
- Catechol 1,2-Dioxygenase
- Catechol 2,3-Dioxygenase
- Catechols/metabolism
- DNA Fingerprinting
- DNA, Bacterial/analysis
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/isolation & purification
- Dioxygenases
- Gene Transfer, Horizontal
- Hydrocarbons, Aromatic/metabolism
- Molecular Sequence Data
- Mycobacterium/classification
- Mycobacterium/enzymology
- Mycobacterium/genetics
- Mycobacterium/isolation & purification
- Oxygenases/analysis
- Oxygenases/genetics
- Phylogeny
- Pseudomonas/classification
- Pseudomonas/enzymology
- Pseudomonas/genetics
- Pseudomonas/isolation & purification
- Toluene/metabolism
- Water Microbiology
- Water Pollutants, Chemical/metabolism
- Xylenes/metabolism
Collapse
Affiliation(s)
- L Cavalca
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | | | | |
Collapse
|
27
|
Oxidation of both termini of p- and m-xylene by Escherichia coli transformed with xylene monooxygenase gene. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1381-1177(02)00225-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|