1
|
Renzi G, Ladu F, Carta F, Supuran CT. The carbonic anhydrase enzymes as new targets for the management of neglected tropical diseases. Arch Pharm (Weinheim) 2025; 358:e2400626. [PMID: 39520343 PMCID: PMC11726158 DOI: 10.1002/ardp.202400626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Diseases caused by protozoan parasites represent a huge challenge to global health care, due to the lack of selective and efficient treatments for the management and spreading of such complex pathologies. The protozoans Trypanosoma cruzi (T. cruzi) and Leishmania spp. are the etiological agents of the so-called neglected tropical diseases (NTDs), that is, Chagas disease (CD) and leishmaniasis, respectively. In such a context, the metalloenzymes carbonic anhydrases (CAs; EC 4.2.1.1) emerged as potential protozoan druggable enzymes, being involved in the parasites' life cycle. Several studies suggested the relevance of the protozoan-expressed CAs as future candidates for the management of NTDs.
Collapse
Affiliation(s)
- Gioele Renzi
- NEUROFARBA DepartmentPharmaceutical and Nutraceutical Section, University of FlorenceSesto FiorentinoItaly
| | - Federico Ladu
- Department of Medicine, Surgery and PharmacyUniversity of SassariSassariItaly
| | - Fabrizio Carta
- NEUROFARBA DepartmentPharmaceutical and Nutraceutical Section, University of FlorenceSesto FiorentinoItaly
| | - Claudiu T. Supuran
- NEUROFARBA DepartmentPharmaceutical and Nutraceutical Section, University of FlorenceSesto FiorentinoItaly
| |
Collapse
|
2
|
Silvestrini MMA, Alessio GD, Frias BED, Sales Júnior PA, Araújo MSS, Silvestrini CMA, Brito Alvim de Melo GE, Martins-Filho OA, Teixeira-Carvalho A, Martins HR. New insights into Trypanosoma cruzi genetic diversity, and its influence on parasite biology and clinical outcomes. Front Immunol 2024; 15:1342431. [PMID: 38655255 PMCID: PMC11035809 DOI: 10.3389/fimmu.2024.1342431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, remains a serious public health problem worldwide. The parasite was subdivided into six distinct genetic groups, called "discrete typing units" (DTUs), from TcI to TcVI. Several studies have indicated that the heterogeneity of T. cruzi species directly affects the diversity of clinical manifestations of Chagas disease, control, diagnosis performance, and susceptibility to treatment. Thus, this review aims to describe how T. cruzi genetic diversity influences the biology of the parasite and/or clinical parameters in humans. Regarding the geographic dispersion of T. cruzi, evident differences were observed in the distribution of DTUs in distinct areas. For example, TcII is the main DTU detected in Brazilian patients from the central and southeastern regions, where there are also registers of TcVI as a secondary T. cruzi DTU. An important aspect observed in previous studies is that the genetic variability of T. cruzi can impact parasite infectivity, reproduction, and differentiation in the vectors. It has been proposed that T. cruzi DTU influences the host immune response and affects disease progression. Genetic aspects of the parasite play an important role in determining which host tissues will be infected, thus heavily influencing Chagas disease's pathogenesis. Several teams have investigated the correlation between T. cruzi DTU and the reactivation of Chagas disease. In agreement with these data, it is reasonable to suppose that the immunological condition of the patient, whether or not associated with the reactivation of the T. cruzi infection and the parasite strain, may have an important role in the pathogenesis of Chagas disease. In this context, understanding the genetics of T. cruzi and its biological and clinical implications will provide new knowledge that may contribute to additional strategies in the diagnosis and clinical outcome follow-up of patients with Chagas disease, in addition to the reactivation of immunocompromised patients infected with T. cruzi.
Collapse
Affiliation(s)
| | - Glaucia Diniz Alessio
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna Estefânia Diniz Frias
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Policarpo Ademar Sales Júnior
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Márcio Sobreira Silva Araújo
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Olindo Assis Martins-Filho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa Teixeira-Carvalho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Helen Rodrigues Martins
- Department of Pharmacy, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| |
Collapse
|
3
|
Eser M, Çavuş İ. In Vitro and In Silico Evaluations of the Antileishmanial Activities of New Benzimidazole-Triazole Derivatives. Vet Sci 2023; 10:648. [PMID: 37999471 PMCID: PMC10675599 DOI: 10.3390/vetsci10110648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Benzimidazole and triazole rings are important pharmacophores, known to exhibit various pharmacological activities in drug discovery. In this study, it was purposed to synthesize new benzimidazole-triazole derivatives and evaluate their antileishmanial activities. The targeted compounds (5a-5h) were obtained after five chemical reaction steps. The structures of the compounds were confirmed by spectral data. The possible in vitro antileishmanial activities of the synthesized compounds were evaluated against the Leishmania tropica strain. Further, molecular docking and dynamics were performed to identify the probable mechanism of activity of the test compounds. The findings revealed that compounds 5a, 5d, 5e, 5f, and 5h inhibited the growth of Leishmania tropica to various extents and had significant anti-leishmanial activities, even if some orders were higher than the reference drug Amphotericin B. On the other hand, compounds 5b, 5c, and 5g were found to be ineffective. Additionally, the results of in silico studies have presented the existence of some interactions between the compounds and the active site of sterol 14-alpha-demethylase, a biosynthetic enzyme that plays a critical role in the growth of the parasite. Therefore, it can be suggested that if the results obtained from this study are confirmed with in vivo findings, it may be possible to obtain some new anti-leishmanial drug candidates.
Collapse
Affiliation(s)
- Mustafa Eser
- Health Programs, Faculty of Open Education, Anadolu University, Eskisehir 26470, Turkey
| | - İbrahim Çavuş
- Department of Parasitology, Faculty of Medicine, Manisa Celal Bayar University, Manisa 45030, Turkey;
| |
Collapse
|
4
|
Correa-Barbosa J, Sodré DF, Nascimento PHC, Dolabela MF. Activity of the genus Zanthoxylum against diseases caused by protozoa: A systematic review. Front Pharmacol 2023; 13:873208. [PMID: 36699053 PMCID: PMC9868958 DOI: 10.3389/fphar.2022.873208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/15/2022] [Indexed: 01/12/2023] Open
Abstract
Neglected diseases (NDs) are treated with a less varied range of drugs, with high cost and toxicity, which makes the search for therapeutic alternatives important. In this context, plants, such as those from the genus Zanthoxylum, can be promising due to active substances in their composition. This study evaluates the potential of species from this genus to treat NDs. Initially, a protocol was developed to carry out a systematic review approved by Prospero (CRD42020200438). The databases PubMed, BVS, Scopus, Science Direct, and Web of Science were used with the following keywords: "zanthoxylum," "xanthoxylums," "fagaras," "leishmaniasis," "chagas disease," "malaria," and "African trypanosomiasis." Two independent evaluators analyzed the title and abstract of 166 articles, and 122 were excluded due to duplicity or for not meeting the inclusion criteria. From the 44 selected articles, results of in vitro/in vivo tests were extracted. In vitro studies showed that Z. rhoifolium, through the alkaloid nitidine, was active against Plasmodium (IC50 <1 μg/ml) and Leishmania (IC50 <8 μg/ml), and selective for both (>10 and >30, respectively). For Chagas disease, the promising species (IC50 <2 μg/ml) were Z. naranjillo and Z. minutiflorum, and for sleeping sickness, the species Z. zanthoxyloides (IC50 <4 μg/ml) stood out. In the in vivo analysis, the most promising species were Z. rhoifolium and Z. chiloperone. In summary, the species Z. rhoifolium, Z. naranjillo, Z. minutiflorum, Z. zanthoxyloides, and Z. chiloperone are promising sources of active molecules for the treatment of NDs.
Collapse
Affiliation(s)
- Juliana Correa-Barbosa
- Pharmaceutical Science Post-graduation Programx, Federal University of Pará, Belém, Pará, Brazil
| | | | | | - Maria Fâni Dolabela
- Pharmaceutical Science Post-graduation Programx, Federal University of Pará, Belém, Pará, Brazil,Faculty of Pharmacy, Federal University of Pará, Belém, Brazil,*Correspondence: Maria Fâni Dolabela,
| |
Collapse
|
5
|
|
6
|
Soares FGN, Göethel G, Kagami LP, das Neves GM, Sauer E, Birriel E, Varela J, Gonçalves IL, Von Poser G, González M, Kawano DF, Paula FR, de Melo EB, Garcia SC, Cerecetto H, Eifler-Lima VL. Novel coumarins active against Trypanosoma cruzi and toxicity assessment using the animal model Caenorhabditis elegans. BMC Pharmacol Toxicol 2019; 20:76. [PMID: 31852548 PMCID: PMC6921407 DOI: 10.1186/s40360-019-0357-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Chagas disease (CD) is a tropical parasitic disease. Although the number of people infected is very high, the only drugs available to treat CD, nifurtimox (Nfx) and benznidazole, are highly toxic, particularly in the chronic stage of the disease. Coumarins are a large class of compounds that display a wide range of interesting biological properties, such as antiparasitic. Hence, the aim of this work is to find a good antitrypanosomal drug with less toxicity. The use of simple organism models has become increasingly attractive for planning and simplifying efficient drug discovery. Within these models, Caenorhabditis elegans has emerged as a convenient and versatile tool with significant advantages for the toxicological potential identification for new compounds. METHODS Trypanocidal activity: Forty-two 4-methylamino-coumarins were assayed against the epimastigote form of Trypanosoma cruzi (Tulahuen 2 strain) by inhibitory concentration 50% (IC50). Toxicity assays: Lethal dose 50% (LD50) and Body Area were determined by Caenorhabditis elegans N2 strain (wild type) after acute exposure. Structure-activity relationship: A classificatory model was built using 3D descriptors. RESULTS Two of these coumarins demonstrated near equipotency to Nifurtimox (IC50 = 5.0 ± 1 μM), with values of: 11 h (LaSOM 266), (IC50 = 6.4 ± 1 μM) and 11 g (LaSOM 231), (IC50 = 8.2 ± 2.3 μM). In C. elegans it was possible to observe that Nfx showed greater toxicity in both the LD50 assay and the evaluation of the development of worms. It is possible to observe that the efficacy between Nfx and the synthesized compounds (11 h and 11 g) are similar. On the other hand, the toxicity of Nfx is approximately three times higher than that of the compounds. Results from the QSAR-3D study indicate that the volume and hydrophobicity of the substituents have a significant impact on the trypanocidal activities for derivatives that cause more than 50% of inhibition. These results show that the C. elegans model is efficient for screening potentially toxic compounds. CONCLUSION Two coumarins (11 h and 11 g) showed activity against T. cruzi epimastigote similar to Nifurtimox, however with lower toxicity in both LD50 and development of C. elegans assays. These two compounds may be a feasible starting point for the development of new trypanocidal drugs.
Collapse
Affiliation(s)
- Fabiana Gomes Nascimento Soares
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Göethel
- Laboratório Toxicologia/LATOX, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luciano Porto Kagami
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gustavo Machado das Neves
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Elisa Sauer
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Estefania Birriel
- Facultad de Ciencias-Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Javier Varela
- Facultad de Ciencias-Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Itamar Luís Gonçalves
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gilsane Von Poser
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mercedes González
- Facultad de Ciencias-Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Daniel Fábio Kawano
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, SP, Brazil
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Fávero Reisdorfer Paula
- Universidade Estadual do Oeste do Paraná, Centro de Ciências Médicas e Farmacêuticas, Cascavel, PR, Brazil
| | - Eduardo Borges de Melo
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brazil
| | - Solange Cristina Garcia
- Laboratório Toxicologia/LATOX, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Hugo Cerecetto
- Facultad de Ciencias-Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Vera Lucia Eifler-Lima
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Duschak VG. Major Kinds of Drug Targets in Chagas Disease or American Trypanosomiasis. Curr Drug Targets 2019; 20:1203-1216. [PMID: 31020939 DOI: 10.2174/1389450120666190423160804] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 11/22/2022]
Abstract
American Trypanosomiasis, a parasitic infection commonly named Chagas disease, affects millions of people all over Latin American countries. Presently, the World Health Organization (WHO) predicts that the number of international infected individuals extends to 7 to 8 million, assuming that more than 10,000 deaths occur annually. The transmission of the etiologic agent, Trypanosoma cruzi, through people migrating to non-endemic world nations makes it an emergent disease. The best promising targets for trypanocidal drugs may be classified into three main groups: Group I includes the main molecular targets that are considered among specific enzymes involved in the essential processes for parasite survival, principally Cruzipain, the major antigenic parasite cysteine proteinase. Group II involves biological pathways and their key specific enzymes, such as Sterol biosynthesis pathway, among others, specific antioxidant defense mechanisms, and bioenergetics ones. Group III includes the atypical organelles /structures present in the parasite relevant clinical forms, which are absent or considerably different from those present in mammals and biological processes related to them. These can be considered potential targets to develop drugs with extra effectiveness and fewer secondary effects than the currently used therapeutics. An improved distinction between the host and the parasite targets will help fight against this neglected disease.
Collapse
Affiliation(s)
- Vilma G Duschak
- National Council of Scientific and Technical Reasearch (CONICET) Researcher, Area of Protein Biochemistry and Parasite Glycobiology, Research Department, National Institute of Parasitology (INP), "Dr. Mario Fatala Chaben", ANLIS-Malbran, National Health Secretary, Av. Paseo Colon 568, Lab 506, Ciudad Autonoma de Buenos Aires (1063), Buenos Aires, Argentina
| |
Collapse
|
8
|
Searching for new drugs for Chagas diseases: triazole analogs display high in vitro activity against Trypanosoma cruzi and low toxicity toward mammalian cells. J Bioenerg Biomembr 2018; 50:81-91. [PMID: 29473131 DOI: 10.1007/s10863-018-9746-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/07/2018] [Indexed: 12/25/2022]
Abstract
Chagas disease is one of the most relevant endemic diseases in Latin America caused by the flagellate protozoan Trypanosoma cruzi. Nifurtimox and benzonidazole are the drugs used in the treatment of this disease, but they commonly are toxic and present severe side effects. New effective molecules, without collateral effects, has promoted the investigation to develop new lead compounds with to advance for clinical trials. Previously, 3-nitro-1H-1,2,4-triazole-based amines and 1,2,3-triazoles demonstrated significant trypanocidal activity against T. cruzi. In this paper, we synthesized a new series of 92 examples of 1,2,3-triazoles. Six compounds exhibited antiparasitic activity, 14, 25, 27, 31 and 40, 43 and were effective against epimastigotes of two strains of T. cruzi (Y and Dm28-C) and 25, 27 and 31 exhibited trypanocidal activity similar to benzonidazole. Notably, the compound 25 compared to benzonidazole increase the toxicity against T. cruzi, with no apparent toxicity to the cell line of mice macrophages or primary mice peritoneal macrophages. As results, we calculated selectivity indexes up to 2000 to 25 and 31 in both T. cruzi strains. Derivative 14 caused a trypanostatic effect because it did not damage external epimastigote membrane. Triazoles 40 and 43 impaired parasites viability using a pathway not dependent on ROS production.
Collapse
|
9
|
Sales Junior PA, Molina I, Fonseca Murta SM, Sánchez-Montalvá A, Salvador F, Corrêa-Oliveira R, Carneiro CM. Experimental and Clinical Treatment of Chagas Disease: A Review. Am J Trop Med Hyg 2017; 97:1289-1303. [PMID: 29016289 PMCID: PMC5817734 DOI: 10.4269/ajtmh.16-0761] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 06/24/2017] [Indexed: 01/16/2023] Open
Abstract
Chagas disease (CD) is caused by the protozoan parasite Trypanosoma cruzi that infects a broad range of triatomines and mammalian species, including man. It afflicts 8 million people in Latin America, and its incidence is increasing in nonendemic countries owing to rising international immigration and nonvectorial transmission routes such as blood donation. Since the 1960s, the only drugs available for the clinical treatment of this infection have been benznidazole (BZ) and nifurtimox (NFX). Treatment with these trypanocidal drugs is recommended in both the acute and chronic phases of CD. These drugs have low cure rates mainly during the chronic phase, in addition both drugs present side effects that may result in the interruption of the treatment. Thus, more efficient and better-tolerated new drugs or pharmaceutical formulations containing BZ or NFX are urgently needed. Here, we review the drugs currently used for CD chemotherapy, ongoing clinical assays, and most-promising new experimental drugs. In addition, the mechanism of action of the commercially available drugs, NFX and BZ, the biodistribution of the latter, and the potential for novel formulations of BZ based on nanotechnology are discussed. Taken together, the literature emphasizes the urgent need for new therapies for acute and chronic CD.
Collapse
Affiliation(s)
| | - Israel Molina
- Infectious Diseases Department, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, PROSICS Barcelona, Barcelona, Spain
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | - Adrián Sánchez-Montalvá
- Infectious Diseases Department, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, PROSICS Barcelona, Barcelona, Spain
| | - Fernando Salvador
- Infectious Diseases Department, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, PROSICS Barcelona, Barcelona, Spain
| | - Rodrigo Corrêa-Oliveira
- Centro de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Cláudia Martins Carneiro
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
10
|
Santivañez-Veliz M, Moreno-Viguri E, Pérez-Silanes S, Varela J, Cerecetto H, González M, Lizarraga E. Development, validation and application of a GC-MS method for the simultaneous detection and quantification of neutral lipid species in Trypanosoma cruzi. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1061-1062:225-232. [PMID: 28750236 DOI: 10.1016/j.jchromb.2017.07.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/30/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022]
Abstract
The development and validation of an analytical method for the simultaneous analysis of five neutral lipids in Trypanosoma cruzi epimastigotes by GC-MS is presented in this study. The validated method meets all validation parameters for all components and the chromatographic conditions have been optimized during its development. This analytical method has demonstrated good selectivity, accuracy, within-day precision, recovery and linearity in each of the established ranges. In addition, detection and quantification limits for squalene, cholesterol, ergosterol and lanosterol have been improved and it is worth highlighting the fact that this is the first time that squalene-2,3-epoxide validation data have been reported. The new validated method has been applied to epimastigotes treated with compounds with in vitro anti-T.cruzi activity. This new methodology is straightforward and constitutes a tool for screening possible sterol biosynthesis pathway inhibitors in Trypanosoma cruzi, one of the most studied targets in Chagas disease treatment. Therefore, it is an interesting and useful contribution to medicinal chemistry research.
Collapse
Affiliation(s)
- Mery Santivañez-Veliz
- Universidad de Navarra, Instituto de Salud Tropical, Campus Universitario, 31080, Pamplona, Spain; Universidad de Navarra, Departamento de Química orgánica y Farmacéutica, Facultad de Farmacia y Nutrición, Campus Universitario, 31080, Pamplona, Spain
| | - Elsa Moreno-Viguri
- Universidad de Navarra, Instituto de Salud Tropical, Campus Universitario, 31080, Pamplona, Spain; Universidad de Navarra, Departamento de Química orgánica y Farmacéutica, Facultad de Farmacia y Nutrición, Campus Universitario, 31080, Pamplona, Spain
| | - Silvia Pérez-Silanes
- Universidad de Navarra, Instituto de Salud Tropical, Campus Universitario, 31080, Pamplona, Spain; Universidad de Navarra, Departamento de Química orgánica y Farmacéutica, Facultad de Farmacia y Nutrición, Campus Universitario, 31080, Pamplona, Spain
| | - Javier Varela
- Grupo de Química Medicinal-Laboratorio de Química Orgánica, Facultad de Ciencias Universidad de la República, Iguá 4225, Montevideo C.P. 11400, Uruguay
| | - Hugo Cerecetto
- Grupo de Química Medicinal-Laboratorio de Química Orgánica, Facultad de Ciencias Universidad de la República, Iguá 4225, Montevideo C.P. 11400, Uruguay
| | - Mercedes González
- Grupo de Química Medicinal-Laboratorio de Química Orgánica, Facultad de Ciencias Universidad de la República, Iguá 4225, Montevideo C.P. 11400, Uruguay
| | - Elena Lizarraga
- Universidad de Navarra, Departamento de Química orgánica y Farmacéutica, Facultad de Farmacia y Nutrición, Campus Universitario, 31080, Pamplona, Spain.
| |
Collapse
|
11
|
Rodriguez JB, Falcone BN, Szajnman SH. Detection and treatment ofTrypanosoma cruzi: a patent review (2011-2015). Expert Opin Ther Pat 2016; 26:993-1015. [DOI: 10.1080/13543776.2016.1209487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Keenan M, Chaplin JH. A New Era for Chagas Disease Drug Discovery? PROGRESS IN MEDICINAL CHEMISTRY 2015; 54:185-230. [DOI: 10.1016/bs.pmch.2014.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Choi JY, Podust LM, Roush WR. Drug strategies targeting CYP51 in neglected tropical diseases. Chem Rev 2014; 114:11242-71. [PMID: 25337991 PMCID: PMC4254036 DOI: 10.1021/cr5003134] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Jun Yong Choi
- Department
of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Larissa M. Podust
- Center for Discovery and Innovation in Parasitic Diseases, and Department of
Pathology, University of California—San
Francisco, San Francisco, California 94158, United States
| | - William R. Roush
- Department
of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
14
|
Selection and optimization of hits from a high-throughput phenotypic screen against Trypanosoma cruzi. Future Med Chem 2014; 5:1733-52. [PMID: 24144410 DOI: 10.4155/fmc.13.139] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Inhibitors of Trypanosoma cruzi with novel mechanisms of action are urgently required to diversify the current clinical and preclinical pipelines. Increasing the number and diversity of hits available for assessment at the beginning of the discovery process will help to achieve this aim. RESULTS We report the evaluation of multiple hits generated from a high-throughput screen to identify inhibitors of T. cruzi and from these studies the discovery of two novel series currently in lead optimization. Lead compounds from these series potently and selectively inhibit growth of T. cruzi in vitro and the most advanced compound is orally active in a subchronic mouse model of T. cruzi infection. CONCLUSION High-throughput screening of novel compound collections has an important role to play in diversifying the trypanosomatid drug discovery portfolio. A new T. cruzi inhibitor series with good drug-like properties and promising in vivo efficacy has been identified through this process.
Collapse
|
15
|
Guedes PMM, Silva GK, Gutierrez FRS, Silva JS. Current status of Chagas disease chemotherapy. Expert Rev Anti Infect Ther 2014; 9:609-20. [DOI: 10.1586/eri.11.31] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Mello FVC, Carvalho AS, Bastos MM, Boechat N, Aiub CAF, Felzenszwalb I. Evaluation of genotoxic effects of new molecules with possible trypanocidal activity for Chagas disease treatment. ScientificWorldJournal 2013; 2013:287319. [PMID: 24311974 PMCID: PMC3842072 DOI: 10.1155/2013/287319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/19/2013] [Indexed: 11/17/2022] Open
Abstract
Chagas disease is responsible for a large number of human infections and many are also at risk of infection. There is no effective drug for Chagas disease treatment. The Institute of Pharmaceutical Technology at Fiocruz, Brazil, has designed three nitro analogs of the nitroimidazole-thiadiazole, megazol: two triazole analogs PTAL 05-02 and PAMT 09 and a pyrazole analog PTAL 04-09. A set of Salmonella enterica serovar Typhimurium strains were used in the bacterial reverse mutation test (Ames test) to determine the mutagenicity and cytotoxicity of megazol and its nitro analogs. Megazol presented positive mutagenic activity at very low concentration, either with or without metabolic activation S9 mix. The mutagenic response of the analogs was detected at higher concentration than the lowest megazol concentration to yield mutagenic activity showing that new advances can be made to develop new analogs. The micronucleus test with rat macrophage cells was used in the genotoxic evaluation. The analogs were capable of inducing micronucleus formation and showed cytotoxic effects. PTAL 04-09 structural modifications might be better suitable for the design of promising new drugs candidate for Chagas' disease treatment.
Collapse
Affiliation(s)
- Francisco V. C. Mello
- Department of Biophysics and Biometry, Rio de Janeiro State University, Boulevard 28 de Setembro, 87 Fundos, 4º Andar, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Alcione S. Carvalho
- Institute of Pharmaceutical Technology, Oswaldo Cruz Institute, Rua Sizenando Nabuco 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil
| | - Mônica M. Bastos
- Institute of Pharmaceutical Technology, Oswaldo Cruz Institute, Rua Sizenando Nabuco 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil
| | - Nubia Boechat
- Institute of Pharmaceutical Technology, Oswaldo Cruz Institute, Rua Sizenando Nabuco 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil
| | - Claudia A. F. Aiub
- Department of Genetics and Molecular Biology, Federal University of the State of Rio de Janeiro, Rua Frei Caneca, 95 Centro, 20211-040 Rio de Janeiro, RJ, Brazil
| | - Israel Felzenszwalb
- Department of Biophysics and Biometry, Rio de Janeiro State University, Boulevard 28 de Setembro, 87 Fundos, 4º Andar, 20551-030 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
17
|
Choi JY, Calvet CM, Gunatilleke SS, Ruiz C, Cameron MD, McKerrow JH, Podust LM, Roush WR. Rational development of 4-aminopyridyl-based inhibitors targeting Trypanosoma cruzi CYP51 as anti-chagas agents. J Med Chem 2013; 56:7651-68. [PMID: 24079662 PMCID: PMC3864028 DOI: 10.1021/jm401067s] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A new series of 4-aminopyridyl-based lead inhibitors targeting Trypanosoma cruzi CYP51 (TcCYP51) has been developed using structure-based drug design as well as structure-property relationship (SPR) analyses. The screening hit starting point, LP10 (KD ≤ 42 nM; EC50 = 0.65 μM), has been optimized to give the potential leads 14t, 27i, 27q, 27r, and 27t, which have low-nanomolar binding affinity to TcCYP51 and significant activity against T. cruzi amastigotes cultured in human myoblasts (EC50 = 14-18 nM for 27i and 27r). Many of the optimized compounds have improved microsome stability, and most are selective against human CYPs 1A2, 2D6, and 3A4 (<50% inhibition at 1 μM). A rationale for the improvement in microsome stability and selectivity of inhibitors against human metabolic CYP enzymes is presented. In addition, the binding mode of 14t with the Trypanosoma brucei CYP51 (TbCYP51) orthologue has been characterized by X-ray structure analysis.
Collapse
Affiliation(s)
- Jun Yong Choi
- Department of Chemistry, Scripps Florida, Jupiter, Florida 33458, United States
| | - Claudia M. Calvet
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California 94158, United States
- Department of Pathology, University of California San Francisco, San Francisco, California 94158, United States
| | - Shamila S. Gunatilleke
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California 94158, United States
- Department of Pathology, University of California San Francisco, San Francisco, California 94158, United States
| | - Claudia Ruiz
- Department of Molecular Therapeutics, Scripps Florida, Jupiter, Florida 33458, United States
| | - Michael D. Cameron
- Department of Molecular Therapeutics, Scripps Florida, Jupiter, Florida 33458, United States
| | - James H. McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California 94158, United States
- Department of Pathology, University of California San Francisco, San Francisco, California 94158, United States
| | - Larissa M. Podust
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California 94158, United States
- Department of Pathology, University of California San Francisco, San Francisco, California 94158, United States
| | - William R. Roush
- Department of Chemistry, Scripps Florida, Jupiter, Florida 33458, United States
| |
Collapse
|
18
|
Andriani G, Amata E, Beatty J, Clements Z, Coffey BJ, Courtemanche G, Devine W, Erath J, Juda CE, Wawrzak Z, Wood JT, Lepesheva GI, Rodriguez A, Pollastri MP. Antitrypanosomal lead discovery: identification of a ligand-efficient inhibitor of Trypanosoma cruzi CYP51 and parasite growth. J Med Chem 2013; 56:2556-67. [PMID: 23448316 DOI: 10.1021/jm400012e] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chagas disease is caused by the intracellular protozoan parasite Trypanosomal cruzi , and current drugs are lacking in terms of desired safety and efficacy profiles. Following on a recently reported high-throughput screening campaign, we have explored initial structure-activity relationships around a class of imidazole-based compounds. This profiling has uncovered compounds 4c (NEU321) and 4j (NEU704), which are potent against in vitro cultures of T. cruzi and are greater than 160-fold selective over host cells. We report in vitro drug metabolism and properties profiling of 4c and show that this chemotype inhibits the T. cruzi CYP51 enzyme, an observation confirmed by X-ray crystallographic analysis. We compare the binding orientation of 4c to that of other, previously reported inhibitors. We show that 4c displays a significantly better ligand efficiency and a shorter synthetic route over previously disclosed CYP51 inhibitors, and should therefore be considered a promising lead compound for further optimization.
Collapse
Affiliation(s)
- Grasiella Andriani
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kessler RL, Soares MJ, Probst CM, Krieger MA. Trypanosoma cruzi response to sterol biosynthesis inhibitors: morphophysiological alterations leading to cell death. PLoS One 2013; 8:e55497. [PMID: 23383204 PMCID: PMC3561218 DOI: 10.1371/journal.pone.0055497] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/23/2012] [Indexed: 12/22/2022] Open
Abstract
The protozoan parasite Trypanosoma cruzi displays similarities to fungi in terms of its sterol lipid biosynthesis, as ergosterol and other 24-alkylated sterols are its principal endogenous sterols. The sterol pathway is thus a potential drug target for the treatment of Chagas disease. We describe here a comparative study of the growth inhibition, ultrastructural and physiological changes leading to the death of T. cruzi cells following treatment with the sterol biosynthesis inhibitors (SBIs) ketoconazole and lovastatin. We first calculated the drug concentration inhibiting epimastigote growth by 50% (EC(50)/72 h) or killing all cells within 24 hours (EC(100)/24 h). Incubation with inhibitors at the EC(50)/72 h resulted in interesting morphological changes: intense proliferation of the inner mitochondrial membrane, which was corroborated by flow cytometry and confocal microscopy of the parasites stained with rhodamine 123, and strong swelling of the reservosomes, which was confirmed by acridine orange staining. These changes to the mitochondria and reservosomes may reflect the involvement of these organelles in ergosterol biosynthesis or the progressive autophagic process culminating in cell lysis after 6 to 7 days of treatment with SBIs at the EC(50)/72 h. By contrast, treatment with SBIs at the EC(100)/24 h resulted in rapid cell death with a necrotic phenotype: time-dependent cytosolic calcium overload, mitochondrial depolarization and reservosome membrane permeabilization (RMP), culminating in cell lysis after a few hours of drug exposure. We provide the first demonstration that RMP constitutes the "point of no return" in the cell death cascade, and propose a model for the necrotic cell death of T. cruzi. Thus, SBIs trigger cell death by different mechanisms, depending on the dose used, in T. cruzi. These findings shed new light on ergosterol biosynthesis and the mechanisms of programmed cell death in this ancient protozoan parasite.
Collapse
|
20
|
Recent Developments in Sterol 14-demethylase Inhibitors for Chagas Disease. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2012; 2:236-242. [PMID: 23277882 DOI: 10.1016/j.ijpddr.2011.12.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The protozoan parasite, Trypanosoma cruzi, causes the most prevalent parasitic infection in the American continent. It gives rise to life-long infection in humans and results in severe cardiomyopathy or other life-threatening manifestations (Chagas disease) in ~30% of those infected. Animal models and clinical studies indicate that etiological treatment of the infection reduces the risk of developing the disease manifestations. Unfortunately, the existing chemotherapeutics have suboptimal antiparasitic activity and cause significant side effects in many patients, thus better anti-trypanosomal drugs are greatly needed. The sterol biosynthesis pathway has received attention as a target for the development of new drugs for Chagas disease. In particular, inhibitors of sterol 14-demethylase (CYP51) are shown to be extremely active on Trypanosoma cruzi in vitro and in animal models. Antifungal drugs (i.e. azoles) in clinical use or in clinical studies have been extensively tested preclinically on Trypanosoma cruzi with posaconazole and ravuconazole demonstrating the most promising activity. As a result, posaconazole and a pro-drug of ravuconazole (E1224) are currently being evaluated in Phase II studies for Chagas disease. Additional CYP51 inhibitors that are specifically optimized for anti-Trypanosoma cruzi activity are in development by academia. These represent an alternative to proprietary antifungal drugs if the latter fall short in clinical trials or are too expensive for widespread clinical use in disease endemic countries. The research over the next few years will help define the role of CYP51 inhibitors, alone or in combination with other drugs, for managing patients with Chagas disease.
Collapse
|
21
|
Abstract
Chagas cardiomyopathy is the most severe and life-threatening manifestation of human Chagas disease--a 'neglected' tropical disease caused by the protozoan parasite Trypanosoma cruzi. The disease is endemic in all continental Latin American countries, but has become a worldwide problem because of migration of infected individuals to developed countries, mainly in Europe and North America. Chagas cardiomyopathy results from the combined effects of persistent parasitism, parasite-driven tissue inflammation, microvascular and neurogenic dysfunction, and autoimmune responses triggered by the infection. Clinical presentation varies widely according to the extent of myocardial damage, and manifests mainly as three basic syndromes that can coexist in an individual patient: heart failure, cardiac arrhythmia, and thromboembolism. NYHA functional class, left ventricular systolic function, and nonsustained ventricular tachycardia are important prognostic markers of the risk of death. Management of Chagas cardiomyopathy focuses on the treatment of the three main syndromes. The use of β-blockers in patients with Chagas disease and heart failure is safe, well tolerated, and should be encouraged. Most specialists and international institutions now recommend specific antitrypanosomal treatment of patients with chronic Chagas disease, even in the absence of evidence obtained from randomized clinical trials. Further research on the management of patients with Chagas cardiomyopathy is necessary.
Collapse
|
22
|
In vitro activity of N-benzenesulfonylbenzotriazole on Trypanosoma cruzi epimastigote and trypomastigote forms. Exp Parasitol 2012; 131:57-62. [DOI: 10.1016/j.exppara.2012.02.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/14/2012] [Accepted: 02/29/2012] [Indexed: 11/23/2022]
|
23
|
Kawano DF, Silva VBD, Jorge DMDM, Silva CHTDPD, Carvalho I. Search for a platelet-activating factor receptor in the Trypanosoma cruzi proteome: a potential target for Chagas disease chemotherapy. Mem Inst Oswaldo Cruz 2011; 106:957-67. [DOI: 10.1590/s0074-02762011000800010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/08/2011] [Indexed: 01/05/2023] Open
|
24
|
Lepesheva GI, Villalta F, Waterman MR. Targeting Trypanosoma cruzi sterol 14α-demethylase (CYP51). ADVANCES IN PARASITOLOGY 2011; 75:65-87. [PMID: 21820552 DOI: 10.1016/b978-0-12-385863-4.00004-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There are at least two obvious features that must be considered upon targeting specific metabolic pathways/enzymes for drug development: the pathway must be essential and the enzyme must allow the design of pharmacologically useful inhibitors. Here, we describe Trypanosoma cruzi sterol 14α-demethylase as a promising target for anti-Chagasic chemotherapy. The use of anti-fungal azoles, which block sterol biosynthesis and therefore membrane formation in fungi, against the protozoan parasite has turned out to be highly successful: a broad spectrum anti-fungal drug, the triazole compound posaconazole, is now entering phase II clinical trials for treatment of Chagas disease. This review summarizes comparative information on anti-fungal azoles and novel inhibitory scaffolds selective for Trypanosomatidae sterol 14α-demethylase through the lens of recent structure/functional characterization of the target enzyme. We believe our studies open wide opportunities for rational design of novel, pathogen-specific and therefore more potent and efficient anti-trypanosomal drugs.
Collapse
Affiliation(s)
- Galina I Lepesheva
- Department of Biochemistry School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | | | | |
Collapse
|
25
|
Bustamante JM, Tarleton RL. Methodological advances in drug discovery for Chagas disease. Expert Opin Drug Discov 2011; 6:653-661. [PMID: 21712965 DOI: 10.1517/17460441.2011.573782] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION: Chagas disease is the highest impact human infectious disease in Latin America, and the leading worldwide cause of myocarditis. Despite the availability of several compounds that have demonstrated efficacy in limiting the effects of T. cruzi, these compounds are rarely used due to their variable efficacy, substantial side effects and the lack of methodologies for confirming their effectiveness. Furthermore, the development of more efficacious compounds is challenged by limitations of systems for assessing drug efficacy in vitro and in vivo. AREAS COVERED: Herein, the authors review the development of Chagas disease drug discovery methodology, focusing on recent developments in high throughput screening, in vivo testing methods and assessments of efficacy in humans. Particularly, this review documents the significant progress that has taken place over the last 5 years that have paved the way for both target-focused and high-throughput screens of compound libraries. EXPERT OPINION: The tools for in vitro and in vivo screening of anti-T. cruzi compounds have improved dramatically in the last few years and there are now a number of excellent in vivo testing models available; this somewhat alleviates the bottleneck issue of quickly and definitively demonstrating in vivo efficacy in a relevant host animal system. These advances emphasize the potential for additional progress resulting in new treatments for Chagas disease in the coming years. That being said, national and international agencies must improve the coordination of research and development efforts in addition to cultivating the funding sources for the development of these new treatments.
Collapse
Affiliation(s)
- Juan M Bustamante
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, 500 D.W Brooks Dr. S310 Coverdell Center. GA, 30602, USA
| | | |
Collapse
|
26
|
Ferreira ME, Cebrián-Torrejón G, Corrales AS, Vera de Bilbao N, Rolón M, Gomez CV, Leblanc K, Yaluf G, Schinini A, Torres S, Serna E, Rojas de Arias A, Poupon E, Fournet A. Zanthoxylum chiloperone leaves extract: first sustainable Chagas disease treatment. JOURNAL OF ETHNOPHARMACOLOGY 2011; 133:986-993. [PMID: 21134431 DOI: 10.1016/j.jep.2010.11.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 11/08/2010] [Accepted: 11/11/2010] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum chiloperone var. angustifolium Engl. (Rutaceae) stem bark is used traditionally in Paraguay for its antiparasitic properties. Canthin-6-one is main compound isolated from Zanthoxylum chiloperone var angustifolium with broad spectrum antifungal, leishmanicidal and trypanocidal activities. AIM OF THE STUDY The qualitative and quantitative characterization and the isolation of main alkaloidal components of different organs of Zanthoxylum chiloperone are investigated by HPLC-UV-MS. The in vitro biological activity of each extract against trypomastigote and amastigote forms of Trypanosoma cruzi parasites were evaluated, then comparison the in vivo efficacy of the ethanolic leaves extract of Zanthoxylum chiloperone with reference drug, benznidazole, in acute Trypanosoma cruzi infected mice when administered by oral route. We have also evaluated the mutagenic and cytotoxic activity of the main component of Zanthoxylum chiloperone, i.e. canthin-6-one, by mouse bone marrow micronucleus test. MATERIALS AND METHODS The compositions of the ethanol extracts obtained after the maceration process were studied by HPLC-UV-MS methods. The quantitation analysis was performed by external standard method, using a calibration curve constructed utilizing solutions containing different concentrations of the reference samples. The anti-trypomastigote activity was evaluated by the lysis effect on mouse blood trypomastigotes (Y strain Trypanosoma cruzi). The anti-amastigote Trypanosoma cruzi activity was evaluated by a modified colorimetric method with chlorophenol red-β-d-galactopyranoside (CPRG). The cytotoxicity of extracts and compounds was performed on NCTC 929 cells. The in vivo efficacy of the ethanolic leaves extract of Zanthoxylum chiloperone and benznidazole, in acute Trypanosoma cruzi (two different strains) was evaluated in Trypanosoma cruzi infected mice; the drugs were administered by oral route. The mortality rates were recorded and parasitaemias in control and treated mice were determined once weekly for 70 days. The mutagenic and cytotoxic activity of the main component of Zanthoxylum chiloperone, canthin-6-one, by mouse bone marrow micronucleus test. RESULTS Canthin-6-one was the main compound of stem and root bark and 5-methoxy-canthin-6-one in leaves and fruits. The ethanolic leaves extract, canthin-6-one and benznidazole presented, approximately, the same level of in vitro activity against trypomastigote and amastigote forms of Trypanosoma cruzi. We have also evaluated the mutagenic and cytotoxic effects of canthin-6-one by micronucleus test in mice. This test showed any mutagenic and cytotoxic damages. The effects of oral or subcutaneous treatments at 10 mg/kg daily for 2 weeks with the ethanolic extract of leaves of Zanthoxylum chiloperone were examined in Balb/c mice infected acutely with Trypanosoma cruzi (CL or Y strain) and compared with benznidazole at 50 mg/kg for 2 weeks. In these experiments, 70 days after infection, parasitaemia and serological response were significantly reduced with the oral ethanolic extract treatment compared with reference drug. CONCLUSIONS This study have shown the efficacy of the leaves extract of Zanthoxylum chiloperone in reducing Trypanosoma cruzi parasitaemia in vivo assays and could be welcomed by scientific and rural communities of Paraguay because it could help them towards the use of local resources to treat an endemic infection, Chagas disease, affecting 20% of the population of this country.
Collapse
Affiliation(s)
- Maria Elena Ferreira
- Department of Tropical Medicine, Casilla de Correo 2511, Instituto de Investigaciones en Ciencias de la Salud Asunción, Universidad Nacional de Asunción, Paraguay
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Davies C, Marino Cardozo R, Sánchez Negrette O, Mora MC, Chung MC, Basombrío MA. Hydroxymethylnitrofurazone is active in a murine model of Chagas' disease. Antimicrob Agents Chemother 2010; 54:3584-9. [PMID: 20566772 PMCID: PMC2934987 DOI: 10.1128/aac.01451-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/25/2009] [Accepted: 06/04/2010] [Indexed: 11/20/2022] Open
Abstract
The addition of a hydroxymethyl group to the antimicrobial drug nitrofurazone generated hydroxymethylnitrofurazone (NFOH), which had reduced toxicity when its activity against Trypanosoma cruzi was tested in a murine model of Chagas' disease. Four groups of 12 Swiss female mice each received 150 mg of body weight/kg/day of NFOH, 150 mg/kg/day of nitrofurazone (parental compound), 60 mg/kg/day of benznidazole (BZL), or the solvent as a placebo. Treatments were administered orally once a day 6 days a week until the completion of 60 doses. NFOH was as effective as BZL in keeping direct parasitemia at undetectable levels, and PCR results were negative. No histopathological lesions were seen 180 days after completion of the treatments, a time when the levels of anti-T. cruzi antibodies were very low in mice treated with either NFOH or BZL. Nitrofurazone was highly toxic, which led to an overall rate of mortality of 75% and necessitated interruption of the treatment. In contrast, the group treated with its hydroxymethyl derivative, NFOH, displayed the lowest mortality (16%), followed by the BZL (33%) and placebo (66%) groups. The findings of histopathological studies were consistent with these results, with the placebo group showing the most severe parasite infiltrates in skeletal muscle and heart tissue and the NFOH group showing the lowest. The present evidence suggests that NFOH is a promising anti-T. cruzi agent.
Collapse
Affiliation(s)
- Carolina Davies
- Instituto de Patología Experimental, Facultad de Ciencias de la Salud, CONICET, Universidad Nacional de Salta, Avda. Bolivia 5150, Salta 4400, Argentina.
| | | | | | | | | | | |
Collapse
|
28
|
Urbina JA. Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Trop 2010; 115:55-68. [PMID: 19900395 DOI: 10.1016/j.actatropica.2009.10.023] [Citation(s) in RCA: 326] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 10/22/2009] [Accepted: 10/26/2009] [Indexed: 01/31/2023]
Abstract
A critical review of the development of specific chemotherapeutic approaches for the management of American Trypanosomiasis or Chagas disease is presented, including controversies on the pathogenesis of the disease, the initial efforts that led to the development of currently available drugs (nifurtimox and benznidazole), limitations of these therapies and novel approaches for the development of anti-Trypanosoma cruzi drugs, based on our growing understanding of the biology of this parasite. Among the later, the most promising approaches are ergosterol biosynthesis inhibitors such as posaconazole and ravuconazole, poised to enter clinical trials for chronic Chagas disease in the short term; inhibitors of cruzipain, the main cysteine protease of T. cruzi, essential for its survival and proliferation in vitro and in vivo; bisphosphonates, metabolic stable pyrophosphate analogs that have trypanocidal activity through the inhibition of the parasite's farnesyl-pyrophosphate synthase or hexokinase; inhibitors of trypanothione synthesis and redox metabolism and inhibitors of hypoxanthine-guanine phosphoribosyl-transferase, an essential enzyme for purine salvage in T. cruzi and related organisms. Finally, the economic and political challenges faced by development of drugs for the treatment of neglected tropical diseases, which afflict almost exclusively poor populations in developing countries, are analyzed and recent potential solutions for this conundrum are discussed.
Collapse
|
29
|
Doyle PS, Chen CK, Johnston JB, Hopkins SD, Leung SSF, Jacobson MP, Engel JC, McKerrow JH, Podust LM. A nonazole CYP51 inhibitor cures Chagas' disease in a mouse model of acute infection. Antimicrob Agents Chemother 2010; 54:2480-8. [PMID: 20385875 PMCID: PMC2876414 DOI: 10.1128/aac.00281-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 03/29/2010] [Accepted: 04/06/2010] [Indexed: 11/20/2022] Open
Abstract
Chagas' disease, the leading cause of heart failure in Latin America, is caused by the kinetoplastid protozoan Trypanosoma cruzi. The sterols of T. cruzi resemble those of fungi, both in composition and in biosynthesis. Azole inhibitors of sterol 14alpha-demethylase (CYP51) successfully treat fungal infections in humans, and efforts to adapt the success of antifungal azoles posaconazole and ravuconazole as second-use agents for Chagas' disease are under way. However, to address concerns about the use of azoles for Chagas' disease, including drug resistance and cost, the rational design of nonazole CYP51 inhibitors can provide promising alternative drug chemotypes. We report the curative effect of the nonazole CYP51 inhibitor LP10 in an acute mouse model of T. cruzi infection. Mice treated with an oral dose of 40 mg LP10/kg of body weight twice a day (BID) for 30 days, initiated 24 h postinfection, showed no signs of acute disease and had histologically normal tissues after 6 months. A very stringent test of cure showed that 4/5 mice had negative PCR results for T. cruzi, and parasites were amplified by hemoculture in only two treated mice. These results compare favorably with those reported for posaconazole. Electron microscopy and gas chromatography-mass spectrometry (GC-MS) analysis of sterol composition confirmed that treatment with LP10 blocked the 14alpha-demethylation step and induced breakdown of parasite cell membranes, culminating in severe ultrastructural and morphological alterations and death of the clinically relevant amastigote stage of the parasite.
Collapse
Affiliation(s)
- Patricia S. Doyle
- Sandler Center for Basic Research in Parasitic Diseases, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Chiung-Kuang Chen
- Sandler Center for Basic Research in Parasitic Diseases, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Jonathan B. Johnston
- Sandler Center for Basic Research in Parasitic Diseases, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Stephanie D. Hopkins
- Sandler Center for Basic Research in Parasitic Diseases, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Siegfried S. F. Leung
- Sandler Center for Basic Research in Parasitic Diseases, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Matthew P. Jacobson
- Sandler Center for Basic Research in Parasitic Diseases, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Juan C. Engel
- Sandler Center for Basic Research in Parasitic Diseases, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - James H. McKerrow
- Sandler Center for Basic Research in Parasitic Diseases, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Larissa M. Podust
- Sandler Center for Basic Research in Parasitic Diseases, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| |
Collapse
|
30
|
Cerecetto H, González M. Synthetic Medicinal Chemistry in Chagas' Disease: Compounds at The Final Stage of "Hit-To-Lead" Phase. Pharmaceuticals (Basel) 2010; 3:810-838. [PMID: 27713281 PMCID: PMC4034012 DOI: 10.3390/ph3040810] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/15/2010] [Accepted: 03/19/2010] [Indexed: 11/16/2022] Open
Abstract
Chagas' disease, or American trypanosomosiasis, has been the most relevant illness produced by protozoa in Latin America. Synthetic medicinal chemistry efforts have provided an extensive number of chemodiverse hits at the "active-to-hit" stage. However, only a more limited number of these have been studied in vivo in models of Chagas' disease. Herein, we survey some of the cantidates able to surpass the "hit-to-lead" stage discussing their limitations or merit to enter in clinical trials in the short term.
Collapse
Affiliation(s)
- Hugo Cerecetto
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| | - Mercedes González
- Laboratorio de Química Orgánica, Instituto de Química Biológica-Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| |
Collapse
|
31
|
Nanotechnological approaches against Chagas disease. Adv Drug Deliv Rev 2010; 62:576-88. [PMID: 19941920 DOI: 10.1016/j.addr.2009.11.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 09/14/2009] [Indexed: 12/20/2022]
Abstract
Over several thousand years, the flagellated Trypanosome cruzi-causative agent of Chagas disease-developed a complex life cycle between the reduviidae vectors and its human hosts. Due to their silent and hidden location, the intracellular amastigotes are mainly responsible for the nearly 50,000 annual deaths caused by the chronic chagasic cardiomyopathy. Chagas disease is the most important parasitic disease in the Americas, though treatments have not evolved towards a more efficient pharmacotherapy that (i) eradicates the scarce amastigotes present at the indeterminate/chronic form and (ii) employs less toxic drugs than benznidazole or nifurtimox. Nano-drug delivery systems (nanoDDS) represent useful means to selectively deliver the drug to intracellular targets. However, preclinical research in Chagas must be extended in order to improve the chances of a clinical implementation. The stages involved in this process are (i) selection of the appropriate drug for a specific parasite, (ii) development of a drug-loaded nanoDDS structure that displays the adequate pharmacokinetics, biodistribution and intracellular transit and (iii) selection of the right parasite form to target and the right stage of the disease for the treatment to be started. In this review we will critically overview the few research works published in the last 20years in the context of nanotechnology and Chagas diseases and highlight the gaps in knowledge towards the design of more efficient medicines to address this endemic.
Collapse
|
32
|
Urbina JA. Ergosterol biosynthesis and drug development for Chagas disease. Mem Inst Oswaldo Cruz 2010; 104 Suppl 1:311-8. [PMID: 19753490 DOI: 10.1590/s0074-02762009000900041] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 05/18/2009] [Indexed: 12/13/2022] Open
Abstract
This article presents an overview of the currently available drugs nifurtimox (NFX) and benznidazole (BZN) used against Trypanosoma cruzi, the aetiological agent of Chagas disease; herein we discuss their limitations along with potential alternatives with a focus on ergosterol biosynthesis inhibitors (EBI). These compounds are currently the most advanced candidates for new anti-T. cruzi agents given that they block de novo production of 24-alkyl-sterols, which are essential for parasite survival and cannot be replaced by a host's own cholesterol. Among these compounds, new triazole derivatives that inhibit the parasite's C14alpha sterol demethylase are the most promising, as they have been shown to have curative activity in murine models of acute and chronic Chagas disease and are active against NFX and BZN-resistant T. cruzi strains; among this class of compounds, posaconazole (Schering-Plough Research Institute) and ravuconazole (Eisai Company) are poised for clinical trials in Chagas disease patients in the short term. Other T. cruzi-specific EBI, with in vitro and in vivo potency, include squalene synthase, lanosterol synthase and squalene epoxidase-inhibitors as well as compounds with dual mechanisms of action (ergosterol biosynthesis inhibition and free radical generation), but they are less advanced in their development process. The main putative advantages of EBI over currently available therapies include their higher potency and selectivity in both acute and chronic infections, activity against NFX and BZN-resistant T. cruzi strains, and much better tolerability and safety profiles. Limitations may include complexity and cost of manufacture of the new compounds. As for any new drug, such compounds will require extensive clinical testing before being introduced for clinical use, and the complexity of such studies, particularly in chronic patients, will be compounded by the current limitations in the verification of true parasitological cures for T. cruzi infections.
Collapse
Affiliation(s)
- Julio A Urbina
- Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela.
| |
Collapse
|
33
|
Abstract
The protozoan parasitesTrypanosoma bruceiandTrypanosoma cruziare the causative agents of African trypanosomiasis and Chagas disease, respectively. These are debilitating infections that exert a considerable health burden on some of the poorest people on the planet. Treatment of trypanosome infections is dependent on a small number of drugs that have limited efficacy and can cause severe side effects. Here, we review the properties of these drugs and describe new findings on their modes of action and the mechanisms by which resistance can arise. We further outline how a greater understanding of parasite biology is being exploited in the search for novel chemotherapeutic agents. This effort is being facilitated by new research networks that involve academic and biotechnology/pharmaceutical organisations, supported by public–private partnerships, and are bringing a new dynamism and purpose to the search for trypanocidal agents.
Collapse
|
34
|
Ribeiro I, Sevcsik AM, Alves F, Diap G, Don R, Harhay MO, Chang S, Pecoul B. New, improved treatments for Chagas disease: from the R&D pipeline to the patients. PLoS Negl Trop Dis 2009; 3:e484. [PMID: 19582163 PMCID: PMC2702098 DOI: 10.1371/journal.pntd.0000484] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Isabela Ribeiro
- Drugs for Neglected Diseases
initiative, Geneva, Switzerland
| | | | - Fabiana Alves
- Drugs for Neglected Diseases
initiative, Geneva, Switzerland
| | - Graciela Diap
- Drugs for Neglected Diseases
initiative, Geneva, Switzerland
| | - Robert Don
- Drugs for Neglected Diseases
initiative, Geneva, Switzerland
| | - Michael O. Harhay
- Masters of Public Health Program, University
of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of
America
| | - Shing Chang
- Drugs for Neglected Diseases
initiative, Geneva, Switzerland
| | - Bernard Pecoul
- Drugs for Neglected Diseases
initiative, Geneva, Switzerland
| |
Collapse
|
35
|
Chen CK, Doyle PS, Yermalitskaya LV, Mackey ZB, Ang KKH, McKerrow JH, Podust LM. Trypanosoma cruzi CYP51 inhibitor derived from a Mycobacterium tuberculosis screen hit. PLoS Negl Trop Dis 2009; 3:e372. [PMID: 19190730 PMCID: PMC2629123 DOI: 10.1371/journal.pntd.0000372] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 01/06/2009] [Indexed: 11/18/2022] Open
Abstract
Background The two front-line drugs for chronic Trypanosoma cruzi infections are limited by adverse side-effects and declining efficacy. One potential new target for Chagas' disease chemotherapy is sterol 14α-demethylase (CYP51), a cytochrome P450 enzyme involved in biosynthesis of membrane sterols. Methodology/Principal Finding In a screening effort targeting Mycobacterium tuberculosis CYP51 (CYP51Mt), we previously identified the N-[4-pyridyl]-formamide moiety as a building block capable of delivering a variety of chemotypes into the CYP51 active site. In that work, the binding modes of several second generation compounds carrying this scaffold were determined by high-resolution co-crystal structures with CYP51Mt. Subsequent assays against the CYP51 orthologue in T. cruzi, CYP51Tc, demonstrated that two of the compounds tested in the earlier effort bound tightly to this enzyme. Both were tested in vitro for inhibitory effects against T. cruzi and the related protozoan parasite Trypanosoma brucei, the causative agent of African sleeping sickness. One of the compounds had potent, selective anti–T. cruzi activity in infected mouse macrophages. Cure of treated host cells was confirmed by prolonged incubation in the absence of the inhibiting compound. Discrimination between T. cruzi and T. brucei CYP51 by the inhibitor was largely based on the variability (phenylalanine versus isoleucine) of a single residue at a critical position in the active site. Conclusions/Significance CYP51Mt-based crystal structure analysis revealed that the functional groups of the two tightly bound compounds are likely to occupy different spaces in the CYP51 active site, suggesting the possibility of combining the beneficial features of both inhibitors in a third generation of compounds to achieve more potent and selective inhibition of CYP51Tc. Enzyme sterol 14α-demethylase (CYP51) is a well-established target for anti-fungal therapy and is a prospective target for Chagas' disease therapy. We previously identified a chemical scaffold capable of delivering a variety of chemical structures into the CYP51 active site. In this work the binding modes of several second generation compounds carrying this scaffold were determined in high-resolution co-crystal structures with CYP51 of Mycobacterium tuberculosis. Subsequent assays against CYP51 in Trypanosoma cruzi, the agent of Chagas' disease, demonstrated that two of the compounds bound tightly to the enzyme. Both were tested for inhibitory effects against T. cruzi and the related protozoan parasite Trypanosoma brucei. One of the compounds had potent, selective anti–T. cruzi activity in infected mouse macrophages. This compound is currently being evaluated in animal models of Chagas' disease. Discrimination between T. cruzi and T. brucei CYP51 by the inhibitor was largely based on the variability of a single amino acid residue at a critical position in the active site. Our work is aimed at rational design of potent and highly selective CYP51 inhibitors with potential to become therapeutic drugs. Drug selectivity to prevent host–pathogen cross-reactivity is pharmacologically important, because CYP51 is present in human host.
Collapse
Affiliation(s)
- Chiung-Kuang Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Patricia S. Doyle
- Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, California, United States of America
| | | | - Zachary B. Mackey
- Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, California, United States of America
| | - Kenny K. H. Ang
- Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, California, United States of America
| | - James H. McKerrow
- Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, California, United States of America
| | - Larissa M. Podust
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
Soeiro MNC, de Castro SL. Trypanosoma cruzitargets for new chemotherapeutic approaches. Expert Opin Ther Targets 2008; 13:105-21. [DOI: 10.1517/14728220802623881] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Absence of CD4+ T lymphocytes, CD8+ T lymphocytes, or B lymphocytes has different effects on the efficacy of posaconazole and benznidazole in treatment of experimental acute Trypanosoma cruzi infection. Antimicrob Agents Chemother 2008; 53:174-9. [PMID: 19001113 DOI: 10.1128/aac.00779-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the influence of CD4(+) T lymphocytes, CD8(+) T lymphocytes, and B lymphocytes on the efficacy of posaconazole (POS) and the reference drug benznidazole (BZ) during treatment of acute Trypanosoma cruzi infection in a murine model. Wild-type mice infected with T. cruzi and treated with POS or BZ presented no parasitemia, 100% survival, and 86 to 89% cure rates, defined as the percentages of animals with negative hemocultures at the end of the observation period. CD4(+)-T-lymphocyte-knockout (KO) mice infected with T. cruzi and treated with BZ or POS controlled parasitemia during treatment, although circulating parasites reappeared after drug pressure cessation, leading to only a 6% survival rate and no cure. CD8(+)-T-lymphocyte-KO mice infected with T. cruzi and treated with POS or BZ had intermediate results, displaying discrete parasitemia after the treatment was ended, 81 and 86% survival, and cure rates of 31 and 66%, respectively. B-lymphocyte-KO mice infected with T. cruzi and treated with BZ relapsed with parasitemia 1 week after the end of treatment and had a 67% survival rate and only a 22% cure rate. In contrast, the activity of POS was much less affected in these animals, with permanent suppression of parasitemia, 100% survival, and a 71% cure rate. Our results demonstrate that abrogation of different lymphocytes' activities has distinct effects on the efficacy of POS and BZ in this experimental model, probably reflecting different parasite stages preferentially targeted by the two drugs and distinct cooperation patterns with the host immune system.
Collapse
|
38
|
Buckner FS. Sterol 14-demethylase inhibitors for Trypanosoma cruzi infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 625:61-80. [PMID: 18365659 DOI: 10.1007/978-0-387-77570-8_6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chagas disease is caused by infection with the protozoan pathogen, Trypanosoma cruzi. The only approved therapeutics for treating Chagas disease are two nitroheterocyclic compounds (benznidazole and nifurtimox) that are suboptimal due to poor curative activity for chronic Chagas disease and high rates of adverse drug reactions. Sterol 14-demethylase inhibitors include azole antifungal drugs such as ketoconazole, fluconazole, itraconazole, and others. The first reports of potent activity of azole antifungal drugs against Trypanosoma cruzi came out about 25 years ago. Since then, a sizeable literature has accumulated on this topic. Newer triazole compounds such as posaconazole and D0870 have been shown to be effective at curing mice with chronic Trypanosoma cruzi infection. Small clinical studies with-ketoconazole or itraconazole in humans with chronic Chagas disease have not demonstrated significant curative activity. However, there is good reason for optimism that newer compounds with greater potency and improved pharmacokinetic properties might be more efficacious. Data have been published demonstrating synergistic activity of azole drugs with various other compounds, indicating that combination chemotherapy may be an effective strategy as this field moves ahead. In light of the near absence of adequate therapeutics for curing patients with chronic Chagas disease, additional effort to develop better drugs needs to be a priority.
Collapse
|
39
|
In vitro activities of ER-119884 and E5700, two potent squalene synthase inhibitors, against Leishmania amazonensis: antiproliferative, biochemical, and ultrastructural effects. Antimicrob Agents Chemother 2008; 52:4098-114. [PMID: 18765694 DOI: 10.1128/aac.01616-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ER-119884 and E5700, novel arylquinuclidine derivatives developed as cholesterol-lowering agents, were potent in vitro growth inhibitors of both proliferative stages of Leishmania amazonensis, the main causative agent of cutaneous leishmaniasis in South America, with the 50% inhibitory concentrations (IC(50)s) being in the low-nanomolar to subnanomolar range. The compounds were very potent noncompetitive inhibitors of native L. amazonensis squalene synthase (SQS), with inhibition constants also being in the nanomolar to subnanomolar range. Growth inhibition was strictly associated with the depletion of the parasite's main endogenous sterols and the concomitant accumulation of exogenous cholesterol. Using electron microscopy, we identified the intracellular structures affected by the compounds. A large number of lipid inclusions displaying different shapes and electron densities were observed after treatment with both SQS inhibitors, and these inclusions were associated with an intense disorganization of the membrane that surrounds the cell body and flagellum, as well as the endoplasmic reticulum and the Golgi complex. Cells treated with ER-119884 but not those treated with E5700 had an altered cytoskeleton organization due to an abnormal distribution of tubulin, and many were arrested at cytokinesis. A prominent contractile vacuole and a phenotype typical of programmed cell death were frequently found in drug-treated cells. The selectivity of the drugs was demonstrated with the JC-1 mitochondrial fluorescent label and by trypan blue exclusion tests with macrophages, which showed that the IC(50)s against the host cells were 4 to 5 orders of magnitude greater that those against the intracellular parasites. Taken together, our results show that ER-119884 and E5700 are unusually potent and selective inhibitors of the growth of Leishmania amazonensis, probably because of their inhibitory effects on de novo sterol biosynthesis at the level of SQS, but some of our observations indicate that ER-119884 may also interfere with other cellular processes.
Collapse
|
40
|
Drug-induced cure drives conversion to a stable and protective CD8+ T central memory response in chronic Chagas disease. Nat Med 2008; 14:542-50. [PMID: 18425131 DOI: 10.1038/nm1744] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 03/17/2008] [Indexed: 11/08/2022]
Abstract
In this study, we document the development of stable, antigen-independent CD8+ T cell memory after drug-induced cure of a chronic infection. By establishing a system for drug cure of chronic Trypanosoma cruzi infection, we present the first extensively documented case of total parasite clearance after drug treatment of this infection. Cure resulted in the emergence of a stable, parasite-specific CD8+ T cell population with the characteristics of central memory cells, based upon expression of CD62L, CCR7, CD127, CD122, Bcl-2 and a reduced immediate in vivo CTL function. CD8+ T cells from treated and cured mice also expanded more rapidly and provided greater protection following challenge than those from chronically infected mice. These results show that complete pathogen clearance results in stable, antigen-independent and protective T cell memory, despite the potentially exhausting effects of prior long-term exposure to antigen in this chronic infection.
Collapse
|
41
|
Heteroallyl-containing 5-nitrofuranes as new anti-Trypanosoma cruzi agents with a dual mechanism of action. Bioorg Med Chem 2008; 16:569-77. [DOI: 10.1016/j.bmc.2007.07.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 07/05/2007] [Accepted: 07/09/2007] [Indexed: 11/22/2022]
|
42
|
Franco-Paredes C, Rouphael N, Méndez J, Folch E, Rodríguez-Morales AJ, Santos JI, Hurst JW. Cardiac manifestations of parasitic infections part 1: overview and immunopathogenesis. Clin Cardiol 2007; 30:195-9. [PMID: 17443654 PMCID: PMC6653029 DOI: 10.1002/clc.12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parasitic infections produce a wide spectrum of cardiac manifestations. They may involve various anatomic structures of the heart and are manifested clinically as myocarditis, cardiomyopathies, pericarditis, or pulmonary hypertension in many resource-constrained settings. However, many parasitic infections involving the heart may also be currently diagnosed in developed countries due to growing worldwide travel, blood transfusions, and increasing numbers of immunosuppression states such as organ transplantation, use of immunosuppressive agents, or HIV/AIDS. Clinicians anywhere in the globe need to be aware of the potential cardiac manifestations of parasitic diseases. This is part one of a three-part series discussing parasites of the heart. In this section, we provide a general overview and immunopathogenesis of parasitic infections of the heart.
Collapse
Affiliation(s)
- Carlos Franco-Paredes
- Department of Medicine, Division of Infectious Diseases, University School of Medicine, Atlanta, Georgia, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Costa JFO, Kiperstok AC, David JPDL, David JM, Giulietti AM, de Queiroz LP, dos Santos RR, Soares MBP. Anti-leishmanial and immunomodulatory activities of extracts from Portulaca hirsutissima and Portulaca werdermannii. Fitoterapia 2007; 78:510-4. [PMID: 17651913 DOI: 10.1016/j.fitote.2007.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 05/17/2007] [Indexed: 11/16/2022]
Abstract
Ethyl acetate and chloroform extracts from aerial parts of Portulaca werdermannii and P. hirsutissima were tested in lymphoproliferation assays and axenic cultures of Leishmania amazonensis and Trypanosoma cruzi. Both extracts of P. werdermannii and P. hirsutissima had a potent inhibitory activity on lymphocyte proliferation. On the contrary, only the chloroformic extract of both plants inhibited L. amazonensis growth, without effect on T. cruzi cultures. These results indicate these Portulaca species as potential sources of new active molecules for the treatment of leishmaniasis and immune-mediated pathologies.
Collapse
Affiliation(s)
- José Fernando Oliveira Costa
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz, Salvador, Bahia, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Sanz-Rodríguez CE, Concepción JL, Pekerar S, Oldfield E, Urbina JA. Bisphosphonates as inhibitors of Trypanosoma cruzi hexokinase: kinetic and metabolic studies. J Biol Chem 2007; 282:12377-87. [PMID: 17329254 DOI: 10.1074/jbc.m607286200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma cruzi, the etiologic agent of Chagas disease, has an unusual ATP-dependent hexokinase (TcHK) that is not affected by D-glucose 6-phosphate, but is non-competitively inhibited by inorganic pyrophosphate (PP(i)), suggesting a heterotropic modulator effect. In a previous study we identified a novel family of bisphosphonates, metabolically stable analogs of PP(i), which are potent and selective inhibitors of TcHK as well as the proliferation of the clinically relevant intracellular amastigote form of the parasite in vitro (Hudock, M. P., Sanz-Rodriguez, C. E., Song, Y., Chan, J. M., Zhang, Y., Odeh, S., Kosztowski, T., Leon-Rossell, A., Concepcion, J. L., Yardley, V., Croft, S. L., Urbina, J. A., and Oldfield, E. (2006) J. Med. Chem. 49, 215-223). In this work, we report a detailed kinetic analysis of the effects of three of these bisphosphonates on homogeneous TcHK, as well as on the enzyme in purified intact glycosomes, peroxisome-like organelles that contain most of the glycolytic pathway enzymes in this organism. We also investigated the effects of the same compounds on glucose consumption by intact and digitonin-permeabilized T. cruzi epimastigotes, and on the growth of such cells in liver-infusion tryptose medium. The bisphosphonates investigated were several orders of magnitude more active than PP(i) as non-competitive or mixed inhibitors of TcHK and blocked the use of glucose by the epimastigotes, inducing a metabolic shift toward the use of amino acids as carbon and energy sources. Furthermore, there was a significant correlation between the IC(50) values for TcHK inhibition and those for epimastigote growth inhibition for the 12 most potent compounds of this series. Finally, these bisphosphonates did not affect the sterol composition of the treated cells, indicating that they do not act as inhibitors of farnesyl diphosphate synthase. Taken together, our results suggest that these novel bisphosphonates act primarily as specific inhibitors of TcHK and may represent a novel class of selective anti-T. cruzi agents.
Collapse
Affiliation(s)
- Carlos E Sanz-Rodríguez
- Laboratorio de Quimica Biológica, Centro de Biofisica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas 1020, Venezuela
| | | | | | | | | |
Collapse
|
45
|
Ferreira ME, Nakayama H, de Arias AR, Schinini A, de Bilbao NV, Serna E, Lagoutte D, Soriano-Agatón F, Poupon E, Hocquemiller R, Fournet A. Effects of canthin-6-one alkaloids from Zanthoxylum chiloperone on Trypanosoma cruzi-infected mice. JOURNAL OF ETHNOPHARMACOLOGY 2007; 109:258-63. [PMID: 16949231 DOI: 10.1016/j.jep.2006.07.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 07/18/2006] [Accepted: 07/23/2006] [Indexed: 05/11/2023]
Abstract
Canthin-6-one (1), isolated from Zanthoxylum chiloperone (Rutaceae), possesses a broad sprectum of antifungal and leishmanicidal activities. In this study, we have examined the antiparasitic effects of canthin-6-one (1), 5-methoxycanthin-6-one (2), canthin-6-one N-oxide (3), as well as that of the total alkaloids of Zanthoxylum chiloperone stem bark, in Balb/c mice infected either acutely or chronically with Trypanosoma cruzi. The compounds were administered orally or subcutaneously at 5mg/kg/day for 2 weeks, whereas the alkaloidal extract was given at 50mg/kg/day for 2 weeks. The antiparasitic activity was compared with that of benznidazole given at 50mg/kg/day for 2 weeks. In the case of acute infection, parasiteamia was significantly reduced following oral treatment with canthin-6-one (1). Moreover, the total alkaloids of Zanthoxylum chiloperone stem bark led to high levels of parasitological clearance. Seventy days post-infection, the serological response in the acute model was significantly different between oral canthin-6-one (1) and benznidazole-treated mice. Chronic model of the disease showed that both canthin-6-one (1) and the alkaloidal extract at the above dosage induced 80-100% animal survival compared to untreated controls. These results indicate that canthin-6-one (1) exhibits trypanocidal activity in vivo in the mouse model of acute or chronic infection. This is the first demonstration of anti-Trypanosoma cruzi activity for a member of this chemical group (canthinones). Considering the very low toxicity of canthin-6-one (1), our results suggest that long-term oral treatment with this natural product could prove advantageous compared to the current chemotherapy of Chagas disease.
Collapse
Affiliation(s)
- Maria Elena Ferreira
- Department of Tropical Medicine, Casilla de Correo 2511, Instituto de Investigaciones en Ciencias de la Salud Asunción, Universidad Nacional de Asuncion, Paraguay
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ferraz ML, Gazzinelli RT, Alves RO, Urbina JA, Romanha AJ. The Anti-Trypanosoma cruzi activity of posaconazole in a murine model of acute Chagas' disease is less dependent on gamma interferon than that of benznidazole. Antimicrob Agents Chemother 2007; 51:1359-64. [PMID: 17220408 PMCID: PMC1855485 DOI: 10.1128/aac.01170-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the influences of gamma interferon (IFN-gamma) and interleukin-12 (IL-12) on the efficacy of posaconazole (POS) treatment of acute experimental infections with Trypanosoma cruzi; the standard drug, benznidazole (BZ), was used as a positive control. Wild-type (WT) mice infected with T. cruzi and treated with POS or BZ had no parasitemia, 100% survival, and cure rates of 86 to 89%. IFN-gamma-knockout (KO) mice infected with T. cruzi and treated with BZ controlled the infection during treatment but relapsed after the drug pressure ceased and had 0% survival, while those receiving POS better controlled the infection after the end of treatment and had 70% survival (P<0.0001 compared to the results for both untreated and BZ-treated animals). IL-12-KO mice infected and treated with POS or BZ had intermediate results, displaying enhanced parasitemia, decreased survival (77 to 83%), and reduced cure rates (35 to 39%) compared with those of the WT animals. Our results demonstrate that either IFN-gamma or IL-12 deficiency reduces the efficacy of POS or BZ in this experimental model but also indicate that the anti-T. cruzi activity of POS is much less dependent on the activity of IFN-gamma than that of BZ is.
Collapse
Affiliation(s)
- Marcela L Ferraz
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisa René Rachou, FIOCRUZ, Av. Augusto de Lima, 1715, 30190-002 Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|
47
|
Bernardes LSC, Kato MJ, Albuquerque S, Carvalho I. Synthesis and trypanocidal activity of 1,4-bis-(3,4,5-trimethoxy-phenyl)-1,4-butanediol and 1,4-bis-(3,4-dimethoxyphenyl)-1,4-butanediol. Bioorg Med Chem 2006; 14:7075-82. [PMID: 16908164 DOI: 10.1016/j.bmc.2006.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 06/23/2006] [Accepted: 07/01/2006] [Indexed: 11/22/2022]
Abstract
Chagas' disease is endemic in Central and South American countries. Specific chemotherapy with nifurtimox or benznidazole has been recommended for treatment of recent infection but they have limited efficacy. The natural products veraguensin (1) and grandisin (2) have shown potent in vitro activity against trypomastigote parasite (Y strain) with IC(50) 2.3 microM (1) and 3.7 microM (2). We report herein the synthesis and in vitro trypanocidal evaluation of symmetrical and unsymmetrical 1,4-diaryl-1,4-diol derivatives as potential trypanocidal analogs of natural compounds 1 and 2. Among the synthesized products, compounds 1,4-bis-(3,4,5-trimethoxyphenyl)-1,4-butanediol (6a) and 1,4-bis-(3,4-dimethoxyphenyl)-1,4-butanediol (6b) showed better activity against Trypanosoma cruzi trypomastigotes with IC(50) 100 and 105 microM (Y strain), respectively, and 110 microM (Bolivia strain) for both compounds. However, the most active compound of this series was 1,4-bis-(3,4-dimethoxyphenyl)butane-1,4-dione (7b) with IC(50) 10 and 200 microM against Y and Bolivia strains, respectively.
Collapse
Affiliation(s)
- Lilian Sibelle Campos Bernardes
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto-SP, Brazil
| | | | | | | |
Collapse
|
48
|
Abstract
Trypanosomes are the causative agents of Chagas' disease in Central and South America and sleeping sickness in sub-Saharan Africa. The current chemotherapy of the human trypanosomiases relies on only six drugs, five of which were developed > 30 years ago. In addition, these drugs display undesirable toxic side effects and the emergence of drug-resistant trypanosomes has been reported. Therefore, the development of new drugs in the treatment of Chagas' disease and sleeping sickness is urgently required. This article summarises the recent progress in identifying novel lead compounds for antitrypanosomal chemotherapy. Particular emphasis is placed on those agents showing promising, selective antitrypanosomal activity.
Collapse
Affiliation(s)
- Dietmar Steverding
- School of Medicine, Health Policy and Practice, University of East Anglia, Norwich NR4 TJ7, UK.
| | | |
Collapse
|
49
|
Senkovich O, Bhatia V, Garg N, Chattopadhyay D. Lipophilic antifolate trimetrexate is a potent inhibitor of Trypanosoma cruzi: prospect for chemotherapy of Chagas' disease. Antimicrob Agents Chemother 2005; 49:3234-8. [PMID: 16048931 PMCID: PMC1196212 DOI: 10.1128/aac.49.8.3234-3238.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Trypanosoma cruzi, a protozoan parasite, is the causative agent for Chagas' disease, which poses serious public health problem in Latin America. The two drugs available for the treatment of this disease are effective only against recent infections and are toxic. Dihydrofolate reductase (DHFR) has a proven track record as a drug target. The lipophilic antifolate trimetrexate (TMQ), which is an FDA-approved drug for the treatment of Pneumocystis carinii infection in AIDS patients, is a potent inhibitor of T. cruzi DHFR activity, with an inhibitory constant of 6.6 nM. The compound is also highly effective in killing T. cruzi parasites. The 50 and 90% lethal dose values against the trypomastigote are 19 and 36 nM, and the corresponding values for the amastigote form are 26 and 72 nM, respectively. However, as TMQ is also a good inhibitor of human DHFR, further improvement of the selectivity of this drug would be preferable. Identification of a novel antifolate selective against T. cruzi would open up new therapeutic avenues for treatment of Chagas' disease.
Collapse
Affiliation(s)
- Olga Senkovich
- University of Alabama at Birmingham, CBSE-250, 1025 18th Street South, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
50
|
Pink R, Hudson A, Mouriès MA, Bendig M. Opportunities and Challenges in Antiparasitic Drug Discovery. Nat Rev Drug Discov 2005; 4:727-40. [PMID: 16138106 DOI: 10.1038/nrd1824] [Citation(s) in RCA: 338] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
New antiparasitic drugs are urgently needed to treat and control diseases such as malaria, leishmaniasis, sleeping sickness and filariasis, which affect millions of people each year. However, because the majority of those infected live in countries in which the prospects of any financial return on investment are too low to support market-driven drug discovery and development, alternative approaches are needed. In this article, challenges and opportunities for antiparasitic drug discovery are considered, highlighting some of the progress that has been made in recent years, partly through scientific advances, but also by more effective partnership between the public and private sectors.
Collapse
Affiliation(s)
- Richard Pink
- TDR (the UNICEF/UNDP/World Bank/WHO/Special Programme for Research and Training in Tropical Diseases), Geneva 1211, Switzerland
| | | | | | | |
Collapse
|