1
|
Venditti M, Arcaniolo D, De Sio M, Minucci S. First Evidence of the Expression and Localization of Prothymosin α in Human Testis and Its Involvement in Testicular Cancers. Biomolecules 2022; 12:biom12091210. [PMID: 36139050 PMCID: PMC9496091 DOI: 10.3390/biom12091210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Prothymosin α (PTMA) is a phylogenetically conserved polypeptide in male gonads of Vertebrates. In Mammals, it is a ubiquitous protein, and, possessing a random-coil structure, it interacts with many other partners, in both cytoplasmic and nuclear compartments. PTMA has been widely studied during cell progression in different types of cancer because of its anti-apoptotic and proliferative properties. Here, we provided the first evidence of PTMA expression and localization in human testis and in two testicular cancers (TC): classic seminoma (CS) and Leydig cell tumor (LCT). Data showed that its protein level, together with that of proliferating cell nuclear antigen (PCNA), a cell cycle progression marker, increased in both CS and LCT samples, as compared to non-pathological (NP) tissue. Moreover, in the two-cancer tissue, a decreased apoptotic rate and an increased autophagic flux was also evidenced. Results confirmed the anti-apoptotic action of PTMA, also suggesting that it can act as a switcher from apoptosis to autophagy, to favor the survival of testicular cancer cells when they develop in adverse environments. Finally, the combined data, even if they need to be further validated, add new insight into the role of PTMA in human normal and pathological testicular tissue.
Collapse
Affiliation(s)
- Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate “F. Bottazzi”, Università degli Studi della Campania “Luigi Vanvitelli”, Via Costantinopoli, 16-80138 Napoli, Italy
- Correspondence:
| | - Davide Arcaniolo
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, Università degli Studi della Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 02-80138 Napoli, Italy
| | - Marco De Sio
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, Università degli Studi della Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 02-80138 Napoli, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate “F. Bottazzi”, Università degli Studi della Campania “Luigi Vanvitelli”, Via Costantinopoli, 16-80138 Napoli, Italy
| |
Collapse
|
2
|
Di Fiore MM, Santillo A, Falvo S, Pinelli C. Celebrating 50+ years of research on the reproductive biology and endocrinology of the green frog: An overview. Gen Comp Endocrinol 2020; 298:113578. [PMID: 32739437 DOI: 10.1016/j.ygcen.2020.113578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 12/30/2022]
Abstract
This issue is dedicated to the late Professor Giovanni Chieffi, and this article is an overview of the research on Comparative Endocrinology of reproduction using Rana esculenta (alias Pelophylax esculentus) as a model system. Starting from the early 1970s till today, a large quantity of work have been conducted both in the fields of experimental endocrinology and in the definition of the diffuse neuroendocrine system, with a major focus on the increasing role of regulatory peptides. The various aspects investigated concerned the histological descriptions of principal endocrine glands of the hypothalamic-pituitary-gonadal (HPG) axis, the localization and distribution in the HPG of several different substances (i.e. neurosteroids, hypothalamic peptide hormones, pituitary gonadotropins, gonadal sex steroids, and other molecules), the determination of sex hormone concentrations in both serum and tissues, the hormone manipulations, as well as the gene and protein expression of steroidogenic enzymes and their respective receptors. All together these researches, often conducted considering different periods of the annual reproductive cycle of the green frog, allowed to understand the mechanism of cascade control/regulation of the HPG axis of R. esculenta, characterizing the role of different hormones in the two sexes, and testing the hypotheses about the function of single hormones in different target organs. It becomes evident from the review that, in their simplest form, several features of this species are specular as compared to those of other vertebrate species and that reproduction in this frog species is either under endogenous multi-hormonal control or by a wide array of different factors. Our excursus of this research, spanning almost five decades, shows that R. esculenta has been intensively and successfully used as an animal model in reproductive endocrinology as well as several field studies such as those involving environmental concerns that focus on the effects of endocrine disruptors and other environmental contaminants.
Collapse
Affiliation(s)
- Maria Maddalena Di Fiore
- Department of Environmental, Biological and Pharmaceutical Sciences & Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Alessandra Santillo
- Department of Environmental, Biological and Pharmaceutical Sciences & Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Sara Falvo
- Department of Environmental, Biological and Pharmaceutical Sciences & Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Claudia Pinelli
- Department of Environmental, Biological and Pharmaceutical Sciences & Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
3
|
Karachaliou CE, Kalbacher H, Voelter W, Tsitsilonis OE, Livaniou E. In Vitro Immunodetection of Prothymosin Alpha in Normal and Pathological Conditions. Curr Med Chem 2020; 27:4840-4854. [PMID: 31389310 DOI: 10.2174/0929867326666190807145212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/20/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023]
Abstract
Prothymosin alpha (ProTα) is a highly acidic polypeptide, ubiquitously expressed in almost all mammalian cells and tissues and consisting of 109 amino acids in humans. ProTα is known to act both, intracellularly, as an anti-apoptotic and proliferation mediator, and extracellularly, as a biologic response modifier mediating immune responses similar to molecules termed as "alarmins". Antibodies and immunochemical techniques for ProTα have played a leading role in the investigation of the biological role of ProTα, several aspects of which still remain unknown and contributed to unraveling the diagnostic and therapeutic potential of the polypeptide. This review deals with the so far reported antibodies along with the related immunodetection methodology for ProTα (immunoassays as well as immunohistochemical, immunocytological, immunoblotting, and immunoprecipitation techniques) and its application to biological samples of interest (tissue extracts and sections, cells, cell lysates and cell culture supernatants, body fluids), in health and disease states. In this context, literature information is critically discussed, and some concluding remarks are presented.
Collapse
Affiliation(s)
- Chrysoula-Evangelia Karachaliou
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety (INRASTES), National Centre for Scientific Research "Demokritos", 15310 Agia Paraskevi, Athens, Greece
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tuebingen, 72076 Tuebingen, Germany
| | - Wolfgang Voelter
- Interfaculty Institute of Biochemistry, University of Tuebingen, 72076 Tuebingen, Germany
| | - Ourania E Tsitsilonis
- Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Evangelia Livaniou
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety (INRASTES), National Centre for Scientific Research "Demokritos", 15310 Agia Paraskevi, Athens, Greece
| |
Collapse
|
4
|
Iruzubieta Villagra L, Ramos I, Cisint S, Crespo CA, Fernández SN. Electron microscopy observations on testis and spermatozoa of Leptodactylus chaquensis (Anura, Leptodactylidae). Micron 2018; 105:35-46. [DOI: 10.1016/j.micron.2017.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/23/2017] [Accepted: 11/15/2017] [Indexed: 01/26/2023]
|
5
|
Abstract
SummaryProthymosin alpha (PTMA) is a highly acidic, intrinsically disordered protein that was first extracted from rat thymus and characterized as an immunogenic factor but soon detected in a variety of mammalian tissues. The presence of a nuclear localization signal and the adoption of a peculiar random-coil conformation are among the reasons behind its interaction with several molecular partners, hence at this time PTMA is known to be a very conserved and widely expressed molecule, involved in numerous and diverse biological processes. Only few studies have tried to weigh its possible involvement in reproduction, specifically in male gametogenesis: first reports have suggested that PTMA might be associated with the proliferative and early-meiotic phases of mammal spermatogenesis. Some years later, a comparative project on vertebrate spermatogenesis reported the isolation, for the first time, of prothymosin in a non-mammalian species, the amphibian Pelophylax esculentus. PTMA transcript and protein are localized in the germinal compartment, from spermatocytes to spermatozoa. A congruent pattern has been highlighted in studies on the fish Torpedo marmorata and Danio rerio, and in the mammal Rattus norvegicus, in which the expression of PTMA has been found in meiotic and post-meiotic germ cells inside testicular cysts and tubules. Moreover, its presence has been confirmed in rat and human spermatozoa (associated with the acrosome); its retention in the apical region of the head after the acrosome reaction revealed a striking conservation of the pattern during phylogenesis and suggested a possible role for the protein in gametogenesis and in fertilization.
Collapse
|
6
|
Freire M, Sarandeses CS, Covelo G, Díaz-Jullien C. Phosphorylation of Prothymosin α. An Approach to Its Biological Significance. VITAMINS AND HORMONES 2016; 102:73-99. [PMID: 27450731 DOI: 10.1016/bs.vh.2016.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prothymosin α (ProTα), the precursor of the thymosin α1 and thymosin α11, is a 109-111 amino acids protein widely distributed in the mammalian tissues that is essential for the cell proliferation and survival through its implication on chromatin remodeling and in the proapoptotic activity. ProTα is phosphorylated at Thr residues by the M2 isoenzyme of the pyruvate kinase in a process that is dependent on the cell proliferation activity, which constitutes a novel dual functionality of this enzyme. The Thr residues phosphorylated are apparently dependent on the carcinogenic transformation of the cells. Thus, in normal lymphocytes residues Thr11 or Thr12 are phosphorylated in addition to a Thr7 residue, while in tumor cells Thr7 is the only residue phosphorylated. Phosphorylation of ProTα seems to be related to its antiapoptotic activity, although other possibilities cannot be discarded.
Collapse
Affiliation(s)
- M Freire
- Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - C S Sarandeses
- Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - G Covelo
- Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - C Díaz-Jullien
- Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
7
|
Kijogi CM, Khayeka-Wandabwa C, Sasaki K, Tanaka Y, Kurosu H, Matsunaga H, Ueda H. Subcellular dissemination of prothymosin alpha at normal physiology: immunohistochemical vis-a-vis western blotting perspective. BMC PHYSIOLOGY 2016; 16:2. [PMID: 26932824 PMCID: PMC4774093 DOI: 10.1186/s12899-016-0021-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 02/16/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND The cell type, cell status and specific localization of Prothymosin α (PTMA) within cells seemingly determine its function. PTMA undergoes 2 types of protease proteolytic modifications that are useful in elucidating its interactions with other molecules; a factor that typifies its roles. Preferably a nuclear protein, PTMA has been shown to function in the cytoplasm and extracellularly with much evidence leaning on pathognomonic status. As such, determination of its cellular distribution under normal physiological context while utilizing varied techniques is key to illuminating prospective validation of its distinct functions in different tissues. Differential distribution insights at normal physiology would also portent better basis for further clarification of its interactions and proteolytic modifications under pathological conditions like numerous cancer, ischemic stroke and immunomodulation. We therefore raised an antibody against the C terminal of PTMA to use in tandem with available antibody against the N terminal in a murine model to explicate the differences in its distribution in brain cell types and major peripheral organs through western blotting and immunohistochemical approaches. RESULTS The newly generated antibody was applied against the N-terminal antibody to distinguish truncated versions of PTMA or deduce possible masking of the protein by other interacting molecules. Western blot analysis indicated presence of a truncated form of the protein only in the thymus, while immunohistochemical analysis showed that in brain hippocampus the full-length PTMA was stained prominently in the nucleus whereas in the stomach full-length PTMA staining was not observed in the nucleus but in the cytoplasm. CONCLUSION Truncated PTMA could not be detected by western blotting when both antibodies were applied in all tissues examined except the thymus. However, immunohistochemistry revealed differential staining by these antibodies suggesting possible masking of epitopes by interacting molecules. The differential localization patterns observed in the context of nucleic versus cytoplasmic presence as well as punctate versus diffuse pattern in tissues and cell types, warrant further investigations as to the forms of PTMA interacting partners.
Collapse
Affiliation(s)
- Caroline Mwendwa Kijogi
- Department of Molecular Microbiology and Immunology, Division of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan. .,Institute of Tropical Medicine and Infectious Diseases-KEMRI (ITROMID-KEMRI), Nairobi, Kenya.
| | - Christopher Khayeka-Wandabwa
- African Population and Health Research Center (APHRC), P. O. Box 10787-00100, Nairobi, Kenya. .,Institute of Tropical Medicine and Infectious Diseases-KEMRI (ITROMID-KEMRI), Nairobi, Kenya.
| | - Keita Sasaki
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | - Yoshimasa Tanaka
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | - Hiroshi Kurosu
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | - Hayato Matsunaga
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
8
|
Abstract
SummaryProthymosin α (PTMA) is a highly acidic, intrinsically disordered protein, which is widely expressed and conserved throughout evolution; its uncommon features are reflected by its involvement in a variety of processes, including chromatin remodelling, transcriptional regulation, cell proliferation and death, immunity. PTMA has also been implicated in spermatogenesis: during vertebrate germ cell progression in the testis the protein is expressed in meiotic and post-meiotic stages, and it is associated with the acrosome system of the differentiating spermatids in mammals. Then, it finally localizes on the inner acrosomal membrane of the mature spermatozoa, suggesting its possible role in both the maturation and function of the gametes. In the present work we studied PTMA expression during the spermatogenesis of the adult zebrafish, a species in which two paralogs have been described. Our data show thatptmatranscripts are expressed in the testis, and localize in meiotic and post-meiotic germ cells, namely spermatocytes and spermatids. Consistently, the protein is expressed in spermatocytes, spermatids, and spermatozoa: its initial perinuclear distribution is extended to the chromatin region during cell division and, in haploid phases, to the cytoplasm of the developing and final gametes. The nuclear localization in the acrosome-lacking spermatozoa suggests a role for PTMA in chromatin remodelling during gamete differentiation. These data further provide a compelling starting point for the study of PTMA functions during vertebrate fertilization.
Collapse
|
9
|
Rengaraj D, Hwang YS, Liang XH, Deng WB, Yang ZM, Han JY. Comparative expression and regulation of TMSB4X in male reproductive tissues of rats and chickens. ACTA ACUST UNITED AC 2013; 319:584-95. [DOI: 10.1002/jez.1820] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 07/29/2013] [Accepted: 08/05/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Deivendran Rengaraj
- World Class University (WCU) Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences; Seoul National University; Seoul South Korea
| | - Young Sun Hwang
- World Class University (WCU) Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences; Seoul National University; Seoul South Korea
| | | | - Wen Bo Deng
- Department of Biology; Shantou University; Shantou China
| | - Zeng Ming Yang
- Department of Biology; Shantou University; Shantou China
| | - Jae Yong Han
- World Class University (WCU) Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences; Seoul National University; Seoul South Korea
| |
Collapse
|
10
|
Ferrara D, Pariante P, Di Matteo L, Serino I, Oko R, Minucci S. First evidence of prothymosin alpha localization in the acrosome of mammalian male gametes. J Cell Physiol 2013; 228:1629-37. [DOI: 10.1002/jcp.24332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 01/16/2013] [Indexed: 12/27/2022]
|
11
|
Ferrara D, Izzo G, Pariante P, Donizetti A, d'Istria M, Aniello F, Minucci S. Expression of prothymosin alpha in meiotic and post-meiotic germ cells during the first wave of rat spermatogenesis. J Cell Physiol 2010; 224:362-8. [DOI: 10.1002/jcp.22131] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Transgenic expression of prothymosin alpha on zebrafish epidermal cells promotes proliferation and attenuates UVB-induced apoptosis. Transgenic Res 2009; 19:655-65. [PMID: 20012190 DOI: 10.1007/s11248-009-9350-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 11/25/2009] [Indexed: 10/20/2022]
Abstract
This study generated a transgenic zebrafish line Tg(k18:Ptmaa-RFP) with overexpression of Prothymosin alpha type a (Ptmaa) in the skin epidermis. Red fluorescence first appears very weakly in the early stage, become stronger and mainly restricted in the nuclei of the epithelial cells from 3 dpf-larvae to adult fish. However, no evident morphological abnormalities were observed. Thus, overexpression of Ptmaa alone is not sufficient to cause disorganized growths or even cancer in zebrafish skin. Molecular and histological evidences showed that Tg(k18:Ptmaa-RFP) embryos have more proliferating cells in the pelvic fins [WT: 3.92 +/- 7.15; Tg(k18:Ptmaa-RFP): 38.00 +/- 10.87] and thicker skin [WT: 10.98 +/- 1.41 mum; Tg(k18:Ptmaa-RFP): 14.02 +/- 1.32 mum], indicating that overexpression of Ptmaa can promote proliferation. On the other hand, fewer apoptotic signals were found when Tg(k18:Ptmaa-RFP) embryos were exposed to UVB. Together with quantitative RT-PCR data, we suggest that UVB-induced epidermal cell apoptosis of zebrafish larvae can be attenuated by overexpression of Ptmaa through the enhancement of transcriptions of bcl2 mRNAs. Taken together, we conclude that overexpression of Ptmaa in zebrafish epidermal cells promotes proliferation and attenuates UVB-induced apoptosis but does not cause skin cancer.
Collapse
|
13
|
Prisco M, Donizetti A, Aniello F, Locascio A, Del Giudice G, Agnese M, Angelini F, Andreuccetti P. Expression of Prothymosin alpha during the spermatogenesis of the spotted ray Torpedo marmorata. Gen Comp Endocrinol 2009; 164:70-6. [PMID: 19454289 DOI: 10.1016/j.ygcen.2009.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 05/07/2009] [Accepted: 05/08/2009] [Indexed: 11/23/2022]
Abstract
In this study, we show that Prothymosin alpha (Ptma), a small, unfolded, negatively charged protein, is present in the cartilaginous fish Torpedo marmorata. The ptma gene is functional and peculiarly controlled during the male spermatogenesis of T. marmorata, as revealed by in situ hybridization and by immunocytochemistry studies. The data show that the ptma transcript is present in stage-specific germ cells, i.e. spermatocytes II and round spermatids. The Ptma protein is detectable in spermatocytes II, in round and elongated spermatids as well as in spermatozoa before their release from cysts, while it is not evident in spermatozoa located in male genital tracts. The ptma transcript and protein are also evident in some Leydig cells, located among maturing cysts containing meiotic and differentiating male cells. No expression for ptma is observed within Sertoli cells. Furthermore, immunolocalization procedures demonstrate that the protein is preferentially localized in the cytoplasm, whereas a nuclear localization is observed in round and elongated spermatids. The possibility that Ptma is involved in testis activity is discussed.
Collapse
Affiliation(s)
- Marina Prisco
- Department of Biological Sciences, University of Naples Federico II, Napoli, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ferrara D, Izzo G, Liguori L, d'Istria M, Aniello F, Minucci S. Evidence for the involvement of prothymosin α in the spermatogenesis of the frogRana esculenta. ACTA ACUST UNITED AC 2009; 311:1-10. [DOI: 10.1002/jez.490] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Donizetti A, Liccardo D, Esposito D, Del Gaudio R, Locascio A, Ferrara D, Minucci S, Aniello F. Differential expression of duplicated genes for prothymosin alpha during zebrafish development. Dev Dyn 2008; 237:1112-8. [DOI: 10.1002/dvdy.21492] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
16
|
Klimentzou P, Paravatou-Petsotas M, Zikos C, Beck A, Skopeliti M, Czarnecki J, Tsitsilonis O, Voelter W, Livaniou E, Evangelatos GP. Development and immunochemical evaluation of antibodies Y for the poorly immunogenic polypeptide prothymosin alpha. Peptides 2006; 27:183-93. [PMID: 16150512 DOI: 10.1016/j.peptides.2005.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 07/01/2005] [Accepted: 07/05/2005] [Indexed: 01/29/2023]
Abstract
Since conserved mammalian polypeptides are believed to exhibit enhanced immunogenicity in avian species, hens were immunized against the poorly immunogenic, highly conserved mammalian polypeptide prothymosin alpha (ProTalpha), i.e. against either non-conjugated ProTalpha (isolated from bovine thymus) or ProTalpha conjugated to keyhole limpet hemocyanin (ProTalpha/KLH). The antibodies Y were isolated from the egg yolk and evaluated through suitable dot-blot and ELISA systems in parallel with antibodies G isolated from the antiserum of rabbits immunized against the same immunogens. As revealed, antibodies Y and G of low titer and/or affinity were obtained against non-conjugated ProTalpha, while antibodies Y against ProTalpha/KLH had a better apparent titer, could better discriminate between ProTalpha and the closely related bioactive peptide thymosin alpha 1, and were obtained at much larger quantities than the corresponding antibodies G.
Collapse
Affiliation(s)
- Persefoni Klimentzou
- National Centre for Scientific Research (NCSR) Demokritos, Institute of Radioisotopes & Radiodiagnostic Products, Immunopeptide Chemistry Laboratory, Aghia Paraskevi Attikis, Athens 15310, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hannappel E, Huff T. The thymosins. Prothymosin alpha, parathymosin, and beta-thymosins: structure and function. VITAMINS AND HORMONES 2003; 66:257-96. [PMID: 12852257 DOI: 10.1016/s0083-6729(03)01007-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The studies on thymosins were initiated in 1965, when the group of A. White searched for thymic factors responsible for the physiological functions of thymus. To restore thymic functions in thymic-deprived or immunodeprived animals, as well as in humans with primary immuno-deficiency diseases and in immunosuppressed patients, a standardized extract from bovine thymus gland called thymosin fraction 5 was prepared. Thymosin fraction 5 indeed improved immune response. It turned out that thymosin fraction 5 consists of a mixture of small polypeptides. Later on, several of these peptides (polypeptide beta 1, thymosin alpha 1, prothymosin alpha, parathymosin, and thymosin beta 4) were isolated and tested for their biological activity. The research of many groups has indicated that none of the isolated peptides is really a thymic hormone; nevertheless, they are biologically important peptides with diverse intracellular and extracellular functions. Studies on these functions are still in progress. The current status of knowledge of structure and functions of the thymosins is discussed in this review.
Collapse
Affiliation(s)
- Ewald Hannappel
- Institute for Biochemistry/Faculty of Medicine, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | |
Collapse
|
18
|
Spiess AN, Walther N, Müller N, Balvers M, Hansis C, Ivell R. SPEER--a new family of testis-specific genes from the mouse. Biol Reprod 2003; 68:2044-54. [PMID: 12606357 DOI: 10.1095/biolreprod.102.011593] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Differential cloning revealed a partial mRNA sequence expressed in the mouse testis, which on further molecular characterization proved to be a member of a new family of 14 transcribed genes. Six of the genes appear to be expressed pseudogenes. The remainder indicate an open reading frame of approximately 200-220 amino acids encoding proteins with a very high proportion of alpha helical secondary structure, comprising approximately 15% glutamate residues. Because of this property, the family has been named SPErm-associated glutamate (E)-Rich protein (SPEER). Three members were chosen for more detailed characterization: SPEER-1 (pseudogene), SPEER-2, and SPEER-4D. All three are expressed tissue specifically in the testis of mice, with only very weak expression evident in the rat testis but in no other species tested. Using reverse transcription-polymerase chain reaction (RT-PCR), all three transcripts can be detected also in the epididymis, presumably due to the presence of spermatozoa. All three transcripts are expressed to high levels in haploid germ cells at the spermatocyte-spermatid transition. SPEER-1 mRNA is present in the cytoplasm as a sense transcript, SPEER-2 appears to be made mostly as an antisense transcript, whereas SPEER-4D appears to be localized within a subcellular compartment as a conventional sense transcript. Codon usage analysis suggests that all but the pseudogenes can be expressed as protein, confirmed for SPEER-2 and SPEER-4D by in vitro transcription/translation. An antibody raised against a peptide region of SPEER-4D, which probably cross-reacts with other SPEER members, immunohistochemically stains the nuclei of early round spermatids. While there are no true homologies to other proteins in the genome databases, some motifs are present that suggest a relationship to nuclear matrix proteins, implying that the SPEER family is a new group of haploid sperm-specific nuclear factors.
Collapse
Affiliation(s)
- Andrej-Nikolai Spiess
- Institute for Hormone and Fertility Research, University of Hamburg, 22529 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
19
|
De Rienzo G, Di Sena R, Ferrara D, Palmiero C, Chieffi Baccari G, Minucci S. Temporal and spatial localization of prothymosin alpha transcript in the Harderian gland of the frog, Rana esculenta. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 292:633-9. [PMID: 12115928 DOI: 10.1002/jez.10097] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Harderian gland (hg) is the only orbital gland of the frog Rana esculenta, and it has the essential function of lubricating the eyes. The hg secretory activity is seasonal, showing the highest value in summer. There is, at present, no data on gene expression of the frog hg. This study reports, for the first time, on the temporal and spatial expression of a cDNA clone encoding for the prothymosin alpha (Prot-alpha), a highly acidic nuclear protein present in virtually all mammalian cells. Northern blot analysis revealed a single 1.7 kb transcript detected in the frog hg throughout the year, with a lowest expression in September in concomitance with the minimum secretory activity. In situ hybridization indicated that hg secretory cells express Prot-alpha transcript, and the hybridization signal was less intense in the September gland. The constant expression of the frog Prot-alpha mRNA during the whole year suggests a constitutive role for this molecule in the hg. In addition, taking into account that, in mammals, many immunomodulatory functions have been attributed to this protein, it is suggested that frog Prot-alpha might contribute to the hg immunity processes, probably acting as a protective agent against infections of the eyeball. Interestingly, although the presence of Prot-alpha gene in animals other than mammals has been considered to be highly unlikely, the present paper confirms the presence of Prot-alpha transcript in a nonmammalian vertebrate, the frog R. esculenta.
Collapse
Affiliation(s)
- Gianluca De Rienzo
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Funzioni Biologiche Integrate, F. Bottazzi, Seconda Università degli Studi di Napoli, 80138 Napoli, Italy
| | | | | | | | | | | |
Collapse
|