1
|
Lewis RM, Keller JJ, Wan L, Stone JS. Bone morphogenetic protein 4 antagonizes hair cell regeneration in the avian auditory epithelium. Hear Res 2018; 364:1-11. [PMID: 29754876 DOI: 10.1016/j.heares.2018.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 03/11/2018] [Accepted: 04/16/2018] [Indexed: 02/01/2023]
Abstract
Permanent hearing loss is often a result of damage to cochlear hair cells, which mammals are unable to regenerate. Non-mammalian vertebrates such as birds replace damaged hair cells and restore hearing function, but mechanisms controlling regeneration are not understood. The secreted protein bone morphogenetic protein 4 (BMP4) regulates inner ear morphogenesis and hair cell development. To investigate mechanisms controlling hair cell regeneration in birds, we examined expression and function of BMP4 in the auditory epithelia (basilar papillae) of chickens of either sex after hair cell destruction by ototoxic antibiotics. In mature basilar papillae, BMP4 mRNA is highly expressed in hair cells, but not in hair cell progenitors (supporting cells). Supporting cells transcribe genes encoding receptors for BMP4 (BMPR1A, BMPR1B, and BMPR2) and effectors of BMP4 signaling (ID transcription factors). Following hair cell destruction, BMP4 transcripts are lost from the sensory epithelium. Using organotypic cultures, we demonstrate that treatments with BMP4 during hair cell destruction prevent supporting cells from upregulating expression of the pro-hair cell transcription factor ATOH1, entering the cell cycle, and fully transdifferentiating into hair cells, but they do not induce cell death. By contrast, noggin, a BMP4 inhibitor, increases numbers of regenerated hair cells. These findings demonstrate that BMP4 antagonizes hair cell regeneration in the chicken basilar papilla, at least in part by preventing accumulation of ATOH1 in hair cell precursors.
Collapse
Affiliation(s)
- Rebecca M Lewis
- University of Washington School of Medicine and the Virginia Merrill Bloedel Hearing Research Center, Seattle, WA, United States; Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Jesse J Keller
- University of Washington School of Medicine and the Virginia Merrill Bloedel Hearing Research Center, Seattle, WA, United States; Oregon Health Sciences University, Portland, OR, United States
| | - Liangcai Wan
- University of Washington School of Medicine and the Virginia Merrill Bloedel Hearing Research Center, Seattle, WA, United States; Department of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jennifer S Stone
- University of Washington School of Medicine and the Virginia Merrill Bloedel Hearing Research Center, Seattle, WA, United States.
| |
Collapse
|
2
|
Peretz Y, Eren N, Kohl A, Hen G, Yaniv K, Weisinger K, Cinnamon Y, Sela-Donenfeld D. A new role of hindbrain boundaries as pools of neural stem/progenitor cells regulated by Sox2. BMC Biol 2016; 14:57. [PMID: 27392568 PMCID: PMC4938926 DOI: 10.1186/s12915-016-0277-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/21/2016] [Indexed: 01/28/2023] Open
Abstract
Background Compartment boundaries are an essential developmental mechanism throughout evolution, designated to act as organizing centers and to regulate and localize differently fated cells. The hindbrain serves as a fascinating example for this phenomenon as its early development is devoted to the formation of repetitive rhombomeres and their well-defined boundaries in all vertebrates. Yet, the actual role of hindbrain boundaries remains unresolved, especially in amniotes. Results Here, we report that hindbrain boundaries in the chick embryo consist of a subset of cells expressing the key neural stem cell (NSC) gene Sox2. These cells co-express other neural progenitor markers such as Transitin (the avian Nestin), GFAP, Pax6 and chondroitin sulfate proteoglycan. The majority of the Sox2+ cells that reside within the boundary core are slow-dividing, whereas nearer to and within rhombomeres Sox2+ cells are largely proliferating. In vivo analyses and cell tracing experiments revealed the contribution of boundary Sox2+ cells to neurons in a ventricular-to-mantle manner within the boundaries, as well as their lateral contribution to proliferating Sox2+ cells in rhombomeres. The generation of boundary-derived neurospheres from hindbrain cultures confirmed the typical NSC behavior of boundary cells as a multipotent and self-renewing Sox2+ cell population. Inhibition of Sox2 in boundaries led to enhanced and aberrant neural differentiation together with inhibition in cell-proliferation, whereas Sox2 mis-expression attenuated neurogenesis, confirming its significant function in hindbrain neuronal organization. Conclusions Data obtained in this study deciphers a novel role of hindbrain boundaries as repetitive pools of neural stem/progenitor cells, which provide proliferating progenitors and differentiating neurons in a Sox2-dependent regulation. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0277-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuval Peretz
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Noa Eren
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Ayelet Kohl
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Gideon Hen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Karen Weisinger
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Yuval Cinnamon
- Institute of Animal Sciences, Department of Poultry and Aquaculture Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| |
Collapse
|
3
|
Bioinformatic analysis of nematode migration-associated genes identifies novel vertebrate neural crest markers. PLoS One 2014; 9:e103024. [PMID: 25051358 PMCID: PMC4106859 DOI: 10.1371/journal.pone.0103024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 06/26/2014] [Indexed: 12/03/2022] Open
Abstract
Neural crest cells are highly motile, yet a limited number of genes governing neural crest migration have been identified by conventional studies. To test the hypothesis that cell migration genes are likely to be conserved over large evolutionary distances and from diverse tissues, we searched for vertebrate homologs of genes important for migration of various cell types in the invertebrate nematode and examined their expression during vertebrate neural crest cell migration. Our systematic analysis utilized a combination of comparative genomic scanning, functional pathway analysis and gene expression profiling to uncover previously unidentified genes expressed by premigratory, emigrating and/or migrating neural crest cells. The results demonstrate that similar gene sets are expressed in migratory cell types across distant animals and different germ layers. Bioinformatics analysis of these factors revealed relationships between these genes within signaling pathways that may be important during neural crest cell migration.
Collapse
|
4
|
Strobl-Mazzulla PH, Bronner ME. A PHD12-Snail2 repressive complex epigenetically mediates neural crest epithelial-to-mesenchymal transition. ACTA ACUST UNITED AC 2013; 198:999-1010. [PMID: 22986495 PMCID: PMC3444776 DOI: 10.1083/jcb.201203098] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neural crest cells form within the neural tube and then undergo an epithelial to mesenchymal transition (EMT) to initiate migration to distant locations. The transcriptional repressor Snail2 has been implicated in neural crest EMT via an as of yet unknown mechanism. We report that the adaptor protein PHD12 is highly expressed before neural crest EMT. At cranial levels, loss of PHD12 phenocopies Snail2 knockdown, preventing transcriptional shutdown of the adhesion molecule Cad6b (Cadherin6b), thereby inhibiting neural crest emigration. Although not directly binding to each other, PHD12 and Snail2 both directly interact with Sin3A in vivo, which in turn complexes with histone deacetylase (HDAC). Chromatin immunoprecipitation revealed that PHD12 is recruited to the Cad6b promoter during neural crest EMT. Consistent with this, lysines on histone 3 at the Cad6b promoter are hyperacetylated before neural crest emigration, correlating with active transcription, but deacetylated during EMT, reflecting the repressive state. Knockdown of either PHD12 or Snail2 prevents Cad6b promoter deacetylation. Collectively, the results show that PHD12 interacts directly with Sin3A/HDAC, which in turn interacts with Snail2, forming a complex at the Cad6b promoter and thus revealing the nature of the in vivo Snail repressive complex that regulates neural crest EMT.
Collapse
Affiliation(s)
- Pablo H Strobl-Mazzulla
- Biología del Desarrollo, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Martín, 7130 Chascomús, Argentina
| | | |
Collapse
|
5
|
McCabe KL, Bronner M. Tetraspanin, CD151, is required for maintenance of trigeminal placode identity. J Neurochem 2011; 117:221-30. [PMID: 21250998 DOI: 10.1111/j.1471-4159.2011.07190.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The trigeminal ganglion is the largest of the cranial ganglia and responsible for transmitting sensory information for much of the face. The cell surface glycoprotein CD151 is an early marker of the trigeminal placode, the precursor to the ganglion. Here, we investigate the role of CD151 during specification of trigeminal placode cells in the developing chicken embryo. Expression of the transcription factor Pax3, the earliest known marker of the trigeminal placode, briefly precedes that of CD151, but they then subsequently overlap in the trigeminal placode. Loss of CD151 protein dramatically decreases the number of Pax3+ placode cells in Stage 13-14 embryos, leading to loss of ophthalmic trigeminal neurons by Stages 16 and 17. Although the initial size of the Pax3 population is similar to that in controls, the number of Pax3+ cells decreases with time without alterations in cell death or proliferation. This suggests a role for CD151 in maintenance of the specification state in the trigeminal placode, uncovering the first known role for a tetraspanin in a developmental system.
Collapse
|
6
|
Krispin S, Nitzan E, Kalcheim C. The dorsal neural tube: a dynamic setting for cell fate decisions. Dev Neurobiol 2011; 70:796-812. [PMID: 20683859 DOI: 10.1002/dneu.20826] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The dorsal neural tube first generates neural crest cells that exit the neural primordium following an epithelial-to-mesenchymal conversion to become sympathetic ganglia, Schwann cells, dorsal root sensory ganglia, and melanocytes of the skin. Following the end of crest emigration, the dorsal midline of the neural tube becomes the roof plate, a signaling center for the organization of dorsal neuronal cell types. Recent lineage analysis performed before the onset of crest delamination revealed that the dorsal tube is a highly dynamic region sequentially traversed by fate-restricted crest progenitors. Furthermore, prospective roof plate cells were shown to originate ventral to presumptive crest and to progressively relocate dorsalward to occupy their definitive midline position following crest delamination. These data raise important questions regarding the mechanisms of cell emigration in relation to fate acquisition, and suggest the possibility that spatial and/or temporal information in the dorsal neural tube determines initial segregation of neural crest cells into their derivatives. In addition, they emphasize the need to address what controls the end of neural crest production and consequent roof plate formation, a fundamental issue for understanding the separation between central and peripheral lineages during development of the nervous system.
Collapse
Affiliation(s)
- Shlomo Krispin
- Department of Medical Neurobiology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
7
|
Id gene regulation and function in the prosensory domains of the chicken inner ear: a link between Bmp signaling and Atoh1. J Neurosci 2010; 30:11426-34. [PMID: 20739564 DOI: 10.1523/jneurosci.2570-10.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bone morphogenetic proteins (Bmps) regulate the expression of the proneural gene Atoh1 and the generation of hair cells in the developing inner ear. The present work explored the role of Inhibitor of Differentiation genes (Id1-3) in this process. The results show that Id genes are expressed in the prosensory domains of the otic vesicle, along with Bmp4 and Bmp7. Those domains exhibit high levels of the phosphorylated form of Bmp-responding R-Smads (P-Smad1,5,8), and of Bmp-dependent Smad transcriptional activity as shown by the BRE-tk-EGFP reporter. Increased Bmp signaling induces the expression of Id1-3 along with the inhibition of Atoh1. Conversely, the Bmp antagonist Noggin or the Bmp-receptor inhibitor Dorsomorphin elicit opposite effects, indicating that Bmp signaling is necessary for Id expression and Atoh1 regulation in the otocyst. The forced expression of Id3 is sufficient to reduce Atoh1 expression and to prevent the expression of hair cell differentiation markers. Together, these results suggest that Ids are part of the machinery that mediates the regulation of hair cell differentiation exerted by Bmps. In agreement with that, during hair cell differentiation Bmp4 expression, P-Smad1,5,8 levels and Id expression are downregulated from hair cells. However, Ids are also downregulated from the supporting cells which contrarily to hair cells exhibit high levels of Bmp4 expression, P-Smad1,5,8, and BRE-tk-EGFP activity, suggesting that in these cells Ids escape from Bmp/Smad signaling. The differential regulation of Ids in time and space may underlie the multiple functions of Bmp signaling during sensory organ development.
Collapse
|
8
|
Duband JL. Diversity in the molecular and cellular strategies of epithelium-to-mesenchyme transitions: Insights from the neural crest. Cell Adh Migr 2010; 4:458-82. [PMID: 20559020 DOI: 10.4161/cam.4.3.12501] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although epithelial to mesenchymal transitions (EMT) are often viewed as a unique event, they are characterized by a great diversity of cellular processes resulting in strikingly different outcomes. They may be complete or partial, massive or progressive, and lead to the complete disruption of the epithelium or leave it intact. Although the molecular and cellular mechanisms of EMT are being elucidated owing chiefly from studies on transformed epithelial cell lines cultured in vitro or from cancer cells, the basis of the diversity of EMT processes remains poorly understood. Clues can be collected from EMT occuring during embryonic development and which affect equally tissues of ectodermal, endodermal or mesodermal origins. Here, based on our current knowledge of the diversity of processes underlying EMT of neural crest cells in the vertebrate embryo, we propose that the time course and extent of EMT do not depend merely on the identity of the EMT transcriptional regulators and their cellular effectors but rather on the combination of molecular players recruited and on the possible coordination of EMT with other cellular processes.
Collapse
|
9
|
Buchtová M, Kuo WP, Nimmagadda S, Benson SL, Geetha-Loganathan P, Logan C, Au-Yeung T, Chiang E, Fu K, Richman JM. Whole genome microarray analysis of chicken embryo facial prominences. Dev Dyn 2010; 239:574-91. [PMID: 19941351 DOI: 10.1002/dvdy.22135] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The face is one of the three regions most frequently affected by congenital defects in humans. To understand the molecular mechanisms involved, it is necessary to have a more complete picture of gene expression in the embryo. Here, we use microarrays to profile expression in chicken facial prominences, post neural crest migration and before differentiation of mesenchymal cells. Chip-wide analysis revealed that maxillary and mandibular prominences had similar expression profiles while the frontonasal mass chips were distinct. Of the 3094 genes that were differentially expressed in one or more regions of the face, a group of 56 genes was subsequently validated with quantitative polymerase chain reaction (QPCR) and a subset examined with in situ hybridization. Microarrays trends were consistent with the QPCR data for the majority of genes (81%). On the basis of QPCR and microarray data, groups of genes that characterize each of the facial prominences can be determined.
Collapse
Affiliation(s)
- Marcela Buchtová
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Schlosser G. Making senses development of vertebrate cranial placodes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:129-234. [PMID: 20801420 DOI: 10.1016/s1937-6448(10)83004-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cranial placodes (which include the adenohypophyseal, olfactory, lens, otic, lateral line, profundal/trigeminal, and epibranchial placodes) give rise to many sense organs and ganglia of the vertebrate head. Recent evidence suggests that all cranial placodes may be developmentally related structures, which originate from a common panplacodal primordium at neural plate stages and use similar regulatory mechanisms to control developmental processes shared between different placodes such as neurogenesis and morphogenetic movements. After providing a brief overview of placodal diversity, the present review summarizes current evidence for the existence of a panplacodal primordium and discusses the central role of transcription factors Six1 and Eya1 in the regulation of processes shared between different placodes. Upstream signaling events and transcription factors involved in early embryonic induction and specification of the panplacodal primordium are discussed next. I then review how individual placodes arise from the panplacodal primordium and present a model of multistep placode induction. Finally, I briefly summarize recent advances concerning how placodal neurons and sensory cells are specified, and how morphogenesis of placodes (including delamination and migration of placode-derived cells and invagination) is controlled.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Zoology, School of Natural Sciences & Martin Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
11
|
Kamaid A, Giráldez F. Btg1 and Btg2 gene expression during early chick development. Dev Dyn 2008; 237:2158-69. [PMID: 18651656 DOI: 10.1002/dvdy.21616] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Btg/Tob genes encode for a new family of proteins with antiproliferative functions, which are also able to stimulate cell differentiation. Btg1 and Btg2 are the most closely related members in terms of gene sequence. We analyzed their expression patterns in avian embryos by in situ hybridization, from embryonic day 1 to 3. Btg1 was distinctively expressed in the Hensen's node, the notochord, the cardiogenic mesoderm, the lens vesicle, and in the apical ectodermal ridge and mesenchyme of the limb buds. On the other hand, Btg2 expression domains included the neural plate border, presomitic mesoderm, trigeminal placode, and mesonephros. Both genes were commonly expressed in the myotome, epibranchial placodes, and dorsal neural tube. The results suggest that Btg1 and Btg2 are involved in multiple developmental processes. Overlapping expression of Btg1 and Btg2 may imply redundant functions, but unique expression patterns suggest also differential regulation and function.
Collapse
Affiliation(s)
- Andrés Kamaid
- Developmental Biology Group, DCEXS, Universitat Pompeu Fabra, Barcelona, Spain.
| | | |
Collapse
|
12
|
McCabe KL, Bronner-Fraser M. Essential role for PDGF signaling in ophthalmic trigeminal placode induction. Development 2008; 135:1863-74. [PMID: 18417621 DOI: 10.1242/dev.017954] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Much of the peripheral nervous system of the head is derived from ectodermal thickenings, called placodes, that delaminate or invaginate to form cranial ganglia and sense organs. The trigeminal ganglion, which arises lateral to the midbrain, forms via interactions between the neural tube and adjacent ectoderm. This induction triggers expression of Pax3, ingression of placode cells and their differentiation into neurons. However, the molecular nature of the underlying signals remains unknown. Here, we investigate the role of PDGF signaling in ophthalmic trigeminal placode induction. By in situ hybridization, PDGF receptor beta is expressed in the cranial ectoderm at the time of trigeminal placode formation, with the ligand PDGFD expressed in the midbrain neural folds. Blocking PDGF signaling in vitro results in a dose-dependent abrogation of Pax3 expression in recombinants of quail ectoderm with chick neural tube that recapitulate placode induction. In ovo microinjection of PDGF inhibitor causes a similar loss of Pax3 as well as the later placodal marker, CD151, and failure of neuronal differentiation. Conversely, microinjection of exogenous PDGFD increases the number of Pax3+ cells in the trigeminal placode and neurons in the condensing ganglia. Our results provide the first evidence for a signaling pathway involved in ophthalmic (opV) trigeminal placode induction.
Collapse
Affiliation(s)
- Kathryn L McCabe
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
13
|
Inai K, Norris RA, Hoffman S, Markwald RR, Sugi Y. BMP-2 induces cell migration and periostin expression during atrioventricular valvulogenesis. Dev Biol 2008; 315:383-96. [PMID: 18261719 PMCID: PMC3644399 DOI: 10.1016/j.ydbio.2007.12.028] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 11/26/2022]
Abstract
Atrioventricular (AV) endocardium transforms into the cushion mesenchyme, the primordia of the valves and membranous septa, through epithelial-mesenchymal transformation (EMT). While bone morphogenetic protein (BMP)-2 is known to be critical for AV EMT, the role of BMP-2 in post-EMT AV valvulogenesis remains to be elucidated. To find BMP signaling loops, we first localized Type I BMP receptors (BMPRs), BMPR-1A (ALK3), -1B (ALK6) and ALK2 in AV cushion mesenchyme in stage-24 chick embryos. Based on the BMP receptor expression pattern, we examined the functional roles of BMP-2 and BMP signaling in post-EMT valvulogenesis by using stage-24 AV cushion mesenchymal cell aggregates cultured on 3D-collagen gels. Exogenous BMP-2 or constitutively active (ca) BMPR-1B (ALK6)-virus treatments induced migration of the mesenchymal cells into the collagen gels, whereas noggin, an antagonist of BMPs, or dominant-negative (dn) BMPR-1 B (ALK6)-virus treatments reduced cell migration from the mesenchymal cell aggregates. Exogenous BMP-2 or caBMPR-1B (ALK6) treatments significantly promoted expression of an extracellular matrix (ECM) protein, periostin, a known valvulogenic matrix maturation mediator, at both mRNA and protein levels, whereas periostin expression was repressed by adding noggin or dnBMPR-1B (ALK6)-virus to the culture. Moreover, transcripts of Twist and Id1, which have been implicated in cell migration in embryogenesis and activation of the periostin promoter, were induced by BMP-2 but repressed by noggin in cushion mesenchymal cell cultures. These data provide evidence that BMP-2 and BMP signaling induce biological processes involved in early AV valvulogenesis, i.e. mesenchymal cell migration and expression of periostin, indicating critical roles for BMP signaling in post-EMT AV cushion tissue maturation and differentiation.
Collapse
Affiliation(s)
- Kei Inai
- Department of Cell Biology and Anatomy and Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Russell A. Norris
- Department of Cell Biology and Anatomy and Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stanley Hoffman
- Department of Cell Biology and Anatomy and Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Roger R. Markwald
- Department of Cell Biology and Anatomy and Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yukiko Sugi
- Department of Cell Biology and Anatomy and Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
14
|
Shiau CE, Lwigale PY, Das RM, Wilson SA, Bronner-Fraser M. Robo2-Slit1 dependent cell-cell interactions mediate assembly of the trigeminal ganglion. Nat Neurosci 2008; 11:269-76. [PMID: 18278043 DOI: 10.1038/nn2051] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 01/18/2008] [Indexed: 11/08/2022]
Abstract
Vertebrate cranial sensory ganglia, responsible for sensation of touch, taste and pain in the face and viscera, are composed of both ectodermal placode and neural crest cells. The cellular and molecular interactions allowing generation of complex ganglia remain unknown. Here, we show that proper formation of the trigeminal ganglion, the largest of the cranial ganglia, relies on reciprocal interactions between placode and neural crest cells in chick, as removal of either population resulted in severe defects. We demonstrate that ingressing placode cells express the Robo2 receptor and early migrating cranial neural crest cells express its cognate ligand Slit1. Perturbation of this receptor-ligand interaction by blocking Robo2 function or depleting either Robo2 or Slit1 using RNA interference disrupted proper ganglion formation. The resultant disorganization mimics the effects of neural crest ablation. Thus, our data reveal a novel and essential role for Robo2-Slit1 signaling in mediating neural crest-placode interactions during trigeminal gangliogenesis.
Collapse
Affiliation(s)
- Celia E Shiau
- Division of Biology 139-74, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
15
|
McCabe KL, Shiau CE, Bronner-Fraser M. Identification of candidate secreted factors involved in trigeminal placode induction. Dev Dyn 2008; 236:2925-35. [PMID: 17879314 DOI: 10.1002/dvdy.21325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cranial ectodermal placodes are critical for normal development of the peripheral nervous system of the head. However, many aspects of the molecular and tissue interactions involved in their induction have yet to be elucidated. The trigeminal placode is induced by an unidentified secreted factor(s) from the dorsal neural tube. To determine candidates that may be involved in this induction process, we have performed reverse transcriptase-polymerase chain reaction (RT-PCR) and whole-mount in situ hybridization to screen for receptors expressed by uninduced presumptive trigeminal level ectoderm. We have found that receptors for fibroblast growth factors, insulin-like growth factors, platelet-derived growth factors, Sonic hedgehog, the transforming growth factor-beta superfamily, and Wnts all are expressed in patterns consistent with a role in trigeminal placode formation. This RT-PCR screen for candidate receptors expressed in presumptive trigeminal ectoderm is the first systematic screen to identify potential interactions underlying induction of the trigeminal placode and represents a critical step for understanding this complex process.
Collapse
Affiliation(s)
- Kathryn L McCabe
- Division of Biology MC 139-74, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
16
|
Sauka-Spengler T, Meulemans D, Jones M, Bronner-Fraser M. Ancient evolutionary origin of the neural crest gene regulatory network. Dev Cell 2007; 13:405-20. [PMID: 17765683 DOI: 10.1016/j.devcel.2007.08.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 03/09/2007] [Accepted: 08/15/2007] [Indexed: 11/16/2022]
Abstract
The vertebrate neural crest migrates from its origin, the neural plate border, to form diverse derivatives. We previously hypothesized that a neural crest gene regulatory network (NC-GRN) guides neural crest formation. Here, we investigate when during evolution this hypothetical network emerged by analyzing neural crest formation in lamprey, a basal extant vertebrate. We identify 50 NC-GRN homologs and use morpholinos to demonstrate a critical role for eight transcriptional regulators. The results reveal conservation in deployment of upstream factors, suggesting that proximal portions of the network arose early in vertebrate evolution and have been conserved for >500 million years. We found biphasic expression of neural crest specifiers and differences in deployment of some specifiers and effectors expected to confer species-specific properties. By testing the collective expression and function of neural crest genes in a single, basal vertebrate, we reveal the ground state of the NC-GRN and resolve ambiguities between model organisms.
Collapse
|
17
|
Bai G, Sheng N, Xie Z, Bian W, Yokota Y, Benezra R, Kageyama R, Guillemot F, Jing N. Id sustains Hes1 expression to inhibit precocious neurogenesis by releasing negative autoregulation of Hes1. Dev Cell 2007; 13:283-97. [PMID: 17681138 DOI: 10.1016/j.devcel.2007.05.014] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 04/24/2007] [Accepted: 05/25/2007] [Indexed: 11/29/2022]
Abstract
Negative bHLH transcription factor Hes1 can inhibit neural stem cells (NSCs) from precocious neurogenesis through repressing proneural gene expression; therefore, sustenance of Hes1 expression is crucial for NSC pool maintenance. Here we find that Ids, the dominant-negative regulators of proneural proteins, are expressed prior to proneural genes and share an overlapping expression pattern with Hes1 in the early neural tube of chick embryos. Overexpression of Id2 in the chick hindbrain upregulates Hes1 expression and inhibits proneural gene expression and neuronal differentiation. By contrast, Hes1 expression decreases, proneural gene expression expands, and neurogenesis occurs precociously in Id1;Id3 double knockout mice and in Id1-3 RNAi-electroporated chick embryos. Mechanistic studies show that Id proteins interact directly with Hes1 and release the negative feedback autoregulation of Hes1 without interfering with its ability to affect other target genes. These results indicate that Id proteins participate in NSC maintenance through sustaining Hes1 expression in early embryos.
Collapse
Affiliation(s)
- Ge Bai
- Laboratory of Molecular Cell Biology, Key Laboratory of Stem Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kee Y, Hwang BJ, Sternberg PW, Bronner-Fraser M. Evolutionary conservation of cell migration genes: from nematode neurons to vertebrate neural crest. Genes Dev 2007; 21:391-6. [PMID: 17322398 PMCID: PMC1804327 DOI: 10.1101/gad.1509307] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Because migratory cells in all animals share common properties, we hypothesized that genetic networks involved in cell migration may be conserved between nematodes and vertebrates. To explore this, we performed comparative genomic analysis to identify vertebrate orthologs of genes required for hermaphrodite-specific neuron (HSN) migration in Caenoryhabditis elegans, and then examined their expression and function in the vertebrate neural crest. The results demonstrate high conservation of regulatory components involved in long-range migrations across diverse species. Although the neural crest is a vertebrate innovation, the results suggest that its migratory properties evolved by utilizing programs already present in the common vertebrate-invertebrate ancestor.
Collapse
Affiliation(s)
- Yun Kee
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Byung Joon Hwang
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | - Paul W. Sternberg
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | - Marianne Bronner-Fraser
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
- Corresponding author.E-MAIL ; FAX (626) 395-7717
| |
Collapse
|
19
|
Schlosser G. Induction and specification of cranial placodes. Dev Biol 2006; 294:303-51. [PMID: 16677629 DOI: 10.1016/j.ydbio.2006.03.009] [Citation(s) in RCA: 289] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 12/17/2022]
Abstract
Cranial placodes are specialized regions of the ectoderm, which give rise to various sensory ganglia and contribute to the pituitary gland and sensory organs of the vertebrate head. They include the adenohypophyseal, olfactory, lens, trigeminal, and profundal placodes, a series of epibranchial placodes, an otic placode, and a series of lateral line placodes. After a long period of neglect, recent years have seen a resurgence of interest in placode induction and specification. There is increasing evidence that all placodes despite their different developmental fates originate from a common panplacodal primordium around the neural plate. This common primordium is defined by the expression of transcription factors of the Six1/2, Six4/5, and Eya families, which later continue to be expressed in all placodes and appear to promote generic placodal properties such as proliferation, the capacity for morphogenetic movements, and neuronal differentiation. A large number of other transcription factors are expressed in subdomains of the panplacodal primordium and appear to contribute to the specification of particular subsets of placodes. This review first provides a brief overview of different cranial placodes and then synthesizes evidence for the common origin of all placodes from a panplacodal primordium. The role of various transcription factors for the development of the different placodes is addressed next, and it is discussed how individual placodes may be specified and compartmentalized within the panplacodal primordium. Finally, tissues and signals involved in placode induction are summarized with a special focus on induction of the panplacodal primordium itself (generic placode induction) and its relation to neural induction and neural crest induction. Integrating current data, new models of generic placode induction and of combinatorial placode specification are presented.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Brain Research Institute, AG Roth, University of Bremen, FB2, 28334 Bremen, Germany.
| |
Collapse
|
20
|
Schlosser G. Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:347-99. [PMID: 16003766 DOI: 10.1002/jez.b.21055] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ectodermal placodes comprise the adenohypophyseal, olfactory, lens, profundal, trigeminal, otic, lateral line, and epibranchial placodes. The first part of this review presents a brief overview of placode development. Placodes give rise to a variety of cell types and contribute to many sensory organs and ganglia of the vertebrate head. While different placodes differ with respect to location and derivative cell types, all appear to originate from a common panplacodal primordium, induced at the anterior neural plate border by a combination of mesodermal and neural signals and defined by the expression of Six1, Six4, and Eya genes. Evidence from mouse and zebrafish mutants suggests that these genes promote generic placodal properties such as cell proliferation, cell shape changes, and specification of neurons. The common developmental origin of placodes suggests that all placodes may have evolved in several steps from a common precursor. The second part of this review summarizes our current knowledge of placode evolution. Although placodes (like neural crest cells) have been proposed to be evolutionary novelties of vertebrates, recent studies in ascidians and amphioxus have proposed that some placodes originated earlier in the chordate lineage. However, while the origin of several cellular and molecular components of placodes (e.g., regionalized expression domains of transcription factors and some neuronal or neurosecretory cell types) clearly predates the origin of vertebrates, there is presently little evidence that these components are integrated into placodes in protochordates. A scenario is presented according to which all placodes evolved from an adenohypophyseal-olfactory protoplacode, which may have originated in the vertebrate ancestor from the anlage of a rostral neurosecretory organ (surviving as Hatschek's pit in present-day amphioxus).
Collapse
|
21
|
Kee Y, Bronner-Fraser M. To proliferate or to die: role of Id3 in cell cycle progression and survival of neural crest progenitors. Genes Dev 2005; 19:744-55. [PMID: 15769946 PMCID: PMC1065727 DOI: 10.1101/gad.1257405] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The neural crest is a unique population of mitotically active, multipotent progenitors that arise at the vertebrate neural plate border. Here, we show that the helix-loop-helix transcriptional regulator Id3 has a novel role in cell cycle progression and survival of neural crest progenitors in Xenopus. Id3 is localized at the neural plate border during gastrulation and neurulation, overlapping the domain of neural crest induction. Morpholino oligonucleotide-mediated depletion of Id3 results in the absence of neural crest precursors and a resultant loss of neural crest derivatives. This appears to be mediated by cell cycle inhibition followed by cell death of the neural crest progenitor pool, rather than a cell fate switch. Conversely, overexpression of Id3 increases cell proliferation and results in expansion of the neural crest domain. Our data suggest that Id3 functions by a novel mechanism, independent of cell fate determination, to mediate the decision of neural crest precursors to proliferate or die.
Collapse
Affiliation(s)
- Yun Kee
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
22
|
Streit A. Early development of the cranial sensory nervous system: from a common field to individual placodes. Dev Biol 2005; 276:1-15. [PMID: 15531360 DOI: 10.1016/j.ydbio.2004.08.037] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 08/20/2004] [Accepted: 08/23/2004] [Indexed: 01/12/2023]
Abstract
Sensory placodes are unique columnar epithelia with neurogenic potential that develop in the vertebrate head ectoderm next to the neural tube. They contribute to the paired sensory organs and the cranial sensory ganglia generating a wide variety of cell types ranging from lens fibres to sensory receptor cells and neurons. Although progress has been made in recent years to identify the molecular players that mediate placode specification, induction and patterning, the processes that initiate placode development are not well understood. One hypothesis suggests that all placode precursors arise from a common territory, the pre-placodal region, which is then subdivided to generate placodes of specific character. This model implies that their induction begins through molecular and cellular mechanisms common to all placodes. Embryological and molecular evidence suggests that placode induction is a multi-step process and that the molecular networks establishing the pre-placodal domain as well as the acquisition of placodal identity are surprisingly similar to those used in Drosophila to specify sensory structures.
Collapse
Affiliation(s)
- Andrea Streit
- Department of Craniofacial Development, King's College London, Guy's Campus, London SE1 9RT, UK.
| |
Collapse
|
23
|
Martinsen BJ, Frasier AJ, Baker CVH, Lohr JL. Cardiac neural crest ablation alters Id2 gene expression in the developing heart. Dev Biol 2004; 272:176-90. [PMID: 15242799 DOI: 10.1016/j.ydbio.2004.04.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2003] [Revised: 04/05/2004] [Accepted: 04/12/2004] [Indexed: 11/24/2022]
Abstract
Id proteins are negative regulators of basic helix-loop-helix gene products and participate in many developmental processes. We have evaluated the expression of Id2 in the developing chick heart and found expression in the cardiac neural crest, secondary heart field, outflow tract, inflow tract, and anterior parasympathetic plexus. Cardiac neural crest ablation in the chick embryo, which causes structural defects of the cardiac outflow tract, results in a significant loss of Id2 expression in the outflow tract. Id2 is also expressed in Xenopus neural folds, branchial arches, cardiac outflow tract, inflow tract, and splanchnic mesoderm. Ablation of the premigratory neural crest in Xenopus embryos results in abnormal formation of the heart and a loss of Id2 expression in the heart and splanchnic mesoderm. This data suggests that the presence of neural crest is required for normal Id2 expression in both chick and Xenopus heart development and provides evidence that neural crest is involved in heart development in Xenopus embryos.
Collapse
Affiliation(s)
- Brad J Martinsen
- Department of Pediatrics, Division of Pediatric Cardiology, University of Minnesota School of Medicine, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
24
|
Rallière C, Chauvigné F, Rescan PY. The genes for the helix-loop-helix proteins Id6a, Id6b, Id1 and Id2 are specifically expressed in the ventral and dorsal domains of the fish developing somites. J Exp Biol 2004; 207:2679-84. [PMID: 15201300 DOI: 10.1242/jeb.01088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SUMMARY
Muscle differentiation is inhibited by members of the Id family that block the transcriptional effect of myogenic bHLH regulators by forming inactive heterodimers with them. Also, Id proteins promote cell proliferation by interacting with key regulators of the cell cycle. In order to determine the role of Id-encoding genes during fish development and especially in early myogenesis, we examined the expression patterns of Id1, Id2 and two nonallelic Id6 (Id6a and Id6b)-encoding genes in developing trout embryos. These four Id paralogs were found to exhibit discrete expression in the developing nervous system and in the eye rudiment. During the segmentation process, Id6a, Id6b and Id1 were expressed in the tail bud, the paraxial mesoderm and the ventral and dorsal domains of neoformed somites. As the somite matured in a rostrocaudal progression, the labelling for Id1 transcripts rapidly faded whereas labelling for Id6 transcripts was found to persist until at least the completion of segmentation. By contrast, Id2 transcripts were visualised transiently only in dorsal domains of neoformed somites and strongly accumulated in the pronephros. The preferential localisation of Id6a, Id6b, Id1 and Id2 transcripts within ventral and/or dorsal extremes of the developing somites, suggests that these areas, which were the last ones to express muscle-specific genes, contain dividing cells involved in somite expansion.
Collapse
|
25
|
Meulemans D, McCauley D, Bronner-Fraser M. Id expression in amphioxus and lamprey highlights the role of gene cooption during neural crest evolution. Dev Biol 2003; 264:430-42. [PMID: 14651928 DOI: 10.1016/j.ydbio.2003.09.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neural crest cells are unique to vertebrates and generate many of the adult structures that differentiate them from their closest invertebrate relatives, the cephalochordates. Id genes are robust markers of neural crest cells at all stages of development. We compared Id gene expression in amphioxus and lamprey to ask if cephalochordates deploy Id genes at the neural plate border and dorsal neural tube in a manner similar to vertebrates. Furthermore, we examined whether Id expression in these cells is a basal vertebrate trait or a derived feature of gnathostomes. We found that while expression of Id genes in the mesoderm and endoderm is conserved between amphioxus and vertebrates, expression in the lateral neural plate border and dorsal neural tube is a vertebrate novelty. Furthermore, expression of lamprey Id implies that recruitment of Id genes to these cells occurred very early in the vertebrate lineage. Based on expression in amphioxus we postulate that Id cooption conferred sensory cell progenitor-like properties upon the lateral neurectoderm, and pharyngeal mesoderm-like properties upon cranial neural crest. Amphioxus Id expression is also consistent with homology between the anterior neurectoderm of amphioxus and the presumptive placodal ectoderm of vertebrates. These observations support the idea that neural crest evolution was driven in large part by cooption of multipurpose transcriptional regulators from other tissues and cell types.
Collapse
Affiliation(s)
- Daniel Meulemans
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
26
|
McLarren KW, Litsiou A, Streit A. DLX5 positions the neural crest and preplacode region at the border of the neural plate. Dev Biol 2003; 259:34-47. [PMID: 12812786 DOI: 10.1016/s0012-1606(03)00177-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neural crest and sensory placodes arise from a region of the embryonic ectoderm that lies between the neural plate and future epidermis. While some of the signalling pathways that are involved in cell fate determination at the border of the neural plate have been characterised, it is still unclear how different signals are integrated. Transcription factors of the DLX gene family that may mediate such cell fate decisions are expressed at the border of the neural plate. Here, we demonstrate that DLX5 is involved in positioning this border by repressing neural properties and simultaneously by promoting the formation of border-like cells that express the neural fold markers MSX1 and BMP4 and the preplacodal region marker SIX4. However, DLX5 is not sufficient to impart epidermal character or to specify cell fates that arise at the border of the neural plate, like neural crest or fully formed sensory placodes, in a cell-autonomous manner. Additional signals are generated when mature neural plate and epidermis interact and these are required for neural crest formation. We propose that patterning of the embryonic ectoderm is a multistep process that sequentially subdivides the ectoderm into regions with defined cell fates.
Collapse
Affiliation(s)
- Keith W McLarren
- Department of Craniofacial Development, King's College London, Guy's Campus, St. Thomas Street, London SE1 9RT, UK
| | | | | |
Collapse
|
27
|
Kious BM, Baker CVH, Bronner-Fraser M, Knecht AK. Identification and characterization of a calcium channel gamma subunit expressed in differentiating neurons and myoblasts. Dev Biol 2002; 243:249-59. [PMID: 11884034 DOI: 10.1006/dbio.2001.0570] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transient elevations of intracellular calcium (calcium transients) play critical roles in many developmental processes, including differentiation. Although the factors that regulate calcium transients are not clearly defined, calcium influx may be controlled by molecules interacting with calcium channels, including channel regulatory subunits. Here, we describe the chick gamma4 regulatory subunit (CACNG4), the first such subunit to be characterized in early development. CACNG4 is expressed early in the cranial neural plate, and later in the cranial and dorsal root ganglia; importantly, the timing of this later expression correlates precisely with the onset of neuronal differentiation. CACNG4 expression is also observed in nonneuronal tissues undergoing differentiation, specifically the myotome and a subpopulation of differentiating myoblasts in the limb bud. Finally, within the distal cranial ganglia, we show that CACNG4 is expressed in placode-derived cells (prospective neurons), but also, surprisingly, in neural crest-derived cells, previously shown to form only glia in this location; contrary to these previous results, we find that neural crest cells can form neurons in the distal ganglia. Given the proposed role of CACNG4 in modulating calcium channels and its expression in differentiating cells, we suggest that CACNG4 may promote differentiation via regulation of intracellular calcium levels.
Collapse
Affiliation(s)
- Brent M Kious
- Division of Biology, 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
28
|
Abstract
We present the sequence and expression pattern of chick Id4 and compare its distribution to that of other vertebrate Id genes. At early stages, Id4 expression is discrete, with transcript transiently expressed in subsets of migrating neural crest cells, the dorsal myocardium, the segmental plate mesoderm, and the tail bud. Later, expression is also observed in the telencephalic vesicles and corneal epithelium. Of all the Id genes, Id4 exhibits the most restricted pattern in the developing nervous system, with little expression in the presumptive neural crest or placodes. Id4 appears in the neural tube much later than other Id genes. However, all four Id genes display overlapping patterns in the branchial arches and tail bud.
Collapse
Affiliation(s)
- Y Kee
- Division of Biology, 139-74 California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
29
|
Kee Y, Bronner-Fraser M. The transcriptional regulator Id3 is expressed in cranial sensory placodes during early avian embryonic development. Mech Dev 2001; 109:337-40. [PMID: 11731246 DOI: 10.1016/s0925-4773(01)00575-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The chick homologue of the helix-loop-helix gene Id3 was isolated, and its expression pattern was analyzed during early stages of chick development. Chick Id3 is dynamically expressed in the olfactory, lens, and otic placodes. It is also observed in the epiphysis, nephric primordium, stomodeum, dermomyotome, distal branchial arches, dorsolateral hindbrain, foregut endoderm, dorsal spinal cord, and somites.
Collapse
Affiliation(s)
- Y Kee
- Division of Biology, 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|