1
|
Medved J, Wood WM, van Heyst MD, Sherafat A, Song JY, Sakya S, Wright DL, Nishiyama A. Novel guanidine compounds inhibit platelet-derived growth factor receptor alpha transcription and oligodendrocyte precursor cell proliferation. Glia 2020; 69:792-811. [PMID: 33098183 DOI: 10.1002/glia.23930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 09/22/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
Oligodendrocyte precursor cells (OPCs), also known as NG2 cells or polydendrocytes, are distributed widely throughout the developing and mature central nervous system. They remain proliferative throughout life and are an important source of myelinating cells in normal and demyelinating brain as well as a source of glioma, the most common type of primary brain tumor with a poor prognosis. OPC proliferation is dependent on signaling mediated by platelet-derived growth factor (PDGF) AA binding to its alpha receptor (PDGFRα). Here, we describe a group of structurally related compounds characterized by the presence of a basic guanidine group appended to an aromatic core that is effective in specifically repressing the transcription of Pdgfra but not the related beta receptor (Pdgfrb) in OPCs. These compounds specifically and dramatically reduced proliferation of OPCs but not that of astrocytes and did not affect signal transduction by PDGFRα. These findings suggest that the compounds could be further developed for potential use in combinatorial treatment strategies for neoplasms with dysregulated PDGFRα function.
Collapse
Affiliation(s)
- Jelena Medved
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - William M Wood
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Michael D van Heyst
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Amin Sherafat
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Ju-Young Song
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.,Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Sagune Sakya
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.,Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Dennis L Wright
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.,Institute for Systems Genomics, University of Connecticut, Mansfield, Connecticut, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Mansfield, Connecticut, USA
| |
Collapse
|
2
|
Minato Y, Kuwahara-Otani S, Maeda S, Yagi H. Platelet-derived growth factor receptor α gene is regulated by multiple first exons. Biochem Biophys Res Commun 2019; 510:489-494. [PMID: 30654933 DOI: 10.1016/j.bbrc.2019.01.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
Abstract
Transcription of the platelet-derived growth factor receptor α (PDGFRA/Pdgfra) gene is considered to be precisely regulated. We have previously reported that the PDGFRA/Pdgfra gene is regulated by a dual promoter system in human and mouse, in which a novel PDGFRA/Pdgfra transcript has a first exon (exon 1β) different from that of the canonical PDGFRA/Pdgfra transcript (exon 1α). To elucidate the function of each transcript, we first investigated the contribution of different PDGFRA transcripts to final protein levels. Notably, knockdown experiments suggested the existence of other PDGFRA transcripts, and we identified five additional first exons (exons 1γ, 1δ, 1ε, 1ζ, and 1η) in intron 1 in both the human and mouse genes. The first exons of the mouse Pdgfra gene showed unique expression patterns: exon 1α was broadly expressed; exon 1β was highly expressed in embryos; exon 1γ was observed at relatively high levels in the adult central nervous system (CNS); and exon 1δ was expressed at relatively high levels in the developing CNS. Furthermore, in silico analysis of common putative transcription factor binding sites in the upstream regions of the first exons of both human and mouse PDGFRA/Pdgfra genes predicted common (such as Sry, Mzf1, and Cdx) and unique (such as Sox5, Lmo2, and GATA) transcription factors. Our findings show the diversity of the transcriptional regulation of the PDGFRA/Pdgfra gene.
Collapse
Affiliation(s)
- Yusuke Minato
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Sachi Kuwahara-Otani
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan
| | - Seishi Maeda
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan
| | - Hideshi Yagi
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
3
|
Budnick I, Hamburg-Shields E, Chen D, Torre E, Jarrell A, Akhtar-Zaidi B, Cordovan O, Spitale RC, Scacheri P, Atit RP. Defining the identity of mouse embryonic dermal fibroblasts. Genesis 2016; 54:415-30. [PMID: 27265328 DOI: 10.1002/dvg.22952] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 01/14/2023]
Abstract
Embryonic dermal fibroblasts in the skin have the exceptional ability to initiate hair follicle morphogenesis and contribute to scarless wound healing. Activation of the Wnt signaling pathway is critical for dermal fibroblast fate selection and hair follicle induction. In humans, mutations in Wnt pathway components and target genes lead to congenital focal dermal hypoplasias with diminished hair. The gene expression signature of embryonic dermal fibroblasts during differentiation and its dependence on Wnt signaling is unknown. Here we applied Shannon entropy analysis to identify the gene expression signature of mouse embryonic dermal fibroblasts. We used available human DNase-seq and histone modification ChiP-seq data on various cell-types to demonstrate that genes in the fibroblast cell identity signature can be epigenetically repressed in other cell-types. We found a subset of the signature genes whose expression is dependent on Wnt/β-catenin activity in vivo. With our approach, we have defined and validated a statistically derived gene expression signature that may mediate dermal fibroblast identity and function in development and disease. genesis 54:415-430, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Isadore Budnick
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | | | - Demeng Chen
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | - Eduardo Torre
- Epithelial Biology Program, Department of Dermatology, Stanford University, California
| | - Andrew Jarrell
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | - Batool Akhtar-Zaidi
- Department of Pharmaceutical Sciences, University of California, Irvine, California
| | - Olivia Cordovan
- Department of Pharmaceutical Sciences, University of California, Irvine, California
| | - Rob C Spitale
- Epithelial Biology Program, Department of Dermatology, Stanford University, California.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Peter Scacheri
- Department of Pharmaceutical Sciences, University of California, Irvine, California
| | - Radhika P Atit
- Department of Biology, Case Western Reserve University, Cleveland, Ohio.,Department of Pharmaceutical Sciences, University of California, Irvine, California.,Department of Dermatology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
4
|
Krueger KC, Costa MJ, Du H, Feldman BJ. Characterization of Cre recombinase activity for in vivo targeting of adipocyte precursor cells. Stem Cell Reports 2014; 3:1147-58. [PMID: 25458893 PMCID: PMC4264060 DOI: 10.1016/j.stemcr.2014.10.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 01/03/2023] Open
Abstract
The increased incidence of obesity and metabolic disease underscores the importance of elucidating the biology of adipose tissue development. The recent discovery of cell surface markers for prospective identification of adipose precursor cells (APCs) in vivo will greatly facilitate these studies, yet tools for specifically targeting these cells in vivo have not been identified. Here, we survey three transgenic mouse lines, Fabp4-Cre, PdgfRα-Cre, and Prx1-Cre, precisely assessing Cre-mediated recombination in adipose stromal populations and mature tissues. Our data provide key insights into the utility of these tools to modulate gene expression in adipose tissues. In particular, Fabp4-Cre is not effective to target APCs, nor is its activity restricted to these cells. PdgfRα-Cre directs recombination in the vast majority of APCs, but also targets other populations. In contrast, adipose expression of Prx1-Cre is chiefly limited to subcutaneous inguinal APCs, which will be valuable for dissection of APC functions among adipose depots.
Collapse
Affiliation(s)
- Katherine C Krueger
- Department of Pediatrics/Endocrinology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Maria José Costa
- Department of Pediatrics/Endocrinology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Hongqing Du
- Department of Pediatrics/Endocrinology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Brian J Feldman
- Department of Pediatrics/Endocrinology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA; Program in Regenerative Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Nagasawa DT, Trang A, Choy W, Spasic M, Yew A, Zarinkhou G, Garcia HM, Yang I. Genetic expression profiles of adult and pediatric ependymomas: molecular pathways, prognostic indicators, and therapeutic targets. Clin Neurol Neurosurg 2013; 115:388-99. [PMID: 23374238 DOI: 10.1016/j.clineuro.2012.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 11/06/2012] [Accepted: 12/02/2012] [Indexed: 12/21/2022]
Abstract
Ependymomas are tumors that can present within either the intracranial or spinal regions. While 90% of all pediatric ependymomas are intracranial, spinal cord ependymomas are more commonly found in patients 20-40 years old. Treatment for spinal lesions has achieved local control rates up to 100% following gross total resection, while pediatric intracranial tumors have 40-60% mortality. Given the inability to effectively treat ependymomas with current standard practices, researchers have focused their efforts on evaluating chromosomal alterations, genetic expression profiles, epigenetic events, and molecular pathways. While these studies have provided critical insight into the potential mechanisms underlying ependymoma pathogenesis, understanding of the intricate interplay between the various pathways involved in tumor initiation, development, and progression will require deeper investigation. However, several potential prognostic markers and therapeutic targets have been identified, providing key areas of focus for future research. The utilization of unique genetic expression profiles based upon patient age, tumor location, tumor grade, and subtype has revealed a multitude of findings warranting further study. Inspection of various molecular pathways associated with ependymomas may establish the foundation for developing novel therapies capable of achieving significant clinical improvements with individualized regimens specifically designed for personalized treatment strategies.
Collapse
Affiliation(s)
- Daniel T Nagasawa
- UCLA Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, United States
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Brain abnormalities and glioma-like lesions in mice overexpressing the long isoform of PDGF-A in astrocytic cells. PLoS One 2011; 6:e18303. [PMID: 21490965 PMCID: PMC3072383 DOI: 10.1371/journal.pone.0018303] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 03/02/2011] [Indexed: 11/19/2022] Open
Abstract
Background Deregulation of platelet-derived growth factor (PDGF) signaling is a hallmark of malignant glioma. Two alternatively spliced PDGF-A mRNAs have been described, corresponding to a long (L) and a short (S) isoform of PDGF-A. In contrast to PDGF-A(S), the PDGF-A(L) isoform has a lysine and arginine rich carboxy-terminal extension that acts as an extracellular matrix retention motif. However, the exact role of PDGF-A(L) and how it functionally differs from the shorter isoform is not well understood. Methodology/Principal Findings We overexpressed PDGF-A(L) as a transgene under control of the glial fibrillary acidic protein (GFAP) promoter in the mouse brain. This directs expression of the transgene to astrocytic cells and GFAP expressing neural stem cells throughout the developing and adult central nervous system. Transgenic mice exhibited a phenotype with enlarged skull at approximately 6-16 weeks of age and they died between 1.5 months and 2 years of age. We detected an increased number of undifferentiated cells in all areas of transgene expression, such as in the subependymal zone around the lateral ventricle and in the cerebellar medulla. The cells stained positive for Pdgfr-α, Olig2 and NG2 but this population did only partially overlap with cells positive for Gfap and the transgene reporter. Interestingly, a few mice presented with overt neoplastic glioma-like lesions composed of both Olig2 and Gfap positive cell populations and with microvascular proliferation, in a wild-type p53 background. Conclusions Our findings show that PDGF-A(L) can induce accumulation of immature cells in the mouse brain. The strong expression of NG2, Pdgfr-α and Olig2 in PDGF-A(L) brains suggests that a fraction of these cells are oligodendrocyte progenitors. In addition, accumulation of fluid in the subarachnoid space and skull enlargement indicate that an increased intracranial pressure contributed to the observed lethality.
Collapse
|
7
|
Kopper O, Giladi O, Golan-Lev T, Benvenisty N. Characterization of gastrulation-stage progenitor cells and their inhibitory crosstalk in human embryoid bodies. Stem Cells 2010; 28:75-83. [PMID: 19921748 DOI: 10.1002/stem.260] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human embryoid bodies (HEBs) are cell aggregates that are produced during the course of embryonic stem cell differentiation in suspension. Mature HEBs have been shown to contain derivatives of the three embryonic germ layers. In this study, using a combination of laser capture microscopy followed by DNA microarray analysis and cell sorting, we demonstrate that early HEBs are composed of three major cell populations. These cell populations can be defined by the expression of specific cell markers, namely: (i) OCT4(+), REX1(-); (ii) NCAD(+), OCT4(-); and (iii) EPOR(+), OCT4(-). By analyzing gene expression in embryonic tissues, these cell populations could respectively be assigned to the embryonic ectoderm, mesendoderm, and extraembryonic endoderm lineages. We show that the extraembryonic endoderm, which selectively expresses platelet-derived growth factor B (PDGF-B), negatively affects the mesendoderm lineage, which selectively expresses the receptor PDGFRA. Our analysis suggests that early HEBs are spatially patterned and that cell differentiation is governed by interactions between the different cell types.
Collapse
Affiliation(s)
- Oded Kopper
- Stem Cell Unit, Department of Genetics, The Institute of Life Sciences, The Hebrew University, Edmund J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
8
|
Hede SM, Hansson I, Afink GB, Eriksson A, Nazarenko I, Andrae J, Genove G, Westermark B, Nistér M. GFAP promoter driven transgenic expression of PDGFB in the mouse brain leads to glioblastoma in a Trp53 null background. Glia 2009; 57:1143-53. [PMID: 19115382 DOI: 10.1002/glia.20837] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Glioblastomas are the most common and malignant astrocytic brain tumors in human adults. The tumor suppressor gene TP53 is commonly mutated and/or lost in astrocytic brain tumors and the TP53 alterations are often found in combination with excessive growth factor signaling via PDGF/PDGFRalpha. Here, we have generated transgenic mice over-expressing human PDGFB in brain, under control of the human GFAP promoter. These mice showed no phenotype, but on a Trp53 null background a majority of them developed brain tumors. This occurred at 2-6 months of age and tumors displayed human glioblastoma-like features with integrated development of Pdgfralpha+ tumor cells and Pdgfrbeta+/Nestin+ vasculature. The transgene was expressed in subependymal astrocytic cells, in glia limitans, and in astrocytes throughout the brain substance, and subsequently, microscopic tumor lesions were initiated equally in all these areas. With tumor size, there was an increase in Nestin positivity and variability in lineage markers. These results indicate an unexpected plasticity of all astrocytic cells in the adult brain, not only of SVZ cells. The results also indicate a contribution of widely distributed Pdgfralpha+ precursor cells in the tumorigenic process.
Collapse
Affiliation(s)
- Sanna-Maria Hede
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
McGowan SE, Grossmann RE, Kimani PW, Holmes AJ. Platelet-derived growth factor receptor-alpha-expressing cells localize to the alveolar entry ring and have characteristics of myofibroblasts during pulmonary alveolar septal formation. Anat Rec (Hoboken) 2009; 291:1649-61. [PMID: 18833569 DOI: 10.1002/ar.20764] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Platelet-derived growth factor-A and its receptor, platelet-derived growth factor receptor-alpha (PDGF-Ralpha), are required for formation of the secondary pulmonary alveolar septa in mice. However, it remains unclear how these molecules direct the secondary septation process. We have examined the abundance, location, and the accumulation of alpha-smooth muscle actin (alphaSMA), neutral lipid droplets, and elastin in the proximity of PDGF-Ralpha-expressing alveolar cells during postnatal days 4 through 12 in the mouse. PDGF-Ralpha-expressing cells preferentially have characteristics of myofibroblasts and were more likely to contain alphaSMA than are alveolar cells that do not express PDGF-Ralpha. PDGF-Ralpha expressing cells were preferentially located in the alveolar entry ring (AER) where alphaSMA and elastic fibers accumulate. In contrast, PDGF-Ralpha expression inversely correlated with neutral lipid accumulation, which was more prominent at the alveolar base, distant from the AER. PDGF-Ralpha-expressing alveolar cells accumulate in the AER where they may promote mechanical stability during respiration. In addition to defining how alveolar septa form, these findings may have implications for the treatment of diseases which involve alveolar effacement such as emphysema and pulmonary fibrosis.
Collapse
Affiliation(s)
- Stephen E McGowan
- Research Service, Iowa City Department of Veterans Affairs Medical Center, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA.
| | | | | | | |
Collapse
|
10
|
Toepoel M, Ackerschott B, van Zoelen EJJ. Haplotype-dependent binding of nuclear proteins to the promoter of the neural tube defects-associated platelet-derived growth factor alpha-receptor gene. Biochim Biophys Acta Mol Basis Dis 2006; 1741:350-7. [PMID: 16126374 DOI: 10.1016/j.bbadis.2005.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 07/28/2005] [Accepted: 08/03/2005] [Indexed: 11/19/2022]
Abstract
We have previously shown that polymorphisms in the promoter of the human platelet-derived growth factor alpha-receptor (PDGFRA) gene can be grouped into five distinct haplotypes, designated H1, H 2 alpha, H 2 beta, H 2 gamma and H 2 delta, and that specific combinations of these promoter haplotypes predispose to neural tube defects (NTDs). These promoter haplotypes differ strongly in their ability to drive reporter gene expression in various human cell lines, with highest activity for H 2 alpha and H 2 beta. Here, we show that the haplotype-linked PDGFRA promoter region extends to 3.6 kb upstream from the transcription start site, and contains a total of ten polymorphic sites. For two of these polymorphic sites, i.e. -909 C/A and +68 GAins/del, we observed differential binding of nuclear proteins from human osteosarcoma (HOS) cells. The protein complex binding specifically to -909 C, which is present in all haplotypes except the low activity haplotype H 2 gamma, contained members of the upstream stimulatory factor (USF) family of transcription factors. Furthermore, we identified a protein complex of 125 kDa which bound specifically to the low activity haplotype H1 at position +68 GAdel and may represent an H1-specific PDGFRA transcriptional repressor. The current identification of cis-acting elements in the PDGFRA promoter and the transcription factors that bind them, provides a new strategy for the identification of genes that are potentially involved in neural tube defects.
Collapse
Affiliation(s)
- Mascha Toepoel
- Department of Cell Biology FNWI, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | |
Collapse
|
11
|
Takebe A, Era T, Okada M, Martin Jakt L, Kuroda Y, Nishikawa SI. Microarray analysis of PDGFR alpha+ populations in ES cell differentiation culture identifies genes involved in differentiation of mesoderm and mesenchyme including ARID3b that is essential for development of embryonic mesenchymal cells. Dev Biol 2006; 293:25-37. [PMID: 16530748 DOI: 10.1016/j.ydbio.2005.12.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 11/18/2005] [Accepted: 12/06/2005] [Indexed: 12/24/2022]
Abstract
An inherent difficulty in using DNA microarray technology on the early mouse embryo is its relatively small size. In this study, we investigated whether use of ES cell differentiation culture, which has no theoretical limit in the number of cells that can be generated, can improve this situation. Seven distinct ES-cell-derived populations were analyzed by DNA microarray and examined for genes whose distribution patterns are similar to those of PDGFRalpha, a gene implicated in differentiation of mesoderm/mesenchymal lineages. Using software developed in our laboratory, we formed a group of 30 genes which showed the highest similarity to PDGFRalpha, 18 of these genes were shown to be involved in development of either mesodermal, mesenchymal or neural crest cells. This list also contains several genes whose role in embryogenesis has not yet been fully identified. One such molecule is mARID3b. The mARID3b expression is found in the paraxial mesoderm and cranial mesenchyme. mARID3b-null mouse showed early embryonic lethality, and most phenotypes of this mutant appear to develop from a failure to generate a sufficient number of cranial mesenchymal cells. These results demonstrate the potential use of ES cell differentiation culture in identifying novel genes playing an indispensable role in embryogenesis.
Collapse
Affiliation(s)
- Atsushi Takebe
- Laboratory for Stem Cell Biology, RIKEN Center for Development Biology, 2-2-3 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| | | | | | | | | | | |
Collapse
|
12
|
De Bustos C, Smits A, Strömberg B, Collins VP, Nistér M, Afink G. A PDGFRA promoter polymorphism, which disrupts the binding of ZNF148, is associated with primitive neuroectodermal tumours and ependymomas. J Med Genet 2006; 42:31-7. [PMID: 15635072 PMCID: PMC1735903 DOI: 10.1136/jmg.2004.024034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Platelet derived growth factor receptor alpha (PDGFRalpha) expression is typical for a variety of brain tumours, while in normal adult brain PDGFRalpha expression is limited to a small number of neural progenitor cells. The molecular mechanisms responsible for the PDGFRalpha expression in tumours are not known, but in the absence of amplification, changes in transcriptional regulation might be an important factor in this process. METHODS AND RESULTS We have investigated the link between single nucleotide polymorphisms (SNPs) within the PDGFRalpha gene promoter and the occurrence of brain tumours (medulloblastomas, supratentorial primitive neuroectodermal tumours (PNETs), ependymal tumours, astrocytomas, oligodendrogliomas, and mixed gliomas). These SNPs give rise to five different promoter haplotypes named H1 and H2alpha-delta. It is apparent from the haplotype frequency distribution that both PNET (10-fold) and ependymoma (6.5-fold) patient groups display a significant over-representation of the H2delta haplotype. The precise functional role in PDGFRalpha gene transcription for the H2delta haplotype is not known yet, but we can show that the H2delta haplotype specifically disrupts binding of the transcription factor ZNF148 as compared to the other promoter haplotypes. CONCLUSIONS The specific over-representation of the H2delta haplotype in both patients with PNETs and ependymomas suggests a functional role for the ZNF148/PDGFRalpha pathway in the pathogenesis of these tumours.
Collapse
Affiliation(s)
- C De Bustos
- Department of Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 751 85 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
13
|
Zhang XQ, Afink GB, Hu XR, Forsberg-Nilsson K, Nistér M. Gli1 is not required for Pdgfrα expression during mouse embryonic development. Differentiation 2005; 73:109-19. [PMID: 15811134 DOI: 10.1111/j.1432-0436.2005.07302003.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pdgfra is expressed in the mesenchyme of multiple organs during embryonic development and Pdgfralpha is involved in cell proliferation, differentiation, migration, and apoptosis in many tissues. A fine-tuned regulation of gene transcription is required to achieve these effects. To investigate if the Shh signaling pathway is involved in the tightly regulated Pdgfra expression during embryogenesis, we systematically compared Gli1 and Pdgfralpha mRNA expression patterns in vivo from mouse embryonic day 9.5 to 14.5. We found that an initial partly overlapping expression of Gli1 and Pdgfralpha in the mesenchyme of foregut and somites was changed to different expression patterns when the mesenchyme differentiated into specialized structures such as intestinal villi and chondrocytes. Gli1 and Pdgfra were also expressed differently in the developing lung, heart, central nervous system, skin, tooth, and eye. Importantly, neither Pdgfralpha mRNA patterns nor levels were altered in Ihh mutant embryos although Gli1 and Ptc mRNA levels were dramatically reduced. Our results demonstrate that Gli1 is not required to induce Pdgfra expression during embryonic bone development, and are consistent with previous findings that Pdgfralpha and Hh pathways serve different functions in, e.g., bone, gut, and lung development. However, we cannot exclude the possibility that Glis can have more complex regulatory effects on Pdgfra gene activity, nor can we exclude such effects in pathological conditions.
Collapse
Affiliation(s)
- Xiao-Qun Zhang
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
14
|
Andrae J, Afink G, Zhang XQ, Wurst W, Nistér M. Forced expression of platelet-derived growth factor B in the mouse cerebellar primordium changes cell migration during midline fusion and causes cerebellar ectopia. Mol Cell Neurosci 2004; 26:308-21. [PMID: 15207855 DOI: 10.1016/j.mcn.2004.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 02/02/2004] [Accepted: 02/11/2004] [Indexed: 11/22/2022] Open
Abstract
The platelet-derived growth factor (PDGF) and receptors are expressed in the developing central nervous system and in brain tumors. To investigate the role of PDGF during normal cerebellar development, we created transgenic mice where PDGF-B was introduced into the endogenous Engrailed1 locus (En1). These mice expressed PDGF-B in all types of cells that constitute the developing cerebellum, with localized high expression in the ventral midline of the cerebellar anlage. This affected cell migration in the midline during fusion of the cerebellar anlage and caused misplacement of midline structures. PDGFR-alpha- and laminin alpha1-positive meningeal cells migrated inwards, attracted by the ectopic transgene expression in the ventral neuroepithelium. Other cells followed the meningeal cells and in the adult mouse, cells from all cortical cell layers were found misplaced in the midline. Moreover, the transgene caused an enhancement of capillary vessels. The findings indicate that normal PDGF signaling is important for proper neural tube fusion. It also illustrates that meningeal structures can influence the process.
Collapse
Affiliation(s)
- Johanna Andrae
- Department of Genetics and Pathology, Uppsala University, Rudbeck Laboratory, SE-751 85 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
15
|
Tallquist MD, French WJ, Soriano P. Additive effects of PDGF receptor beta signaling pathways in vascular smooth muscle cell development. PLoS Biol 2003; 1:E52. [PMID: 14624252 PMCID: PMC261889 DOI: 10.1371/journal.pbio.0000052] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 09/16/2003] [Indexed: 11/19/2022] Open
Abstract
The platelet-derived growth factor β receptor (PDGFRβ) is known to activate many molecules involved in signal transduction and has been a paradigm for receptor tyrosine kinase signaling for many years. We have sought to determine the role of individual signaling components downstream of this receptor in vivo by analyzing an allelic series of tyrosine–phenylalanine mutations that prevent binding of specific signal transduction components. Here we show that the incidence of vascular smooth muscle cells/pericytes (v/p), a PDGFRβ-dependent cell type, can be correlated to the amount of receptor expressed and the number of activated signal transduction pathways. A decrease in either receptor expression levels or disruption of multiple downstream signaling pathways lead to a significant reduction in v/p. Conversely, loss of RasGAP binding leads to an increase in this same cell population, implicating a potential role for this effector in attenuating the PDGFRβ signal. The combined in vivo and biochemical data suggest that the summation of pathways associated with the PDGFRβ signal transduction determines the expansion of developing v/p cells. Using both in vivo and biochemical approaches, the summation of pathways associated with the PDGFRβ signal transduction is shown to determine the expansion of a specific PDGFRβ-dependent cell type
Collapse
MESH Headings
- Alleles
- Animals
- Blotting, Southern
- Blotting, Western
- Cytoplasm/metabolism
- Fibroblasts/metabolism
- Immunohistochemistry
- Kidney/metabolism
- Mice
- Mice, Transgenic
- Models, Genetic
- Muscle, Smooth, Vascular/cytology
- Mutation
- Myocytes, Smooth Muscle/cytology
- Pericytes/metabolism
- Phenylalanine/chemistry
- Point Mutation
- Protein Structure, Tertiary
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/physiology
- Retina/embryology
- Signal Transduction
- Time Factors
- Transgenes
- Tyrosine/chemistry
Collapse
Affiliation(s)
- Michelle D Tallquist
- Program in Developmental Biology and Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| | | | | |
Collapse
|
16
|
Tallquist MD, Soriano P. Cell autonomous requirement for PDGFRalpha in populations of cranial and cardiac neural crest cells. Development 2003; 130:507-18. [PMID: 12490557 DOI: 10.1242/dev.00241] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cardiac and cephalic neural crest cells (NCCs) are essential components of the craniofacial and aortic arch mesenchyme. Genetic disruption of the platelet-derived growth factor receptor alpha (PDGFRalpha) results in defects in multiple tissues in the mouse, including neural crest derivatives contributing to the frontonasal process and the aortic arch. Using chimeric analysis, we show that loss of the receptor in NCCs renders them inefficient at contributing to the cranial mesenchyme. Conditional gene ablation in NCCs results in neonatal lethality because of aortic arch defects and a severely cleft palate. The conotruncal defects are first observed at E11.5 and are consistent with aberrant NCC development in the third, fourth and sixth branchial arches, while the bone malformations present in the frontonasal process and skull coincide with defects of NCCs from the first to third branchial arches. Changes in cell proliferation, migration, or survival were not observed in PDGFRalpha NCC conditional embryos, suggesting that the PDGFRalpha may play a role in a later stage of NCC development. Our results demonstrate that the PDGFRalpha plays an essential, cell-autonomous role in the development of cardiac and cephalic NCCs and provides a model for the study of aberrant NCC development.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/abnormalities
- Aorta, Thoracic/embryology
- Cell Differentiation
- Cell Movement
- Fetal Heart/embryology
- Heart Defects, Congenital/embryology
- Heart Defects, Congenital/genetics
- Heterozygote
- Homozygote
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Biological
- Neural Crest/cytology
- Neural Crest/embryology
- Phenotype
- Receptor, Platelet-Derived Growth Factor alpha/deficiency
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/physiology
- Skull/abnormalities
- Skull/embryology
Collapse
Affiliation(s)
- Michelle D Tallquist
- Program in Developmental Biology and Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | |
Collapse
|
17
|
Andrae J, Bongcam-Rudloff E, Hansson I, Lendahl U, Westermark B, Nistér M. A 1.8kb GFAP-promoter fragment is active in specific regions of the embryonic CNS. Mech Dev 2001; 107:181-5. [PMID: 11520676 DOI: 10.1016/s0925-4773(01)00460-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The intermediate filament glial fibrillary acidic protein (GFAP) constitutes the major cytoskeletal protein in astrocytes (J. Neuroimmunol. 8 (1985) 203) and is traditionally referred to as a specific marker for astrocytes. To identify early glial precursors, we created GFAPpromoter-lacZ transgenic mice, using a 1.8kb 5' fragment of human GFAP. The expression of the transgene was first detected in the neuroepithelium at embryonic day 9.5. It was further found in the ventricular zone of the developing telencephalon, in the cerebellar primordium, trigeminal ganglia, and radial glia. Later, scattered beta-gal+ cells were seen in pons, brain stem and glia limitans. The results indicate that GFAP activity is regulated in a region-specific manner during central nervous system (CNS) development and that the gene is turned on in different cell types independently.
Collapse
Affiliation(s)
- J Andrae
- Department of Genetics and Pathology, Rudbeck Laboratory, University Hospital, Uppsala University, SE-751 85 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
18
|
Andrae J, Hansson I, Afink GB, Nistér M. Platelet-derived growth factor receptor-alpha in ventricular zone cells and in developing neurons. Mol Cell Neurosci 2001; 17:1001-13. [PMID: 11414789 DOI: 10.1006/mcne.2001.0989] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cells in the early neuroepithelium differentiate and give rise to all cells in the central nervous system (CNS). The ways from a multipotent CNS stem cell to specialized neurons and glia are not fully understood. Using immunohistochemistry we found that neuroepithelial cells express the platelet-derived growth factor receptor-alpha (PDGFR-alpha) in the neural plate at embryonic day 8.5 and onwards in the neural tube. The protein was polarized to ventricular endfeet. Furthermore, PDGFR-alpha expression was localized to cells undergoing early neuronal development. We also found PDGFR-alpha expression in developing granule cells in the postnatal cerebellum, in Purkinje cells in the adult cerebellum and on processes of developing dorsal root ganglion cells. Previous reports mainly describe PDGFR-alpha expression in oligodendrocyte precursors and glial cells. We believe, in line with a few previous reports, that the PDGFR-alpha in addition marks a pool of undifferentiated cells, which are able to differentiate into neurons.
Collapse
Affiliation(s)
- J Andrae
- Department of Genetics and Pathology, Uppsala University, Uppsala, SE-751 85, Sweden
| | | | | | | |
Collapse
|
19
|
Joosten PH, Toepoel M, Mariman EC, Van Zoelen EJ. Promoter haplotype combinations of the platelet-derived growth factor alpha-receptor gene predispose to human neural tube defects. Nat Genet 2001; 27:215-7. [PMID: 11175793 DOI: 10.1038/84867] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neural tube defects (NTDs), including anencephaly and spina bifida, are multifactorial diseases that occur with an incidence of 1 in 300 births in the United Kingdom. Mouse models have indicated that deregulated expression of the gene encoding the platelet-derived growth factor alpha-receptor (Pdgfra) causes congenital NTDs (refs. 2-4), whereas mutant forms of Pax-1 that have been associated with NTDs cause deregulated activation of the human PDGFRA promoter. There is an increasing awareness that genetic polymorphisms may have an important role in the susceptibility for NTDs (ref. 6). Here we identify five different haplotypes in the human PDGFRA promoter, of which the two most abundant ones, designated H1 and H2 alpha, differ in at least six polymorphic sites. In a transient transfection assay in human bone cells, the five haplotypes differ strongly in their ability to enhance reporter gene activity. In a group of patients with sporadic spina bifida, haplotypes with low transcriptional activity, including H1, were under-represented, whereas those with high transcriptional activity, including H2 alpha, were over-represented. When testing for haplotype combinations, H1 homozygotes were fully absent from the group of sporadic patients, whereas H1/H2 alpha heterozygotes were over-represented in the groups of both sporadic and familial spina bifida patients, but strongly under-represented in unrelated controls. Our data indicate that specific combinations of naturally occurring PDGFRA promoter haplotypes strongly affect NTD genesis.
Collapse
Affiliation(s)
- P H Joosten
- Department of Cell Biology, University of Nijmegen, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
20
|
Tallquist MD, Weismann KE, Hellström M, Soriano P. Early myotome specification regulates PDGFA expression and axial skeleton development. Development 2000; 127:5059-70. [PMID: 11060232 DOI: 10.1242/dev.127.23.5059] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reciprocal defects in signaling between the myotome and the sclerotome compartments of the somites in PDGFRalpha and Myf5 mutant embryos lead to alterations in the formation of the vertebrae and the ribs. To investigate the significance of these observations, we have examined the role of PDGF signaling in the developing somite. PDGFA ligand expression was not detected in the myotome of Myf5 null mutant embryos and PDGFA promoter activity was regulated by Myf5 in vitro. PDGFA stimulated chondrogenesis in somite micromass cultures as well as in embryos when PDGFA was knocked into the Myf5 locus, resulting in increased vertebral and rib development. PDGFA expression in the myotome was fully restored in embryos in which MyoD has been introduced at the Myf5 locus but to a lesser extent in similar myogenin knock-in embryos. These results underscore the importance of growth factor signaling within the developing somite and suggest an important role for myogenic determination factors in orchestrating normal development of the axial skeleton.
Collapse
Affiliation(s)
- M D Tallquist
- Program in Developmental Biology, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
21
|
Sun T, Jayatilake D, Afink GB, Ataliotis P, Nistér M, Richardson WD, Smith HK. A human YAC transgene rescues craniofacial and neural tube development in PDGFRalpha knockout mice and uncovers a role for PDGFRalpha in prenatal lung growth. Development 2000; 127:4519-29. [PMID: 11023856 DOI: 10.1242/dev.127.21.4519] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The platelet-derived growth factor alpha-receptor (PDGFRalpha) plays a vital role in the development of vertebrate embryos, since mice lacking PDGFRalpha die in mid-gestation. PDGFRalpha is expressed in several types of migratory progenitor cells in the embryo including cranial neural crest cells, lung smooth muscle progenitors and oligodendrocyte progenitors. To study PDGFRalpha gene regulation and function during development, we generated transgenic mice by pronuclear injection of a 380 kb yeast artificial chromosome (YAC) containing the human PDGFRalpha gene. The YAC transgene was expressed in neural crest cells, rescued the profound craniofacial abnormalities and spina bifida observed in PDGFRalpha knockout mice and prolonged survival until birth. The ultimate cause of death was respiratory failure due to a defect in lung growth, stemming from failure of the transgene to be expressed correctly in lung smooth muscle progenitors. However, the YAC transgene was expressed faithfully in oligodendrocyte progenitors, which was not previously observed with plasmid-based transgenes containing only upstream PDGFRalpha control sequences. Our data illustrate the complexity of PDGFRalpha genetic control, provide clues to the location of critical regulatory elements and reveal a requirement for PDGF signalling in prenatal lung growth, which is distinct from the known requirement in postnatal alveogenesis. In addition, we found that the YAC transgene did not prolong survival of Patch mutant mice, indicating that genetic defects outside the PDGFRalpha locus contribute to the early embryonic lethality of Patch mice.
Collapse
Affiliation(s)
- T Sun
- Wolfson Institute for Biomedical Research and Department of Biology, The Cruciform Building, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
Joosten PH, Hol FA, van Beersum SE, Peters H, Hamel BC, Afink GB, van Zoelen EJ, Mariman EC. Altered regulation of platelet-derived growth factor receptor-alpha gene-transcription in vitro by spina bifida-associated mutant Pax1 proteins. Proc Natl Acad Sci U S A 1998; 95:14459-63. [PMID: 9826722 PMCID: PMC24395 DOI: 10.1073/pnas.95.24.14459] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mouse models show that congenital neural tube defects (NTDs) can occur as a result of mutations in the platelet-derived growth factor receptor-alpha gene (PDGFRalpha). Mice heterozygous for the PDGFRalpha-mutation Patch, and at the same time homozygous for the undulated mutation in the Pax1 gene, exhibit a high incidence of lumbar spina bifida occulta, suggesting a functional relation between PDGFRalpha and Pax1. Using the human PDGFRalpha promoter linked to a luciferase reporter, we show in the present paper that Pax1 acts as a transcriptional activator of the PDGFRalpha gene in differentiated Tera-2 human embryonal carcinoma cells. Two mutant Pax1 proteins carrying either the undulated-mutation or the Gln --> His mutation previously identified by us in the PAX1 gene of a patient with spina bifida, were not or less effective, respectively. Surprisingly, Pax1 mutant proteins appear to have opposing transcriptional activities in undifferentiated Tera-2 cells as well as in the U-2 OS osteosarcoma cell line. In these cells, the mutant Pax1 proteins enhance PDGFRalpha-promoter activity whereas the wild-type protein does not. The apparent up-regulation of PDGFRalpha expression in these cells clearly demonstrates a gain-of-function phenomenon associated with mutations in Pax genes. The altered transcriptional activation properties correlate with altered protein-DNA interaction in band-shift assays. Our data provide additional evidence that mutations in Pax1 can act as a risk factor for NTDs and suggest that the PDGFRalpha gene is a direct target of Pax1. In addition, the results support the hypothesis that deregulated PDGFRalpha expression may be causally related to NTDs.
Collapse
Affiliation(s)
- P H Joosten
- Department of Cell Biology, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|