1
|
Giannone AA, Sellitto C, Rosati B, McKinnon D, White TW. Single-Cell RNA Sequencing Analysis of the Early Postnatal Mouse Lens Epithelium. Invest Ophthalmol Vis Sci 2023; 64:37. [PMID: 37870847 PMCID: PMC10599162 DOI: 10.1167/iovs.64.13.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose The lens epithelium maintains the overall health of the organ. We used single-cell RNA sequencing (scRNA-seq) technology to assess transcriptional heterogeneity between cells in the postnatal day 2 (P2) epithelium and identify distinct epithelial cell subtypes. Analysis of these data was used to better understand lens growth, differentiation, and homeostasis on P2. Methods scRNA-seq on P2 mouse lenses was performed using the 10x Genomics Chromium Single Cell 3' Kit (v3.1) and short-read Illumina sequencing. Sequence alignment and preprocessing of data were conducted using 10x Genomics Cell Ranger software. Seurat was employed for preprocessing, quality control, dimensionality reduction, and cell clustering, and Monocle was utilized for trajectory analysis to understand the developmental progression of the lens cells. CellChat and GO analyses were used to explore cell-cell communication networks and signaling interactions. Results Lens epithelial cells (LECs) were divided into seven subclusters, classified by specific gene markers. The expression of crystallin, cell-cycle, and metabolic genes was not uniform, indicating distinct functional roles of LECs. Trajectory analysis predicted a bifurcation of differentiating and cycling cells from an Igfbp5+ progenitor pool. We also identified heterogeneity in signaling molecules and pathways, suggesting that cycling and progenitor subclusters have prominent roles in coordinating crosstalk. Conclusions scRNA-seq corroborated many known markers of epithelial differentiation and proliferation while providing further insight into the pathways and genes directing these processes. Interestingly, we demonstrated that the developing epithelium can be divided into distinct subpopulations. These clusters reflect the transcriptionally diverse roles of the epithelium in proliferation, signaling, and maintenance.
Collapse
Affiliation(s)
- Adrienne A. Giannone
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook University, Stony Brook, New York, United States
| | - Caterina Sellitto
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook University, Stony Brook, New York, United States
| | - Barbara Rosati
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook University, Stony Brook, New York, United States
- Veterans Affairs Medical Center, Northport, New York, United States
| | - David McKinnon
- Department of Neurobiology and Behavior, Stony Brook University School of Medicine, Stony Brook University, Stony Brook, New York, United States
| | - Thomas W. White
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook University, Stony Brook, New York, United States
| |
Collapse
|
2
|
Yao Y, Wei L, Chen Z, Li H, Qi J, Wu Q, Zhou X, Lu Y, Zhu X. Single-cell RNA sequencing: Inhibited Notch2 signalling underlying the increased lens fibre cells differentiation in high myopia. Cell Prolif 2023:e13412. [PMID: 36717696 PMCID: PMC10392066 DOI: 10.1111/cpr.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/26/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023] Open
Abstract
High myopia is the leading cause of blindness worldwide. It promotes the overgrowth of lens, which is an important component of ocular refractive system, and increases the risks of lens surgery. While postnatal growth of lens is based on the addition of lens fibre cells (LFCs) supplemented by proliferation and differentiation of lens epithelial cells (LECs), it remains unknown how these cellular processes change in highly myopic eyes and what signalling pathways may be involved. Single-cell RNA sequencing was performed and a total of 50,375 single cells isolated from the lens epithelium of mouse highly myopic and control eyes were analysed to uncover their underlying transcriptome atlas. The proportion of LFCs was significantly higher in highly myopic eyes. Meanwhile, Notch2 signalling was inhibited during lineage differentiation trajectory towards LFCs, while Notch2 predominant LEC cluster was significantly reduced in highly myopic eyes. In consistence, Notch2 was the top down-regulated gene identified in highly myopic lens epithelium. Further validation experiments confirmed NOTCH2 downregulation in the lens epithelium of human and mouse highly myopic eyes. In addition, NOTCH2 knockdown in primary human and mouse LECs resulted in enhanced differentiation towards LFCs accompanied by up-regulation of MAF and CDKN1C. These findings indicated an essential role of NOTCH2 inhibition in lens overgrowth of highly myopic eyes, suggesting a therapeutic target for future interventions.
Collapse
Affiliation(s)
- Yunqian Yao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,National Health Center Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Ling Wei
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,National Health Center Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Zhenhua Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hao Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,National Health Center Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jiao Qi
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,National Health Center Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Qingfeng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,National Health Center Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Yi Lu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,National Health Center Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Xiangjia Zhu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,National Health Center Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Lu J, An J, Wang J, Cao X, Cao Y, Huang C, Jiao S, Yan D, Lin X, Zhou X. Znhit1 Regulates p21Cip1 to Control Mouse Lens Differentiation. Invest Ophthalmol Vis Sci 2022; 63:18. [PMID: 35472217 PMCID: PMC9055562 DOI: 10.1167/iovs.63.4.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/06/2022] [Indexed: 01/22/2023] Open
Abstract
Purpose The transparency of the ocular lens is essential for refracting and focusing light onto the retina, and transparency is controlled by many factors and signaling pathways. Here we showed a critical role of chromatin remodeler zinc finger HIT-type containing 1 (Znhit1) in maintaining lens transparency. Methods To explore the roles of Znhit1 in lens development, the cre-loxp system was used to generate lens-specific Znhit1 knockout mice (Znhit1Mlr10-Cre; Znhit1 cKO). Morphological changes in mice lenses were examined using hematoxylin and eosin staining. RNA sequencing (RNA-seq) and assay for transposase accessible chromatin using sequencing (ATAC-seq) were applied to screen transcriptome changes. Immunofluorescence staining were performed to assess proteins distribution and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining were used for determining apoptosis. The mRNAs expression was examined by quantitative RT-PCR and proteins expression by Western blot. Results Lens-specific conditional knockout mice had a severe cataract, microphthalmia phenotype, and seriously abnormal lens fiber cells differentiation. Deletion of Znhit1 in the lens resulted in decreased cell proliferation and increased cell apoptosis of the lens epithelia. ATAC-seq showed that Znhit1 deficiency increased chromatin accessibility of cyclin-dependent kinase inhibitors, including p57Kip2 and p21Cip1, and upregulated the expression of these genes in mRNA and protein levels. And we also showed that loss of Znhit1 lead to lens fibrosis by upregulating the expression of p21Cip1. Conclusions Our findings suggested that Znhit1 is required for the survival of lens epithelial cells. The loss of Znhit1 leads to the overexpression of p21Cip1, further resulting in lens fibrosis, and impacted the establishment of lens transparency.
Collapse
Affiliation(s)
- Juan Lu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Jianhong An
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Jiawei Wang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Xiaowen Cao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Yuqing Cao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Chengjie Huang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Shiming Jiao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Dongsheng Yan
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
- Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences, Wenzhou, China
| |
Collapse
|
4
|
Joseph R, Bales K, Srivastava K, Srivastava O. Lens epithelial cells-induced pluripotent stem cells as a model to study epithelial-mesenchymal transition during posterior capsular opacification. Biochem Biophys Rep 2019; 20:100696. [PMID: 31681860 PMCID: PMC6818140 DOI: 10.1016/j.bbrep.2019.100696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 10/02/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022] Open
Abstract
The overall goal was to generate an epithelial-mesenchymal transition (EMT) model using lens epithelial cells-induced pluripotent stem cells to elucidate EMT-regulatory factors during posterior capsular opacification (PCO). For this purpose, the mouse lens epithelial cells-derived mesenchymal cells were reprogrammed to induced pluripotent stem cells (iPSC) and differentiated to lens epithelial cells to be used to determine regulatory factors during EMT. Lens epithelial cells from one-month-old C57BL/6 mice were transitioned to mesenchymal cells in culture, and were reprogrammed to iPSC by delivering reprogramming factors in a single polycistronic lentiviral vector (co-expressing four transcription factors, Oct 4, Sox2, Klf4, and Myc). iPSC were differentiated to epithelial cells by a three-step process using noggin, basic fibroblast growth factor (bFGF), bone morphogenetic protein 4 (BMP4) and Wnt-3. At various time points, the cells/clones were immunocytochemically analyzed for epithelial cell markers (Connexin-43 and E-cadherin), mesenchymal cell markers (Alpha-smooth muscle actin), stem cell markers (Sox1, Oct4, SSEA4 and Tra60) and lens-specific epithelial cell markers (αA- and βA3/A1-crystallins). By increasing the number of genetic transductions, the time needed for generating iPSC from lens mesenchymal cells was reduced, successfully reprogrammed epithelial/mesenchymal cells into iPSC, and retransformed iPSC into lens epithelial cells by the growth factors’ treatment. The epithelial cells could serve as a model system to elucidate regulatory factors involved during EMT to therapeutically stop it. By increasing the number of genetic transductions, reduced the time needed for generating iPSC from lens mesenchymal cells. We successfully reprogrammed iPSC, and also differentiated iPSC into lens epithelial cells by the growth factors. Our model could elucidate regulatory factors involved in epithelial mesenchymal transition to therapeutically stop it.
Collapse
Affiliation(s)
| | | | | | - Om Srivastava
- Corresponding author. Department of Optometry and Vision Science, University of Alabama at Birmingham, 1716 University Boulevard, HPB-437, Birmingham, AL, 35294-0010, USA.
| |
Collapse
|
5
|
Abstract
This chapter provides an overview of the early developmental origins of six ocular tissues: the cornea, lens, ciliary body, iris, neural retina, and retina pigment epithelium. Many of these tissue types are concurrently specified and undergo a complex set of morphogenetic movements that facilitate their structural interconnection. Within the context of vertebrate eye organogenesis, we also discuss the genetic hierarchies of transcription factors and signaling pathways that regulate growth, patterning, cell type specification and differentiation.
Collapse
Affiliation(s)
- Joel B Miesfeld
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States
| | - Nadean L Brown
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States.
| |
Collapse
|
6
|
De Stefano I, Tanno B, Giardullo P, Leonardi S, Pasquali E, Antonelli F, Tanori M, Casciati A, Pazzaglia S, Saran A, Mancuso M. The Patched 1 tumor-suppressor gene protects the mouse lens from spontaneous and radiation-induced cataract. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:85-95. [PMID: 25452120 DOI: 10.1016/j.ajpath.2014.09.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/17/2014] [Accepted: 09/04/2014] [Indexed: 11/16/2022]
Abstract
Age-related cataract is the most common cause of visual impairment. Moreover, traumatic cataracts form after injury to the eye, including radiation damage. We report herein that sonic hedgehog (Shh) signaling plays a key role in cataract development and in normal lens response to radiation injury. Mice heterozygous for Patched 1 (Ptch1), the Shh receptor and negative regulator of the pathway, develop spontaneous cataract and are highly susceptible to cataract induction by exposure to ionizing radiation in early postnatal age, when lens epithelial cells undergo rapid expansion in the lens epithelium. Neonatally irradiated and control Ptch1(+/-) mice were compared for markers of progenitors, Shh pathway activation, and epithelial-to-mesenchymal transition (EMT). Molecular analyses showed increased expression of the EMT-related transforming growth factor β/Smad signaling pathway in the neonatally irradiated lens, and up-regulation of mesenchymal markers Zeb1 and Vim. We further show a link between proliferation and the stemness property of lens epithelial cells, controlled by Shh. Our results suggest that Shh and transforming growth factor β signaling cooperate to promote Ptch1-associated cataract development by activating EMT, and that the Nanog marker of pluripotent cells may act as the primary transcription factor on which both signaling pathways converge after damage. These findings highlight a novel function of Shh signaling unrelated to cancer and provide a new animal model to investigate the molecular pathogenesis of cataract formation.
Collapse
Affiliation(s)
- Ilaria De Stefano
- Department of Radiation Physics, Guglielmo Marconi University, Rome, Italy
| | - Barbara Tanno
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Paola Giardullo
- Department of Radiation Physics, Guglielmo Marconi University, Rome, Italy
| | - Simona Leonardi
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Emanuela Pasquali
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Francesca Antonelli
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Mirella Tanori
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Arianna Casciati
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Simonetta Pazzaglia
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Anna Saran
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy.
| | - Mariateresa Mancuso
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy.
| |
Collapse
|
7
|
Chaffee BR, Shang F, Chang ML, Clement TM, Eddy EM, Wagner BD, Nakahara M, Nagata S, Robinson ML, Taylor A. Nuclear removal during terminal lens fiber cell differentiation requires CDK1 activity: appropriating mitosis-related nuclear disassembly. Development 2014; 141:3388-98. [PMID: 25139855 DOI: 10.1242/dev.106005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lens epithelial cells and early lens fiber cells contain the typical complement of intracellular organelles. However, as lens fiber cells mature they must destroy their organelles, including nuclei, in a process that has remained enigmatic for over a century, but which is crucial for the formation of the organelle-free zone in the center of the lens that assures clarity and function to transmit light. Nuclear degradation in lens fiber cells requires the nuclease DNase IIβ (DLAD) but the mechanism by which DLAD gains access to nuclear DNA remains unknown. In eukaryotic cells, cyclin-dependent kinase 1 (CDK1), in combination with either activator cyclins A or B, stimulates mitotic entry, in part, by phosphorylating the nuclear lamin proteins leading to the disassembly of the nuclear lamina and subsequent nuclear envelope breakdown. Although most post-mitotic cells lack CDK1 and cyclins, lens fiber cells maintain these proteins. Here, we show that loss of CDK1 from the lens inhibited the phosphorylation of nuclear lamins A and C, prevented the entry of DLAD into the nucleus, and resulted in abnormal retention of nuclei. In the presence of CDK1, a single focus of the phosphonuclear mitotic apparatus is observed, but it is not focused in CDK1-deficient lenses. CDK1 deficiency inhibited mitosis, but did not prevent DNA replication, resulting in an overall reduction of lens epithelial cells, with the remaining cells possessing an abnormally large nucleus. These observations suggest that CDK1-dependent phosphorylations required for the initiation of nuclear membrane disassembly during mitosis are adapted for removal of nuclei during fiber cell differentiation.
Collapse
Affiliation(s)
- Blake R Chaffee
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Fu Shang
- Laboratory for Nutrition and Vision Research, Human Nutrition Research Center on Aging, Nutrition &Vision Res-USDA-HNRCA, Tufts University, Boston 02111, MA, USA
| | - Min-Lee Chang
- Laboratory for Nutrition and Vision Research, Human Nutrition Research Center on Aging, Nutrition &Vision Res-USDA-HNRCA, Tufts University, Boston 02111, MA, USA
| | - Tracy M Clement
- National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Edward M Eddy
- National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Brad D Wagner
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Masaki Nakahara
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigekazu Nagata
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Allen Taylor
- Laboratory for Nutrition and Vision Research, Human Nutrition Research Center on Aging, Nutrition &Vision Res-USDA-HNRCA, Tufts University, Boston 02111, MA, USA Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Suzuki S, Ohashi N, Kitagawa M. Roles of the Skp2/p27 axis in the progression of chronic nephropathy. Cell Mol Life Sci 2013; 70:3277-3287. [PMID: 23255047 PMCID: PMC3753466 DOI: 10.1007/s00018-012-1232-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 11/14/2012] [Accepted: 12/03/2012] [Indexed: 12/20/2022]
Abstract
S-phase kinase-associated protein 2 (Skp2) is an F-box protein component of the Skp/Cullin/F-box-type E3 ubiquitin ligase that targets several cell cycle regulatory proteins for degradation through the ubiquitin-dependent pathway. Skp2-mediated degradation of p27, a cyclin-dependent kinase inhibitor, is involved in cell cycle regulation. Tubular epithelial cell proliferation is a characteristic feature of renal damage that is apparent in the early stages of nephropathy. The p27 level is associated with the progression of renal injury, and increased Skp2 expression in progressive nephropathy is implicated in decreases of p27 expression. In Skp2(-/-) mice, renal damage caused by unilateral ureteral obstruction (UUO) was ameliorated by p27 accumulation, mainly in tubular epithelial cells. However, the amelioration of UUO-induced renal injury in Skp2(-/-) mice was prevented by p27 deficiency in Skp2(-/-)/p27(-/-) mice. These results suggest that the Skp2-mediated reduction in p27 is a pathogenic activity that occurs during the progression of nephropathy. Here, we discuss the roles of the Skp2/p27 axis and/or related signaling pathways/components in the progression of chronic nephropathy.
Collapse
Affiliation(s)
- Sayuri Suzuki
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192 Japan
| | - Naro Ohashi
- Internal Medicine 1, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192 Japan
| |
Collapse
|
9
|
Kerr CL, Huang J, Williams T, West-Mays JA. Activation of the hedgehog signaling pathway in the developing lens stimulates ectopic FoxE3 expression and disruption in fiber cell differentiation. Invest Ophthalmol Vis Sci 2012; 53:3316-30. [PMID: 22491411 DOI: 10.1167/iovs.12-9595] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The signaling pathways and transcriptional effectors responsible for directing mammalian lens development provide key regulatory molecules that can inform our understanding of human eye defects. The hedgehog genes encode extracellular signaling proteins responsible for patterning and tissue formation during embryogenesis. Signal transduction of this pathway is mediated through activation of the transmembrane proteins smoothened and patched, stimulating downstream signaling resulting in the activation or repression of hedgehog target genes. Hedgehog signaling is implicated in eye development, and defects in hedgehog signaling components have been shown to result in defects of the retina, iris, and lens. METHODS We assessed the consequences of constitutive hedgehog signaling in the developing mouse lens using Cre-LoxP technology to express the conditional M2 smoothened allele in the embryonic head and lens ectoderm. RESULTS Although initial lens development appeared normal, morphological defects were apparent by E12.5 and became more significant at later stages of embryogenesis. Altered lens morphology correlated with ectopic expression of FoxE3, which encodes a critical gene required for human and mouse lens development. Later, inappropriate expression of the epithelial marker Pax6, and as well as fiber cell markers c-maf and Prox1 also occurred, indicating a failure of appropriate lens fiber cell differentiation accompanied by altered lens cell proliferation and cell death. CONCLUSIONS Our findings demonstrate that the ectopic activation of downstream effectors of the hedgehog signaling pathway in the mouse lens disrupts normal fiber cell differentiation by a mechanism consistent with a sustained epithelial cellular developmental program driven by FoxE3.
Collapse
Affiliation(s)
- Christine L Kerr
- Department of Pathology and Molecular Medicine, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
10
|
Saravanamuthu SS, Le TT, Gao CY, Cojocaru RI, Pandiyan P, Liu C, Zhang J, Zelenka PS, Brown NL. Conditional ablation of the Notch2 receptor in the ocular lens. Dev Biol 2011; 362:219-29. [PMID: 22173065 DOI: 10.1016/j.ydbio.2011.11.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/08/2011] [Accepted: 11/17/2011] [Indexed: 01/22/2023]
Abstract
Notch signaling is essential for proper lens development, however the specific requirements of individual Notch receptors have not been investigated. Here we report the lens phenotypes of Notch2 conditionally mutant mice, which exhibited severe microphthalmia, reduced pupillary openings, disrupted fiber cell morphology, eventual loss of the anterior epithelium, fiber cell dysgenesis, denucleation defects, and cataracts. Notch2 mutants also had persistent lens stalks as early as E11.5, and aberrant DNA synthesis in the fiber cell compartment by E14.5. Gene expression analyses showed that upon loss of Notch2, there were elevated levels of the cell cycle regulators Cdkn1a (p21Cip1), Ccnd2 (CyclinD2), and Trp63 (p63) that negatively regulates Wnt signaling, plus down-regulation of Cdh1 (E-Cadherin). Removal of Notch2 also resulted in an increased proportion of fiber cells, as was found in Rbpj and Jag1 conditional mutant lenses. However, Notch2 is not required for AEL proliferation, suggesting that a different receptor regulates this process. We found that Notch2 normally blocks lens progenitor cell death. Overall, we conclude that Notch2-mediated signaling regulates lens morphogenesis, apoptosis, cell cycle withdrawal, and secondary fiber cell differentiation.
Collapse
Affiliation(s)
- Senthil S Saravanamuthu
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kuracha MR, Burgess D, Siefker E, Cooper JT, Licht JD, Robinson ML, Govindarajan V. Spry1 and Spry2 are necessary for lens vesicle separation and corneal differentiation. Invest Ophthalmol Vis Sci 2011; 52:6887-97. [PMID: 21743007 DOI: 10.1167/iovs.11-7531] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The studies reported here were performed to analyze the roles of Sproutys (Sprys), downstream targets and negative feedback regulators of the fibroblast growth factor (FGF) signaling pathway, in lens and corneal differentiation. METHODS Spry1 and -2 were conditionally deleted in the lens and corneal epithelial precursors using the Le-Cre transgene and floxed alleles of Spry1 and -2. Alterations in lens and corneal development were assessed by hematoxylin and eosin staining, in situ hybridization, and immunohistochemistry. RESULTS Spry1 and -2 were upregulated in the lens fibers at the onset of fiber differentiation. FGF signaling was both necessary and sufficient for induction of Spry1 and -2 in the lens fiber cells. Spry1 and -2 single- or double-null lenses failed to separate from the overlying ectoderm and showed persistent keratolenticular stalks. Apoptosis of stalk cells, normally seen during lens vesicle detachment from the ectoderm, was inhibited in Spry mutant lenses, with concomitant ERK activation. Prox1 and p57(KIP2), normally upregulated at the onset of fiber differentiation were prematurely induced in the Spry mutant lens epithelial cells. However, terminal differentiation markers such as β- or γ-crystallin were not induced. Corneal epithelial precursors in Spry1 and -2 double mutants showed increased proliferation with elevated expression of Erm and DUSP6 and decreased expression of the corneal differentiation marker K12. CONCLUSIONS Collectively, the results indicate that Spry1 and -2 (1) through negative modulation of ERKs allow lens vesicle separation, (2) are targets of FGF signaling in the lens during initiation of fiber differentiation and (3) function redundantly in the corneal epithelial cells to suppress proliferation.
Collapse
Affiliation(s)
- Murali R Kuracha
- Department of Surgery, Creighton University, Omaha, Nebraska, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Kallifatidis G, Boros J, Shin EHH, McAvoy JW, Lovicu FJ. The fate of dividing cells during lens morphogenesis, differentiation and growth. Exp Eye Res 2011; 92:502-11. [PMID: 21440542 PMCID: PMC3137915 DOI: 10.1016/j.exer.2011.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 03/15/2011] [Accepted: 03/18/2011] [Indexed: 01/08/2023]
Abstract
Early in development, the ocular lens establishes its distinctive architecture, and this is maintained throughout life as the lens continues to grow. This growth is tightly regulated through the proliferation of the lens epithelial cells and their subsequent differentiation into specialized elongated fiber cells. Although much work has been carried out to define these patterns of growth, very little has been reported on the detailed fate and kinetics of lens cells during embryogenesis. Using BrdU-incorporation, the present study has attempted to follow the fate of lens cells that have undergone at least one round of DNA synthesis during the early stages of lens morphogenesis. Results from this work have confirmed that the rate of lens cell proliferation and new fiber cell differentiation progressively slows as the lens differentiates and grows. In addition, these studies have shown that early in lens development, not all DNA synthesis is restricted to the lens epithelium, with some elongating fiber cells retaining the ability to undergo DNA synthesis. Adopting this system we have also been able to place the initiation of secondary fiber cell differentiation in the mouse lens by E12.5, concomitant with the loss of the lens vesicle lumen by the elongating primary fiber cells. Overall, this study has allowed us to revisit some of the mechanisms involved in early lens development, has provided us with insights into the fate of cells during this rapid phase of murine lens growth, and has provided a novel method to study the rate of new fiber cell differentiation over a defined period of lens development and growth.
Collapse
Affiliation(s)
| | - Jessica Boros
- Save Sight Institute, University of Sydney, NSW
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW
| | - Eun Hye H. Shin
- Save Sight Institute, University of Sydney, NSW
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW
| | - John W. McAvoy
- Save Sight Institute, University of Sydney, NSW
- The Vision CRC, NSW, Australia
| | - Frank J. Lovicu
- Save Sight Institute, University of Sydney, NSW
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW
- The Vision CRC, NSW, Australia
| |
Collapse
|
13
|
Lovicu FJ, McAvoy JW, de Iongh RU. Understanding the role of growth factors in embryonic development: insights from the lens. Philos Trans R Soc Lond B Biol Sci 2011; 366:1204-18. [PMID: 21402581 PMCID: PMC3061110 DOI: 10.1098/rstb.2010.0339] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Growth factors play key roles in influencing cell fate and behaviour during development. The epithelial cells and fibre cells that arise from the lens vesicle during lens morphogenesis are bathed by aqueous and vitreous, respectively. Vitreous has been shown to generate a high level of fibroblast growth factor (FGF) signalling that is required for secondary lens fibre differentiation. However, studies also show that FGF signalling is not sufficient and roles have been identified for transforming growth factor-β and Wnt/Frizzled families in regulating aspects of fibre differentiation. In the case of the epithelium, key roles for Wnt/β-catenin and Notch signalling have been demonstrated in embryonic development, but it is not known if other factors are required for its formation and maintenance. This review provides an overview of current knowledge about growth factor regulation of differentiation and maintenance of lens cells. It also highlights areas that warrant future study.
Collapse
Affiliation(s)
- F. J. Lovicu
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW 2006, Australia
- Save Sight Institute, University of Sydney, Sydney, NSW 2001, Australia
- Vision Cooperative Research Centre, Sydney, Australia
| | - J. W. McAvoy
- Save Sight Institute, University of Sydney, Sydney, NSW 2001, Australia
- Vision Cooperative Research Centre, Sydney, Australia
| | - R. U. de Iongh
- Anatomy and Cell Biology, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
14
|
Borriello A, Caldarelli I, Bencivenga D, Cucciolla V, Oliva A, Usala E, Danise P, Ronzoni L, Perrotta S, Della Ragione F. p57 Kip2 is a downstream effector of BCR–ABL kinase inhibitors in chronic myelogenous leukemia cells. Carcinogenesis 2010; 32:10-8. [DOI: 10.1093/carcin/bgq211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
15
|
Greiling TMS, Clark JI. Early lens development in the zebrafish: a three-dimensional time-lapse analysis. Dev Dyn 2009; 238:2254-65. [PMID: 19504455 DOI: 10.1002/dvdy.21997] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In vivo, high-resolution, time-lapse imaging characterized lens development in the zebrafish from 16 to 96 hr postfertilization (hpf). In zebrafish, the lens placode appeared in the head ectoderm, similar to mammals. Delamination of the surface ectoderm resulted in the formation of the lens mass, which progressed to a solid sphere of cells separating from the developing cornea at approximately 24 hpf. A lens vesicle was not observed and apoptosis was not a major factor in separation of the lens from the future cornea. Differentiation of primary fibers began in the lens mass followed by formation of the anterior epithelium after delamination was complete. Secondary fibers differentiated from elongating epithelial cells near the posterior pole. Quantification characterized three stages of lens growth. The study confirmed the advantages of live-cell imaging for three-dimensional quantitative structural characterization of the mechanism(s) responsible for cell differentiation in formation of a transparent, symmetric, and refractile lens.
Collapse
Affiliation(s)
- Teri M S Greiling
- Department of Biological Structure, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
16
|
Greiling TMS, Aose M, Clark JI. Cell fate and differentiation of the developing ocular lens. Invest Ophthalmol Vis Sci 2009; 51:1540-6. [PMID: 19834024 DOI: 10.1167/iovs.09-4388] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Even though zebrafish development does not include the formation of a lens vesicle, the authors' hypothesis is that the processes of cell differentiation are similar in zebrafish and mammals and determine cell fates in the lens. METHODS Two-photon live embryo imaging was used to follow individual fluorescently labeled cells in real-time from the placode stage at 16 hours postfertilization (hpf) until obvious morphologic differentiation into epithelium or fiber cells had occurred at approximately 28 hpf. Immunohistochemistry was used to label proliferating, differentiating, and apoptotic cells. RESULTS Similar to the mammal, cells in the teleost peripheral lens placode migrated to the anterior lens mass and differentiated into an anterior epithelium. Cells in the central lens placode migrated to the posterior lens mass and differentiated into primary fiber cells. Anterior and posterior polarization in the zebrafish lens mass was similar to mammalian lens vesicle polarization. Primary fiber cell differentiation was apparent at approximately 21 hpf, before separation of the lens from the surface ectoderm, as evidenced by cell elongation, exit from the cell cycle, and expression of Zl-1, a marker for fiber differentiation. TUNEL labeling demonstrated that apoptosis was not a primary mechanism for lens separation from the surface ectoderm. CONCLUSIONS Despite the absence of a lens vesicle in the zebrafish embryo, lens organogenesis appears to be well conserved among vertebrates. Results using three-dimensional live embryo imaging of zebrafish development showed minimal differences and strong similarities in the fate of cells in the zebrafish and mammalian lens placode.
Collapse
Affiliation(s)
- Teri M S Greiling
- Department of Biological Structure, University of Washington, Seattle, Washington 98195-7420, USA
| | | | | |
Collapse
|
17
|
Saravanamuthu SS, Gao CY, Zelenka PS. Notch signaling is required for lateral induction of Jagged1 during FGF-induced lens fiber differentiation. Dev Biol 2009; 332:166-76. [PMID: 19481073 PMCID: PMC2730671 DOI: 10.1016/j.ydbio.2009.05.566] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 05/19/2009] [Accepted: 05/20/2009] [Indexed: 01/08/2023]
Abstract
Previous studies of the developing lens have shown that Notch signaling regulates differentiation of lens fiber cells by maintaining a proliferating precursor pool in the anterior epithelium. However, whether Notch signaling is further required after the onset of fiber cell differentiation is not clear. This work investigates the role of Notch2 and Jagged1 (Jag1) in secondary fiber cell differentiation using rat lens epithelial explants undergoing FGF-2 dependent differentiation in vitro. FGF induced Jag1 expression and Notch2 signaling (as judged by the appearance of activated Notch2 Intracellular Domain (N2ICD)) within 12-24 h. These changes were correlated with induction of the Notch effector, Hes5, upregulation of N-cadherin (N-cad), and downregulation of E-cadherin (E-cad), a cadherin switch characteristic of fiber cell differentiation. Induction of Jag1 was efficiently blocked by U0126, a specific inhibitor of MAPK/ERK signaling, indicating a requirement for signaling through this pathway downstream of the FGF receptor. Other growth factors that activate MAPK/ERK signaling (EGF, PDGF, IGF) did not induce Jag1. Inhibition of Notch signaling using gamma secretase inhibitors DAPT and L-685,458 or anti-Jag1 antibody markedly decreased FGF-dependent expression of Jag1 demonstrating Notch-dependent lateral induction. In addition, inhibition of Notch signaling reduced expression of N-cad, and the cyclin dependent kinase inhibitor, p57Kip2, indicating a direct role for Notch signaling in secondary fiber cell differentiation. These results demonstrate that Notch-mediated lateral induction of Jag1 is an essential component of FGF-dependent lens fiber cell differentiation.
Collapse
Affiliation(s)
- Senthil S Saravanamuthu
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
18
|
Wang Q, Stump R, McAvoy JW, Lovicu FJ. MAPK/ERK1/2 and PI3-kinase signalling pathways are required for vitreous-induced lens fibre cell differentiation. Exp Eye Res 2009; 88:293-306. [PMID: 18938158 PMCID: PMC2683269 DOI: 10.1016/j.exer.2008.08.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 08/18/2008] [Accepted: 08/19/2008] [Indexed: 11/28/2022]
Abstract
Lens epithelial cells withdraw from the cell cycle to differentiate into secondary fibre cells in response to vitreal factors. Fibroblast growth factor (FGF) in the vitreous has been shown to induce lens fibre differentiation in vivo and in vitro through the activation of defined intracellular signalling, namely via MAPK/ERK1/2 and PI3-K/Akt pathways. To better understand the role of these growth factor-activated signalling pathways in lens fibre differentiation, FGF- and vitreous-induced lens fibre differentiation was examined in primary rat lens epithelial cell explants. The induction of cell elongation and fibre specific beta- and gamma-crystallin expression in lens explants was accompanied by distinct phosphorylation profiles for ERK1/2 and Akt. Using selective inhibitors (U0126 and LY294002) in blocking studies, these pathways were shown to be required for different aspects of lens fibre differentiation. Furthermore, a short 'pulse' treatment of explants with FGF showed that the activation of ERK1/2 over 24 h was not sufficient for the progression of lens fibre differentiation and that cyclic ERK1/2 phosphorylation was required throughout the extended differentiation process. In conclusion, these results support a key role for both ERK1/2 and PI3-kinase/Akt signalling pathways in FGF- and vitreous-induced lens fibre differentiation.
Collapse
Affiliation(s)
- Qian Wang
- Save Sight Institute, Bosch Institute, University of Sydney, NSW
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW
| | - Richard Stump
- Save Sight Institute, Bosch Institute, University of Sydney, NSW
- Vision Cooperative Research Centre, Sydney, Australia
| | - John W McAvoy
- Save Sight Institute, Bosch Institute, University of Sydney, NSW
- Vision Cooperative Research Centre, Sydney, Australia
| | - Frank J Lovicu
- Save Sight Institute, Bosch Institute, University of Sydney, NSW
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW
- Vision Cooperative Research Centre, Sydney, Australia
| |
Collapse
|
19
|
Ho HY, Chang KH, Nichols J, Li M. Homeodomain protein Pitx3 maintains the mitotic activity of lens epithelial cells. Mech Dev 2009; 126:18-29. [PMID: 19007884 DOI: 10.1016/j.mod.2008.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 09/15/2008] [Accepted: 10/22/2008] [Indexed: 11/18/2022]
Abstract
Pitx3 is a bicoid like homeobox transcription factor of which deficiency in mice is linked with the aphakia phenotype. Mutation in human PITX3 gene is associated with autosomal dominant cataract with variable anterior segment mesenchymal dysgenesis. However, the molecular events causing the morphological changes in aphakia remains unknown. In this study we investigated the behaviour of GFP tagged Pitx3 null embryonic stem cells in chimeric lens, as well as the molecular features of the Pitx3-deficient lens of homozygous Pitx3 knockout mice. We show that the lack of colonisation of Pitx3-deficient ES cell derivatives in Pitx3 wild-type<-->Pitx3 null chimeric lens was due to the depletion of the epithelial cells in lens epithelium manifested by aberrant cell cycle exit and precocious onset of fibre cell differentiation of the Pitx3 null cells at the lens vesicle stage. This was demonstrated by the early activation of the cell cycle inhibitors p27Kip1 and p57Kip2, and the expression of beta-and gamma-crystallins. These defects are at least partially attributed to the loss of FoxE3 and misexpression of Prox1 in the lens vesicle epithelial cells. Thus, Pitx3 is essential to maintain lens epithelial phenotype and prevent inappropriate fibre cell differentiation during lens development.
Collapse
Affiliation(s)
- Hsin-Yi Ho
- Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
20
|
Shui YB, Arbeit JM, Johnson RS, Beebe DC. HIF-1: an age-dependent regulator of lens cell proliferation. Invest Ophthalmol Vis Sci 2008; 49:4961-70. [PMID: 18586877 PMCID: PMC2585414 DOI: 10.1167/iovs.08-2118] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The lens grows throughout life, and lens size is a major risk factor for nuclear and cortical cataracts. A previous study showed that the hypoxic environment around the lens suppressed lens growth in older rats. The present study was conducted to investigate the mechanism responsible for the age-dependent decline in lens cell proliferation. METHODS Transgenic mice expressing Cre recombinase in the lens were bred to mice containing floxed Hif1a alleles. Transgenic mice expressing oxygen insensitive forms of HIF-1alpha in lens epithelial cells were exposed to room air or 60% oxygen. Proliferation was measured by BrdU labeling and cell death by using the TUNEL assay. Morphology was assessed in histologic sections. HIF-1alpha and p27(KIP1) levels were determined by Western blot. The expression of HIF-regulated genes was assessed on microarrays. RESULTS Lenses lacking Hif1a degenerated, precluding study in older animals. Breathing 60% oxygen reduced HIF-1alpha levels and HIF-1-regulated transcripts in lens epithelial cells from young and older lenses. Overexpression of oxygen-insensitive HIF-1alpha had no effect on lens size, but suppressed increased proliferation in response to oxygen. Systemic injection of the iron chelator, 1,10-phenanthroline prevented the degradation of HIF-1alpha and reduced oxygen-induced proliferation. Increasing oxygen decreased levels of p27(KIP1) in the epithelial cells of older mice, which was prevented by expressing oxygen-insensitive forms of HIF-1alpha. CONCLUSIONS HIF-1alpha is present and HIF-1 is transcriptionally active throughout life, but suppresses growth only in older lenses. Maintaining elevated levels of p27(KIP1) in older lenses requires HIF-1. p27(KIP1) and other growth regulators may selectively suppress the proliferation of older lens epithelial cells.
Collapse
MESH Headings
- Aging/metabolism
- Alleles
- Animals
- Apoptosis
- Blotting, Western
- Cell Proliferation
- Copper
- Cross-Linking Reagents
- Female
- Gene Expression Regulation, Developmental
- Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis
- Hypoxia-Inducible Factor 1, alpha Subunit/drug effects
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- In Situ Nick-End Labeling
- Lens, Crystalline/cytology
- Lens, Crystalline/drug effects
- Lens, Crystalline/growth & development
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Microarray Analysis
- Oxygen/pharmacology
- Phenanthrolines/pharmacology
- RNA/genetics
Collapse
Affiliation(s)
- Ying-Bo Shui
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri
| | | | - Randall S. Johnson
- Division of Biological Sciences, University of California San Diego, La Jolla, California
| | - David C. Beebe
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri
| |
Collapse
|
21
|
Saint-Geniez M, Kurihara T, D'Amore PA. Role of cell and matrix-bound VEGF isoforms in lens development. Invest Ophthalmol Vis Sci 2008; 50:311-21. [PMID: 18757513 DOI: 10.1167/iovs.08-2461] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To determine the role of vascular endothelial growth factor (VEGF) in embryonic eye development and lens differentiation. METHODS Expression of components of the VEGF signaling pathway during lens development and in adults was characterized by beta-galactosidase staining of VEGF-LacZ mice, immunohistochemistry, and real-time (q) PCR. Embryonic eyes from wild-type mice and VEGF120/120 mice were analyzed by light microscopy and immunohistochemistry. VEGF function during lens development was analyzed using eye explants treated with VEGF-neutralizing antibody. Direct function of VEGF was demonstrated on the human lens epithelial cell line, HLE-B3. RESULTS Embryonic lens epithelium and posterior lens fibers expressed VEGF and VEGFR2. qPCR revealed VEGF164 as the major isoform in embryonic lens. Transgenic mice expressing only VEGF120 (VEGF120/120 mice) showed major defects in eye development, including microphthalmia, failed lens differentiation, and hyperplastic hyaloid vessels. The lens displayed abnormal cell patterning and differentiation associated with altered c-Maf, Prox1, and p57 expression pattern in the anterior epithelium. The number of proliferating epithelial cells was drastically reduced in VEGF120/120 lenses. Altered MIP26 cellular localization and reduced E-cadherin expression in the lens epithelium were observed. VEGF-neutralization led to reduced fiber elongation of eye explants. Exogenous VEGF increased survival and proliferation of HLE-B3 cell in a dose-dependent manner. CONCLUSIONS Abnormalities in ocular development in VEGF120/120 mice suggest a role for VEGF not only in the formation of ocular vascular beds but also in the differentiation of the lens itself.
Collapse
|
22
|
Cain S, Martinez G, Kokkinos MI, Turner K, Richardson RJ, Abud HE, Huelsken J, Robinson ML, de Iongh RU. Differential requirement for beta-catenin in epithelial and fiber cells during lens development. Dev Biol 2008; 321:420-33. [PMID: 18652817 DOI: 10.1016/j.ydbio.2008.07.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 06/27/2008] [Accepted: 07/01/2008] [Indexed: 11/18/2022]
Abstract
Recent studies implicate Wnt/beta-catenin signaling in lens differentiation (Stump, R. J., et al., 2003. A role for Wnt/beta-catenin signaling in lens epithelial differentiation. Dev Biol;259:48-61). Beta-catenin is a component of adherens junctions and functions as a transcriptional activator in canonical Wnt signaling. We investigated the effects of Cre/LoxP-mediated deletion of beta-catenin during lens development using two Cre lines that specifically deleted beta-catenin in whole lens or only in differentiated fibers, from E13.5. We found that beta-catenin was required in lens epithelium and during early fiber differentiation but appeared to be redundant in differentiated fiber cells. Complete loss of beta-catenin resulted in an abnormal and deficient epithelial layer with loss of E-cadherin and Pax6 expression as well as abnormal expression of c-Maf and p57(kip2) but not Prox1. There was also disrupted fiber cell differentiation, characterized by poor cell elongation, decreased beta-crystallin expression, epithelial cell cycle arrest at G(1)-S transition and premature cell cycle exit. Despite cell cycle arrest there was no induction of apoptosis. Mutant fiber cells displayed altered apical-basal polarity as evidenced by altered distribution of the tight junction protein, ZO1, disruption of apical actin filaments and abnormal deposition of extracellular matrix, resulting in a deficient lens capsule. Loss of beta-catenin also affected the formation of adhesion junctions as evidenced by dissociation of N-cadherin and F-actin localization in differentiating fiber cells. However, loss of beta-catenin from terminally differentiating fibers had no apparent effects on adhesion junctions between adjacent embryonic fibers. These data indicate that beta-catenin plays distinct functions during lens fiber differentiation and is involved in both Wnt signaling and adhesion-related mechanisms that regulate lens epithelium and early fiber differentiation.
Collapse
Affiliation(s)
- Sarah Cain
- Ocular Development Laboratory, Anatomy and Cell Biology Department, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Reza HM, Nishi H, Kataoka K, Takahashi Y, Yasuda K. L-Maf regulates p27kip1 expression during chick lens fiber differentiation. Differentiation 2007; 75:737-44. [PMID: 17428264 DOI: 10.1111/j.1432-0436.2007.00171.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Organ formation requires spatio-temporal proliferation and differentiation of precursor cells. During lens development, placodal cells in the posterior lens vesicle exit from the cell cycle and enter into the process of differentiation. Cyclin-dependent kinase inhibitors play critical roles in cell cycle exit and promote differentiation in several tissues. We have found that p27kip1 is expressed in the posterior lens cells that undergo differentiation to form the differentiated fiber cells. The transcription factor L-Maf is expressed in these cells earlier than p27kip1. From in ovo gain- or loss-of-function experiments, we have found that L-Maf can, respectively, induce or inhibit the expression of p27kip1 in lens cells. Promoter assays using the 5' upstream sequences of the human p27kip1 gene indicate that L-Maf can activate p27kip1 transcription through the basal regulatory region. We suggest that L-Maf regulates cell cycle exit of the posterior lens cells by activating p27kip1, and thus directs fiber cell differentiation during lens formation in chick.
Collapse
Affiliation(s)
- Hasan Mahmud Reza
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0101, Japan.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Regulation of cell proliferation is a critical aspect of the development of multicellular organisms. The ocular lens is an excellent model system in which to unravel the mechanisms controlling cell proliferation during development. In recent years, several cell cycle regulators have been shown to be essential for maintaining normal patterns of lens cell proliferation. Additionally, many growth factor signaling pathways and cell adhesion factors have been shown to have the capacity to regulate lens cell proliferation. Given this complexity, understanding the cross talk between these many signaling pathways and how they are coordinated are important directions for the future.
Collapse
Affiliation(s)
- Anne E Griep
- Department of Anatomy, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
| |
Collapse
|
25
|
Iyengar L, Patkunanathan B, Lynch OT, McAvoy JW, Rasko JEJ, Lovicu FJ. Aqueous humour- and growth factor-induced lens cell proliferation is dependent on MAPK/ERK1/2 and Akt/PI3-K signalling. Exp Eye Res 2006; 83:667-78. [PMID: 16684521 DOI: 10.1016/j.exer.2006.03.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 02/28/2006] [Accepted: 03/14/2006] [Indexed: 11/26/2022]
Abstract
The aqueous humour of the eye is a rich source of growth factors, many of which have been shown to be lens cell mitogens; however, the identity of the endogenous mitogen(s) for lens cells is still unknown. As a first approach to identify the mechanisms by which these aqueous humour-derived growth factors induce lens cell proliferation, the present study set out to examine MAPK/ERK1/2 and PI3-K/Akt signalling associated with lens cell proliferation. Using a lens explant system, we examined the effects of different lens mitogens (aqueous humour, FGF, PDGF, IGF and EGF) using 5'-2'-bromo-deoxyuridine incorporation. In addition, we adopted immunolabelling techniques to compare the roles that the ERK1/2 and PI3-K signalling pathways play in regulating lens cell proliferation. We showed that the aqueous humour, and all the other growth factors examined, could activate ERK1/2 and PI3-K/Akt signalling. By targeting these pathways using specific pharmacological inhibitors, we were able to show that both ERK1/2 and PI3-K signalling are required for growth factor-induced lens cell proliferation, and that there was a strong correlation between the spatial distribution of proliferating cells in lens explants with ERK1/2 labelling. Furthermore, our blocking studies confirmed that PI3-K/Akt signalling can act upstream of ERK1/2, potentiating ERK1/2 phosphorylation in growth factor-induced lens cell proliferation. A better understanding of the signalling pathways required for aqueous humour-induced lens cell proliferation may ultimately allow us to identify the mitogen(s) that are important for regulating lens cell proliferation in situ.
Collapse
Affiliation(s)
- Laxmi Iyengar
- Save Sight Institute, Institute for Biomedical Research, University of Sydney, City Road, NSW 2006, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Vihtelic TS, Yamamoto Y, Springer SS, Jeffery WR, Hyde DR. Lens opacity and photoreceptor degeneration in the zebrafish lens opaque mutant. Dev Dyn 2005; 233:52-65. [PMID: 15765514 DOI: 10.1002/dvdy.20294] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The zebrafish lens opaque (lop) mutant was identified in a chemical mutagenesis screen. The lop mutant, which develops normally through 4 days postfertilization (dpf), exhibits several signs of lens and retinal degeneration at 7 dpf. Histology revealed disrupted lens fibers and increased numbers of nucleated cells within the mutant lens and anterior chamber. The mutant lens also exhibited aberrant epithelial cell morphologies and lacked a definitive transition zone, which suggests that secondary fiber differentiation was interrupted. In addition, the mutant exhibits severely reduced photoreceptors and a reduction in the number of horizontal cells at 7 dpf. Other retinal cell classes appeared unaffected in the mutant. Transmission electron microscopy and opsin immunohistochemistry showed that the different photoreceptor types were generated at the retinal margin, but the rods and cones failed to mature and disappeared. The mutant lens and retina also displayed increased cell proliferation based on proliferating cell nuclear antigen immunolabeling, suggesting that the lens opacity was due to unregulated cell proliferation and undifferentiated cell accumulation within the mutant lens. The lop mutant phenotype supports recent studies showing the lens has a role in regulating teleost retinal development.
Collapse
Affiliation(s)
- Thomas S Vihtelic
- Center for Zebrafish Research, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | |
Collapse
|
27
|
Lovicu FJ, Ang S, Chorazyczewska M, McAvoy JW. Deregulation of lens epithelial cell proliferation and differentiation during the development of TGFbeta-induced anterior subcapsular cataract. Dev Neurosci 2005; 26:446-55. [PMID: 15855773 DOI: 10.1159/000082286] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 08/30/2004] [Indexed: 11/19/2022] Open
Abstract
Normal lens development and growth is dependent on the tight spatial and temporal regulation of lens cell proliferation and fiber cell differentiation. The present study reports that these same cellular processes contribute to lens pathology as they become deregulated in the process of anterior subcapsular cataract development in a transgenic mouse model. During the formation and growth of transforming growth factor (TGF)beta-induced subcapsular plaques, lens epithelial cells lose key phenotypic markers including E-cadherin and connexin 43, they multilayer and subsequently differentiate into myofibroblastic and/or fiber-like cells. Growth of the subcapsular plaques in the transgenic mouse is sustained by an ordered process of cell proliferation, exit from the cell cycle and differentiation. As reiterating ordered growth and differentiation patterns is atypical of the direct effects of TGFbeta on lens cells in vitro, we propose that other growth factors in the eye, namely fibroblast growth factor, may also play a role in the establishment and regulation of the key cellular processes leading to lens pathology. Obtaining a better understanding of the molecular aspects and cellular dynamics of cataract formation and growth is central to devising strategies for slowing or preventing this disease.
Collapse
Affiliation(s)
- F J Lovicu
- Save Sight Institute, University of Sydney, Australia.
| | | | | | | |
Collapse
|
28
|
Arima T, Kamikihara T, Hayashida T, Kato K, Inoue T, Shirayoshi Y, Oshimura M, Soejima H, Mukai T, Wake N. ZAC, LIT1 (KCNQ1OT1) and p57KIP2 (CDKN1C) are in an imprinted gene network that may play a role in Beckwith-Wiedemann syndrome. Nucleic Acids Res 2005; 33:2650-60. [PMID: 15888726 PMCID: PMC1097765 DOI: 10.1093/nar/gki555] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Loss of genomic imprinting is involved in a number of developmental abnormalities and cancers. ZAC is an imprinted gene expressed from the paternal allele of chromosome 6q24 within a region known to harbor a tumor suppressor gene for several types of neoplasia. p57KIP2 (CDKN1C) is a maternally expressed gene located on chromosome 11p15.5 which encodes a cyclin-dependent kinase inhibitor that may also act as a tumor suppressor gene. Mutations in ZAC and p57KIP2 have been implicated in transient neonatal diabetes mellitus (TNDB) and Beckwith–Wiedemann syndrome, respectively. Patients with these diseases share many characteristics. Here we show that mouse Zac1 and p57Kip2 have a strikingly similar expression pattern. ZAC, a sequence-specific DNA-binding protein, binds within the CpG island of LIT1 (KCNQ1OT1), a paternally expressed, anti-sense RNA thought to negatively regulate p57KIP2 in cis. ZAC induces LIT1 transcription in a methylation-dependent manner. Our data suggest that ZAC may regulate p57KIP2 through LIT1, forming part of a novel signaling pathway regulating cell growth. Mutations in ZAC may, therefore, contribute to Beckwith–Wiedemann syndrome. Furthermore, we find changes in DNA methylation at the LIT1 putative imprinting control region in two patients with TNDB.
Collapse
Affiliation(s)
- Takahiro Arima
- To whom correspondence should be addressed. Tel: +81 977 271660; Fax: +81 977 271661;
| | | | - Toshirou Hayashida
- Department of Molecular and Cell Genetics, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori UniversityNishi-cho 86, Yonago, Tottori 683-8503, Japan
| | | | - Toshiaki Inoue
- Department of Human Genome Science (Kirin Brewery), Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori UniversityNishi-cho 86, Yonago, Tottori 683-8503, Japan
| | - Yasuaki Shirayoshi
- Department of Molecular and Cell Genetics, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori UniversityNishi-cho 86, Yonago, Tottori 683-8503, Japan
| | - Mitsuo Oshimura
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori UniversityNishi-cho 86, Yonago, Tottori 683-8503, Japan
| | - Hidenobu Soejima
- Department of Biochemistry, Saga Medical School5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Tunehiro Mukai
- Department of Human Genome Science (Kirin Brewery), Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori UniversityNishi-cho 86, Yonago, Tottori 683-8503, Japan
| | | |
Collapse
|
29
|
Lovicu FJ, McAvoy JW. Growth factor regulation of lens development. Dev Biol 2005; 280:1-14. [PMID: 15766743 DOI: 10.1016/j.ydbio.2005.01.020] [Citation(s) in RCA: 272] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 01/05/2005] [Accepted: 01/13/2005] [Indexed: 02/01/2023]
Abstract
Lens arises from ectoderm situated next to the optic vesicles. By thickening and invaginating, the ectoderm forms the lens vesicle. Growth factors are key regulators of cell fate and behavior. Current evidence indicates that FGFs and BMPs are required to induce lens differentiation from ectoderm. In the lens vesicle, posterior cells elongate to form the primary fibers whereas anterior cells differentiate into epithelial cells. The divergent fates of these embryonic cells give the lens its distinctive polarity. There is now compelling evidence that, at least in mammals, FGF is required to initiate fiber differentiation and that progression of this complex process depends on the synchronized and integrated action of a number of distinct growth factor-induced signaling pathways. It is also proposed that an antero-posterior gradient of FGF stimulation in the mammalian eye ensures that the lens attains and maintains its polarity and growth patterns. Less is known about differentiation of the lens epithelium; however, recent studies point to a role for Wnt signaling. Multiple Wnts and their receptors are expressed in the lens epithelium, and mice with impaired Wnt signaling have a deficient epithelium. Recent studies also indicate that other families of molecules, that can modulate growth factor signaling, have a role in regulating the ordered growth and differentiation of the lens.
Collapse
Affiliation(s)
- F J Lovicu
- Save Sight Institute, University of Sydney, NSW, Australia
| | | |
Collapse
|
30
|
Guo W, Shang F, Liu Q, Urim L, West-Mays J, Taylor A. Differential regulation of components of the ubiquitin-proteasome pathway during lens cell differentiation. Invest Ophthalmol Vis Sci 2004; 45:1194-201. [PMID: 15037588 PMCID: PMC1446108 DOI: 10.1167/iovs.03-0830] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To investigate the role for the ubiquitin-proteasome pathway in controlling lens cell proliferation and differentiation and the regulation of the ubiquitin conjugation machinery during the differentiation process. METHODS bFGF-induced lens cell proliferation and differentiation was monitored in rat lens epithelial explants by bromodeoxyuridine (BrdU) incorporation and expression of crystallins and other differentiation markers. Levels of typical substrates for the ubiquitin-proteasome pathway, p21(WAF) and p27(Kip), were monitored during the differentiation process, as were levels and activities of the enzymes involved in ubiquitin conjugation. RESULTS Explants treated with bFGF initially underwent enhanced proliferation as indicated by BrdU incorporation. Then they withdrew from the cell cycle as indicated by diminished BrdU incorporation and accumulation of p21(WAF) and p27(Kip). bFGF-induced cell proliferation was prohibited or delayed by proteasome inhibitors. Lens epithelial explants treated with bFGF for 7 days displayed characteristics of lens fibers, including expression of large quantities of crystallins. Whereas levels of E1 remained constant during the differentiation process, the levels of ubiquitin-conjugating enzyme (Ubc)-1 increased approximately twofold, and the thiol ester form of Ubc1 increased approximately threefold on 7 days of bFGF treatment. Levels of Ubc2 increased moderately on bFGF treatment, and most of the Ubc2 was found in the thiol ester form. Although levels of total Ubc3 and -7 remained unchanged, the proportions of Ubc3 and -7 in the thiol ester form were significantly higher in the bFGF-treated explants. Levels of Ubc4/5 and -9 also increased significantly on treatment with bFGF, and more than 90% of Ubc9 was found in the thiol ester form in the bFGF-treated explants. In contrast, levels of Cul1, the backbone of the SCF type of E3s, decreased 50% to 70% in bFGF-treated explants. CONCLUSIONS The data show that proteolysis through the ubiquitin-proteasome pathway is required for bFGF-induced lens cell proliferation and differentiation. Various components of the ubiquitin-proteasome pathway are differentially regulated during lens cell differentiation. The downregulation of Cul1 appears to contribute to the accumulation of p21(WAF) and p27(Kip), which play an important role in establishing a differentiated phenotype.
Collapse
Affiliation(s)
- Weimin Guo
- From the Laboratory for Nutrition and Vision Research, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; the
| | - Fu Shang
- From the Laboratory for Nutrition and Vision Research, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; the
| | - Qing Liu
- From the Laboratory for Nutrition and Vision Research, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; the
| | - Lyudmila Urim
- Department of Ophthalmology, New England Medical Center, Boston, Massachusetts; and the
| | - Judith West-Mays
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Allen Taylor
- From the Laboratory for Nutrition and Vision Research, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; the
- Corresponding author: Allen Taylor, Laboratory for Nutrition and Vision Research, JMUSDA-HNRCA at Tufts University, Boston, MA 02111;
| |
Collapse
|
31
|
Liu Q, Shang F, Guo W, Hobbs M, Valverde P, Reddy V, Taylor A. Regulation of the ubiquitin proteasome pathway in human lens epithelial cells during the cell cycle. Exp Eye Res 2004; 78:197-205. [PMID: 14729352 DOI: 10.1016/j.exer.2003.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Most proliferating cells follow a series of orderly transitions from one phase to another. These transitions are usually controlled by timed degradation of cell cycle regulators by the ubiquitin-proteasome pathway (UPP). There are no published reports regarding the timing of phases of the human lens cell cycle or regarding cell cycle-related changes in UPP components. Objectives of this study were to characterize the timing of the phases of the human lens epithelial cell cycle and to explore potential functions of critical components of the UPP in controlling lens cell cycle. Human lens epithelial cells were synchronized at G0/G1 phase by contact inhibition. Cell cycle progression upon subculturing was monitored by FACS analysis. It took approximately 40 hr for HLEC to complete one cell cycle, approximately 20 hr for G1 phase, approximately 8-10 hr for S phase and approximately 10 hr for the combination of G2 and M phases. Proteasome-dependent degradation of p21WAF and p27Kip, the dominant Cdk inhibitors, was associated with the G1/S phase transition in these cells. Proteasome inhibition experiments indicate that proteolysis is the predominant process which is responsible for the variations in these regulators during the cell cycle. Levels of specific ubiquitin conjugating enzymes, Ubc7 and Ubc10, increased 6 and 2-fold at the G2/M phase and S/G2/M phases, respectively. Levels of these E2s decreased precipitously upon completion of the M phase. In contrast, levels of ubiquitin activating enzyme (E1) and Ubc3 remained constant during the cell cycle. Cul1, a component of the SCF (an E3), remained relatively constant during cell cycle. The up-regulation of Ubc7 and Ubc10 during the G2/M and S/G2/M phases suggests that these enzymes may be involved in controlling the cell cycle progression at this phase. Taken together, the data indicate that expression of key components of the UPP in the human lens epithelial cells is regulated in a cell cycle-dependent manner. Some of the variations in levels of ubiquitin conjugating enzymes are suggestive of previously undescribed functions.
Collapse
Affiliation(s)
- Qing Liu
- JM USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Stewart MC, Kadlcek RM, Robbins PD, MacLeod JN, Ballock RT. Expression and activity of the CDK inhibitor p57Kip2 in chondrocytes undergoing hypertrophic differentiation. J Bone Miner Res 2004; 19:123-32. [PMID: 14753744 DOI: 10.1359/jbmr.0301209] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
UNLABELLED Growth plates of p57-null mice exhibit several abnormalities, including loss of collagen type X (CollX) expression. The phenotypic consequences of p57 expression were assessed in an in vitro model of hypertrophic differentiation. Adenoviral p57 expression was not sufficient for CollX expression but did augment induction of CollX by BMP-2. INTRODUCTION During hypertrophic differentiation, chondrocytes pass from an actively proliferative state to a postmitotic, hypertrophic phenotype. The induction of growth arrest is a central feature of this phenotypic transition. Mice lacking the cyclin dependent-kinase inhibitor p57Kip2 exhibit several developmental abnormalities including chondrodysplasia. Although growth plate chondrocytes in p57-null mice undergo growth arrest, they do not express collagen type X, a specific marker of the hypertrophic phenotype. This study was carried out to investigate the link between p57 expression and the induction of collagen type X in chondrocytes and to determine whether p57 overexpression is sufficient for the induction of hypertrophic differentiation. MATERIALS AND METHODS Neonatal rat epiphyseal or growth plate chondrocytes were maintained in an aggregate culture model, in defined, serum-free medium. Protein and mRNA levels were monitored by Western and Northern blot analyses, respectively. Proliferative activity was assessed by fluorescent measurement of total DNA and by 3H-thymidine incorporation rates. An adenoviral vector was used to assess the phenotypic consequences of p57 expression. RESULTS AND CONCLUSIONS During in vitro hypertrophic differentiation, levels of p57 mRNA and protein were constant despite changes in chondrocyte proliferative activity and the induction of hypertrophic-specific genes in response to bone morphogenetic protein (BMP)-2. Adenoviral p57 overexpression induced growth arrest in prehypertrophic epiphyseal chondrocytes in a dose-dependent manner but was not sufficient for the induction of collagen type X, either alone or when coexpressed with the related CDKI p21Cip1. Similar results were obtained with more mature tibial growth plate chondrocytes. p57 overexpression did augment collagen type X induction by BMP-2. These data indicate that p57-mediated growth arrest is not sufficient for expression of the hypertrophic phenotype, but rather it occurs in parallel with other aspects of the differentiation pathway. Our findings also suggest a contributing role for p57 in the regulation of collagen type X expression in differentiating chondrocytes.
Collapse
Affiliation(s)
- Matthew C Stewart
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA.
| | | | | | | | | |
Collapse
|
33
|
Nguyen MM, Nguyen ML, Caruana G, Bernstein A, Lambert PF, Griep AE. Requirement of PDZ-containing proteins for cell cycle regulation and differentiation in the mouse lens epithelium. Mol Cell Biol 2003; 23:8970-81. [PMID: 14645510 PMCID: PMC309609 DOI: 10.1128/mcb.23.24.8970-8981.2003] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Revised: 06/17/2003] [Accepted: 09/22/2003] [Indexed: 01/20/2023] Open
Abstract
The roles of PDZ domain-containing proteins such as Dlg and Scrib have been well described for Drosophila; however, their requirement for mammalian development is poorly understood. Here we show that Dlg, Scrib, MAGI1, MAGI3, and MPDZ are expressed in the mouse ocular lens. We demonstrate that the increase in proliferation and defects in cellular adhesion and differentiation observed in epithelia of lenses that express E6, a viral oncoprotein that can bind to several PDZ proteins, including the human homologs of Dlg and Scrib, is dependent on E6's ability to bind these proteins via their PDZ domains. Analyses of lenses from mice carrying an insertional mutation in Dlg (dlg(gt)) show increased proliferation and proliferation in spatially inappropriate regions of the lens, a phenotype similar to that of lenses expressing E6. The results from this study indicate that multiple PDZ domain-containing proteins, including Dlg and Scrib, may be required for maintaining the normal pattern of growth and differentiation in the lens. Furthermore, the phenotypic similarities among the Drosophila dlg mutant, the lenses of dlg(gt) mice, and the lenses of E6 transgenic mice suggest that Dlg may have a conserved function in regulating epithelial cell growth and differentiation across species.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Base Sequence
- Cell Cycle
- Cell Differentiation
- Cell Division
- Crystallins/chemistry
- Crystallins/genetics
- Crystallins/physiology
- DNA, Complementary/genetics
- Discs Large Homolog 1 Protein
- Epithelial Cells/cytology
- Epithelial Cells/physiology
- Gene Expression Regulation, Developmental
- Guanylate Kinases
- Humans
- Lens, Crystalline/cytology
- Lens, Crystalline/physiology
- Membrane Proteins
- Mice
- Mice, Mutant Strains
- Mice, Transgenic
- Mutagenesis, Insertional
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/physiology
- Protein Structure, Tertiary
- Proteins/genetics
- Proteins/physiology
- Repressor Proteins
Collapse
Affiliation(s)
- Minh M Nguyen
- Department of Anatomy, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
34
|
Kubo E, Singh DP, Fatma N, Shinohara T, Zelenka P, Reddy VN, Chylack LT. Cellular distribution of lens epithelium-derived growth factor (LEDGF) in the rat eye: loss of LEDGF from nuclei of differentiating cells. Histochem Cell Biol 2003; 119:289-99. [PMID: 12692670 DOI: 10.1007/s00418-003-0518-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2003] [Indexed: 01/07/2023]
Abstract
Lens epithelium-derived growth factor (LEDGF) enhances the survival and growth of cells. To understand LEDGF's spatial localization and its putative function(s) during proliferation and differentiation, we localized LEDGF during terminal differentiation in whole rat lenses, lens epithelial cell (LEC) explants stimulated with FGF-2, and insulin, iris, human LECs with lentoids. In addition, intracellular localization of LEDGF was performed in other ocular tissues: ciliary body, retina, and cornea. We found the immunopositivity of nuclear LEDGF decreased in LECs of the equatorial region. In contrast, immunopositivity of LEDGF was detected in the cytoplasm of LECs and superficial fiber cells. After treating LEC explants with FGF-2 and insulin, which are known to be differentiating factors for LECs, the nuclei of these cells showed no LEDGF immunopositivity, but explants did express p57(kip2), a differentiation marker protein. Also, immunopositive LEDGF was not detected in the nuclei of differentiated cells, lentoid body, and corneal epithelial cells. This demonstrated that the loss of LEDGF from the nucleus may be associated with the process of terminal differentiation that might be in some way common with the biochemical mechanisms of apoptosis. The spatial and temporal distribution of LEDGF in the present study also provides a vision for further investigation as to how this protein is involved in cell fate determination.
Collapse
Affiliation(s)
- Eri Kubo
- The Center for Ophthalmic Research, Brigham and Women's Hospital, Havard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- A Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 571 Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
36
|
Walker JL, Zhang L, Menko AS. Transition between proliferation and differentiation for lens epithelial cells is regulated by Src family kinases. Dev Dyn 2002; 224:361-72. [PMID: 12203728 DOI: 10.1002/dvdy.10115] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As in many cell types, lens cells must withdraw from the cell cycle before they initiate their differentiation. The involvement of Src family kinases (SFKs) in this key initiating event in cell differentiation was examined in lens epithelial cell cultures. SFK activity was suppressed with the specific inhibitor PP1. This induced expression of the cyclin-dependent kinase (CDK) inhibitors p27 and p57 and suppressed lens epithelial cell proliferation. Therefore, inhibition of SFK activity created conditions permissive for undifferentiated lens epithelial cells to withdraw from the cell cycle. Growth of the lens epithelial cell cultures in the presence of PP1 induced expression of filensin and CP49, lens differentiation-specific intermediate filament proteins, providing evidence that suppression of SFK activity also promoted the initiation of lens cell differentiation. The mechanism by which PP1 signaled cell cycle withdrawal and commitment to differentiation was shown to involve induction of N-cadherin cell-cell junction assembly and reorganization of the actin cytoskeleton from stress fibers to cortical filaments. This result was supported by the compaction of the epithelial monolayer in response to PP1, a morphogenetic change that we have previously shown to be dependent on N-cadherin function and a hallmark of the commencement of the lens differentiation program in culture. The results presented in this study suggest that the decision of lens epithelial cells to withdraw from the cell cycle and initiate differentiation requires inhibition of SFKs and the formation of N-cadherin cell-cell junctions.
Collapse
Affiliation(s)
- Janice L Walker
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
37
|
Cunningham JJ, Levine EM, Zindy F, Goloubeva O, Roussel MF, Smeyne RJ. The cyclin-dependent kinase inhibitors p19(Ink4d) and p27(Kip1) are coexpressed in select retinal cells and act cooperatively to control cell cycle exit. Mol Cell Neurosci 2002; 19:359-74. [PMID: 11906209 DOI: 10.1006/mcne.2001.1090] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cyclin-dependent kinase inhibitors (cdki's), including p19(Ink4d) and p27(Kip1), mediate exit from the cell cycle. To determine the function of these cdki's in regulating neurogenesis, we examined retina from wild-type, Ink4d-null, and Ink4d/Kip1-double null animals. Ink4d was expressed in progenitors and select neurons in the mature retina. Ink4d-null retina showed an extended period of proliferation, followed by apoptosis. Colabeling for p19(Ink4d) and p27(Kip1) revealed that a subpopulation of cells expressed both inhibitors. Deletion of Ink4d and Kip1 resulted in continued proliferation that was synergistic. This hyperproliferation led to an increase in number of horizontal cells and differentiated neurons reentering the cell cycle. Deletion of Ink4d and Kip1 also exacerbated the retinal dysplasia observed in Kip1-null mice, which was shown to be partly dependent on p53. These data indicate that select retinal cells express both p19(Ink4d) and p27(Kip1) and that they act cooperatively to ensure cell cycle exit.
Collapse
Affiliation(s)
- Justine J Cunningham
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, Tennessee 38105, USA
| | | | | | | | | | | |
Collapse
|
38
|
Nguyen MM, Potter SJ, Griep AE. Deregulated cell cycle control in lens epithelial cells by expression of inhibitors of tumor suppressor function. Mech Dev 2002; 112:101-13. [PMID: 11850182 DOI: 10.1016/s0925-4773(01)00644-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Previous studies have shown that cell cycle proteins such as retinoblastoma protein (pRB) are essential for cell cycle withdrawal in differentiating lens cells. However, little is known about which factors are critical for cell cycle control in the lens epithelial cells. Here we use the K14 promoter to direct expression of E6 and E7, oncogenes from human papillomavirus type 16, which are known to bind and inactivate p53 and pRB, as molecular tools to study cell cycle regulation in the lens epithelium of transgenic mice. Expression of either gene resulted in increased proliferation and apoptosis, and in the case of E6, a unique epithelial phenotype characterized by multilayering and intercellular vacuoles was observed. Lenses from mice expressing E7 mutants, which are defective in inactivating pRB proteins, were normal and the lens phenotype in the E6 mice was p53-independent. Thus, cell proliferation in the lens epithelium is controlled by multiple factors including, but not necessarily limited to, the pRB family.
Collapse
Affiliation(s)
- Minh M Nguyen
- Department of Anatomy, The University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706, USA
| | | | | |
Collapse
|
39
|
Hiromura K, Haseley LA, Zhang P, Monkawa T, Durvasula R, Petermann AT, Alpers CE, Mundel P, Shankland SJ. Podocyte expression of the CDK-inhibitor p57 during development and disease. Kidney Int 2001; 60:2235-46. [PMID: 11737597 DOI: 10.1046/j.1523-1755.2001.00057.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The mature podocyte is a terminally differentiated cell with a limited proliferative capacity. The precise cell cycle proteins necessary for establishing podocyte quiescence during development or permitting podocyte cell cycle re-entry in disease states have not been fully defined. Accordingly, we studied the role of the cyclin dependent kinase (CDK)-inhibitor p57Kip2 (p57) in modulating these processes. METHODS The expression of p57 protein in relation to markers of DNA synthesis was examined in developing mouse kidneys, and in the passive Heymann nephritis (PHN) and anti-glomerular antibody models of glomerular disease by immunohistochemistry. The role of p57 in glomerulogenesis was explored by examining renal tissue from embryonic p57-/- mice, and the expression of p21, p27 and p57 protein and mRNA was examined in podocytes in vitro. RESULTS The de novo expression of p57 during glomerulogenesis coincides with the cessation of podocyte proliferation, and the establishment of a mature phenotype, and p57 is expressed exclusively in podocytes in mature glomeruli. However, p57 knockout mice have normal glomerular podocyte development. In addition, mRNA but not protein levels of p57 increased upon differentiation of podocytes in vitro. There was a marked decrease in p57 expression in both animal models of podocyte injury. This was diffuse in PHN, whereas in the murine model, loss of expression of p57 occurred predominantly in proliferating podocytes, expressing proliferating cell nuclear antigen (PCNA). CONCLUSION Despite the de novo expression of p57 protein coinciding with the cessation of primitive podocyte proliferation during glomerulogenesis, embryonic p57-/- mice glomeruli were histologically normal. Cultured podocytes did not require changes in p57 protein levels to undergo differentiation. These data suggest that p57 alone is not required for podocyte differentiation, and that other cell cycle regulators may play a role. Furthermore, although injury to mature podocytes in experimental glomerular disease is associated with a decrease in p57, the levels of all three members of the Cip/Kip family of CDK inhibitors appear to determine the capability of podocytes to proliferate.
Collapse
Affiliation(s)
- K Hiromura
- Department of Medicine, Division of Nephrology, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The vertebrate lens has a distinct polarity with cuboidal epithelial cells on the anterior side and differentiated fiber cells on the posterior side. It has been proposed that the anterior-posterior polarity of the lens is imposed by factors present in the ocular media surrounding the lens (aqueous and vitreous humor). The differentiation factors have been hypothesized to be members of the fibroblast growth factor (FGF) family. Though FGFs have been shown to be sufficient for induction of lens differentiation both in vivo and in vitro, they have not been demonstrated to be necessary for endogenous initiation of fiber cell differentiation. To test this possibility, we have generated transgenic mice with ocular expression of secreted self-dimerizing versions of FGFR1 (FR1) and FGFR3 (FR3). Expression of FR3, but not FR1, leads to an expansion of proliferating epithelial cells from the anterior to the posterior side of the lens due to a delay in the initiation of fiber cell differentiation. This delay is most apparent postnatally and correlates with appropriate changes in expression of marker genes including p57(KIP2), Maf and Prox1. Phosphorylation of Erk1 and Erk2 was reduced in the lenses of FR3 mice compared with nontransgenic mice. Though differentiation was delayed in FR3 mice, the lens epithelial cells still retained their intrinsic ability to respond to FGF stimulation. Based on these results we propose that the initiation of lens fiber cell differentiation in mice requires FGF receptor signaling and that one of the lens differentiation signals in the vitreous humor is a ligand for FR3, and is therefore likely to be an FGF or FGF-like factor.
Collapse
MESH Headings
- Animals
- Body Patterning
- Cell Differentiation
- Crystallins/biosynthesis
- Cyclin-Dependent Kinase Inhibitor p57
- DNA-Binding Proteins/isolation & purification
- Embryonic Induction
- Epithelial Cells
- Fibroblast Growth Factors
- Homeodomain Proteins/isolation & purification
- Lens, Crystalline/blood supply
- Lens, Crystalline/cytology
- Lens, Crystalline/embryology
- Mice
- Mice, Transgenic
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Models, Biological
- Nuclear Proteins/isolation & purification
- Phosphorylation
- Protein-Tyrosine Kinases
- Proto-Oncogene Proteins/isolation & purification
- Proto-Oncogene Proteins c-maf
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Fibroblast Growth Factor, Type 3
- Receptors, Fibroblast Growth Factor/metabolism
- Transgenes
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- V Govindarajan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
41
|
Shirke S, Faber SC, Hallem E, Makarenkova HP, Robinson ML, Overbeek PA, Lang RA. Misexpression of IGF-I in the mouse lens expands the transitional zone and perturbs lens polarization. Mech Dev 2001; 101:167-74. [PMID: 11231069 DOI: 10.1016/s0925-4773(00)00584-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Insulin-like growth factor-I (IGF-I) has been implicated as a regulator of lens development. Experiments performed in the chick have indicated that IGF-I can stimulate lens fiber cell differentiation and may be involved in controlling lens polarization. To assess IGF-I activity on mammalian lens cells in vivo, we generated transgenic mice in which this factor was overexpressed from the alphaA-crystallin promoter. Interestingly, we observed no premature differentiation of lens epithelial cells. The pattern of lens polarization was perturbed, with an apparent expansion of the epithelial compartment towards the posterior lens pole. The distribution of immunoreactivity for MIP26 and p57(KIP2) and a modified pattern of proliferation suggested that this morphological change was best described as an expansion of the germinative and transitional zones. The expression of IGF-I signaling components in the normal transitional zone and expansion of the transitional zone in the transgenic lens both suggest that endogenous IGF-I may provide a spatial cue that helps to control the normal location of this domain.
Collapse
Affiliation(s)
- S Shirke
- Cell Biology and Pathology Departments, Skirball Institute for Biomolecular Medicine, Developmental Genetics Program, New York University Medical Center, 540 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|