1
|
Osman NM, Kitapci TH, Vlaho S, Wunderlich Z, Nuzhdin SV. Inference of Transcription Factor Regulation Patterns Using Gene Expression Covariation in Natural Populations of Drosophila melanogaster. Biophysics (Nagoya-shi) 2019; 63:43-51. [PMID: 30739944 DOI: 10.1134/s0006350918010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Gene regulatory networks control the complex programs that drive development. Deciphering the connections between transcription factors (TFs) and target genes is challenging, in part because TFs bind to thousands of places in the genome but control expression through a subset of these binding events. We hypothesize that we can combine natural variation of expression levels and predictions of TF binding sites to identify TF targets. We gather RNA-seq data from 71 genetically distinct F1 Drosophila melanogaster embryos and calculate the correlations between TF and potential target genes' expression levels, which we call "regulatory strength." To separate direct and indirect TF targets, we hypothesize that direct TF targets will have a preponderance of binding sites in their upstream regions. Using 14 TFs active during embryogenesis, we find that 12 TFs showed a significant correlation between their binding strength and regulatory strength on downstream targets, and 10 TFs showed a significant correlation between the number of binding sites and the regulatory effect on target genes. The general roles, e.g. bicoid's role as an activator, and the particular interactions we observed between our TFs, e.g. twist's role as a repressor of sloppy paired and odd paired, generally coincide with the literature.
Collapse
Affiliation(s)
- Noha M Osman
- University of Southern California, Los Angeles, CA.,National Research Centre, Dokki, Giza, Egypt
| | | | - Srna Vlaho
- University of Southern California, Los Angeles, CA
| | | | - Sergey V Nuzhdin
- University of Southern California, Los Angeles, CA.,Saint Petersburg Polytechnical University, St Petersburg, Russia
| |
Collapse
|
2
|
Thermodynamics-based models of transcriptional regulation by enhancers: the roles of synergistic activation, cooperative binding and short-range repression. PLoS Comput Biol 2010; 6. [PMID: 20862354 PMCID: PMC2940721 DOI: 10.1371/journal.pcbi.1000935] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 08/17/2010] [Indexed: 01/08/2023] Open
Abstract
Quantitative models of cis-regulatory activity have the potential to improve our mechanistic understanding of transcriptional regulation. However, the few models available today have been based on simplistic assumptions about the sequences being modeled, or heuristic approximations of the underlying regulatory mechanisms. We have developed a thermodynamics-based model to predict gene expression driven by any DNA sequence, as a function of transcription factor concentrations and their DNA-binding specificities. It uses statistical thermodynamics theory to model not only protein-DNA interaction, but also the effect of DNA-bound activators and repressors on gene expression. In addition, the model incorporates mechanistic features such as synergistic effect of multiple activators, short range repression, and cooperativity in transcription factor-DNA binding, allowing us to systematically evaluate the significance of these features in the context of available expression data. Using this model on segmentation-related enhancers in Drosophila, we find that transcriptional synergy due to simultaneous action of multiple activators helps explain the data beyond what can be explained by cooperative DNA-binding alone. We find clear support for the phenomenon of short-range repression, where repressors do not directly interact with the basal transcriptional machinery. We also find that the binding sites contributing to an enhancer's function may not be conserved during evolution, and a noticeable fraction of these undergo lineage-specific changes. Our implementation of the model, called GEMSTAT, is the first publicly available program for simultaneously modeling the regulatory activities of a given set of sequences. The development of complex multicellular organisms requires genes to be expressed at specific stages and in specific tissues. Regulatory DNA sequences, often called cis-regulatory modules, drive the desired gene expression patterns by integrating information about the environment in the form of the activities of transcription factors. The rules by which regulatory sequences read this type of information, however, are unclear. In this work, we developed quantitative models based on physicochemical principles that directly map regulatory sequences to the expression profiles they generate. We evaluated these models on the segmentation network of the model organism Drosophila melanogaster. Our models incorporate mechanistic features that attempt to capture how activating and repressing transcription factors work in the segmentation system. By evaluating the importance of these features, we were able to gain insights on the quantitative regulatory rules. We found that two different mechanisms may contribute to cooperative gene activation and that repressors often have a short range of influence in DNA sequences. Combining the quantitative modeling with comparative sequence analysis, we also found that even functional sequences may be lost during evolution.
Collapse
|
3
|
Prazak L, Fujioka M, Gergen JP. Non-additive interactions involving two distinct elements mediate sloppy-paired regulation by pair-rule transcription factors. Dev Biol 2010; 344:1048-59. [PMID: 20435028 PMCID: PMC2914134 DOI: 10.1016/j.ydbio.2010.04.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 04/08/2010] [Accepted: 04/23/2010] [Indexed: 11/18/2022]
Abstract
The relatively simple combinatorial rules responsible for establishing the initial metameric expression of sloppy-paired-1 (slp1) in the Drosophila blastoderm embryo make this system an attractive model for investigating the mechanism of regulation by pair-rule transcription factors. This investigation of slp1 cis-regulatory architecture identifies two distinct elements, a proximal early stripe element (PESE) and a distal early stripe element (DESE) located from -3.1kb to -2.5kb and from -8.1kb to -7.1kb upstream of the slp1 promoter, respectively, that mediate this early regulation. The proximal element expresses only even-numbered stripes and mediates repression by Even-skipped (Eve) as well as by the combination of Runt and Fushi-tarazu (Ftz). A 272 basepair sub-element of PESE retains an Eve-dependent repression, but is expressed throughout the even-numbered parasegments due to the loss of repression by Runt and Ftz. In contrast, the distal element expresses both odd and even-numbered stripes and also drives inappropriate expression in the anterior half of the odd-numbered parasegments due to an inability to respond to repression by Eve. Importantly, a composite reporter gene containing both early stripe elements recapitulates pair-rule gene-dependent regulation in a manner beyond what is expected from combining their individual patterns. These results indicate that interactions involving distinct cis-elements contribute to the proper integration of pair-rule regulatory information. A model fully accounting for these results proposes that metameric slp1 expression is achieved through the Runt-dependent regulation of interactions between these two pair-rule response elements and the slp1 promoter.
Collapse
Affiliation(s)
- Lisa Prazak
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Miki Fujioka
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - J. Peter Gergen
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215
| |
Collapse
|
4
|
Wang SY, Iordanov M, Zhang Q. c-Jun NH2-terminal kinase promotes apoptosis by down-regulating the transcriptional co-repressor CtBP. J Biol Chem 2006; 281:34810-5. [PMID: 16984892 DOI: 10.1074/jbc.m607484200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Genetic knock out of the transcriptional co-repressor carboxyl-terminal-binding protein (CtBP) in mouse embryonic fibroblasts results in up-regulation of several genes involved in apoptosis. We predicted, therefore, that a propensity toward apoptosis might be regulated through changes in cellular CtBP levels. Previously, we have identified the homeodomain-interacting protein kinase 2 as such a regulator and demonstrated that HIPK2 activation causes Ser-422 phosphorylation and degradation of CtBP. In this study, we found that c-Jun NH2-terminal kinase 1 activation triggered CtBP phosphorylation on Ser-422 and subsequent degradation, inducing p53-independent apoptosis in human lung cancer cells. JNK1 has previously been linked to UV-directed apoptosis. Expression of MKK7-JNK1 or exposure to UV irradiation reduced cellular levels of CtBP via a proteasome-mediated pathway. This effect was prevented by JNK1 deficiency. In addition, sustained activation of the JNK1 pathway by cisplatin similarly triggered CtBP degradation. These findings provide a novel target for chemotherapy in cancers lacking p53.
Collapse
Affiliation(s)
- Su-Yan Wang
- Vollum Institute and Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
5
|
Identifying spatially similar gene expression patterns in early stage fruit fly embryo images: binary feature versus invariant moment digital representations. BMC Bioinformatics 2004; 5:202. [PMID: 15603586 PMCID: PMC545963 DOI: 10.1186/1471-2105-5-202] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Accepted: 12/16/2004] [Indexed: 12/02/2022] Open
Abstract
Background Modern developmental biology relies heavily on the analysis of embryonic gene expression patterns. Investigators manually inspect hundreds or thousands of expression patterns to identify those that are spatially similar and to ultimately infer potential gene interactions. However, the rapid accumulation of gene expression pattern data over the last two decades, facilitated by high-throughput techniques, has produced a need for the development of efficient approaches for direct comparison of images, rather than their textual descriptions, to identify spatially similar expression patterns. Results The effectiveness of the Binary Feature Vector (BFV) and Invariant Moment Vector (IMV) based digital representations of the gene expression patterns in finding biologically meaningful patterns was compared for a small (226 images) and a large (1819 images) dataset. For each dataset, an ordered list of images, with respect to a query image, was generated to identify overlapping and similar gene expression patterns, in a manner comparable to what a developmental biologist might do. The results showed that the BFV representation consistently outperforms the IMV representation in finding biologically meaningful matches when spatial overlap of the gene expression pattern and the genes involved are considered. Furthermore, we explored the value of conducting image-content based searches in a dataset where individual expression components (or domains) of multi-domain expression patterns were also included separately. We found that this technique improves performance of both IMV and BFV based searches. Conclusions We conclude that the BFV representation consistently produces a more extensive and better list of biologically useful patterns than the IMV representation. The high quality of results obtained scales well as the search database becomes larger, which encourages efforts to build automated image query and retrieval systems for spatial gene expression patterns.
Collapse
|
6
|
Schroeder MD, Pearce M, Fak J, Fan H, Unnerstall U, Emberly E, Rajewsky N, Siggia ED, Gaul U. Transcriptional control in the segmentation gene network of Drosophila. PLoS Biol 2004; 2:E271. [PMID: 15340490 PMCID: PMC514885 DOI: 10.1371/journal.pbio.0020271] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 06/17/2004] [Indexed: 12/21/2022] Open
Abstract
The segmentation gene network of Drosophila consists of maternal and zygotic factors that generate, by transcriptional (cross-) regulation, expression patterns of increasing complexity along the anterior-posterior axis of the embryo. Using known binding site information for maternal and zygotic gap transcription factors, the computer algorithm Ahab recovers known segmentation control elements (modules) with excellent success and predicts many novel modules within the network and genome-wide. We show that novel module predictions are highly enriched in the network and typically clustered proximal to the promoter, not only upstream, but also in intronic space and downstream. When placed upstream of a reporter gene, they consistently drive patterned blastoderm expression, in most cases faithfully producing one or more pattern elements of the endogenous gene. Moreover, we demonstrate for the entire set of known and newly validated modules that Ahab's prediction of binding sites correlates well with the expression patterns produced by the modules, revealing basic rules governing their composition. Specifically, we show that maternal factors consistently act as activators and that gap factors act as repressors, except for the bimodal factor Hunchback. Our data suggest a simple context-dependent rule for its switch from repressive to activating function. Overall, the composition of modules appears well fitted to the spatiotemporal distribution of their positive and negative input factors. Finally, by comparing Ahab predictions with different categories of transcription factor input, we confirm the global regulatory structure of the segmentation gene network, but find odd skipped behaving like a primary pair-rule gene. The study expands our knowledge of the segmentation gene network by increasing the number of experimentally tested modules by 50%. For the first time, the entire set of validated modules is analyzed for binding site composition under a uniform set of criteria, permitting the definition of basic composition rules. The study demonstrates that computational methods are a powerful complement to experimental approaches in the analysis of transcription networks.
Collapse
Affiliation(s)
- Mark D Schroeder
- 1Laboratory of Developmental Neurogenetics, Rockefeller UniversityNew York, New York, United States of America
| | - Michael Pearce
- 1Laboratory of Developmental Neurogenetics, Rockefeller UniversityNew York, New York, United States of America
| | - John Fak
- 1Laboratory of Developmental Neurogenetics, Rockefeller UniversityNew York, New York, United States of America
| | - HongQing Fan
- 1Laboratory of Developmental Neurogenetics, Rockefeller UniversityNew York, New York, United States of America
| | - Ulrich Unnerstall
- 1Laboratory of Developmental Neurogenetics, Rockefeller UniversityNew York, New York, United States of America
| | - Eldon Emberly
- 2Center for Studies in Physics and Biology, Rockefeller UniversityNew York, New YorkUnited States of America
| | - Nikolaus Rajewsky
- 2Center for Studies in Physics and Biology, Rockefeller UniversityNew York, New YorkUnited States of America
| | - Eric D Siggia
- 2Center for Studies in Physics and Biology, Rockefeller UniversityNew York, New YorkUnited States of America
| | - Ulrike Gaul
- 1Laboratory of Developmental Neurogenetics, Rockefeller UniversityNew York, New York, United States of America
| |
Collapse
|
7
|
Sutrias-Grau M, Arnosti DN. CtBP contributes quantitatively to Knirps repression activity in an NAD binding-dependent manner. Mol Cell Biol 2004; 24:5953-66. [PMID: 15199149 PMCID: PMC480900 DOI: 10.1128/mcb.24.13.5953-5966.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional repressors often employ multiple activities, but the molecular mechanisms and physiological relevance of this functional diversity remain obscure. The Drosophila melanogaster Knirps repressor uses CtBP corepressor-dependent and -independent pathways. To separately analyze the components of Knirps repression activity, we elucidated the specific repression properties of CtBP and of Knirps subdomains. Like Knirps, CtBP represses adjacent transcriptional activators; but unlike Knirps, CtBP is unable to repress basal promoter elements. We determined that the ability of CtBP to recapitulate only a subset of Knirps activities is due to a quantitative, rather than qualitative, deficiency in repression activity. The CtBP-dependent portion of Knirps synergizes with the CtBP-independent repression activity to potently repress promoter elements from enhancer- or promoter-proximal positions. This result indicates that multiple repression activities are combined to exceed critical thresholds on target genes. CtBP mutant proteins unable to bind NAD fail to interact with DNA-bound factors. We show that DNA-binding Gal4-CtBP fusion proteins also require NAD binding for activity, indicating that NAD plays a role in repression at a step subsequent to CtBP recruitment to the promoter.
Collapse
Affiliation(s)
- Montserrat Sutrias-Grau
- Department of Biochemistry and Molecular Biology, Michigan State University, 413 Biochemistry, East Lansing, MI 48824-1319, USA
| | | |
Collapse
|
8
|
Struffi P, Corado M, Kulkarni M, Arnosti DN. Quantitative contributions of CtBP-dependent and -independent repression activities of Knirps. Development 2004; 131:2419-29. [PMID: 15128671 DOI: 10.1242/dev.01075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Drosophila Knirps protein is a short-range transcriptional repressor that locally inhibits activators by recruiting the CtBP co-repressor. Knirps also possesses CtBP-independent repression activity. The functional importance of multiple repression activities is not well understood, but the finding that Knirps does not repress some cis-regulatory elements in the absence of CtBP suggested that the co-factor may supply a unique function essential to repress certain types of activators. We assayed CtBP-dependent and -independent repression domains of Knirps in Drosophila embryos, and found that the CtBP-independent activity,when provided at higher than normal levels, can repress an everegulatory element that normally requires CtBP. Dose response analysis revealed that the activity of Knirps containing both CtBP-dependent and-independent repression activities is higher than that of the CtBP-independent domain alone. The requirement for CtBP at certain enhancers appears to reflect the need for overall higher levels of repression, rather than a requirement for an activity unique to CtBP. Thus, CtBP contributes quantitatively, rather than qualitatively, to overall repression function. The finding that both repression activities are simultaneously deployed suggests that the multiple repression activities do not function as cryptic `backup' systems, but that each contributes quantitatively to total repressor output.
Collapse
Affiliation(s)
- Paolo Struffi
- Department of Biochemistry and Molecular Biology, and Genetics Program, Michigan State University, East Lansing, MI 48824-1319, USA
| | | | | | | |
Collapse
|
9
|
Matyash A, Chung HR, Jäckle H. Genome-wide mapping of in vivo targets of the Drosophila transcription factor Kruppel. J Biol Chem 2004; 279:30689-96. [PMID: 15131112 DOI: 10.1074/jbc.m403345200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Krüppel (Kr), a member of the gap class of Drosophila segmentation genes, encodes a DNA binding zinc finger-type transcription factor. In addition to its segmentation function at the blastoderm stage, Krüppel also plays a critical role in organ formation during later stages of embryogenesis. To systematically identify in vivo target genes of Krüppel, we isolated DNA fragments from the Krüppel-associated portion of chromatin and used them to find and map Krüppel-dependent cis-acting regulatory sites in the Drosophila genome. We show that Krüppel binding sites are not enriched in Krüppel-associated chromatin and that the clustering of Krüppel binding sites, as found in the cis-acting elements of Krüppel-dependent segmentation genes used for in silico searches of Krüppel target genes, is not a prerequisite for the in vivo binding of Krüppel to its regulatory elements. Results obtained with the newly identified target gene ken and barbie (ken) indicate that Krüppel represses transcription and thereby restricts the spatial expression pattern of ken during blastoderm and gastrulation.
Collapse
Affiliation(s)
- Alexey Matyash
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Molekulare Entwicklungsbiologie, D-37070 Göttingen, Germany
| | | | | |
Collapse
|
10
|
Zhang Q, Yoshimatsu Y, Hildebrand J, Frisch SM, Goodman RH. Homeodomain interacting protein kinase 2 promotes apoptosis by downregulating the transcriptional corepressor CtBP. Cell 2003; 115:177-86. [PMID: 14567915 DOI: 10.1016/s0092-8674(03)00802-x] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Genetic knockout of the transcriptional corepressor CtBP in mouse embryo fibroblasts upregulates several genes involved in apoptosis. We predicted, therefore, that a propensity toward apoptosis might be regulated through changes in cellular CtBP. To identify pathways involved in this regulation, we screened a mouse embryo cDNA library with an E1A-CtBP complex and identified the homeodomain interacting protein kinase 2 (HIPK2), which had previously been linked to UV-directed apoptosis through its ability to phosphorylate p53. Expression of HIPK2 or exposure to UV irradiation reduced CtBP levels via a proteosome-mediated pathway. The UV effect was prevented by coexpression of kinase-inactive HIPK2 or reduction in HIPK2 levels via siRNA. Mutation of the residue phosphorylated by HIPK2 prevented UV- and HIPK2-directed CtBP clearance. Finally, reduction in CtBP levels, either by genetic knockout or siRNA, promoted apoptosis in p53-deficient cells. These findings provide a pathway for UV-induced apoptosis in cells lacking p53.
Collapse
Affiliation(s)
- Qinghong Zhang
- Vollum Institute, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
11
|
Ryu JR, Arnosti DN. Functional similarity of Knirps CtBP-dependent and CtBP-independent transcriptional repressor activities. Nucleic Acids Res 2003; 31:4654-62. [PMID: 12888527 PMCID: PMC169881 DOI: 10.1093/nar/gkg491] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Short-range transcriptional repressors are locally acting factors that play important roles in developmental gene expression in Drosophila. To effect repression, Knirps and other short-range repressors bind the CtBP corepressor, but these repressors also function via CtBP-independent pathways. Possible mechanistic differences between CtBP-dependent and -independent repression activities are poorly understood. The distinct activities might provide qualitatively different activities necessary in different promoter contexts, or they might combine to give quantitatively different effects. We analyze separately the CtBP-dependent and CtBP-independent domains of Knirps previously characterized in the embryo to determine possible functional distinctions of the two repression activities. Both domains are active in cell culture and are dependent on the same residues required for activity in the embryo. The domains have similar properties with respect to distance-dependent repression and resistance to inhibition by the deacetylase inhibitor trichostatin A. In tests of repressor-activator specificity, the extent of repression was related not to the chemical nature of the activation domain but to the total activation potential. This result indicates that the balance of competing activation and repression signals is decisive in determining the effectiveness of repressors on genetic switches, suggesting that multiple repression activities are utilized to provide quantitatively, rather than qualitatively, distinct outputs.
Collapse
Affiliation(s)
- Jae-Ryeon Ryu
- Department of Biochemistry and Molecular Biology and Program in Genetics, Michigan State University, East Lansing, MI 48824-1319, USA
| | | |
Collapse
|
12
|
Abstract
There are three mechanisms of transcriptional repression in eukaryotes. The first is quenching, whereby repressors and activators co-occupy closely linked sites and then the repressor inhibits adjacent activators. The second is direct repression, in which repressors block the function of the core transcription complex. The third is competition, in which repressors compete with activators for a common DNA-binding site. Previous studies have shown that the Drosophila melanogaster CtBP corepressor (dCtBP) is essential for the quenching activity of three short-range sequence-specific repressors in the early Drosophila embryo: Krüppel, Knirps, and Snail. Here we demonstrate that dCtBP is dispensable for target enhancers that contain overlapping activator and repressor binding sites. However, it is essential when Krüppel and Knirps repressor sites do not overlap activator sites but are instead located adjacent to either activators or the core promoter. These findings provide evidence that competition is distinct from quenching and direct repression. Quenching and direct repression depend on dCtBP, whereas competition does not.
Collapse
Affiliation(s)
- Yutaka Nibu
- Division of Genetics and Development, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
13
|
Kumar S, Jayaraman K, Panchanathan S, Gurunathan R, Marti-Subirana A, Newfeld SJ. BEST: a novel computational approach for comparing gene expression patterns from early stages of Drosophila melanogaster development. Genetics 2002; 162:2037-47. [PMID: 12524369 PMCID: PMC1462359 DOI: 10.1093/genetics/162.4.2037] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Embryonic gene expression patterns are an indispensable part of modern developmental biology. Currently, investigators must visually inspect numerous images containing embryonic expression patterns to identify spatially similar patterns for inferring potential genetic interactions. The lack of a computational approach to identify pattern similarities is an impediment to advancement in developmental biology research because of the rapidly increasing amount of available embryonic gene expression data. Therefore, we have developed computational approaches to automate the comparison of gene expression patterns contained in images of early stage Drosophila melanogaster embryos (prior to the beginning of germ-band elongation); similarities and differences in gene expression patterns in these early stages have extensive developmental effects. Here we describe a basic expression search tool (BEST) to retrieve best matching expression patterns for a given query expression pattern and a computational device for gene interaction inference using gene expression pattern images and information on the associated genotypes and probes. Analysis of a prototype collection of Drosophila gene expression pattern images is presented to demonstrate the utility of these methods in identifying biologically meaningful matches and inferring gene interactions by direct image content analysis. In particular, the use of BEST searches for gene expression patterns is akin to that of BLAST searches for finding similar sequences. These computational developmental biology methodologies are likely to make the great wealth of embryonic gene expression pattern data easily accessible and to accelerate the discovery of developmental networks.
Collapse
Affiliation(s)
- Sudhir Kumar
- Center for Evolutionary Functional Genomics, Arizona State University, Tempe, Arizona 85287, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Kim GT, Shoda K, Tsuge T, Cho KH, Uchimiya H, Yokoyama R, Nishitani K, Tsukaya H. The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. EMBO J 2002; 21:1267-79. [PMID: 11889033 PMCID: PMC125914 DOI: 10.1093/emboj/21.6.1267] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2001] [Revised: 12/03/2001] [Accepted: 12/20/2001] [Indexed: 11/14/2022] Open
Abstract
We previously showed that the ANGUSTIFOLIA (AN) gene regulates the width of leaves of Arabidopsis thaliana, by controlling the polar elongation of leaf cells. In the present study, we found that the abnormal arrangement of cortical microtubules (MTs) in an leaf cells appeared to account entirely for the abnormal shape of the cells. It suggested that the AN gene might regulate the polarity of cell growth by controlling the arrangement of cortical MTs. We cloned the AN gene using a map-based strategy and identified it as the first member of the CtBP family to be found in plants. Wild-type AN cDNA reversed the narrow-leaved phenotype and the abnormal arrangement of cortical MTs of the an-1 mutation. In the animal kingdom, CtBPs self-associate and act as co-repressors of transcription. The AN protein can also self-associate in the yeast two-hybrid system. Furthermore, microarray analysis suggested that the AN gene might regulate the expression of certain genes, e.g. the gene involved in formation of cell walls, MERI5. A discussion of the molecular mechanisms involved in the leaf shape regulation is presented based on our observations.
Collapse
Affiliation(s)
- Gyung-Tae Kim
- National Institute for Basic Biology/Center for Integrative Bioscience, 38 Nishigounaka, Myodaiji-cho, Okazaki 444-8585, Institute for Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-77 and Form and Function, PRESTO, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 and School of Advanced Sciences, the Graduate University for Advanced Studies, Shonan Villege, Hayama, Kanagawa 240-0193, Japan Present address: Molecular Membrane Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Present address: Osborn Memorial Laboratory, Department of Molecular, Cellular and Developmental Biology, Yale University, 165 Prospect Street, New Haven, CT 6520-8104, USA Corresponding author e-mail:
| | - Keiko Shoda
- National Institute for Basic Biology/Center for Integrative Bioscience, 38 Nishigounaka, Myodaiji-cho, Okazaki 444-8585, Institute for Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-77 and Form and Function, PRESTO, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 and School of Advanced Sciences, the Graduate University for Advanced Studies, Shonan Villege, Hayama, Kanagawa 240-0193, Japan Present address: Molecular Membrane Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Present address: Osborn Memorial Laboratory, Department of Molecular, Cellular and Developmental Biology, Yale University, 165 Prospect Street, New Haven, CT 6520-8104, USA Corresponding author e-mail:
| | - Tomohiko Tsuge
- National Institute for Basic Biology/Center for Integrative Bioscience, 38 Nishigounaka, Myodaiji-cho, Okazaki 444-8585, Institute for Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-77 and Form and Function, PRESTO, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 and School of Advanced Sciences, the Graduate University for Advanced Studies, Shonan Villege, Hayama, Kanagawa 240-0193, Japan Present address: Molecular Membrane Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Present address: Osborn Memorial Laboratory, Department of Molecular, Cellular and Developmental Biology, Yale University, 165 Prospect Street, New Haven, CT 6520-8104, USA Corresponding author e-mail:
| | - Kiu-Hyung Cho
- National Institute for Basic Biology/Center for Integrative Bioscience, 38 Nishigounaka, Myodaiji-cho, Okazaki 444-8585, Institute for Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-77 and Form and Function, PRESTO, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 and School of Advanced Sciences, the Graduate University for Advanced Studies, Shonan Villege, Hayama, Kanagawa 240-0193, Japan Present address: Molecular Membrane Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Present address: Osborn Memorial Laboratory, Department of Molecular, Cellular and Developmental Biology, Yale University, 165 Prospect Street, New Haven, CT 6520-8104, USA Corresponding author e-mail:
| | - Hirofumi Uchimiya
- National Institute for Basic Biology/Center for Integrative Bioscience, 38 Nishigounaka, Myodaiji-cho, Okazaki 444-8585, Institute for Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-77 and Form and Function, PRESTO, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 and School of Advanced Sciences, the Graduate University for Advanced Studies, Shonan Villege, Hayama, Kanagawa 240-0193, Japan Present address: Molecular Membrane Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Present address: Osborn Memorial Laboratory, Department of Molecular, Cellular and Developmental Biology, Yale University, 165 Prospect Street, New Haven, CT 6520-8104, USA Corresponding author e-mail:
| | - Ryusuke Yokoyama
- National Institute for Basic Biology/Center for Integrative Bioscience, 38 Nishigounaka, Myodaiji-cho, Okazaki 444-8585, Institute for Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-77 and Form and Function, PRESTO, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 and School of Advanced Sciences, the Graduate University for Advanced Studies, Shonan Villege, Hayama, Kanagawa 240-0193, Japan Present address: Molecular Membrane Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Present address: Osborn Memorial Laboratory, Department of Molecular, Cellular and Developmental Biology, Yale University, 165 Prospect Street, New Haven, CT 6520-8104, USA Corresponding author e-mail:
| | - Kazuhiko Nishitani
- National Institute for Basic Biology/Center for Integrative Bioscience, 38 Nishigounaka, Myodaiji-cho, Okazaki 444-8585, Institute for Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-77 and Form and Function, PRESTO, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 and School of Advanced Sciences, the Graduate University for Advanced Studies, Shonan Villege, Hayama, Kanagawa 240-0193, Japan Present address: Molecular Membrane Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Present address: Osborn Memorial Laboratory, Department of Molecular, Cellular and Developmental Biology, Yale University, 165 Prospect Street, New Haven, CT 6520-8104, USA Corresponding author e-mail:
| | - Hirokazu Tsukaya
- National Institute for Basic Biology/Center for Integrative Bioscience, 38 Nishigounaka, Myodaiji-cho, Okazaki 444-8585, Institute for Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-77 and Form and Function, PRESTO, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 and School of Advanced Sciences, the Graduate University for Advanced Studies, Shonan Villege, Hayama, Kanagawa 240-0193, Japan Present address: Molecular Membrane Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Present address: Osborn Memorial Laboratory, Department of Molecular, Cellular and Developmental Biology, Yale University, 165 Prospect Street, New Haven, CT 6520-8104, USA Corresponding author e-mail:
| |
Collapse
|
15
|
Papatsenko DA, Makeev VJ, Lifanov AP, Régnier M, Nazina AG, Desplan C. Extraction of functional binding sites from unique regulatory regions: the Drosophila early developmental enhancers. Genome Res 2002; 12:470-81. [PMID: 11875036 PMCID: PMC155290 DOI: 10.1101/gr.212502] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The early developmental enhancers of Drosophila melanogaster comprise one of the most sophisticated regulatory systems in higher eukaryotes. An elaborate code in their DNA sequence translates both maternal and early embryonic regulatory signals into spatial distribution of transcription factors. One of the most striking features of this code is the redundancy of binding sites for these transcription factors (BSTF). Using this redundancy, we explored the possibility of predicting functional binding sites in a single enhancer region without any prior consensus/matrix description or evolutionary sequence comparisons. We developed a conceptually simple algorithm, Scanseq, that employs an original statistical evaluation for identifying the most redundant motifs and locates the position of potential BSTF in a given regulatory region. To estimate the biological relevance of our predictions, we built thorough literature-based annotations for the best-known Drosophila developmental enhancers and we generated detailed distribution maps for the most robust binding sites. The high statistical correlation between the location of BSTF in these experiment-based maps and the location predicted in silico by Scanseq confirmed the relevance of our approach. We also discuss the definition of true binding sites and the possible biological principles that govern patterning of regulatory regions and the distribution of transcriptional signals.
Collapse
|
16
|
Abstract
CtBP family proteins are conserved among vertebrates and invertebrates and function as transcriptional corepressors. They repress transcription in a histone deacetylase-dependent or -independent manner. CtBPs play important roles during development and oncogenesis. In this review, their unusual properties, the mechanisms of transcriptional repression, regulation, and their biological functions are discussed.
Collapse
Affiliation(s)
- G Chinnadurai
- Institute for Molecular Virology, Saint Louis University School of Medicine, 3681 Park Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
17
|
Strunk B, Struffi P, Wright K, Pabst B, Thomas J, Qin L, Arnosti DN. Role of CtBP in transcriptional repression by the Drosophila giant protein. Dev Biol 2001; 239:229-40. [PMID: 11784031 DOI: 10.1006/dbio.2001.0454] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The giant protein is a short-range transcriptional repressor that refines the expression pattern of gap and pair-rule genes in the Drosophila blastoderm embryo. Short-range repressors including knirps, Krüppel, and snail utilize the CtBP cofactor for repression, but it is not known whether a functional interaction with CtBP is a general property of all short-range repressors. We studied giant repression activity in a CtBP mutant and find that this cofactor is required for giant repression of some, but not all, genes. While targets of giant such as the even-skipped stripe 2 enhancer and a synthetic lacZ reporter show clear derepression in the CtBP mutant, another giant target, the hunchback gene, is expressed normally. A more complex situation is seen with regulation of the Krüppel gene, in which one enhancer is repressed by giant in a CtBP-dependent manner, while another is repressed in a CtBP-independent manner. These results demonstrate that giant can repress both via CtBP-dependent and CtBP-independent pathways, and that promoter context is critical for determining giant-CtBP functional interaction. To initiate mechanistic studies of the giant repression activity, we have identified a minimal repression domain within giant that encompasses residues 89-205, including an evolutionarily conserved region bearing a putative CtBP binding motif.
Collapse
Affiliation(s)
- B Strunk
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Ryu JR, Olson LK, Arnosti DN. Cell-type specificity of short-range transcriptional repressors. Proc Natl Acad Sci U S A 2001; 98:12960-5. [PMID: 11687630 PMCID: PMC60807 DOI: 10.1073/pnas.231394998] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2001] [Indexed: 11/18/2022] Open
Abstract
Transcriptional repressors can be classified as short- or long-range, according to their range of activity. Functional analysis of identified short-range repressors has been carried out largely in transgenic Drosophila, but it is not known whether general properties of short-range repressors are evident in other types of assays. To study short-range transcriptional repressors in cultured cells, we created chimeric tetracycline repressors based on Drosophila transcriptional repressors Giant, Drosophila C-terminal-binding protein (dCtBP), and Knirps. We find that Giant and dCtBP are efficient repressors in Drosophila and mammalian cells, whereas Knirps is active only in insect cells. The restricted activity of Knirps, in contrast to that of Giant, suggests that not all short-range repressors possess identical activities, consistent with recent findings showing that short-range repressors act through multiple pathways. The mammalian repressor Kid is more effective than either Giant or dCtBP in mammalian cells but is inactive in Drosophila cells. These results indicate that species-specific factors are important for the function of the Knirps and Kid repressors. Giant and dCtBP repress reporter genes in a variety of contexts, including genes that were introduced by transient transfection, carried on episomal elements, or stably integrated. This broad activity indicates that the context of the target gene is not critical for the ability of short-range repressors to block transcription, in contrast to other repressors that act only on stably integrated genes.
Collapse
Affiliation(s)
- J R Ryu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | | | | |
Collapse
|
19
|
Affiliation(s)
- A J Courey
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | | |
Collapse
|
20
|
Kim J. Macro-evolution of the hairy enhancer in Drosophila species. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2001; 291:175-85. [PMID: 11479916 DOI: 10.1002/jez.1067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
It has been suggested that many of the changes in the developmental program might be in the cis-acting promoters and enhancer regions. Here I study the macro-evolutionary changes of an enhancer region for the early developmental gene hairy in Drosophila melanogaster, D. simulans, D. pseudoobscura, D. willistoni, D. nebulosa, D. hydei, and D. virilis. The enhancer region is characterized by small, highly conserved blocks interspersed among highly variable regions. Nevertheless, species phylogenies constructed by the enhancer sequences agree with the widely accepted phylogeny of these species. The evolution of the variable regions is consistent with a molecular clock, while the evolution of the conserved blocks is significantly different from a clock. In particular, the D. pseudoobscura lineage shows the highest degree of species-specific change consistent with changes in expression timing reported in an earlier study. It has been suggested that the variation in sequence length between highly conserved blocks may play a role in the coordination of regulatory processes, such as protein-protein interactions; thus, stabilizing selection has been suggested to act on the length variations. Here I develop a test for stabilizing selection on length variation and show that the hairy enhancer does not show statistically significant evidence for stabilizing selection. J. Exp. Zool. (Mol. Dev. Evol.) 291:175-185, 2001.
Collapse
Affiliation(s)
- J Kim
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
21
|
Nibu Y, Levine MS. CtBP-dependent activities of the short-range Giant repressor in the Drosophila embryo. Proc Natl Acad Sci U S A 2001; 98:6204-8. [PMID: 11353860 PMCID: PMC33446 DOI: 10.1073/pnas.111158298] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There are at least three short-range gap repressors in the precellular Drosophila embryo: Krüppel, Knirps, and Giant. Krüppel and Knirps contain related repression motifs, PxDLSxH and PxDLSxK, respectively, which mediate interactions with the dCtBP corepressor protein. Here, we present evidence that Giant might also interact with dCtBP. The misexpression of Giant in ventral regions of transgenic embryos results in the selective repression of eve stripe 5. A stripe5-lacZ transgene exhibits an abnormal staining pattern in dCtBP mutants that is consistent with attenuated repression by Giant. The analysis of Gal4-Giant fusion proteins identified a minimal repression domain that contains a sequence motif, VLDLS, which is conserved in at least two other sequence-specific repressors. Removal of this sequence from the native Giant protein does not impair its repression activity in transgenic embryos. We propose that Giant-dCtBP interactions might be indirect and mediated by an unknown bZIP subunit that forms a heteromeric complex with Giant. We also suggest that the VLDLS motif recruits an as yet unidentified corepressor protein.
Collapse
Affiliation(s)
- Y Nibu
- Department of Molecular and Cell Biology, Division of Genetics and Development, 401 Barker Hall, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
22
|
Affiliation(s)
- M Mannervik
- Department of Molecular and Cellular Biology, Division of Genetics, 401 Barker Hall, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
23
|
Zhang H, Levine M, Ashe HL. Brinker is a sequence-specific transcriptional repressor in the Drosophila embryo. Genes Dev 2001; 15:261-6. [PMID: 11159907 PMCID: PMC312626 DOI: 10.1101/gad.861201] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A Dpp activity gradient specifies multiple thresholds of gene expression in the dorsal ectoderm of the early embryo. Some of these thresholds depend on a putative repressor, Brinker, which is expressed in the neurogenic ectoderm in response to the maternal Dorsal gradient and Dpp signaling. Here we show that Brinker is a sequence-specific transcriptional repressor. It binds the consensus sequence, TGGCGc/tc/t, and interacts with the Groucho corepressor through a conserved sequence motif, FKPY. An optimal Brinker binding site is contained within an 800-bp enhancer from the tolloid gene, which has been identified as a genetic target of the Brinker repressor. A tolloid-lacZ transgene containing point mutations in this site exhibits an expanded pattern of expression, suggesting that Brinker directly represses tolloid transcription. We discuss other examples of transcriptional repressors constraining the activities of signaling pathways.
Collapse
Affiliation(s)
- H Zhang
- Department Molecular Cell Biology, Division of Genetics and Development, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
24
|
Keller SA, Mao Y, Struffi P, Margulies C, Yurk CE, Anderson AR, Amey RL, Moore S, Ebels JM, Foley K, Corado M, Arnosti DN. dCtBP-dependent and -independent repression activities of the Drosophila Knirps protein. Mol Cell Biol 2000; 20:7247-58. [PMID: 10982842 PMCID: PMC86279 DOI: 10.1128/mcb.20.19.7247-7258.2000] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional repressor proteins play essential roles in controlling the correct temporal and spatial patterns of gene expression in Drosophila melanogaster embryogenesis. Repressors such as Knirps, Krüppel, and Snail mediate short-range repression and interact with the dCtBP corepressor. The mechanism by which short-range repressors block transcription is not well understood; therefore, we have undertaken a detailed structure-function analysis of the Knirps protein. To provide a physiological setting for measurement of repression, the activities of endogenous or chimeric Knirps repressor proteins were assayed on integrated reporter genes in transgenic embryos. Two distinct repression functions were identified in Knirps. One repression activity depends on dCtBP binding, and this function maps to a C-terminal region of Knirps that contains a dCtBP binding motif. In addition, an N-terminal region was identified that represses in a CtBP mutant background and does not bind to the dCtBP protein in vitro. Although the dCtBP protein is important for Knirps activity on some genes, one endogenous target of the Knirps protein, the even-skipped stripe 3 enhancer, is not derepressed in a CtBP mutant. These results indicate that Knirps can utilize two different pathways to mediate transcriptional repression and suggest that the phenomenon of short-range repression may be a combination of independent activities.
Collapse
Affiliation(s)
- S A Keller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|