1
|
Kopania EEK, Larson EL, Callahan C, Keeble S, Good JM. Molecular Evolution across Mouse Spermatogenesis. Mol Biol Evol 2022; 39:6517785. [PMID: 35099536 PMCID: PMC8844503 DOI: 10.1093/molbev/msac023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genes involved in spermatogenesis tend to evolve rapidly, but we lack a clear understanding of how protein sequences and patterns of gene expression evolve across this complex developmental process. We used fluorescence-activated cell sorting (FACS) to generate expression data for early (meiotic) and late (postmeiotic) cell types across 13 inbred strains of mice (Mus) spanning ∼7 My of evolution. We used these comparative developmental data to investigate the evolution of lineage-specific expression, protein-coding sequences, and expression levels. We found increased lineage specificity and more rapid protein-coding and expression divergence during late spermatogenesis, suggesting that signatures of rapid testis molecular evolution are punctuated across sperm development. Despite strong overall developmental parallels in these components of molecular evolution, protein and expression divergences were only weakly correlated across genes. We detected more rapid protein evolution on the X chromosome relative to the autosomes, whereas X-linked gene expression tended to be relatively more conserved likely reflecting chromosome-specific regulatory constraints. Using allele-specific FACS expression data from crosses between four strains, we found that the relative contributions of different regulatory mechanisms also differed between cell types. Genes showing cis-regulatory changes were more common late in spermatogenesis, and tended to be associated with larger differences in expression levels and greater expression divergence between species. In contrast, genes with trans-acting changes were more common early and tended to be more conserved across species. Our findings advance understanding of gene evolution across spermatogenesis and underscore the fundamental importance of developmental context in molecular evolutionary studies.
Collapse
Affiliation(s)
- Emily E K Kopania
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, CO, 80208, USA
| | - Colin Callahan
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| |
Collapse
|
2
|
Xu Y, Qiao H. A Hypothesis: Linking Phase Separation to Meiotic Sex Chromosome Inactivation and Sex-Body Formation. Front Cell Dev Biol 2021; 9:674203. [PMID: 34485277 PMCID: PMC8415632 DOI: 10.3389/fcell.2021.674203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/22/2021] [Indexed: 01/12/2023] Open
Abstract
During meiotic prophase I, X and Y chromosomes in mammalian spermatocytes only stably pair at a small homologous region called the pseudoautosomal region (PAR). However, the rest of the sex chromosomes remain largely unsynapsed. The extensive asynapsis triggers transcriptional silencing - meiotic sex chromosome inactivation (MSCI). Along with MSCI, a special nuclear territory, sex body or XY body, forms. In the early steps of MSCI, DNA damage response (DDR) factors, such as BRCA1, ATR, and γH2AX, function as sensors and effectors of the silencing signals. Downstream canonical repressive histone modifications, including methylation, acetylation, ubiquitylation, and SUMOylation, are responsible for the transcriptional repression of the sex chromosomes. Nevertheless, mechanisms of the sex-body formation remain unclear. Liquid-liquid phase separation (LLPS) may drive the formation of several chromatin subcompartments, such as pericentric heterochromatin, nucleoli, inactive X chromosomes. Although several proteins involved in phase separation are found in the sex bodies, when and whether these proteins exert functions in the sex-body formation and MSCI is still unknown. Here, we reviewed recent publications on the mechanisms of MSCI and LLPS, pointed out the potential link between LLPS and the formation of sex bodies, and discussed its implications for future research.
Collapse
Affiliation(s)
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
3
|
Park H, Yang J, Kim R, Li Y, Lee Y, Lee C, Park J, Lee D, Kim H, Kim E. Mice lacking the PSD-95-interacting E3 ligase, Dorfin/Rnf19a, display reduced adult neurogenesis, enhanced long-term potentiation, and impaired contextual fear conditioning. Sci Rep 2015; 5:16410. [PMID: 26553645 PMCID: PMC4639748 DOI: 10.1038/srep16410] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/14/2015] [Indexed: 11/09/2022] Open
Abstract
Protein ubiquitination has a significant influence on diverse aspects of neuronal development and function. Dorfin, also known as Rnf19a, is a RING finger E3 ubiquitin ligase implicated in amyotrophic lateral sclerosis and Parkinson's disease, but its in vivo functions have not been explored. We report here that Dorfin is a novel binding partner of the excitatory postsynaptic scaffolding protein PSD-95. Dorfin-mutant (Dorfin(-/-)) mice show reduced adult neurogenesis and enhanced long-term potentiation in the hippocampal dentate gyrus, but normal long-term potentiation in the CA1 region. Behaviorally, Dorfin(-/-) mice show impaired contextual fear conditioning, but normal levels of cued fear conditioning, fear extinction, spatial learning and memory, object recognition memory, spatial working memory, and pattern separation. Using a proteomic approach, we also identify a number of proteins whose ubiquitination levels are decreased in the Dorfin(-/-) brain. These results suggest that Dorfin may regulate adult neurogenesis, synaptic plasticity, and contextual fear memory.
Collapse
Affiliation(s)
- Hanwool Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Jinhee Yang
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | - Ryunhee Kim
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | - Yan Li
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Yeunkum Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Chungwoo Lee
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | - Jongil Park
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | - Dongmin Lee
- Department of Anatomy and Division of Brain Korea 21. Biomedical Science, College of Medicine, Korea University, Seoul 136-704, Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21. Biomedical Science, College of Medicine, Korea University, Seoul 136-704, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| |
Collapse
|
4
|
Rivkin E, Kierszenbaum AL, Gil M, Tres LL. Rnf19a, a ubiquitin protein ligase, and Psmc3, a component of the 26S proteasome, tether to the acrosome membranes and the head-tail coupling apparatus during rat spermatid development. Dev Dyn 2009; 238:1851-61. [PMID: 19517565 DOI: 10.1002/dvdy.22004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We report the cDNA cloning of rat testis Rnf19a, a ubiquitin protein ligase, and show 98% and 93% protein sequence identity of testicular mouse and human Rnf19a, respectively. Rnf19a interacts with Psmc3, a protein component of the 19S regulatory cap of the 26S proteasome. During spermatid development, Rnf19a and Psmc3 are initially found in Golgi-derived proacrosomal vesicles. Later on, Rnf19a, Psmc3, and ubiquitin are seen along the cytosolic side of the acrosomal membranes and the acroplaxome, a cytoskeletal plate linking the acrosome to the spermatid nuclear envelope. Rnf19a and Psmc3 accumulate at the acroplaxome marginal ring-manchette perinuclear ring region during spermatid head shaping and in the developing sperm head-tail coupling apparatus and tail. Rnf19a and Psmc3 may interact directly or indirectly with each other, presumably pointing to the participation of the ubiquitin-proteasome system in acrosome biogenesis, spermatid head shaping, and development of the head-tail coupling apparatus and tail.
Collapse
Affiliation(s)
- Eugene Rivkin
- Department of Cell Biology and Anatomy, The Sophie Davis School of Biomedical Education, New York, New York 10031, USA
| | | | | | | |
Collapse
|
5
|
Russo J, Balogh GA, Heulings R, Mailo DA, Moral R, Russo PA, Sheriff F, Vanegas J, Russo IH. Molecular basis of pregnancy-induced breast cancer protection. Eur J Cancer Prev 2007; 15:306-42. [PMID: 16835503 DOI: 10.1097/00008469-200608000-00006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have postulated that the lifetime protective effect of an early pregnancy against breast cancer is due to the complete differentiation of the mammary gland characterized by a specific genomic signature imprinted by the physiological process of pregnancy. In the present work, we show evidence that the breast tissue of postmenopausal parous women has had a shifting of stem cell 1 to stem cell 2 with a genomic signature different from similar structures derived from postmenopausal nulliparous women that have stem cell 1. Those genes that are significantly different are grouped in major categories on the basis of their putative functional significance. Among them are those gene transcripts related to immune surveillance, DNA repair, transcription, chromatin structure/activators/co-activators, growth factor and signal transduction pathway, transport and cell trafficking, cell proliferation, differentiation, cell adhesion, protein synthesis and cell metabolism. From these data, it was concluded that during pregnancy there are significant genomic changes that reflect profound alterations in the basic physiology of the mammary gland that explain the protective effect against carcinogenesis. The implication of this knowledge is that when the genomic signature of protection or refractoriness to carcinogenesis is acquired by the shifting of stem cell 1 to stem cell 2, the hormonal milieu induced by pregnancy or pregnancy-like conditions is no longer required. This is a novel concept that challenges the current knowledge that a chemopreventive agent needs to be given for a long period to suppress a metabolic pathway or abrogate the function of an organ.
Collapse
Affiliation(s)
- Jose Russo
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Nucleolar organization by autosomal bivalents occurs during male meiotic prophase in mammalian species. During late leptotene-early zygotene stages, several autosomal bivalents are engaged in ribosomal RNA synthesis. At pachytene stage, nucleolar masses detach from the sites of primary autosomal origin, relocate close to the XY chromosomal pair, and nucleolar components become segregated. In early pachytene, an extensive synaptonemal complex at the pseudoautosomal region, links X and Y chromosomes in close juxtaposition along most of the length of the Y chromosome, except for a terminal region of the Y that diverges from the pairing region. As meiotic prophase advances, X and Y chromosomes progressively desynapse and, at diplotene, the XY pair is associated end-to-end. Xmr (Xlr-related, meiosis regulated) is a protein component of the nucleolus associated to the XY pair and of the asynapsed portions of the X and Y axial cores. Xmr, like SCP3, is a component of the lateral element of the synaptonemal complex. Both share structural homology in their C-terminal region. This region contains several putative coiled-coil domains known to mediate heterodimeric protein-protein interactions and to provide binding sites to regulatory proteins. Like Xmr, the tumor repressor protein BRCA1 is present along the unsynapsed cores of the XY bivalent. Both Xmr and BRCA1 have been implicated in a mechanism leading to chromatin condensation and transcription inactivation of the XY bivalent. The BRCA1-ATR kinase complex, as recent research suggests, triggers the phosphorylation of histone H2AX, which predominates in the condensed chromatin of the XY chromosomal pair. Xmr is not present in the XY bivalent when the expression of histone H2AX is deficient. The role of Xmr in chromatin condensation of the XY bivalent has not been determined. The partial structural homology of SCP3 and Xmr, their distribution along the unsynapsed axial cores of the X and Y chromosomes, and the presence of Xmr in the XY pair-associated nucleolus raises the possibility that Xmr, and other proteins including protein kinases, may be recruited to the nucleolus to perform functions related to chromosomal synapsis, chromatin condensation and recombination processes, as well as cell cycle progression.
Collapse
Affiliation(s)
- Laura L Tres
- Department of Cell Biology and Anatomical Sciences, The Sophie Davis School of Biomedical Education/The City University of New York Medical School, New York, New York 10031, USA.
| |
Collapse
|
7
|
Friedman JR, Larris B, Le PP, Peiris TH, Arsenlis A, Schug J, Tobias JW, Kaestner KH, Greenbaum LE. Orthogonal analysis of C/EBPbeta targets in vivo during liver proliferation. Proc Natl Acad Sci U S A 2004; 101:12986-91. [PMID: 15317935 PMCID: PMC516505 DOI: 10.1073/pnas.0402875101] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
CCAAT enhancer-binding protein beta (C/EBPbeta), a basic-leucine zipper transcription factor, is an important effector of signals in physiologic growth and cancer. The identification of direct C/EBPbeta targets in vivo has been limited by functional compensation by other C/EBP family proteins and the low stringency of the consensus sequence. Here we use the combined power of expression profiling and high-throughput chromatin immunoprecipitation to identify direct and biologically relevant targets of C/EBPbeta. We identified 25 potential C/EBPbeta targets, of which 88% of those tested were confirmed as in vivo C/EBPbeta-binding sites. Six of these genes also displayed differential expression in C/EBPbeta-/- livers. Computational analysis revealed that bona fide C/EBPbeta target genes can be distinguished by the presence of binding motifs for specific additional transcription factors in the vicinity of the C/EBPbeta site. This approach is generally applicable to the discovery of direct, biologically relevant targets of mammalian transcription factors.
Collapse
Affiliation(s)
- Joshua R Friedman
- Department of Genetics, Bioinformatics Core, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Paces-Fessy M, Boucher D, Petit E, Paute-Briand S, Blanchet-Tournier MF. The negative regulator of Gli, Suppressor of fused (Sufu), interacts with SAP18, Galectin3 and other nuclear proteins. Biochem J 2004; 378:353-62. [PMID: 14611647 PMCID: PMC1223961 DOI: 10.1042/bj20030786] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Revised: 10/31/2003] [Accepted: 11/12/2003] [Indexed: 11/17/2022]
Abstract
Sufu (Suppressor of fused) is a negative regulator of the Hedgehog signal-transduction pathway, interacting directly with the Gli family of transcription factors. However, its function remains poorly understood. In the present study, we determined the expression, tissue distribution and biochemical properties of mSufu (mouse Sufu) protein. We identified several mSufu variants of which some were phosphorylated. A yeast two-hybrid screen with mSufu as bait allowed us to identify several nuclear proteins as potential partners of mSufu. Most of these partners, such as SAP18 (Sin3-associated polypeptide 18), pCIP (p300/CBP-cointegrator protein) and PIAS1 (protein inhibitor of activated signal transduction and activators of transcription 1), are involved in either repression or activation of transcription and two of them, Galectin3 and hnRNPA1 (heterogeneous nuclear ribonucleoprotein A1), have a nuclear function in pre-mRNA splicing. We confirmed the mSufu-SAP18 and mSufu-Galectin3 interactions by independent biochemical assays. Using a cell transfection assay, we also demonstrated that mSufu protein (484 amino acids) is predominantly cytoplasmic but becomes mostly nuclear when a putative nuclear export signal is mutated or after treatment of the cells with leptomycin B. Moreover, mSufu is translocated to the nucleus when co-expressed with SAP18, which is normally found in this compartment. In contrast, Galectin3 is translocated to the cytoplasm when it is co-expressed with mSufu. Our findings indicate that mSufu is a shuttle protein that appears to be extremely versatile in its ability to bind different proteins in both the cytoplasm and nucleus.
Collapse
Affiliation(s)
- Mélanie Paces-Fessy
- Laboratoire de Génétique du Développement et Evolution, Institut J. Monod, CNRS UMR 7592, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | |
Collapse
|
9
|
Marín I, Lucas JI, Gradilla AC, Ferrús A. Parkin and relatives: the RBR family of ubiquitin ligases. Physiol Genomics 2004; 17:253-63. [PMID: 15152079 DOI: 10.1152/physiolgenomics.00226.2003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations in the parkin gene cause autosomal-recessive juvenile parkinsonism. Parkin encodes a ubiquitin-protein ligase characterized by having the RBR domain, composed of two RING fingers plus an IBR/DRIL domain. The RBR family is defined as the group of genes whose products contain an RBR domain. RBR family members exist in all eukaryotic species for which significant sequence data is available, including animals, plants, fungi, and several protists. The integration of comparative genomics with structural and functional data allows us to conclude that RBR proteins have multiple roles, not only in protein quality control mechanisms, but also as indirect regulators of transcription. A recently formulated hypothesis, based on a case of gene fusion, suggested that RBR proteins may be often part of cullin-containing ubiquitin ligase complexes. Recent data on Parkin protein agrees with that hypothesis. We discuss the involvement of RBR proteins in several neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Ignacio Marín
- Departamento de Genética, Universidad de Valencia, 46100 Burjassot, Valencia, Spain.
| | | | | | | |
Collapse
|
10
|
Reini K, Uitto L, Perera D, Moens PB, Freire R, Syväoja JE. TopBP1 localises to centrosomes in mitosis and to chromosome cores in meiosis. Chromosoma 2004; 112:323-30. [PMID: 15138768 DOI: 10.1007/s00412-004-0277-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Accepted: 03/08/2004] [Indexed: 01/24/2023]
Abstract
Topoisomerase IIbeta binding protein 1 (TopBP1), previously shown to localise to sites of DNA damage and to stalled replication forks, has been implicated in DNA replication and in DNA damage response. In this work we showed that TopBP1 was localised in structures other than stalled replication forks. In late mitosis TopBP1 localises to centrosomes in a manner similar to other DNA damage response proteins such as BRCA1 and p53. Spindle checkpoint activation does not affect this centrosomal localisation. Moreover, in the testis, we detected high levels of TopBP1 associated with meiotic prophase chromosome cores and the X-Y pair. Together, these data suggest a direct role of TopBP1 during both mitosis and meiotic prophase I.
Collapse
Affiliation(s)
- Kaarina Reini
- Biocenter Oulu and Department of Biochemistry, P.O. Box 3000, 90014, University of Oulu, Finland
| | | | | | | | | | | |
Collapse
|
11
|
Hoyer-Fender S, Czirr E, Radde R, Turner JMA, Mahadevaiah SK, Pehrson JR, Burgoyne PS. Localisation of histone macroH2A1.2 to the XY-body is not a response to the presence of asynapsed chromosome axes. J Cell Sci 2004; 117:189-98. [PMID: 14676273 DOI: 10.1242/jcs.00851] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histone macroH2A1.2 and the murine heterochromatin protein 1, HP1β, have both been implicated in meiotic sex chromosome inactivation (MSCI) and the formation of the XY-body in male meiosis. In order to get a closer insight into the function of histone macroH2A1.2 we have investigated the localisation of macroH2A1.2 in surface spread spermatocytes from normal male mice and in oocytes of XX and XYTdym1 mice. Oocytes of XYTdym1 mice have no XY-body or MSCI despite having an XY chromosome constitution, so the presence or absence of `XY-body' proteins in association with the X and/or Y chromosome of these oocytes enables some discrimination between potential functions of XY-body located proteins. We demonstrate here that macroH2A1.2 localises to the X and Y chromatin of spermatocytes as they condense to form the XY-body but is not associated with the X and Y chromatin of XYTdym1 early pachytene oocytes. MacroH2A1.2 and HP1β co-localise to autosomal pericentromeric heterochromatin in spermatocytes. However, the two proteins show temporally and spatially distinct patterns of association to X and Y chromatin.
Collapse
Affiliation(s)
- Sigrid Hoyer-Fender
- III. Department of Zoology-Developmental Biology, University of Göttingen, Humboldtallee 34A, 37073 Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Hishikawa N, Niwa JI, Doyu M, Ito T, Ishigaki S, Hashizume Y, Sobue G. Dorfin localizes to the ubiquitylated inclusions in Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, and amyotrophic lateral sclerosis. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:609-19. [PMID: 12875980 PMCID: PMC1868225 DOI: 10.1016/s0002-9440(10)63688-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In many neurodegenerative diseases, the cytopathological hallmark is the presence of ubiquitylated inclusions consisting of insoluble protein aggregates. Lewy bodies in Parkinson's disease and dementia with Lewy bodies disease, glial cell inclusions in multiple system atrophy, and hyaline inclusions in amyotrophic lateral sclerosis (ALS) are representative of these inclusions. The elucidation of the components of these inclusions and the mechanisms underlying inclusion formation is important in uncovering the pathogenesis of these disorders. We hypothesized that Dorfin, a perinuclearly located E3 ubiquitin ligase, participates in the formation of ubiquitylated inclusions in a wide range of neurodegenerative diseases. Here, we report that affinity-purified anti-Dorfin antibody labeled ubiquitylated inclusions of Parkinson's disease, dementia with Lewy bodies disease, multiple system atrophy, and sporadic and familial ALS. A double-immunofluorescence study revealed that Dorfin shows a distribution pattern parallel to that of ubiquitin. Furthermore, by a filter trap assay, we detected that Dorfin is present in the ubiquitylated high-molecular weight structures derived from these diseases. These results suggest that Dorfin plays a crucial role in the formation of ubiquitylated inclusions of alpha-synucleinopathy and ALS. However, because we failed to show the direct binding of alpha-synuclein with Dorfin, future investigations into the binding partner(s) of Dorfin will be needed to deepen our understanding of the pathophysiology of alpha-synucleinopathy and ALS.
Collapse
Affiliation(s)
- Nozomi Hishikawa
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Qiu W, Zhang S, Xiao C, Xu W, Ma Y, Liu Y, Wu Q. Molecular cloning and characterization of a mouse spermatogenesis-related ring finger gene znf230. Biochem Biophys Res Commun 2003; 306:347-53. [PMID: 12804569 DOI: 10.1016/s0006-291x(03)00970-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Complete cDNA of mouse gene znf230 was cloned by rapid amplification of cDNA ends (RACE). This cDNA is 982 base pairs (bp) in length and encodes a 230 amino acids (aa) protein with a ring finger domain at its C-terminus. Ninety-one and 98% nucleotide (nt) and aa sequence identity are observed with its human homolog. Revealed by Northern blot and reverse transcriptase-polymerase chain reaction (RT-PCR), this cDNA is only detected in testicular tissue, whereas the longer transcripts of 2.4 and 4.4kb are ubiquitously expressed. The expression of znf230 in testis is developmentally regulated and first detected at day 6 postnatal (pn). It reaches adult level between day 14 and 21 pn during which round spermatids appear in seminiferous tubule. The protein of znf230 exhibits DNA binding activity and its ring finger domain may function as an activator module in transcription. Therefore, it is postulated that znf230 may function as a testis specific transcription factor during mouse spermatogenesis.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Cloning, Molecular
- DNA, Complementary/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- Gene Expression Regulation
- Gene Expression Regulation, Developmental
- Humans
- Male
- Mice
- Molecular Sequence Data
- Open Reading Frames
- Protein Binding
- Protein Biosynthesis
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Seminiferous Tubules/metabolism
- Sequence Homology, Amino Acid
- Spermatogenesis
- Testis/metabolism
- Time Factors
- Tissue Distribution
- Transcription Factors
- Transcription, Genetic
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Weimin Qiu
- Department of Medical Genetics, West China Hospital, Sichuan University, Renminnanlu No. 17, Section 3, 610041, Chengdu, PR China
| | | | | | | | | | | | | |
Collapse
|
14
|
Fernandez-Capetillo O, Mahadevaiah SK, Celeste A, Romanienko PJ, Camerini-Otero RD, Bonner WM, Manova K, Burgoyne P, Nussenzweig A. H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 2003; 4:497-508. [PMID: 12689589 DOI: 10.1016/s1534-5807(03)00093-5] [Citation(s) in RCA: 460] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
During meiotic prophase in male mammals, the X and Y chromosomes condense to form a macrochromatin body, termed the sex, or XY, body, within which X- and Y-linked genes are transcriptionally repressed. The molecular basis and biological function of both sex body formation and meiotic sex chromosome inactivation (MSCI) are unknown. A phosphorylated form of H2AX, a histone H2A variant implicated in DNA repair, accumulates in the sex body in a manner independent of meiotic recombination-associated double-strand breaks. Here we show that the X and Y chromosomes of histone H2AX-deficient spermatocytes fail to condense to form a sex body, do not initiate MSCI, and exhibit severe defects in meiotic pairing. Moreover, other sex body proteins, including macroH2A1.2 and XMR, do not preferentially localize with the sex chromosomes in the absence of H2AX. Thus, H2AX is required for the chromatin remodeling and associated silencing in male meiosis.
Collapse
Affiliation(s)
- Oscar Fernandez-Capetillo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lee M, Kwon J, Kim SN, Kim JE, Koh WS, Kim EJ, Chung MK, Han SS, Song CW. cDNA microarray gene expression profiling of hydroxyurea, paclitaxel, and p-anisidine, genotoxic compounds with differing tumorigenicity results. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2003; 42:91-97. [PMID: 12929121 DOI: 10.1002/em.10177] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The potential application of toxicogenomics to predictive toxicology has been discussed widely, but the utility of the approach remains largely unproven. Using cDNA microarrays, we compared the gene expression profiles produced in mouse lymphoma cells by three genotoxic compounds, hydroxyurea (a carcinogen), p-anisidine (a noncarcinogen), and paclitaxel (carcinogenicity unknown). To minimize the effect of biological variability and technological limitations, quadruplicate observations were made for each compound and a subset of genes yielding reproducible induction/repression was selected for comparison. A method was applied to attach normalized expression data to genes with a low false-discovery rate (<0.1) to yield more confidence regarding differential expression. This analysis identified genotoxicity-specific gene expression. Seven genes were consistently upregulated and 12 downregulated more than 2-fold by the three genotoxic compounds. Using additional genes, the expression pattern induced by the genotoxic noncarcinogen, p-anisidine, was readily distinguished from that associated with the genotoxic carcinogen, hydroxyurea. Comparison of paclitaxel-induced expression data to data for p-anisidine and hydroxyurea suggested that paclitaxel's profile is more similar to the genotoxic noncarcinogen. With further supporting evidence it may be possible to perform large-scale monitoring of gene expression during drug and chemical development that can provide an early warning of potential toxicological responses.
Collapse
Affiliation(s)
- Michael Lee
- Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Yusong, Daejeon, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Marín I, Ferrús A. Comparative genomics of the RBR family, including the Parkinson's disease-related gene parkin and the genes of the ariadne subfamily. Mol Biol Evol 2002; 19:2039-50. [PMID: 12446796 DOI: 10.1093/oxfordjournals.molbev.a004029] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genes of the RBR family are characterized by the RBR signature (two RING finger domains separated by an IBR/DRIL domain). The RBR family is widespread in eukaryotes, with numerous members in animals (mammals, Drosophila, Caenorhabditis) and plants (Arabidopsis). But yeasts, such as Saccharomyces cerevisiae or Schizosaccharomyces pombe, contain only two RBR genes. We determined the phylogenetic relationships and the most likely orthologs in different species of several family members for which functional data are available. These include: (1) parkin, whose mutations are involved in forms of familial Parkinson's disease; (2) the ariadne genes, recently characterized in Drosophila and mammals; (3) XYbp and Dorfin, two mammalian genes whose products interact with the centrosome; (4) XAP3, RBCK1, and UIP28, mammalian genes encoding Protein Kinase-C-binding proteins; and (5) ARA54, an androgen receptor coactivator. Because several of these genes are involved in ubiquitination, we used phylogenetic and structural analyses to explore the hypothesis that all RBR proteins might play a role in ubiquitination. We show that the involvement of RBR proteins in ubiquitination predates the animals-plants-fungi divergence. On the basis of the evidence provided by cases of gene fusion, we suggest that Ariadne proteins interact with cullin domain-containing proteins to form complexes with ubiquitin-ligase activity.
Collapse
Affiliation(s)
- Ignacio Marín
- Departamento de Genética, Universidad de Valencia, Calle Doctor Moliner 50, Burjassot 46100, Valencia, Spain.
| | | |
Collapse
|
17
|
Turner JMA, Mahadevaiah SK, Elliott DJ, Garchon HJ, Pehrson JR, Jaenisch R, Burgoyne PS. Meiotic sex chromosome inactivation in male mice with targeted disruptions of Xist. J Cell Sci 2002; 115:4097-105. [PMID: 12356914 DOI: 10.1242/jcs.00111] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
X chromosome inactivation occurs twice during the life cycle of placental mammals. In normal females, one X chromosome in each cell is inactivated early in embryogenesis, while in the male, the X chromosome is inactivated together with the Y chromosome in spermatogenic cells shortly before or during early meiotic prophase. Inactivation of one X chromosome in somatic cells of females serves to equalise X-linked gene dosage between males and females, but the role of male meiotic sex chromosome inactivation (MSCI) is unknown. The inactive X-chromosome of somatic cells and male meiotic cells share similar properties such as late replication and enrichment for histone macroH2A1.2, suggesting a common mechanism of inactivation. This possibility is supported by the fact that Xist RNA that mediates somatic X-inactivation is expressed in the testis of male mice and humans. In the present study we show that both Xist RNA and Tsix RNA, an antisense RNA that controls Xist function in the soma, are expressed in the testis in a germ-cell-dependent manner. However, our finding that MSCI and sex-body formation are unaltered in mice with targeted mutations of Xist that prevent somatic X inactivation suggests that somatic X-inactivation and MSCI occur by fundamentally different mechanisms.
Collapse
Affiliation(s)
- James M A Turner
- Division of Developmental Genetics, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Zhang S, Qiu W, Wu H, Zhang G, Huang M, Xiao C, Yang J, Kamp C, Huang X, Huellen K, Yue Y, Pan A, Lebo R, Milunsky A, Vogt PH. The shorter zinc finger protein ZNF230 gene message is transcribed in fertile male testes and may be related to human spermatogenesis. Biochem J 2001; 359:721-7. [PMID: 11672448 PMCID: PMC1222195 DOI: 10.1042/0264-6021:3590721] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The zinc finger gene family represents one of the largest in the mammalian genome, with several of these genes reported to be involved in spermatogenesis. A newly discovered gene has been identified that is expressed abundantly in the testicular tissue of fertile men as determined by mRNA differential display. The gene encodes a C(3)HC(4)-type zinc finger protein motif (ring finger motif) consistent with a role in pre-meiotic or post-meiotic sperm development. The gene was named ZNF230 and mapped to the short arm of chromosome 11 (11p15). ZNF230 has two transcripts, of 1 kb and 4.4 kb in length. The shorter 1 kb transcript was only detected in testicular tissue whereas the longer 4.4 kb transcript was not detected in testis but was found in several other tissues. The lack of detectable ZNF230 expression in azoospermic patients by reverse transcriptase-mediated PCR analysis is interpreted to mean that this gene is involved in maintaining normal human male fertility.
Collapse
Affiliation(s)
- S Zhang
- Department of Medical Genetics, West China Hospital and Key Laboratory of Morbid Genomics and Forensic Medicine of Sichuan, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Niwa J, Ishigaki S, Doyu M, Suzuki T, Tanaka K, Sobue G. A novel centrosomal ring-finger protein, dorfin, mediates ubiquitin ligase activity. Biochem Biophys Res Commun 2001; 281:706-13. [PMID: 11237715 DOI: 10.1006/bbrc.2001.4414] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We cloned a novel gene, Dorfin (double ring-finger protein), from human spinal cord. The Dorfin mRNA transcript was 4.4 kb and expressed ubiquitously in many organs as well as in the central nervous system, including the spinal cord. Dorfin encoded 838 amino acid protein Dorfin, which contains two RING-finger motifs and an IBR (in between RING-fingers) motif at its N-terminus. Dorfin is a short-lived protein. Treatment with MG132, a potent proteasome inhibitor, resulted in the accumulation of ubiquitinated Dorfin and Dorfin-associated cellular proteins in cultured cells. Dorfin bound specifically with human ubiquitin-conjugating enzymes UbcH7 and UbcH8 through the RING-finger/IBR domain. Partial deletion of the RING-finger/IBR domain eliminated these interaction and ubiquitination activities. These results strongly suggest that Dorfin is a new member of RING-finger type ubiquitin ligase. Dorfin is localized in the centrosome and probably functions in the microtubule organizing centers.
Collapse
Affiliation(s)
- J Niwa
- Department of Neurology, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Metzler-Guillemain C, Usson Y, Mignon C, Depetris D, Dubreuil G, Guichaoua MR, Mattei MG. Organization of the X and Y chromosomes in human, chimpanzee and mouse pachytene nuclei using molecular cytogenetics and three-dimensional confocal analyses. Chromosome Res 2001; 8:571-84. [PMID: 11117353 DOI: 10.1023/a:1009277722579] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We used multicolour fluorescence in-situ hybridization on air-dried pachytene nuclei to analyse the structural and functional domains of the sex vesicle (SV) in human, chimpanzee and mouse. The same technology associated with 3-dimensional analysis was then performed on human and mouse pachytene nuclei from cytospin preparations and tissue cryosections. The human and the chimpanzee SVs were very similar, with a consistently small size and a high degree of condensation. The mouse SV was most often seen to be large and poorly condensed, although it did undergo progressive condensation during pachynema. These results suggest that the condensation of the sex chromosomes is not a prerequisite for the formation of the mouse SV, and that a different specific mechanism could be responsible for its formation. We also found that the X and Y chromosomes are organized into two separate and non-entangled chromatin domains in the SV of the three species. In each species, telomeres of the X and Y chromosomes remain clustered in a small area of the SV, even those without a pseudoautosomal region. The possible mechanisms involved in the organization of the sex chromosomes and in SV formation are discussed.
Collapse
|
21
|
Zhao X, Smartt CT, Hillyer JF, Christensen BM. A novel member of the RING-finger gene family associated with reproductive tissues of the mosquito, Aaedes aegypti. INSECT MOLECULAR BIOLOGY 2000; 9:301-308. [PMID: 10886414 DOI: 10.1046/j.1365-2583.2000.00189.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The RING finger is a zinc-binding domain that is found in proteins from viruses, plants and animals. Here we report the characterization and tissue-specific expression of a mosquito gonadal protein gene, mgp, from the mosquito, Aedes aegypti. The putative gene product, MGP, contains two RING fingers, a B-box, and a hydrophobic core. These mosquito MGP structural motifs are highly conserved in proteins found in mouse and nematode. Northern blot analysis and in situ hybridization demonstrated the presence of multiple mgp RNA transcripts in male and female reproductive tissues. Expression of mgp in the ovary is constitutive, but an increase in message was observed in the ovaries of female mosquitoes previously exposed to a blood meal. These results suggest that MGP is a protein that might play a role(s) in mosquito gametogenesis.
Collapse
Affiliation(s)
- X Zhao
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|