1
|
Zhang Y, Shi H, Dai X, Shen J, Yin J, Xu T, Yue G, Guo H, Liang R, Chen Q, Gao S, Wang L, Zhang D. Semaphorin 3A on Osteoporosis: An Overreview of the Literature. Calcif Tissue Int 2025; 116:43. [PMID: 39985619 DOI: 10.1007/s00223-025-01350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
Semaphorin 3A (Sema3A) is a signaling protein that has attracted increasing attention in recent years for its important role in regulating bone metabolism. In this review, we searched different databases with various combinations of keywords to analyze the effects of Sema3A on osteoporosis. Sema3A promotes bone formation and inhibits bone resorption by directly affecting the osteoblast and osteoclast or indirectly targeting the nervous system. The sympathetic nervous system may be the main link between the central nervous system and bone metabolism for Sema3A. In the peripheral nervous system, Sema3A may improve bone quality via sensory nervous innervation. In addition, estrogen is found to regulate Sema3A levels to improve bone homeostasis. Lots of Sema3A agonists have been documented to exhibit anti-osteoporotic potential in preclinical investigations. Therefore, Sema3A can be considered a novel therapeutic target for preserving bone mass, highlighting an alternative strategy for the development of anti-osteoporosis drugs.
Collapse
Affiliation(s)
- Yueyi Zhang
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hanfen Shi
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuan Dai
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jin Shen
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiyuan Yin
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tianshu Xu
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Gaiyue Yue
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Haochen Guo
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ruiqiong Liang
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qishuang Chen
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Sihua Gao
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Dongwei Zhang
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
2
|
Jarahian M, Marofi F, Maashi MS, Ghaebi M, Khezri A, Berger MR. Re-Expression of Poly/Oligo-Sialylated Adhesion Molecules on the Surface of Tumor Cells Disrupts Their Interaction with Immune-Effector Cells and Contributes to Pathophysiological Immune Escape. Cancers (Basel) 2021; 13:5203. [PMID: 34680351 PMCID: PMC8534074 DOI: 10.3390/cancers13205203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Glycans linked to surface proteins are the most complex biological macromolecules that play an active role in various cellular mechanisms. This diversity is the basis of cell-cell interaction and communication, cell growth, cell migration, as well as co-stimulatory or inhibitory signaling. Our review describes the importance of neuraminic acid and its derivatives as recognition elements, which are located at the outermost positions of carbohydrate chains linked to specific glycoproteins or glycolipids. Tumor cells, especially from solid tumors, mask themselves by re-expression of hypersialylated neural cell adhesion molecule (NCAM), neuropilin-2 (NRP-2), or synaptic cell adhesion molecule 1 (SynCAM 1) in order to protect themselves against the cytotoxic attack of the also highly sialylated immune effector cells. More particularly, we focus on α-2,8-linked polysialic acid chains, which characterize carrier glycoproteins such as NCAM, NRP-2, or SynCam-1. This characteristic property correlates with an aggressive clinical phenotype and endows them with multiple roles in biological processes that underlie all steps of cancer progression, including regulation of cell-cell and/or cell-extracellular matrix interactions, as well as increased proliferation, migration, reduced apoptosis rate of tumor cells, angiogenesis, and metastasis. Specifically, re-expression of poly/oligo-sialylated adhesion molecules on the surface of tumor cells disrupts their interaction with immune-effector cells and contributes to pathophysiological immune escape. Further, sialylated glycoproteins induce immunoregulatory cytokines and growth factors through interactions with sialic acid-binding immunoglobulin-like lectins. We describe the processes, which modulate the interaction between sialylated carrier glycoproteins and their ligands, and illustrate that sialic acids could be targets of novel therapeutic strategies for treatment of cancer and immune diseases.
Collapse
Affiliation(s)
- Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
| | - Marwah Suliman Maashi
- Stem Cells and Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah 11211, Saudi Arabia;
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2418 Hamar, Norway;
| | - Martin R. Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| |
Collapse
|
3
|
Horch HW, Spicer SB, Low IIC, Joncas CT, Quenzer ED, Okoya H, Ledwidge LM, Fisher HP. Characterization of plexinA and two distinct semaphorin1a transcripts in the developing and adult cricket Gryllus bimaculatus. J Comp Neurol 2019; 528:687-702. [PMID: 31621906 DOI: 10.1002/cne.24790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/26/2019] [Accepted: 09/26/2019] [Indexed: 11/06/2022]
Abstract
Guidance cues act during development to guide growth cones to their proper targets in both the central and peripheral nervous systems. Experiments in many species indicate that guidance molecules also play important roles after development, though less is understood about their functions in the adult. The Semaphorin family of guidance cues, signaling through Plexin receptors, influences the development of both axons and dendrites in invertebrates. Semaphorin functions have been extensively explored in Drosophila melanogaster and some other Dipteran species, but little is known about their function in hemimetabolous insects. Here, we characterize sema1a and plexA in the cricket Gryllus bimaculatus. In fact, we found two distinct predicted Sema1a proteins in this species, Sema1a.1 and Sema1a.2, which shared only 48% identity at the amino acid level. We include a phylogenetic analysis that predicted that many other insect species, both holometabolous and hemimetabolous, express two Sema1a proteins as well. Finally, we used in situ hybridization to show that sema1a.1 and sema1a.2 expression patterns were spatially distinct in the embryo, and both roughly overlap with plexA. All three transcripts were also expressed in the adult brain, mainly in the mushroom bodies, though sema1a.2 was expressed most robustly. sema1a.2 was also expressed strongly in the adult thoracic ganglia while sema1a.1 was only weakly expressed and plexA was undetectable.
Collapse
Affiliation(s)
- Hadley W Horch
- Department of Biology and Neuroscience, Bowdoin College, Brunswick, Maine
| | - Sara B Spicer
- Department of Biology and Neuroscience, Bowdoin College, Brunswick, Maine
| | - Isabel I C Low
- Department of Biology and Neuroscience, Bowdoin College, Brunswick, Maine
| | - Colby T Joncas
- Department of Biology and Neuroscience, Bowdoin College, Brunswick, Maine
| | - Eleanor D Quenzer
- Department of Biology and Neuroscience, Bowdoin College, Brunswick, Maine
| | - Hikmah Okoya
- Department of Biology and Neuroscience, Bowdoin College, Brunswick, Maine
| | - Lisa M Ledwidge
- Department of Biology and Neuroscience, Bowdoin College, Brunswick, Maine
| | - Harrison P Fisher
- Department of Biology and Neuroscience, Bowdoin College, Brunswick, Maine
| |
Collapse
|
4
|
Junqueira Alves C, Yotoko K, Zou H, Friedel RH. Origin and evolution of plexins, semaphorins, and Met receptor tyrosine kinases. Sci Rep 2019; 9:1970. [PMID: 30760850 PMCID: PMC6374515 DOI: 10.1038/s41598-019-38512-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 12/28/2018] [Indexed: 12/20/2022] Open
Abstract
The transition from unicellular to multicellular organisms poses the question as to when genes that regulate cell-cell interactions emerged during evolution. The receptor and ligand pairing of plexins and semaphorins regulates cellular interactions in a wide range of developmental and physiological contexts. We surveyed here genomes of unicellular eukaryotes and of non-bilaterian and bilaterian Metazoa and performed phylogenetic analyses to gain insight into the evolution of plexin and semaphorin families. Remarkably, we detected plexins and semaphorins in unicellular choanoflagellates, indicating their evolutionary origin in a common ancestor of Choanoflagellida and Metazoa. The plexin domain structure is conserved throughout all clades; in contrast, semaphorins are structurally diverse. Choanoflagellate semaphorins are transmembrane proteins with multiple fibronectin type III domains following the N-terminal Sema domain (termed Sema-FN). Other previously not yet described semaphorin classes include semaphorins of Ctenophora with tandem immunoglobulin domains (Sema-IG) and secreted semaphorins of Echinoderamata (Sema-SP, Sema-SI). Our study also identified Met receptor tyrosine kinases (RTKs), which carry a truncated plexin extracellular domain, in several bilaterian clades, indicating evolutionary origin in a common ancestor of Bilateria. In addition, a novel type of Met-like RTK with a complete plexin extracellular domain was detected in Lophotrochozoa and Echinodermata (termed Met-LP RTK). Our findings are consistent with an ancient function of plexins and semaphorins in regulating cytoskeletal dynamics and cell adhesion that predates their role as axon guidance molecules.
Collapse
Affiliation(s)
- Chrystian Junqueira Alves
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Karla Yotoko
- Biology Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Hongyan Zou
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.,Department of Neurosurgery, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Roland H Friedel
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA. .,Department of Neurosurgery, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.
| |
Collapse
|
5
|
Abstract
The Drosophila motor system starts to assemble during embryonic development. It is composed of 30 muscles per abdominal hemisegment and 36 motor neurons assembling into nerve branches to exit the CNS, navigate within the muscle field and finally establish specific connections with their target muscles. Several families of guidance molecules that play a role controlling this process as well as transcriptional regulators that program the behavior of specific motor neuron have been identified. In this review we summarize the role of both groups of molecules in the motor system as well as their relationship where known. It is apparent that partially redundant guidance protein families and membrane molecules with different functional output direct guidance decisions cooperatively. Some distinct transcriptional regulators seem to control guidance of specific nerve branches globally directing the expression of groups of pathfinding molecules in all motor neurons within the same motor branch.
Collapse
|
6
|
Hernandez-Fleming M, Rohrbach EW, Bashaw GJ. Sema-1a Reverse Signaling Promotes Midline Crossing in Response to Secreted Semaphorins. Cell Rep 2017; 18:174-184. [PMID: 28052247 DOI: 10.1016/j.celrep.2016.12.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/21/2016] [Accepted: 12/08/2016] [Indexed: 11/26/2022] Open
Abstract
Commissural axons must cross the midline to form functional midline circuits. In the invertebrate nerve cord and vertebrate spinal cord, midline crossing is mediated in part by Netrin-dependent chemoattraction. Loss of crossing, however, is incomplete in mutants for Netrin or its receptor Frazzled/DCC, suggesting the existence of additional pathways. We identified the transmembrane Semaphorin, Sema-1a, as an important regulator of midline crossing in the Drosophila CNS. We show that in response to the secreted Semaphorins Sema-2a and Sema-2b, Sema-1a functions as a receptor to promote crossing independently of Netrin. In contrast to other examples of reverse signaling where Sema1a triggers repulsion through activation of Rho in response to Plexin binding, in commissural neurons Sema-1a acts independently of Plexins to inhibit Rho to promote attraction to the midline. These findings suggest that Sema-1a reverse signaling can elicit distinct axonal responses depending on differential engagement of distinct ligands and signaling effectors.
Collapse
Affiliation(s)
- Melissa Hernandez-Fleming
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Ethan W Rohrbach
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Greg J Bashaw
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Saad K, Otto A, Theis S, Kennerley N, Munsterberg A, Luke G, Patel K. Detailed expression profile of all six Glypicans and their modifying enzyme Notum during chick embryogenesis and their role in dorsal-ventral patterning of the neural tube. Gene 2017; 609:38-51. [PMID: 28161389 DOI: 10.1016/j.gene.2017.01.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/13/2017] [Accepted: 01/26/2017] [Indexed: 11/28/2022]
Abstract
Vertebrate development is orchestrated by secreted signalling molecules that regulate cell behaviour and cell fate decisions during early embryogenesis. The activity of key signalling molecules including members of Hedgehog, Bone Morphogenetic Proteins and Wnt families are regulated by Glypicans, a family of GPI linked polypeptides. Glypicans either promote or inhibit the action of signalling molecules and add a layer of complexity that needs to be understood in order to fully decipher the processes that regulate early vertebrate development. Here we present a detailed expression profile of all six Glypicans and their modifying enzyme Notum during chick embryogenesis. Our results strongly suggest that these proteins have many as yet undiscovered roles to play during early embryogenesis. Finally, we have taken an experimental approach to investigate their role during the patterning of a key embryonic structure - the neural tube. In particular, we show that over-expression of Notum leads to the dorsalisation of this structure.
Collapse
Affiliation(s)
- Kawakeb Saad
- School of Biological Sciences, University of Reading, Reading, UK
| | - Anthony Otto
- School of Biological Sciences, University of Reading, Reading, UK
| | - Susanne Theis
- School of Biological Sciences, University of Reading, Reading, UK
| | - Niki Kennerley
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, NR4 7TJ
| | - Andrea Munsterberg
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, NR4 7TJ
| | - Graham Luke
- School of Biological Sciences, University of Reading, Reading, UK
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
8
|
Loganathan R, Lee JS, Wells MB, Grevengoed E, Slattery M, Andrew DJ. Ribbon regulates morphogenesis of the Drosophila embryonic salivary gland through transcriptional activation and repression. Dev Biol 2015; 409:234-250. [PMID: 26477561 DOI: 10.1016/j.ydbio.2015.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 01/08/2023]
Abstract
Transcription factors affect spatiotemporal patterns of gene expression often regulating multiple aspects of tissue morphogenesis, including cell-type specification, cell proliferation, cell death, cell polarity, cell shape, cell arrangement and cell migration. In this work, we describe a distinct role for Ribbon (Rib) in controlling cell shape/volume increases during elongation of the Drosophila salivary gland (SG). Notably, the morphogenetic changes in rib mutants occurred without effects on general SG cell attributes such as specification, proliferation and apoptosis. Moreover, the changes in cell shape/volume in rib mutants occurred without compromising epithelial-specific morphological attributes such as apicobasal polarity and junctional integrity. To identify the genes regulated by Rib, we performed ChIP-seq analysis in embryos driving expression of GFP-tagged Rib specifically in the SGs. To learn if the Rib binding sites identified in the ChIP-seq analysis were linked to changes in gene expression, we performed microarray analysis comparing RNA samples from age-matched wild-type and rib null embryos. From the superposed ChIP-seq and microarray gene expression data, we identified 60 genomic sites bound by Rib likely to regulate SG-specific gene expression. We confirmed several of the identified Rib targets by qRT-pCR and/or in situ hybridization. Our results indicate that Rib regulates cell growth and tissue shape in the Drosophila salivary gland via a diverse array of targets through both transcriptional activation and repression. Furthermore, our results suggest that autoregulation of rib expression may be a key component of the SG morphogenetic gene network.
Collapse
Affiliation(s)
- Rajprasad Loganathan
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Joslynn S Lee
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Michael B Wells
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Elizabeth Grevengoed
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Matthew Slattery
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
9
|
Enhancer diversity and the control of a simple pattern of Drosophila CNS midline cell expression. Dev Biol 2014; 392:466-82. [PMID: 24854999 DOI: 10.1016/j.ydbio.2014.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 01/13/2023]
Abstract
Transcriptional enhancers integrate information derived from transcription factor binding to control gene expression. One key question concerns the extent of trans- and cis-regulatory variation in how co-expressed genes are controlled. The Drosophila CNS midline cells constitute a group of neurons and glia in which expression changes can be readily characterized during specification and differentiation. Using a transgenic approach, we compare the cis-regulation of multiple genes expressed in the Drosophila CNS midline primordium cells, and show that while the expression patterns may appear alike, the target genes are not equivalent in how these common expression patterns are achieved. Some genes utilize a single enhancer that promotes expression in all midline cells, while others utilize multiple enhancers with distinct spatial, temporal, and quantitative contributions. Two regulators, Single-minded and Notch, play key roles in controlling early midline gene expression. While Single-minded is expected to control expression of most, if not all, midline primordium-expressed genes, the role of Notch in directly controlling midline transcription is unknown. Midline primordium expression of the rhomboid gene is dependent on cell signaling by the Notch signaling pathway. Mutational analysis of a rhomboid enhancer reveals at least 5 distinct types of functional cis-control elements, including a binding site for the Notch effector, Suppressor of Hairless. The results suggest a model in which Notch/Suppressor of Hairless levels are insufficient to activate rhomboid expression by itself, but does so in conjunction with additional factors, some of which, including Single-minded, provide midline specificity to Notch activation. Similarly, a midline glial enhancer from the argos gene, which is dependent on EGF/Spitz signaling, is directly regulated by contributions from both Pointed, the EGF transcriptional effector, and Single-minded. In contrast, midline primordium expression of other genes shows a strong dependence on Single-minded and varying combinations of additional transcription factors. Thus, Single-minded directly regulates midline primordium-expressed genes, but in some cases plays a primary role in directing target gene midline expression, and in others provides midline specificity to cell signaling inputs.
Collapse
|
10
|
Emerson MM, Long JB, Van Vactor D. Drosophila semaphorin2b is required for the axon guidance of a subset of embryonic neurons. Dev Dyn 2013; 242:861-73. [PMID: 23606306 PMCID: PMC3739952 DOI: 10.1002/dvdy.23979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 12/26/2022] Open
Abstract
Background: The process of axon guidance is important in establishing functional neural circuits. The differential expression of cell-autonomous axon guidance factors is crucial for allowing axons of different neurons to take unique trajectories in response to spatially and temporally restricted cell non-autonomous axon guidance factors. A key motivation in the field is to provide adequate explanations for axon behavior with respect to the differential expression of these factors. Results: We report the characterization of a predicted secreted semaphorin family member, semaphorin2b (Sema-2b) in Drosophila embryonic axon guidance. Misexpression of Sema-2b in neurons causes highly penetrant axon guidance phenotypes in specific longitudinal and motoneuron pathways; however, expression of Sema-2b in muscles traversed by these motoneurons has no effect on axon guidance. In Sema-2b loss-of-function embryos, specific motoneuron and interneuron axon pathways display guidance defects. Specific visualization of the neurons that normally express Sema-2b reveals that this neuronal cohort is strongly affected by Sema-2b loss-of-function alleles. Conclusions: While secreted semaphorins have been implicated as cell non-autonomous chemorepellants in a variety of contexts, here we report previously undescribed Sema-2b loss-of-function and misexpression phenotypes that are consistent with a cell-autonomous role for Sema-2b. Developmental Dynamics 242:861–873, 2013. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mark M Emerson
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
11
|
SWARUP SHILPA, HARBISON SUSANT, HAHN LAURENE, MOROZOVA TATIANAV, YAMAMOTO AKIHIKO, MACKAY TRUDYFC, ANHOLT ROBERTRH. Extensive epistasis for olfactory behaviour, sleep and waking activity in Drosophila melanogaster. Genet Res (Camb) 2012; 94:9-20. [PMID: 22353245 PMCID: PMC3283907 DOI: 10.1017/s001667231200002x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/21/2011] [Accepted: 01/05/2012] [Indexed: 01/09/2023] Open
Abstract
Epistasis is an important feature of the genetic architecture of quantitative traits, but the dynamics of epistatic interactions in natural populations and the relationship between epistasis and pleiotropy remain poorly understood. Here, we studied the effects of epistatic modifiers that segregate in a wild-derived Drosophila melanogaster population on the mutational effects of P-element insertions in Semaphorin-5C (Sema-5c) and Calreticulin (Crc), pleiotropic genes that affect olfactory behaviour and startle behaviour and, in the case of Crc, sleep phenotypes. We introduced Canton-S B (CSB) third chromosomes with or without a P-element insertion at the Crc or Sema-5c locus in multiple wild-derived inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and assessed the effects of epistasis on the olfactory response to benzaldehyde and, for Crc, also on sleep. In each case, we found substantial epistasis and significant variation in the magnitude of epistasis. The predominant direction of epistatic effects was to suppress the mutant phenotype. These observations support a previous study on startle behaviour using the same D. melanogaster chromosome substitution lines, which concluded that suppressing epistasis may buffer the effects of new mutations. However, epistatic effects are not correlated among the different phenotypes. Thus, suppressing epistasis appears to be a pervasive general feature of natural populations to protect against the effects of new mutations, but different epistatic interactions modulate different phenotypes affected by mutations at the same pleiotropic gene.
Collapse
Affiliation(s)
- SHILPA SWARUP
- Department of Genetics, North Carolina State University, Raleigh, NC 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7617, USA
| | - SUSAN T. HARBISON
- Department of Genetics, North Carolina State University, Raleigh, NC 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7617, USA
| | - LAUREN E. HAHN
- Department of Genetics, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - TATIANA V. MOROZOVA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7617, USA
- Department of Biology, North Carolina State University, Raleigh, NC 27695-7617, USA
| | - AKIHIKO YAMAMOTO
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7617, USA
- Department of Biology, North Carolina State University, Raleigh, NC 27695-7617, USA
| | - TRUDY F. C. MACKAY
- Department of Genetics, North Carolina State University, Raleigh, NC 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7617, USA
| | - ROBERT R. H. ANHOLT
- Department of Genetics, North Carolina State University, Raleigh, NC 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7617, USA
- Department of Biology, North Carolina State University, Raleigh, NC 27695-7617, USA
| |
Collapse
|
12
|
Wu Z, Sweeney LB, Ayoob JC, Chak K, Andreone BJ, Ohyama T, Kerr R, Luo L, Zlatic M, Kolodkin AL. A combinatorial semaphorin code instructs the initial steps of sensory circuit assembly in the Drosophila CNS. Neuron 2011; 70:281-98. [PMID: 21521614 PMCID: PMC3095019 DOI: 10.1016/j.neuron.2011.02.050] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2011] [Indexed: 01/19/2023]
Abstract
Longitudinal axon fascicles within the Drosophila embryonic CNS provide connections between body segments and are required for coordinated neural signaling along the anterior-posterior axis. We show here that establishment of select CNS longitudinal tracts and formation of precise mechanosensory afferent innervation to the same CNS region are coordinately regulated by the secreted semaphorins Sema-2a and Sema-2b. Both Sema-2a and Sema-2b utilize the same neuronal receptor, plexin B (PlexB), but serve distinct guidance functions. Localized Sema-2b attraction promotes the initial assembly of a subset of CNS longitudinal projections and subsequent targeting of chordotonal sensory afferent axons to these same longitudinal connectives, whereas broader Sema-2a repulsion serves to prevent aberrant innervation. In the absence of Sema-2b or PlexB, chordotonal afferent connectivity within the CNS is severely disrupted, resulting in specific larval behavioral deficits. These results reveal that distinct semaphorin-mediated guidance functions converge at PlexB and are critical for functional neural circuit assembly.
Collapse
Affiliation(s)
- Zhuhao Wu
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Lora B. Sweeney
- Department of Biology and Neurosciences Program, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Joseph C. Ayoob
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Kayam Chak
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Benjamin J. Andreone
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Tomoko Ohyama
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Rex Kerr
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Liqun Luo
- Department of Biology and Neurosciences Program, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Marta Zlatic
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Alex L. Kolodkin
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Mann F, Chauvet S, Rougon G. Semaphorins in development and adult brain: Implication for neurological diseases. Prog Neurobiol 2007; 82:57-79. [PMID: 17537564 DOI: 10.1016/j.pneurobio.2007.02.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/18/2007] [Accepted: 02/26/2007] [Indexed: 01/17/2023]
Abstract
As a group, Semaphorins are expressed in most tissues and this distribution varies considerably with age. Semaphorins are dynamically expressed during embryonic development and their expression is often associated with growing axons. This expression decreases with maturity and several observations support the idea that in adult brain the expression of secreted Semaphorins is sensitive to electrical activity and experience. The functional role of Semaphorins in guiding axonal projections is well established and more recent evidence points to additional roles in the development, function and reorganization of synaptic complexes. Semaphorins exert the majority of their effects by binding to cognate receptor proteins through their extracellular domains. A common theme is that Semaphorin-triggered signalling induces the rearrangement of the actin and microtubule cytoskeleton. Mutations in Semaphorin genes are linked to several human diseases associated with neurological changes, but their actual influence in the pathogenesis of these diseases remains to be demonstrated. In addition, Semaphorins and their receptors are likely to mediate cross-talk between neurons and other cell types, including in pathological situations where their influence can be damaging or favourable depending on the context. We discuss how the manipulation of Semaphorin function might be crucial for future clinical studies.
Collapse
Affiliation(s)
- Fanny Mann
- CNRS UMR 6216, Université de la Méditerranée, Developmental Biology Institute of Marseille Luminy, Case 907, Parc Scientifique de Luminy, 13288 Marseille Cedex 09, France
| | | | | |
Collapse
|
14
|
Rollmann SM, Yamamoto A, Goossens T, Zwarts L, Callaerts-Végh Z, Callaerts P, Norga K, Mackay TFC, Anholt RRH. The early developmental gene Semaphorin 5c contributes to olfactory behavior in adult Drosophila. Genetics 2007; 176:947-56. [PMID: 17435226 PMCID: PMC1894621 DOI: 10.1534/genetics.106.069781] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Behaviors are complex traits influenced by multiple pleiotropic genes. Understanding the mechanisms that give rise to complex behaviors requires an understanding of how variation in transcriptional regulation shapes nervous system development and how variation in brain structure influences an organism's ability to respond to its environment. To begin to address this problem, we used olfactory behavior in Drosophila melanogaster as a model and showed that a hypomorphic transposon-mediated mutation of the early developmental gene Semaphorin-5c (Sema-5c) results in aberrant behavioral responses to the repellant odorant benzaldehyde. We fine mapped this effect to the Sema-5c locus using deficiency mapping, phenotypic reversion through P-element excision, and transgenic rescue. Morphometric analysis of this Sema-5c allele reveals subtle neuroanatomical changes in the brain with a reduction in the size of the ellipsoid body. High-density oligonucleotide expression microarrays identified 50 probe sets with altered transcriptional regulation in the Sema-5c background and quantitative complementation tests identified epistatic interactions between nine of these coregulated genes and the transposon-disrupted Sema-5c gene. Our results demonstrate how hypomorphic mutation of an early developmental gene results in genomewide transcriptional consequences and alterations in brain structure accompanied by profound impairment of adult behavior.
Collapse
Affiliation(s)
- Stephanie M. Rollmann
- Department of Zoology, Department of Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695, Laboratory of Developmental Genetics, Center for Human Genetics, B-3000 Leuven, Belgium, Zoological Institute, Department of Biology, B-3000 Leuven, Belgium, Laboratory of Biological Psychology, B-3000 Leuven, Belgium and Children's Hospital, B-3000 Leuven, Belgium
| | - Akihiko Yamamoto
- Department of Zoology, Department of Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695, Laboratory of Developmental Genetics, Center for Human Genetics, B-3000 Leuven, Belgium, Zoological Institute, Department of Biology, B-3000 Leuven, Belgium, Laboratory of Biological Psychology, B-3000 Leuven, Belgium and Children's Hospital, B-3000 Leuven, Belgium
| | - Tim Goossens
- Department of Zoology, Department of Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695, Laboratory of Developmental Genetics, Center for Human Genetics, B-3000 Leuven, Belgium, Zoological Institute, Department of Biology, B-3000 Leuven, Belgium, Laboratory of Biological Psychology, B-3000 Leuven, Belgium and Children's Hospital, B-3000 Leuven, Belgium
| | - Liesbeth Zwarts
- Department of Zoology, Department of Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695, Laboratory of Developmental Genetics, Center for Human Genetics, B-3000 Leuven, Belgium, Zoological Institute, Department of Biology, B-3000 Leuven, Belgium, Laboratory of Biological Psychology, B-3000 Leuven, Belgium and Children's Hospital, B-3000 Leuven, Belgium
| | - Zsuzsanna Callaerts-Végh
- Department of Zoology, Department of Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695, Laboratory of Developmental Genetics, Center for Human Genetics, B-3000 Leuven, Belgium, Zoological Institute, Department of Biology, B-3000 Leuven, Belgium, Laboratory of Biological Psychology, B-3000 Leuven, Belgium and Children's Hospital, B-3000 Leuven, Belgium
| | - Patrick Callaerts
- Department of Zoology, Department of Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695, Laboratory of Developmental Genetics, Center for Human Genetics, B-3000 Leuven, Belgium, Zoological Institute, Department of Biology, B-3000 Leuven, Belgium, Laboratory of Biological Psychology, B-3000 Leuven, Belgium and Children's Hospital, B-3000 Leuven, Belgium
| | - Koenraad Norga
- Department of Zoology, Department of Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695, Laboratory of Developmental Genetics, Center for Human Genetics, B-3000 Leuven, Belgium, Zoological Institute, Department of Biology, B-3000 Leuven, Belgium, Laboratory of Biological Psychology, B-3000 Leuven, Belgium and Children's Hospital, B-3000 Leuven, Belgium
| | - Trudy F. C. Mackay
- Department of Zoology, Department of Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695, Laboratory of Developmental Genetics, Center for Human Genetics, B-3000 Leuven, Belgium, Zoological Institute, Department of Biology, B-3000 Leuven, Belgium, Laboratory of Biological Psychology, B-3000 Leuven, Belgium and Children's Hospital, B-3000 Leuven, Belgium
| | - Robert R. H. Anholt
- Department of Zoology, Department of Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695, Laboratory of Developmental Genetics, Center for Human Genetics, B-3000 Leuven, Belgium, Zoological Institute, Department of Biology, B-3000 Leuven, Belgium, Laboratory of Biological Psychology, B-3000 Leuven, Belgium and Children's Hospital, B-3000 Leuven, Belgium
- Corresponding author: W. M. Keck Center for Behavioral Biology, Campus Box 7617, North Carolina State University, Raleigh, NC 27695-7617. E-mail:
| |
Collapse
|
15
|
Lattemann M, Zierau A, Schulte C, Seidl S, Kuhlmann B, Hummel T. Semaphorin-1a controls receptor neuron-specific axonal convergence in the primary olfactory center of Drosophila. Neuron 2007; 53:169-84. [PMID: 17224401 DOI: 10.1016/j.neuron.2006.12.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 10/24/2006] [Accepted: 12/28/2006] [Indexed: 10/23/2022]
Abstract
In the olfactory system of Drosophila, 50 functional classes of sensory receptor neurons (ORNs) project in a highly organized fashion into the CNS, where they sort out from one another and converge into distinct synaptic glomeruli. We identified the transmembrane molecule Semaphorin-1a (Sema-1a) as an essential component to ensure glomerulus-specific axon segregation. Removal of sema-1a in ORNs does not affect the pathfinding toward their target area but disrupts local axonal convergence into a single glomerulus, resulting in two distinct targeting phenotypes: axons either intermingle with adjacent ORN classes or segregate according to their odorant receptor identity into ectopic sites. Differential Sema-1a expression can be detected among neighboring glomeruli, and mosaic analyses show that sema-1a functions nonautonomously in ORN axon sorting. These findings provide insights into the mechanism by which afferent interactions lead to synaptic specificity in the olfactory system.
Collapse
Affiliation(s)
- Marc Lattemann
- Institut für Neurobiologie, Universität Münster, Badestrasse 9, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Bates KE, Whitington PM. Semaphorin 2a secreted by oenocytes signals through plexin B and plexin A to guide sensory axons in the Drosophila embryo. Dev Biol 2007; 302:522-35. [PMID: 17109838 DOI: 10.1016/j.ydbio.2006.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 10/06/2006] [Accepted: 10/09/2006] [Indexed: 10/24/2022]
Abstract
The semaphorin gene family has been shown to play important roles in axonal guidance in both vertebrates and invertebrates. Both transmembrane (Sema1a, Sema1b, Sema5c) and secreted (Sema2a, Sema2b) forms of semaphorins exist in Drosophila. Two Sema receptors, plexins (Plex) A and B, have also been identified. Many questions remain concerning the axon guidance functions of the secreted semaphorins, including the identity of their receptors. We have used the well-characterized sensory system of the Drosophila embryo to address these problems. We find novel sensory axon defects in sema2a loss-of-function mutants in which particular axons misproject and follow inappropriate pathways to the CNS. plexB loss-of-function mutants show similar phenotypes to sema2a mutants and sema2a interacts genetically with plexB, supporting the hypothesis that Sema2a signals through PlexB receptors. Sema2a protein is expressed by larval oenocytes, a cluster of secretory cells in the lateral region of the embryo and the sema2a mutant phenotype can be rescued by driving Sema2a in these cells. Ablation of oenocytes results in sensory axon defects similar to the sema2a mutant phenotype. These data support a model in which Sema2a, while being secreted from oenocytes, acts in a highly localized fashion: It represses axon extension from the sensory neuron cell body, but only in regions in direct contact with oenocytes.
Collapse
Affiliation(s)
- Karen E Bates
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
17
|
Sambandan D, Yamamoto A, Fanara JJ, Mackay TFC, Anholt RRH. Dynamic genetic interactions determine odor-guided behavior in Drosophila melanogaster. Genetics 2006; 174:1349-63. [PMID: 17028343 PMCID: PMC1667092 DOI: 10.1534/genetics.106.060574] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the genetic architecture of complex traits requires identification of the underlying genes and characterization of gene-by-gene and genotype-by-environment interactions. Behaviors that mediate interactions between organisms and their environment are complex traits expected to be especially sensitive to environmental conditions. Previous studies on the olfactory avoidance response of Drosophila melanogaster showed that the genetic architecture of this model behavior depends on epistatic networks of pleiotropic genes. We performed a screen of 1339 co-isogenic p[GT1]-element insertion lines to identify novel genes that contribute to odor-guided behavior and identified 55 candidate genes with known p[GT1]-element insertion sites. Characterization of the expression profiles of 10 p[GT1]-element insertion lines showed that the effects of the transposon insertions are often dependent on developmental stage and that hypomorphic mutations in developmental genes can elicit profound adult behavioral deficits. We assessed epistasis among these genes by constructing all possible double heterozygotes and measuring avoidance responses under two stimulus conditions. We observed enhancer and suppressor effects among subsets of these P-element-tagged genes, and surprisingly, epistatic interactions shifted with changes in the concentration of the olfactory stimulus. Our results show that the manifestation of epistatic networks dynamically changes with alterations in the environment.
Collapse
Affiliation(s)
- Deepa Sambandan
- Department of Genetics, the W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh 27695-7617, USA
| | | | | | | | | |
Collapse
|
18
|
Shifman MI, Selzer ME. Semaphorins and their receptors in lamprey CNS: Cloning, phylogenetic analysis, and developmental changes during metamorphosis. J Comp Neurol 2006; 497:115-32. [PMID: 16680764 DOI: 10.1002/cne.20990] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The large, conserved semaphorin gene family encodes axon guidance molecules in both invertebrates and vertebrates. The primitive vertebrate lamprey diverged near the time of vertebrate origins and is useful for understanding the gene duplication events that led to the increased complexity of the vertebrate genome. We characterized the sequence and expression pattern of semaphorins and their receptors genes in the sea lamprey, Petromyzon marinus. We uncovered two members of the semaphorin family in sea lamprey. The first encodes a diffusible class 3 type semaphorin protein that is most similar to the human and mouse Sema3F (71% amino acid identity). The second encodes a transmembrane class 4 type semaphorin that is most similar to mouse Sema4D and human Sema4G, with 38% amino acid identity within the Sema domain. We also identified in lamprey two members of the semaphorin receptor family, lamprey Plexin A1 and Plexin A2. Phylogenetic analysis indicates that lamprey Sema3 and Sema4 represent precursor genes existing prior to the origin of the vertebrate Sema3A-G and Sema4A-G subfamilies. Therefore, the gene duplication event that gave rise to those subfamilies must have occurred after the divergence of jawed vertebrates from jawless fish. These semaphorins and plexins are expressed in unique and dynamic patterns in lamprey spinal cord and brain during development.
Collapse
Affiliation(s)
- Michael I Shifman
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
19
|
Abstract
Semaphorins are secreted, transmembrane, and GPI-linked proteins, defined by cysteine-rich semaphorin protein domains, that have important roles in a variety of tissues. Humans have 20 semaphorins, Drosophila has five, and two are known from DNA viruses; semaphorins are also found in nematodes and crustaceans but not in non-animals. They are grouped into eight classes on the basis of phylogenetic tree analyses and the presence of additional protein motifs. The expression of semaphorins has been described most fully in the nervous system, but they are also present in most, or perhaps all, other tissues. Functionally, semaphorins were initially characterized for their importance in the development of the nervous system and in axonal guidance. More recently, they have been found to be important for the formation and functioning of the cardiovascular, endocrine, gastrointestinal, hepatic, immune, musculoskeletal, renal, reproductive, and respiratory systems. A common theme in the mechanisms of semaphorin function is that they alter the cytoskeleton and the organization of actin filaments and the microtubule network. These effects occur primarily through binding of semaphorins to their receptors, although transmembrane semaphorins also serve as receptors themselves. The best characterized receptors for mediating semaphorin signaling are members of the neuropilin and plexin families of transmembrane proteins. Plexins, in particular, are thought to control many of the functional effects of semaphorins; the molecular mechanisms of semaphorin signaling are still poorly understood, however. Given the importance of semaphorins in a wide range of functions, including neural connectivity, angiogenesis, immunoregulation, and cancer, much remains to be learned about these proteins and their roles in pathology and human disease.
Collapse
Affiliation(s)
- Umar Yazdani
- Center for Basic Neuroscience, Department of Pharmacology, NA4.301/5323 Harry Hines Blvd, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan R Terman
- Center for Basic Neuroscience, Department of Pharmacology, NA4.301/5323 Harry Hines Blvd, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
20
|
Abstract
The genetically and experimentally accessible organs of Drosophila, such as the heart or blood-forming tissues, have become a fertile ground for systematic projects of gene discovery and for functional studies of gene networks and signaling pathways. One argument justifying this approach is the often-tacit assumption that clear-cut homologies can be established between the Drosophila organs and their vertebrate counterparts. Here we investigate this assumption by surveying pertinent aspects of vascular structure and development in different invertebrate phyla, in the hope that this information will help to reveal the ancestral condition of the vascular system. Evolutionary scenarios that derive the structure of the cardiovascular system of extant animal taxa from the ancestral condition will be used to qualify hypotheses regarding homologies that are based on molecular similarities.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, CA 90095, USA.
| | | |
Collapse
|
21
|
Barton WA, Himanen JP, Antipenko A, Nikolov DB. Structures of Axon Guidance Molecules and their Neuronal Receptors. CELL SURFACE RECEPTORS 2004; 68:65-106. [PMID: 15500859 DOI: 10.1016/s0065-3233(04)68003-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- William A Barton
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | |
Collapse
|
22
|
Woodhouse EC, Fisher A, Bandle RW, Bryant-Greenwood B, Charboneau L, Petricoin EF, Liotta LA. Drosophila screening model for metastasis: Semaphorin 5c is required for l(2)gl cancer phenotype. Proc Natl Acad Sci U S A 2003; 100:11463-8. [PMID: 14500904 PMCID: PMC208780 DOI: 10.1073/pnas.2031202100] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Indexed: 11/18/2022] Open
Abstract
Cancer metastasis is a complex process involving many genes and pathways. This complexity hinders the identification of molecules functionally required for this process. We have developed and used a Drosophila screening system to identify genes that are functionally important for tumorigenicity and metastasis. Deletion of Drosophila lethal giant larvae (l(2)gl) leads to highly invasive and widely metastatic tumors on transplantation into adult flies. Random homozygous P element insertions were screened for the ability to modulate the l(2)gl phenotype. Analysis of metastasis patterns of the lines containing P element insertions and lacking wild-type l(2)gl expression identified three homozygous mutations that dramatically alter tumorigenesis and/or metastasis. Semaphorin 5c (Sema 5c) is required for tumorigenicity, apontic overexpression suppresses metastasis but not tumorigenicity, and pointed up-regulation accelerates lethality of l(2)gl tumors. Furthermore, class 5 semaphorins are shown to be expressed in cancer cells and localized to the membrane. Drosophila Sema-5c and the mammalian homologs are transmembrane proteins with extracellular thrombospondin type I (TspI) repeats. TspI repeats are known in some proteins to bind and activate transforming growth factor (TGF)-beta ligand. Phospho-Mad and the downstream target gene vestigial were elevated in l(2)gl tumors, thus linking Drosophila neoplasia to the Dpp (TGF-beta-like) signal pathway. The activation of the Dpp pathway in l(2)gl tumors occurred only in the presence of Sema-5c. This study demonstrates that the power of Drosophila genetics can be applied to screen, identify, and characterize molecules that are functionally required for invasion and metastasis.
Collapse
Affiliation(s)
- Elisa C Woodhouse
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Rau A, Buttgereit D, Holz A, Fetter R, Doberstein SK, Paululat A, Staudt N, Skeath J, Michelson AM, Renkawitz-Pohl R. rolling pebbles(rols) is required inDrosophilamuscle precursors for recruitment of myoblasts for fusion. Development 2001; 128:5061-73. [PMID: 11748142 DOI: 10.1242/dev.128.24.5061] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in the rolling pebbles (rols) gene result in severe defects in myoblast fusion. Muscle precursor cells are correctly determined, but myogenesis does not progress significantly beyond this point because recognition and/or cell adhesion between muscle precursor cells and fusion-competent myoblasts is disturbed. Molecular analysis of the rols genomic region reveals two variant transcripts of rols due to different transcription initiation sites, rols6 and rols7. rols6 mRNA is detectable mainly in the endoderm during differentiation as well as in malpighian tubules and in the epidermis. By contrast, rols7 expression is restricted to the mesoderm and later to progenitor descendants during somatic and pharyngeal muscle development. Transcription starts at the extended germ band stage when progenitor/founder cells are determined and persists until stage 13. The proteins encoded by the rols gene are 1670 (Rols6) and 1900 (Rols7) amino acids in length. Both forms contain an N-terminal RING-finger motif, nine ankyrin repeats and a TPR repeat eventually overlaid by a coiled-coil domain. The longer protein, Rols7, is characterized by 309 unique N-terminal amino acids, while Rols6 is distinguishable by 79 N-terminal amino acids. Expression of rols7 in muscle founder cells indicates a function of Rols7 in these cells. Transplantation assays of rols mutant mesodermal cells into wild-type embryos show that Rols is required in muscle precursor cells and is essential to recruit fusion-competent myoblasts for myotube formation.
Collapse
Affiliation(s)
- A Rau
- Developmental Biology, Philipps-Universität Marburg, 35032 Marburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bahri SM, Chia W, Yang X. Characterization and mutant analysis of the Drosophila sema 5c gene. Dev Dyn 2001; 221:322-30. [PMID: 11458392 DOI: 10.1002/dvdy.1142] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Class V semaphorins are transmembrane glycoproteins characterised by the presence of thrombospondin type I (Tsp) repeats linked to their extracellular semaphorin domain. Sema 5C is the only class V semaphorin found in Drosophila. Dsema 5C RNA is maternally provided and its embryonic expression is prominent in the mesoderm and muscle attachment sites. Here, we show that DSema 5C exists in two protein isoforms as a result of alternative splicing and that both protein and RNA have similar expression patterns. Using a combination of various molecular markers, we show that the DSema 5C protein becomes enriched in mesodermal cells that would normally give rise to fat body and visceral structures. In late embryos, DSema 5C is expressed in segment boundary cells that would constitute subsets of muscle attachment sites. Both RNA and protein are excluded from the somatic precursors and the mature muscles. The expression data suggest DSema 5C localised to the epidermal component of muscle attachment sites. Mutations in Dsema 5C were isolated from a P-element excision screen and by blotting analysis. The Dsema 5C mutants are homozygous viable and show no obvious embryonic phenotypes, suggesting that the maternal and zygotic components of Dsema 5C are not essential for fly development.
Collapse
Affiliation(s)
- S M Bahri
- Institute of Molecular and Cell Biology, Singapore.
| | | | | |
Collapse
|
25
|
Khare N, Baumgartner S. Dally-like protein, a new Drosophila glypican with expression overlapping with wingless. Mech Dev 2000; 99:199-202. [PMID: 11091094 DOI: 10.1016/s0925-4773(00)00502-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteoglycans, the molecules of extracellular matrix, carry a highly negative charge due to their glycosaminoglycan (GAG) chains and large volumes. They were considered to play a secondary role in activities like cell division, adhesion, blood coagulation, etc. until the importance of their sugar chains in the fibroblast growth factor (FGF) signalling was discovered (Science 252 (1991) 1705; Cell 64 (1991) 841). Studies of mutations in the genes sugarless(sgl) and sulfateless (sfl) have proved that the proteoglycans involved in Wg signalling contain heparan sulfate GAG chains (Development 124 (1997) 2623; Development 124 (1997) 3055; Development 124 (1997) 3565; Development 126 (1999) 3715). This has led to the attribution of specific functions to these molecules (J. Cell Biol. 148 (2000) 227). The Glypican family of heparan sulfate proteoglycans (HSPGs) is characterized by core proteins with conserved cysteine residues and attachment to the cell surface by a glycosylphosphatidyl inositol (GPI) anchor. This may lead to endocytic pathways that are different from other HSPGs, higher lateral mobility and possible apical localisation in a cell (Proc. Natl. Acad. Sci, USA 85 (1988) 9557). Variations in their HS contents may effect binding properties and localisation (J. Cell Biol. 124 (1994) 149; J. Cell Biol. 132 (1996) 487), thus specialising each member for a unique biological function. Glypicans play important roles in morphogenetic pathways, e.g. human glypican 3 (GPC3) is mutated in Simpson-Golabi-Behmel syndrome making an individual prone to tumours (Nat. Genet. 12 (1996) 241). Dally, the first Drosophila member of the family, is essential for the wingless and decapentaplegic signalling pathways (Development 121 (1995) 3687; Development 124 (1997) 4113). Here, we report a new Drosophila glypican, dally-like protein (dlp) with all the features of a glypican. Based on expression studies we report its colocalisation with Wg.
Collapse
Affiliation(s)
- N Khare
- Department of Cell and Molecular Biology, Box 94, Lund University, S-22100, Lund, Sweden
| | | |
Collapse
|
26
|
Abstract
The thrombospondins are a family of proteins found widely in the embryonic extracellular matrix. Like most matrix proteins, thrombospondins are modular and contain a series of repeated domains arrayed between globular amino and carboxyl terminal domains. In recent years, other proteins that share thrombospondin type 1 repeats, or TSRs, have been identified. These include the F-spondin gene family, the members of the semaphorin 5 family, UNC-5, SCO-spondin, and others. Most of these are expressed in the developing nervous system, and many have expression patterns and in vitro properties that suggest potential roles in the guidance of cell and growth cone migration. Both cell- and matrix-binding motifs have been identified in the TSRs of thrombospondin-1, so it has been hypothesized that the properties of these diverse proteins may also depend on the presence of these repeats. Here, we review the cell biology of the TSR module, the extensive literature regarding the distribution and functions of thrombospondins and other TSR superfamily proteins, and evaluate their possible roles during the development of the nervous system.
Collapse
Affiliation(s)
- J C Adams
- MRC-Laboratory for Molecular Cell Biology and Department of Biochemistry and Molecular Biology, University College London, United Kingdom.
| | | |
Collapse
|
27
|
Adams JC, Tucker RP. The thrombospondin type 1 repeat (TSR) superfamily: Diverse proteins with related roles in neuronal development. Dev Dyn 2000. [DOI: 10.1002/(sici)1097-0177(200006)218:2%3c280::aid-dvdy4%3e3.0.co;2-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|