1
|
Alpha B-Crystallin in Muscle Disease Prevention: The Role of Physical Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031147. [PMID: 35164412 PMCID: PMC8840510 DOI: 10.3390/molecules27031147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022]
Abstract
HSPB5 or alpha B-crystallin (CRYAB), originally identified as lens protein, is one of the most widespread and represented of the human small heat shock proteins (sHSPs). It is greatly expressed in tissue with high rates of oxidative metabolism, such as skeletal and cardiac muscles, where HSPB5 dysfunction is associated with a plethora of human diseases. Since HSPB5 has a major role in protecting muscle tissues from the alterations of protein stability (i.e., microfilaments, microtubules, and intermediate filament components), it is not surprising that this sHSP is specifically modulated by exercise. Considering the robust content and the protective function of HSPB5 in striated muscle tissues, as well as its specific response to muscle contraction, it is then realistic to predict a specific role for exercise-induced modulation of HSPB5 in the prevention of muscle diseases caused by protein misfolding. After offering an overview of the current knowledge on HSPB5 structure and function in muscle, this review aims to introduce the reader to the capacity that different exercise modalities have to induce and/or activate HSPB5 to levels sufficient to confer protection, with the potential to prevent or delay skeletal and cardiac muscle disorders.
Collapse
|
2
|
Posner M, Murray KL, McDonald MS, Eighinger H, Andrew B, Drossman A, Haley Z, Nussbaum J, David LL, Lampi KJ. The zebrafish as a model system for analyzing mammalian and native α-crystallin promoter function. PeerJ 2017; 5:e4093. [PMID: 29201567 PMCID: PMC5708185 DOI: 10.7717/peerj.4093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 11/04/2017] [Indexed: 12/24/2022] Open
Abstract
Previous studies have used the zebrafish to investigate the biology of lens crystallin proteins and their roles in development and disease. However, little is known about zebrafish α-crystallin promoter function, how it compares to that of mammals, or whether mammalian α-crystallin promoter activity can be assessed using zebrafish embryos. We injected a variety of α-crystallin promoter fragments from each species combined with the coding sequence for green fluorescent protein (GFP) into zebrafish zygotes to determine the resulting spatiotemporal expression patterns in the developing embryo. We also measured mRNA levels and protein abundance for all three zebrafish α-crystallins. Our data showed that mouse and zebrafish αA-crystallin promoters generated similar GFP expression in the lens, but with earlier onset when using mouse promoters. Expression was also found in notochord and skeletal muscle in a smaller percentage of embryos. Mouse αB-crystallin promoter fragments drove GFP expression primarily in zebrafish skeletal muscle, with less common expression in notochord, lens, heart and in extraocular regions of the eye. A short fragment containing only a lens-specific enhancer region increased lens and notochord GFP expression while decreasing muscle expression, suggesting that the influence of mouse promoter control regions carries over into zebrafish embryos. The two paralogous zebrafish αB-crystallin promoters produced subtly different expression profiles, with the aBa promoter driving expression equally in notochord and skeletal muscle while the αBb promoter resulted primarily in skeletal muscle expression. Messenger RNA for zebrafish αA increased between 1 and 2 days post fertilization (dpf), αBa increased between 4 and 5 dpf, but αBb remained at baseline levels through 5 dpf. Parallel reaction monitoring (PRM) mass spectrometry was used to detect αA, aBa, and αBb peptides in digests of zebrafish embryos. In whole embryos, αA-crystallin was first detected by 2 dpf, peaked in abundance by 4–5 dpf, and was localized to the eye. αBa was detected in whole embryo at nearly constant levels from 1–6 dpf, was also localized primarily to the eye, and its abundance in extraocular tissues decreased from 4–7 dpf. In contrast, due to its low abundance, no αBb protein could be detected in whole embryo, or dissected eye and extraocular tissues. Our results show that mammalian α-crystallin promoters can be efficiently screened in zebrafish embryos and that their controlling regions are well conserved. An ontogenetic shift in zebrafish aBa-crystallin promoter activity provides an interesting system for examining the evolution and control of tissue specificity. Future studies that combine these promoter based approaches with the expanding ability to engineer the zebrafish genome via techniques such as CRISPR/Cas9 will allow the manipulation of protein expression to test hypotheses about lens crystallin function and its relation to lens biology and disease.
Collapse
Affiliation(s)
- Mason Posner
- Department of Biology/Toxicology, Ashland University, Ashland, OH, United States of America
| | - Kelly L Murray
- Department of Biology/Toxicology, Ashland University, Ashland, OH, United States of America
| | - Matthew S McDonald
- Department of Biology/Toxicology, Ashland University, Ashland, OH, United States of America
| | - Hayden Eighinger
- Department of Biology/Toxicology, Ashland University, Ashland, OH, United States of America
| | - Brandon Andrew
- Department of Biology/Toxicology, Ashland University, Ashland, OH, United States of America
| | - Amy Drossman
- Department of Biology/Toxicology, Ashland University, Ashland, OH, United States of America
| | - Zachary Haley
- Department of Biology/Toxicology, Ashland University, Ashland, OH, United States of America
| | - Justin Nussbaum
- Department of Biology, Lakeland Community College, Kirtland, OH, United States of America
| | - Larry L David
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR, United States of America
| | - Kirsten J Lampi
- Department of Integrative Biosciences, Oregon Health and Science University, Portland, OR, United States of America
| |
Collapse
|
3
|
Cvekl A, McGreal R, Liu W. Lens Development and Crystallin Gene Expression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:129-67. [PMID: 26310154 DOI: 10.1016/bs.pmbts.2015.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The eye and lens represent excellent models to understand embryonic development at cellular and molecular levels. Initial 3D formation of the eye depends on a reciprocal invagination of the lens placode/optic vesicle to form the eye primordium, i.e., the optic cup partially surrounding the lens vesicle. Subsequently, the anterior part of the lens vesicle gives rise to the lens epithelium, while the posterior cells of the lens vesicle differentiate into highly elongated lens fibers. Lens fiber differentiation involves cytoskeletal rearrangements, cellular elongation, accumulation of crystallin proteins, production of extracellular matrix for the lens capsule, and degradation of organelles. This chapter summarizes recent advances in lens development and provides insights into the regulatory mechanisms and differentiation at the level of chromatin structure and dynamics, the emerging field of noncoding RNAs, and novel strategies to fill the gaps in our understanding of lens development.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA.
| | - Rebecca McGreal
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Wei Liu
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
4
|
Jing Z, Gangalum RK, Mock DC, Bhat SP. A gene-specific non-enhancer sequence is critical for expression from the promoter of the small heat shock protein gene αB-crystallin. Hum Genomics 2014; 8:5. [PMID: 24589182 PMCID: PMC3975602 DOI: 10.1186/1479-7364-8-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 02/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deciphering of the information content of eukaryotic promoters has remained confined to universal landmarks and conserved sequence elements such as enhancers and transcription factor binding motifs, which are considered sufficient for gene activation and regulation. Gene-specific sequences, interspersed between the canonical transacting factor binding sites or adjoining them within a promoter, are generally taken to be devoid of any regulatory information and have therefore been largely ignored. An unanswered question therefore is, do gene-specific sequences within a eukaryotic promoter have a role in gene activation? Here, we present an exhaustive experimental analysis of a gene-specific sequence adjoining the heat shock element (HSE) in the proximal promoter of the small heat shock protein gene, αB-crystallin (cryab). These sequences are highly conserved between the rodents and the humans. RESULTS Using human retinal pigment epithelial cells in culture as the host, we have identified a 10-bp gene-specific promoter sequence (GPS), which, unlike an enhancer, controls expression from the promoter of this gene, only when in appropriate position and orientation. Notably, the data suggests that GPS in comparison with the HSE works in a context-independent fashion. Additionally, when moved upstream, about a nucleosome length of DNA (-154 bp) from the transcription start site (TSS), the activity of the promoter is markedly inhibited, suggesting its involvement in local promoter access. Importantly, we demonstrate that deletion of the GPS results in complete loss of cryab promoter activity in transgenic mice. CONCLUSIONS These data suggest that gene-specific sequences such as the GPS, identified here, may have critical roles in regulating gene-specific activity from eukaryotic promoters.
Collapse
Affiliation(s)
| | | | | | - Suraj P Bhat
- Jules Stein Eye Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
5
|
de Thonel A, Le Mouël A, Mezger V. Transcriptional regulation of small HSP-HSF1 and beyond. Int J Biochem Cell Biol 2012; 44:1593-612. [PMID: 22750029 DOI: 10.1016/j.biocel.2012.06.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 06/07/2012] [Accepted: 06/08/2012] [Indexed: 12/16/2022]
Abstract
The members of the small heat shock protein (sHSP) family are molecular chaperones that play major roles in development, stress responses, and diseases, and have been envisioned as targets for therapy, particularly in cancer. The molecular mechanisms that regulate their transcription, in normal, stress, or pathological conditions, are characterized by extreme complexity and subtlety. Although historically linked to the heat shock transcription factors (HSFs), the stress-induced or developmental expression of the diverse members, including HSPB1/Hsp27/Hsp25, αA-crystallin/HSPB4, and αB-crystallin/HSPB5, relies on the combinatory effects of many transcription factors. Coupled with remarkably different cis-element architectures in the sHsp regulatory regions, they confer to each member its developmental expression or stress-inducibility. For example, multiple regulatory pathways coordinate the spatio-temporal expression of mouse αA-, αB-crystallin, and Hsp25 genes during lens development, through the action of master genes, like the large Maf family proteins and Pax6, but also HSF4. The inducibility of Hsp27 and αB-crystallin transcription by various stresses is exerted by HSF-dependent mechanisms, by which concomitant induction of Hsp27 and αB-crystallin expression is observed. In contrast, HSF-independent pathways can lead to αB-crystallin expression, but not to Hsp27 induction. Not surprisingly, deregulation of the expression of sHSP is associated with various pathologies, including cancer, neurodegenerative, or cardiac diseases. However, many questions remain to be addressed, and further elucidation of the developmental mechanisms of sHsp gene transcription might help to unravel the tissue- and stage-specific functions of this fascinating class of proteins, which might prove to be crucial for future therapeutic strategies. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.
Collapse
|
6
|
Krishnan K, Kathiresan T, Raman R, Rajini B, Dhople VM, Aggrawal RK, Sharma Y. Ubiquitous lens alpha-, beta-, and gamma-crystallins accumulate in anuran cornea as corneal crystallins. J Biol Chem 2007; 282:18953-9. [PMID: 17452334 DOI: 10.1074/jbc.m609275200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Corneal epithelium is known to have high levels of some metabolic enzymes such as aldehyde dehydrogenase in mammals, gelsolin in zebrafish, and alpha-enolase in several species. Analogous to lens crystallins, these enzymes and proteins are referred to as corneal crystallins, although their precise function is not established in any species. Although it is known that after lentectomy, the outer cornea undergoes transdifferentiation to regenerate a lens only in anuran amphibians, major proteins expressed in an anuran cornea have not been identified. This study therefore aimed to identify the major corneal proteins in the Indian toad (Bufo melanostictus) and the Indian frog (Rana tigrina). Soluble proteins of toad and frog corneas were resolved on two-dimensional gels and identified by matrix-assisted laser desorption ionization time-of-flight/time-of-flight and electrospray ionization quadrupole time-of-flight. We report that anuran cornea is made up of the full complement of ubiquitous lens alpha-, beta-, and gamma-crystallins, mainly localized in the corneal epithelium. In addition, some taxon-specific lens crystallins and novel proteins, such as alpha- or beta-enolase/tau-crystallin, were also identified. Our data present a unique case of the anuran cornea where the same crystallins are used in the lens and in the cornea, thus supporting the earlier idea that crystallins are essential for the visual functions of the cornea as they perform for the lens. High levels of lens alpha-, beta-, and gamma-crystallins have not been reported in the cornea of any species studied so far and may offer a possible explanation for their inability to regenerate a lens after lentectomy. Our data that anuran cornea has an abundant quantity of almost all the lens crystallins are consistent with its ability to form a lens, and this connection is worthy of further studies.
Collapse
Affiliation(s)
- Kannan Krishnan
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad-500 007, India
| | | | | | | | | | | | | |
Collapse
|
7
|
Li Y, Hough RB, Piatigorsky J. Tissue-specific activity of the blind mole rat and the two nucleotide-mutated mouse alphaB-crystallin promoter in transgenic mice. Proc Natl Acad Sci U S A 2007; 104:2608-13. [PMID: 17293452 PMCID: PMC1796782 DOI: 10.1073/pnas.0611684104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The alphaB-crystallin and HspB2 genes are located approximately 0.9 kb apart in a head-to-head arrangement in mammals. Previous experiments have shown that a truncated -668/+45 alphaB-crystallin enhancer/promoter fragment from blind mole rats (Spalax ehrenbergi), which have nonfunctional lenses, lacks lens activity and has enhanced muscle activity in transgenic mice. Here we show that the full-length mole rat alphaB-crystallin intergenic region behaves similarly in transgenic mice. A two-nucleotide mutation ((-273)CA-->G) in the mouse alphaB-crystallin enhancer/promoter fragment mimicking the wild-type mole rat sequence functionally converted the mouse promoter fragment to that of the wild-type mole rat promoter when tested in transgenic mice. The reciprocal mutation in the mole rat promoter fragment ((-272)G-->CA) did not affect its activity. Oligonucleotides from the wild-type mouse and mole rat alphaB-crystallin promoter region under study formed distinct complexes with nuclear proteins from cultured cells. The mouse mutant sequence lost binding ability, whereas the mutated mole rat sequence gained the ability to form a complex similar in size to that of the wild-type mouse oligonucleotide. Our data support the idea that blind mole rats' alphaB-crystallin promoter activity was modified during the evolution of subterranean life and shows that tissue-specific promoter activity can be modulated by changing as few as two apparently neutral nucleotides in the mouse alphaB-crystallin enhancer region, implying the importance of the context of regulatory sequences for promoter activity.
Collapse
Affiliation(s)
- Yan Li
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-0704
| | - R. Barry Hough
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-0704
| | - Joram Piatigorsky
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-0704
- *To whom correspondence should be addressed at: Laboratory of Molecular and Developmental Biology, 7 Memorial Drive/Building 7, Room 100, Bethesda, MD 20892-0704. E-mail:
| |
Collapse
|
8
|
Swamynathan SK, Piatigorsky J. Orientation-dependent influence of an intergenic enhancer on the promoter activity of the divergently transcribed mouse Shsp/alpha B-crystallin and Mkbp/HspB2 genes. J Biol Chem 2002; 277:49700-6. [PMID: 12403771 DOI: 10.1074/jbc.m209700200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mouse Shsp/alphaB-crystallin and Mkbp/HspB2 genes are closely linked and divergently transcribed. In this study, we have analyzed the contribution of the intergenic enhancer to Shsp/alphaB-crystallin and Mkbp/HspB2 promoter activity using dual-reporter vectors in transient transfection and transgenic mouse experiments. Deletion of the enhancer reduced Shsp/alphaB-crystallin promoter activity by 30- and 93-fold and Mkbp/HspB2 promoter activity by 6- and 10-fold in transiently transfected mouse lens alpha-TN4 and myoblast C2C12 cells, respectively. Surprisingly, inversion of the enhancer reduced Shsp/alphaB-crystallin promoter activity by 17-fold, but did not affect Mkbp/HspB2 promoter activity in the transfected cells. In contrast, enhancer activity was orientation-independent in combination with a heterologous promoter in transfected cells. Transgenic mouse experiments established the orientation dependence and Shsp/alphaB-crystallin promoter preference of the intergenic enhancer in its native context. The orientation dependence and preferential effect of the Shsp/alphaB-crystallin enhancer on the Shsp/alphaB-crystallin promoter provide an example of adaptive changes in gene regulation accompanying the functional diversification of duplicated genes during evolution.
Collapse
Affiliation(s)
- Shivalingappa K Swamynathan
- Laboratory of Molecular and Developmental Biology, NEI/National Institutes of Health, Bldg. 6 Rm. 201, 6 Center Drive, Bethesda, MD 20892, USA
| | | |
Collapse
|
9
|
Davidson SM, Loones MT, Duverger O, Morange M. The developmental expression of small HSP. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 28:103-28. [PMID: 11908055 DOI: 10.1007/978-3-642-56348-5_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Sean M Davidson
- Unité de Génétique Moléculaire, Ecole normale supérieure, 46 rue d'Ulm, 75230 Paris, France
| | | | | | | |
Collapse
|
10
|
Hough RB, Avivi A, Davis J, Joel A, Nevo E, Piatigorsky J. Adaptive evolution of small heat shock protein/alpha B-crystallin promoter activity of the blind subterranean mole rat, Spalax ehrenbergi. Proc Natl Acad Sci U S A 2002; 99:8145-50. [PMID: 12060761 PMCID: PMC123035 DOI: 10.1073/pnas.122231099] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Blind mole rats have degenerated subcutaneous eyes that are visually nonfunctional. In this investigation, we have compared the tissue specificity of the small heat shock protein (shsp)/alphaB-crystallin promoter of the mole rat superspecies, Spalax ehrenbergi, with that of the mouse. Earlier experiments showed that mouse shsp/alphaB-crystallin promoter/enhancer activity is high in the lens and moderate in the heart and skeletal muscle of transgenic mice. Here, we show in transgenic mouse experiments using the firefly luciferase reporter gene that, despite relatively few changes in sequence, the mole rat shsp/alphaB-crystallin promoter/enhancer has selectively lost lens activity after 13.5 days of embryogenesis (E13.5). The ratios of mole rat/mouse promoter activity were 0.01 for lens, 1.7 for heart, and 13.6 for skeletal muscle in 8-wk-old transgenic mice. Our data indicate that the shsp/alphaB-crystallin promoter/enhancer has undergone adaptive changes corresponding to the subterranean evolution of the blind mole rat. We speculate that selective pressures on metabolic economy may have contributed to these tissue-specific modifications of promoter/enhancer function during adaptation to life underground.
Collapse
Affiliation(s)
- R B Hough
- Laboratory of Molecular and Developmental Biology, National Eye Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
11
|
Enigma of the Abundant Water-Soluble Cytoplasmic Proteins of the Cornea. Cornea 2002. [DOI: 10.1097/00003226-200203001-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Piatigorsky J. Enigma of the abundant water-soluble cytoplasmic proteins of the cornea: the "refracton" hypothesis. Cornea 2001; 20:853-8. [PMID: 11685065 DOI: 10.1097/00003226-200111000-00015] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
It is accepted that the taxon-specific, multifunctional crystallins (small heat-shock proteins and enzymes) serve structural roles contributing to the transparent and refractive properties of the lens. The transparent cornea also accumulates unexpectedly high proportions of taxon-specific, multifunctional proteins particularly, but not only, in the epithelium. For example, aldehyde dehydrogenase 3 (ALDH3) is the main water-soluble protein in corneal epithelial cells of most mammals (but ALDH1 predominates in the rabbit), whereas gelsolin predominates in the zebrafish corneal epithelium. Moreover, some invertebrates (e.g., squid and scallop) accumulate proteins in their corneas that are similar to their lens crystallins. Pax-6, among other transcription factors, is implicated in development and tissue-specific gene expression of the lens and cornea. Environmental factors appear to influence gene expression in the cornea, but not the lens. Although no direct proof exists, the diverse, abundant corneal proteins may have evolved a crystallinlike role, in addition to their enzymatic or cytoskeletal functions, by a gene sharing mechanism similar to the lens crystallins. Consequently, it is proposed that the cornea and lens be considered as a single refractive unit, called here the "refracton," to emphasize their similarities and common function.
Collapse
Affiliation(s)
- J Piatigorsky
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2730, USA
| |
Collapse
|