1
|
Almeida M, Dudzinski D, Couturaud B, Prévost S, Lutz-Bueno V, Mahmoudi N, Amiel C, Cousin F, Le Coeur C. Design of thermo-responsive self-assembly of PEGylated fatty acids: Switching reversibly from tubes or vesicles to micelles at physiological temperature. J Colloid Interface Sci 2025; 693:137571. [PMID: 40245830 DOI: 10.1016/j.jcis.2025.137571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/02/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
HYPOTHESIS The mixing of end-capped poly(ethylene glycol) (PEG) chains with 12-hydroxy stearic acid (12-HSA) molecules is a simple one-pot strategy to design thermo-responsive PEGylated self-assemblies of fatty acids with various morphology types at room temperature (multi-lamellar tubes or vesicles) that transit reversibly upon heating into small micelles around physiological temperature. EXPERIMENTAL 4 types of 4k end-capped poly(ethylene glycol) (PEG) chains, capped respectively at one end or at both ends with either 12-HSA or stearic acid (SA), were mixed with 12-hydroxy stearic acid molecules, at a low constant ratio of end capped fatty acid moieties brought by the chains to that of free 12-HSA molecules. The detailed structure of the self-assemblies of mixtures was obtained using Small Angle Neutron Scattering with contrast variation at both 20 °C and 45 °C, and their temperature-dependent rheological behavior was characterized. FINDINGS For both types of mono-functionalized PEG, the chains insert homogenously in the multi-lamellar tubes formed by 12-HSA molecules. The mixtures of di-functionalized chains by 12-HSA with 12-HSA molecules produce PEGylated vesicles, since the change of packing parameter induced by insertion of the telechelic chains no longer allows the formation of tubes. Conversely, mixtures of di-functionalized chains by SA with 12-HSA molecules enable to keep multi-lamellar tubes, a specific behavior that likely comes from the fact that they only insert by one end within the 12-HSA bilayers. All systems transit reversibly into small PEGylated ellipsoidal micelles. The morphological transitions enable to tune the rheological properties of suspensions, that are gelled at low temperature and turn Newtonian liquid at around 37 °C.
Collapse
Affiliation(s)
- Maëva Almeida
- Institut Chimie et des Matériaux Paris Est, Université Paris Est Créteil, CNRS, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-CNRS UMR 12 CEA Saclay, 91191 Gif sur Yvette, France
| | - Daniel Dudzinski
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-CNRS UMR 12 CEA Saclay, 91191 Gif sur Yvette, France
| | - Benoit Couturaud
- Institut Chimie et des Matériaux Paris Est, Université Paris Est Créteil, CNRS, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Sylvain Prévost
- Institut Laue Langevin, 71 avenue des Martyrs, CS 20156, CEDEX 9, 38042 Grenoble, France
| | - Viviane Lutz-Bueno
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-CNRS UMR 12 CEA Saclay, 91191 Gif sur Yvette, France; PSI Center for Neutron and Muon Sciences, 5232 Villigen PSI, Switzerland
| | - Najet Mahmoudi
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Chilton, Oxfordshire OX11 0QX, UK
| | - Catherine Amiel
- Institut Chimie et des Matériaux Paris Est, Université Paris Est Créteil, CNRS, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Fabrice Cousin
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-CNRS UMR 12 CEA Saclay, 91191 Gif sur Yvette, France.
| | - Clémence Le Coeur
- Institut Chimie et des Matériaux Paris Est, Université Paris Est Créteil, CNRS, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-CNRS UMR 12 CEA Saclay, 91191 Gif sur Yvette, France.
| |
Collapse
|
2
|
Li Y, Chen Y, Tang Y, Yang T, Zhou P, Miao L, Chen H, Deng Y. Breaking the barriers in effective and safe Toll-like receptor stimulation via nano-immunomodulators for potent cancer immunotherapy. J Control Release 2025; 382:113667. [PMID: 40157608 DOI: 10.1016/j.jconrel.2025.113667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/20/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Immunotherapy is an emerging strategy that awakens the intrinsic immune system for cancer treatment. Generally, successful immunotherapy of malignant tumours relies on the effective production of tumour-associated antigens and their lymph node delivery, antigen processing and presentation for T-cell activation, and the dismantling of the immunosuppressive tumour microenvironment. Toll-like receptor (TLR) agonists are potent stimulants in cancer immunotherapy, which can directly activate antigen-presenting cells (APCs) and further induce T cell activation for antitumour immune response and convert immunosuppressive tumour microenvironment to an immunogenic one for cooperative tumour ablation. However, TLR agonists for effective cancer immunotherapy have encountered essential challenges, such as insufficient immune activation and systemic side effects. In recent years, nano-immunomodulators with TLR agonists have been employed for tumour- and/or lymph node-targeted immune activation to improve the antitumour immune response and alleviate their systemic toxicities, providing a promising strategy for enhanced cancer immunotherapy. Herein, we introduce the recent progress in developing various TLR nano-immunomodulators for cancer immunotherapy via APC activation and tumour microenvironment remodelling. Upon elucidating the rational design principles of nano-immunomodulators, we elucidate the advancement of TLR nanoagonists to break the barriers in effective and safe Toll-like receptor stimulation for potent cancer immunotherapy.
Collapse
Affiliation(s)
- Yaoqi Li
- Department of Pharmacy, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou 215006, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yitian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yong'an Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Liyan Miao
- Department of Pharmacy, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou 215006, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou 215006, China.
| | - Huabing Chen
- Department of Pharmacy, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou 215006, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China.
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China.
| |
Collapse
|
3
|
Bussin B, MacDuff MGG, Ngo W, Wu JLY, Lin ZP, Granda Farias A, Stordy B, Sepahi Z, Ahmed S, Moffat J, Chan WCW. Discovering nanoparticle corona ligands for liver macrophage capture. NATURE NANOTECHNOLOGY 2025:10.1038/s41565-025-01903-6. [PMID: 40374797 DOI: 10.1038/s41565-025-01903-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/12/2025] [Indexed: 05/18/2025]
Abstract
Liver macrophages capture circulating nanoparticles and reduce their delivery to target organs. Serum proteins adsorb to the nanoparticle surface after administration. However, the adsorbed serum proteins and their cognate cell receptors for removing nanoparticles from the bloodstream have not been linked. Here we use a multi-omics strategy to identify the adsorbed serum proteins binding to specific liver macrophage receptors. We discovered six absorbed serum proteins that bind to two liver macrophage receptors. Nanoparticle physicochemical properties can affect the degree of the six serum proteins adsorbing to the surface, the probability of binding to cell receptors and whether the liver removes the nanoparticle from circulation. Identifying the six adsorbed proteins allowed us to engineer decoy nanoparticles that prime the liver to take up fewer therapeutic nanoparticles, enabling more nanoparticles for targeting extrahepatic tissues. Elucidating the molecular interactions governing the nanoparticle journey in vivo will enable us to control nanoparticle delivery to diseased tissues.
Collapse
Affiliation(s)
- Bram Bussin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Marshall G G MacDuff
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Wayne Ngo
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Gladstone Institutes, San Francisco, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Jamie L Y Wu
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Zachary P Lin
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Granda Farias
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin Stordy
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Zahra Sepahi
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Sara Ahmed
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- MD/PhD Program, University of Toronto, Toronto, Ontario, Canada
| | - Jason Moffat
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
4
|
Liu H, Li S, Yu X, Xu Q, Tang C, Yin C. Modulating the Protein Corona on Nanoparticles by Finely Tuning Cross-Linkers Improves Macrophage Targeting in Oral Small Interfering RNA Delivery. ACS NANO 2025; 19:16469-16487. [PMID: 40275505 DOI: 10.1021/acsnano.4c18033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The protein corona (PC) plays an important role in regulating the in vivo fate of nanoparticles (NPs). Modulating the surface chemical properties of NPs to control PC formation provides an alternative impetus for the oral delivery of small interfering RNA (siRNA). Herein, using tripolyphosphate (TPP), hyaluronic acid, and poly-γ-glutamic acid as cross-linkers, three types of mannose-modified trimethyl chitosan-cysteine (MTC)-based NPs with distinct surface chemistries were prepared to encapsulate siRNA via ionic gelation. The MTC-based NPs that were cross-linked exclusively with TPP (MTC/TPP/siRNA NPs) exhibited greater thiol group accessibility on their surfaces, resulting in a stronger affinity for apolipoprotein (APO) B48 during translocation across intestinal epithelia. Moreover, intracellular transport of MTC/TPP/siRNA NPs via the endoplasmic reticulum and Golgi apparatus further increased adsorption of APOB48, a key component of chylomicrons, which follow a similar transport pathway. Benefiting from the elevated APOB48 levels within the PC, the orally delivered MTC/TPP/siRNA NPs showed higher uptake by hepatic macrophages and better therapeutic efficacy for acute liver injury. Our results elucidate the role of NP surface chemical characteristics and translocation mechanisms across intestinal epithelia in forming oral PC, providing valuable insights for designing NPs that achieve effective oral gene delivery by customizing PC formation in vivo.
Collapse
Affiliation(s)
- Hengqing Liu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shengqi Li
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xin Yu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qian Xu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Cui Tang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
5
|
Harting H, Herrmann T, Ehlert N, Meißner J, Angrisani N, Reifenrath J. Comparison of accumulation and distribution of PEGylated and CD-47-functionalized magnetic nanoporous silica nanoparticles in an in vivo mouse model of implant infection. PLoS One 2025; 20:e0321888. [PMID: 40315195 PMCID: PMC12047780 DOI: 10.1371/journal.pone.0321888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/12/2025] [Indexed: 05/04/2025] Open
Abstract
INTRODUCTION Drug targeting using nanoparticles is a much-researched topic. Rapid interactions of nanoparticles with the host's immune system and clearance from the circulation is a major problem resulting in non-satisfying accumulation rates in the desired region. The aim of the presented study was to compare organ distribution and implant accumulation of magnetic nanoporous silica nanoparticles (MNPSNP) functionalized with either Polyethylenglycol (PEG) or CD-47 in vivo in a mouse model of implant infection. METHODS Synthesis and functionalization of the magnetic core-shell nanoparticles is described. In the in vivo study, 32 mice were included and received an in staphylococcus aureus solution preincubated magnetic implant subcutaneously on the left and a nonmagnetic implant on the right hind leg. MNPSNP accumulation in the inner organs as well as on and around the implants was analyzed in dependence on the functionalization. RESULTS MNPSNP were successfully functionalized with PEG or CD-47. In vivo, unexpectedly both nanoparticle variants accumulated mainly in liver and spleen. In the tissue, surrounding the implants higher nanoparticle accumulation was seen in areas with more severe signs of inflammation Nanoparticles were detectable on both implant materials, but accumulation rate was very low. CONCLUSION Although various literature describes higher accumulation rates for nanoparticles functionalized with CD-47 in target areas and a reduced accumulation in liver and spleen, this could not be shown within this study. Possible instability or rapid agglomeration of the particles are conceivable reasons. Higher accumulation rates in areas with more severe signs of inflammation indicate that inflammatory cells might be essential for the delivery of nanoparticles into inflamed regions.
Collapse
Affiliation(s)
- Heidi Harting
- Hannover Medical School, Department of Orthopaedic Surgery, DIAKOVERE Annastift, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Timo Herrmann
- Institute for Inorganic Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Nina Ehlert
- Institute for Inorganic Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Jessica Meißner
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hanover, Foundation, Hannover, Germany
| | - Nina Angrisani
- Hannover Medical School, Department of Orthopaedic Surgery, DIAKOVERE Annastift, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Janin Reifenrath
- Hannover Medical School, Department of Orthopaedic Surgery, DIAKOVERE Annastift, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
6
|
Jang S, Jun H, Eom S, Zhao S, Murthy N, Kang S, Kim H. EGFR Affibody and PEG functionalized protein nanoparticles: Sustaining targeting and macrophage evasion. Int J Biol Macromol 2025; 307:142167. [PMID: 40118404 DOI: 10.1016/j.ijbiomac.2025.142167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
When nanoparticles are introduced into a biological environment, serum proteins rapidly attach to their surfaces, leading to opsonization and subsequent rapid clearance by the immune system. In this study, we functionalized protein nanoparticles with PEG to impart stealth properties, aiming to reduce immune recognition. By incorporating EGFRAfb, we conferred targeting capabilities to the PEGylated protein nanoparticles, demonstrating their ability to specifically bind to target cells even after PEGylation. Additionally, the stealth effect conferred by PEGylation effectively prevented phagocytosis by macrophages. Taken together, these results indicate that PEGylated protein nanoparticles not only exhibit increased in vivo half-life due to reduced opsonization but also maintain cell-specific targeting capabilities.
Collapse
Affiliation(s)
- Seonhye Jang
- Department of Pharmaceutical Engineering, INJE University, Gimhae 50834, Republic of Korea
| | - Heejin Jun
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Soomin Eom
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sheng Zhao
- Department of Bioengineering and Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Niren Murthy
- Department of Bioengineering and Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA.
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Hansol Kim
- Department of Pharmaceutical Engineering, INJE University, Gimhae 50834, Republic of Korea.
| |
Collapse
|
7
|
Dar AI, Randhawa S, Verma M, Saini TC, Acharya A. Debugging the dynamics of protein corona: Formation, composition, challenges, and applications at the nano-bio interface. Adv Colloid Interface Sci 2025; 342:103535. [PMID: 40319752 DOI: 10.1016/j.cis.2025.103535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
The intricate interplay between nanomaterials and the biological molecules has garnered considerable interest in understanding the dynamics of protein corona formation at the nano-bio interface. This review provides an in-depth exploration of protein-nanoparticle interactions, elucidating their structural dynamics and thermodynamics at the nano-Bio interface and further on emphasizing its formation, composition, challenges, and applications in the biomedical and nanotechnological domains, such as drug delivery, theranostics, and the translational medicine. We delve the nuanced mechanisms governing protein corona formation on nanoparticle surfaces, highlighting the influence of nanoparticle and biological factors, and review the impact of corona formation on the biological identity and functionality of nanoparticles. Notably, emerging applications of artificial intelligence and machine learning have begun to revolutionize this field, enabling accurate prediction of corona composition and related biological outcomes. These tools not only enhance efficiency over traditional experimental methods but also help decode complex protein-nanoparticle interaction patterns, offering new insights into corona-driven cellular responses and disease diagnostics. Additionally, it discusses recent advancements in the field of protein corona, particularly in translational nanomedicine and associated applications entailing current and future strategies which are aimed at mitigating the adverse effects of protein-nanoparticle interactions at the biological interface, for tailoring the protein coronas by engineering of the nanomaterials. This comprehensive assessment from chemical, technological, and biological aspects serves as a guiding beacon for the development of future nanomedicine, enabling the more effective emulation of the biological milieu and the design of protein-NP systems for enhanced biomedical applications.
Collapse
Affiliation(s)
- Aqib Iqbal Dar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Trilok Chand Saini
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Bussin B, MacDuff MGG, Ngo W, Chan WCW. Cellular Glycocalyx Affects Nanoparticle Access to Cell Membranes and Uptake. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503004. [PMID: 40269604 DOI: 10.1002/adma.202503004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Understanding nanoparticle interactions with cells is fundamental to designing them for medical applications. Nanoparticles must interface with the cell surface to be bound and taken up. The glycocalyx is a carbohydrate layer coating the cell surface, rendering it negatively charged. Many researchers have noted that the glycocalyx affects nanoparticle uptake, but the mechanism remains unknown, Here, we investigate the interaction between the glycocalyx and nanoparticles at the cell surface in different cell types. The glycocalyx reduced the interactions between the nanoparticles and cells, thereby reducing cellular access, binding, and uptake. The magnitude of the effect is dependent on the nanoparticle charge. Fine-tuning the charge of nanoparticles can enhance the specificity of nanoparticle targeting. Understanding the role of the glycocalyx in nano-bio interactions will allow researchers to control the interactions of nanoparticles with the cell surface.
Collapse
Affiliation(s)
- Bram Bussin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 3K3, Canada
- Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Marshall G G MacDuff
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 3K3, Canada
- Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Wayne Ngo
- Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
- Gladstone Institutes, San Francisco, CA, 94158, USA
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
| | - Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
9
|
Lam JH, Sinsinbar G, Loo SY, Chia TW, Lee YJ, Fong JY, Chia YE, Penna RR, Liu S, Pascolo S, Schultheis K, Nallani M. Development of Thermostable and Immunogenic Block Copolymer Nanoparticles (BNPs) for mRNA Delivery. Biomacromolecules 2025; 26:2444-2457. [PMID: 40163903 DOI: 10.1021/acs.biomac.4c01820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Combining an amphiphilic block copolymer polybutadiene-b-poly(ethylene glycol) (PBD-b-PEO), an ionizable lipid, a helper lipid, and cholesterol produces thermostable BNPs. Luciferase mRNA-BNPs can be stored for over 1 year at 4 °C with no evidence of degradation to the mRNA or nanocarrier. In vivo, mRNA-BNPs exhibit a greater affinity for secondary lymphoid organs than mRNA-lipid nanoparticles (LNPs) and are efficiently taken up by macrophages and dendritic cells. Freshly fabricated ovalbumin (OVA) mRNA-BNPs elicit robust OVA-specific IgG and functional memory CD8+ T cells that persist for at least 5 months. Immunogenicity remains intact after 24 weeks of storage at 4 °C. Anti-PEG antibodies are not boosted by the repeated administration of mRNA-BNPs, unlike mRNA-LNPs. Syrian hamsters vaccinated with SARS-CoV-2 spike mRNA-BNPs are protected against weight loss associated with infection and potently suppress pulmonary viral loads. Protective efficacy is comparable to that conferred by a Comirnaty biosimilar. Cumulatively, mRNA-BNPs are thermostable, immunogenic and possess the potential for clinical application.
Collapse
Affiliation(s)
| | | | - Ser Yue Loo
- ACM Biolabs Pte Ltd, Singapore 638075, Singapore
| | | | - Yan Jun Lee
- ACM Biolabs Pte Ltd, Singapore 638075, Singapore
| | - Jing Yi Fong
- ACM Biolabs Pte Ltd, Singapore 638075, Singapore
| | | | - Rocco Roberto Penna
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
- Faculty of Science, University of Zurich, 8006 Zurich, Switzerland
| | | | - Steve Pascolo
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
- Faculty of Science, University of Zurich, 8006 Zurich, Switzerland
| | | | - Madhavan Nallani
- ACM Biolabs Pte Ltd, Singapore 638075, Singapore
- ACM Biosciences AG, 4051 Basel, Switzerland
| |
Collapse
|
10
|
Wang Z, Zhang C. Nanomaterials for targeted therapy of kidney diseases: Strategies and advances. Mater Today Bio 2025; 31:101534. [PMID: 39990736 PMCID: PMC11846943 DOI: 10.1016/j.mtbio.2025.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/25/2025] Open
Abstract
The treatment and management of kidney diseases pose a significant global burden. Due to the presence of blood circulation barriers and glomerular filtration barriers, drug therapy for kidney diseases faces challenges such as poor renal targeting, short half-life, and severe systemic side effects, severely hindering therapeutic progress. Therefore, the research and development of kidney-targeted therapeutic agents is of great clinical significance. In recent years, the application of nanotechnology in the field of nephrology has shown potential for revolutionizing the diagnosis and treatment of kidney diseases. Carefully designed nanomaterials can exhibit optimal biological characteristics, influencing various aspects such as circulation, retention, targeting, and excretion. Rationally designing and modifying nanomaterials based on the anatomical structure and pathophysiological environment of the kidney to achieve highly specific kidney-targeted nanomaterials or nanodrug delivery systems is both feasible and promising. Based on the targeted therapy of kidney diseases, this review discusses the advantages and limitations of current nanomedicine in the targeted therapy of kidney diseases, and summarizes the application and challenges of current renal active/passive targeting strategies, in order to further promote the development of kidney-targeted nanomedicine through a preliminary summary of previous studies and future prospects.
Collapse
Affiliation(s)
- Zhiwen Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
11
|
Makharadze D, del Valle LJ, Katsarava R, Puiggalí J. The Art of PEGylation: From Simple Polymer to Sophisticated Drug Delivery System. Int J Mol Sci 2025; 26:3102. [PMID: 40243857 PMCID: PMC11988339 DOI: 10.3390/ijms26073102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
The development of effective drug delivery systems (DDSs) is important for cancer and infectious disease treatment to overcome low bioavailability, rapid clearance and the toxicity of the therapeutic towards non-targeted healthy tissues. This review discusses how PEGylation, the attachment of poly(ethylene glycol) (PEG) molecules to nanoparticles (NPs), enhances drug pharmacokinetics by creating a "stealth effect". We provide the synthesis methods for several PEG derivatives, their conjugation with NPs, proteins and characterization using modern analytical tools. This paper focuses particularly on covalent conjugation and self-assembly strategies for successful PEGylation and discusses the influence of PEG chain length, density and conformation on drug delivery efficiency. Despite the PEGylation benefits, there are several challenges associated with it, including immunogenicity and reduced therapeutic efficacy due to accelerated blood clearance. Therefore, the balance between PEGylation benefits and its immunogenic risks remains a critical area of investigation.
Collapse
Affiliation(s)
- Davit Makharadze
- Departament de Enginyeria Química, Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (D.M.); (L.J.d.V.)
| | - Luis J. del Valle
- Departament de Enginyeria Química, Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (D.M.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Ramaz Katsarava
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi 0159, Georgia;
| | - Jordi Puiggalí
- Departament de Enginyeria Química, Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (D.M.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| |
Collapse
|
12
|
Alvarez AC, Maguire D, Brannigan RP. Synthetic-polymer-assisted antisense oligonucleotide delivery: targeted approaches for precision disease treatment. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:435-463. [PMID: 40166479 PMCID: PMC11956074 DOI: 10.3762/bjnano.16.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
This review explores the recent advancements in polymer-assisted delivery systems for antisense oligonucleotides (ASOs) and their potential in precision disease treatment. Synthetic polymers have shown significant promise in enhancing the delivery, stability, and therapeutic efficacy of ASOs by addressing key challenges such as cellular uptake, endosomal escape, and reducing cytotoxicity. The review highlights key studies from the past decade demonstrating how these polymers improve gene silencing efficiencies, particularly in cancer and neurodegenerative disease models. Despite the progress achieved, barriers such as immunogenicity, delivery limitations, and scalability still need to be overcome for broader clinical application. Emerging strategies, including stimuli-responsive polymers and advanced nanoparticle systems, offer potential solutions to these challenges. The review underscores the transformative potential of polymer-enhanced ASO delivery in personalised medicine, emphasising the importance of continued innovation to optimise ASO-based therapeutics for more precise and effective disease treatments.
Collapse
Affiliation(s)
- Ana Cubillo Alvarez
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Dylan Maguire
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Ruairí P Brannigan
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
13
|
Schorr K, Beck S, Zimmer O, Baumann F, Keller M, Witzgall R, Goepferich A. The quantity of ligand-receptor interactions between nanoparticles and target cells. NANOSCALE HORIZONS 2025; 10:803-823. [PMID: 39951050 DOI: 10.1039/d4nh00645c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Achieving high target cell avidity in combination with cell selectivity are fundamental, but largely unachieved goals in the development of biomedical nanoparticle systems, which are intricately linked to the quantity of targeting functionalities on their surface. Viruses, regarded as almost ideal role models for nanoparticle design, are evolutionary optimized, so that they cope with this challenge bearing an extremely low number of spikes, and thus binding domains, on their surface. In comparison, nanoparticles are usually equipped with more than an order of magnitude more ligands. It is therefore obvious that one key factor for increasing nanoparticle efficiency in terms of avidity and selectivity lies in optimizing their ligand number. A first step along this way is to know how many ligands per nanoparticle are involved in specific binding with target cell receptors. This question is addressed experimentally for a block copolymer nanoparticle model system. The data confirm that only a fraction of the nanoparticle ligands is involved in the binding processes: with a total ligand valency of 29 ligands/100 nm2 surface area a maximum 5.3 ligands/100 nm2 are involved in specific receptor binding. This corresponds to an average number of 251 binding ligands per nanoparticle, a number that can be rationalized within the biological context of the model system.
Collapse
Affiliation(s)
- Kathrin Schorr
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Bavaria, Germany.
| | - Sebastian Beck
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Bavaria, Germany.
| | - Oliver Zimmer
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Bavaria, Germany.
| | - Felix Baumann
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Bavaria, Germany.
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, D-93040 Regensburg, Germany.
| | - Ralph Witzgall
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Bavaria, Germany.
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Bavaria, Germany.
| |
Collapse
|
14
|
Hauck AV, Komforth P, Erlenbusch J, Stickdorn J, Radacki K, Braunschweig H, Besenius P, Van Herck S, Nuhn L. Aliphatic polycarbonates with acid degradable ketal side groups as multi-pH-responsive immunodrug nanocarriers. Biomater Sci 2025; 13:1414-1425. [PMID: 39575699 DOI: 10.1039/d4bm00949e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Pharmacokinetics and biodistribution profiles of active substances are crucial aspects for their safe and successful administration. Since many immunogenic compounds do not meet all requirements for safe and effective administration, well-defined drug nanocarrier systems are necessary with a stimuli-responsive drug-release profile. For this purpose, a novel pH-responsive aliphatic cyclic carbonate is introduced with benzyl ketal side chains and polymerized onto a poly(ethylene glycol) macroinitiator. The resulting block copolymers could be formulated via a solvent-evaporation method into well-defined polymeric micelles. The hydrophobic carbonate block was equipped with an acid degradable ketal side group that served as an acid-responsive functional group. Already subtle pH alternations led to micelle disassembly and the release of the active cargo. Furthermore, basic carbonate backbone degradation assured the pH responsiveness of the nanocarriers in both acidic and basic conditions. To investigate the delivery capacity of polymeric micelles, the model small molecule compound CL075, which serves as an immunotherapeutic TLR7/8 agonist, was encapsulated. Incubation studies with human blood plasma revealed the absence of undesirable protein adsorption on the drug-loaded nanoparticles. Furthermore, in vitro applications confirmed cell uptake of the nanodrug formulations by macrophages and the induction of payload-mediated immune stimulation. Altogether, these results underline the huge potential of the developed multi-pH-responsive polymeric nanocarrier for immunodrug delivery.
Collapse
Affiliation(s)
- Adrian V Hauck
- Chair of Macromolecular Chemistry, Institute of Functional Materials and Biofabrication, Julius-Maximilians-Universität Würzburg, 97070 Würzburg, Germany.
| | - Patric Komforth
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Jessica Erlenbusch
- Department of Chemistry, Johannes-Gutenberg-Universität Mainz, 55122 Mainz, Germany
| | | | - Krzysztof Radacki
- Institute for Sustainable Chemistry and Catalysis with Boron, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Sustainable Chemistry and Catalysis with Boron, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany
| | - Pol Besenius
- Department of Chemistry, Johannes-Gutenberg-Universität Mainz, 55122 Mainz, Germany
| | - Simon Van Herck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Lutz Nuhn
- Chair of Macromolecular Chemistry, Institute of Functional Materials and Biofabrication, Julius-Maximilians-Universität Würzburg, 97070 Würzburg, Germany.
| |
Collapse
|
15
|
Khafaga DSR, Muteeb G, Aswa DW, Aatif M, Farhan M, Allam S. Green chemistry: Modern therapies using nanocarriers for treating rare brain cancer metastasis from colon cancer. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 31:100213. [PMID: 39826871 DOI: 10.1016/j.slasd.2025.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Brain metastasis (BM) from colon cancer is associated with a poor prognosis and restricted treatment alternatives, largely due to issues related to blood-brain barrier (BBB) permeability and the negative effects of standard chemotherapy. Nanotechnology improves treatment efficacy by enabling targeted and controlled drug delivery. This review article evaluates the potential of nanotechnology-based therapies for treating colon cancer BM, emphasizing their capacity to cross the BBB, diminish metastatic growth, and enhance overall survival rates. A review of multiple studies evaluated nanoparticles (NPs) as carriers for chemotherapy, focusing on parameters including particle size, surface charge, and drug-loading capacity. The study also reviewed studies that examined BBB penetration, in vitro tumor accumulation, and in vivo tumor growth inhibition. In vitro findings indicated that NPs accumulate more efficiently in BM tissue than in healthy brain tissue and show significant BBB penetration. In vivo, nanotherapy markedly inhibited tumor growth and prolonged survival relative to conventional chemotherapy or control treatments while also exhibiting reduced side effects. Recent studies demonstrated that plant extracts can effectively and safely synthesize nanomaterials, positioning them as a viable and environmentally friendly precursor for nanomaterial production. Nanotechnology-based therapies demonstrate significant potential in the treatment of colon cancer BM by minimizing systemic toxicity, enhancing therapeutic efficacy, and facilitating more targeted drug delivery. Further research is required to confirm these findings and implement them in clinical practice.
Collapse
Affiliation(s)
- Doaa S R Khafaga
- Health Sector, Faculty of Science, Galala University, New Galala City 43511, Suez, Egypt.
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia.
| | - Darin W Aswa
- Faculty of Medicine, Galala University, New Galala City 43511, Suez, Egypt
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Salma Allam
- Faculty of Medicine, Galala University, New Galala City 43511, Suez, Egypt
| |
Collapse
|
16
|
Battaglini M, Carmignani A, Ciobanu DZ, Marino A, Catalano F, Armirotti A, Ciofani G. Detailed Profiling of Protein Corona Formed by Polydopamine Nanoparticles in Human Plasma. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10485-10498. [PMID: 39909726 DOI: 10.1021/acsami.4c21207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The term protein corona (PC) indicates proteins adsorbed onto the surface of nanostructures exposed to biological media such as blood or serum. The analysis of the composition, evolution, and effect of the PC complexed with nanomaterials gained attention in recent years due to the importance of these parameters in determining the biological fate of nanostructures. In particular, the PC represents the first component of a nanomaterial interfacing with biological structures, dictating parameters such as nanoparticle internalization, immune response, bioavailability, and even toxicity. Polydopamine nanoparticles (PDNPs), obtained through the polymerization of dopamine, are "smart" materials characterized by high biocompatibility, high antioxidant capacities, high tunability and surface reactivity, biodegradability, and the ability to act as photothermal conversion agents when irradiated with a near-infrared (NIR) light source. Despite many interesting applications of PDNPs are currently described in the scientific literature, there is still no comprehensive analysis of the phenomenon of PC formation consequent to the exposure of these nanomaterials to biological media. Moreover, to date, the investigation of the effects of light irradiation of photothermally active nanomaterials on the composition and evolution of the associated PC has been extremely limited. With this work, we aim to provide for the first time an analysis of the phenomenon of PC formation associated with PDNPs, before and after NIR light stimulation. We characterized the PC formed following exposure to human plasma and analyzed the effects of several parameters on the overall PC composition and quantity, such as the PDNP size, presence of a surface functionalization, exposure time, and irradiation with an NIR laser, demonstrating that these parameters play a pivotal role in the resulting PC composition. Eventually, we showed that PDNPs exposed to human plasma have significantly different properties with respect to bare PDNPs, showing higher internalization rates in human glioblastoma cells, a higher light absorption value, and enhanced photothermal conversion abilities.
Collapse
Affiliation(s)
- Matteo Battaglini
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Alessio Carmignani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Dinu Zinovie Ciobanu
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Attilio Marino
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Federico Catalano
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| |
Collapse
|
17
|
Simon L, Constanzo J, Terraza-Aguirre C, Ibn Elfekih Z, Berthelot J, Benkhaled BT, Haute T, Pednekar K, Clark K, Emerson SJ, Atis S, Benedetti C, Langlois S, Marquant A, Prakash J, Wang A, Devoisselle JM, Montier T, Djouad F, Pouget JP, Lapinte V, Morille M. Surface modification of extracellular vesicles with polyoxazolines to enhance their plasma stability and tumor accumulation. Biomaterials 2025; 313:122748. [PMID: 39180918 DOI: 10.1016/j.biomaterials.2024.122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Extracellular vesicles (EVs) are future promising therapeutics, but their instability in vivo after administration remains an important barrier to their further development. Many groups evaluated EV surface modification strategies to add a targeting group with the aim of controlling EV biodistribution. Conversely, fewer groups focused on their stabilization to obtain "stealth" allogenic EVs. Modulating their stabilization and biodistribution is an essential prerequisite for their development as nano-therapeutics. Here, we explored polyoxazolines with lipid anchors association to the EV membrane (POxylation as an alternative to PEGylation) to stabilize EVs in plasma and control their biodistribution, while preserving their native properties. We found that this modification maintained and seemed to potentiate the immunomodulatory properties of EVs derived from mesenchymal stem/stromal cells (MSC). Using a radiolabeling protocol to track EVs at a therapeutically relevant concentration in vivo, we demonstrated that POxylation is a promising option to stabilize EVs in plasma because it increased EV half-life by 6 fold at 6 h post-injection. Moreover, EV accumulation in tumors was higher after POxylation than after PEGylation.
Collapse
Affiliation(s)
- L Simon
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - J Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
| | | | - Z Ibn Elfekih
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - J Berthelot
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - B T Benkhaled
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - T Haute
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - K Pednekar
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500 AE, Enschede, the Netherlands
| | - K Clark
- Center for Surgical Bioengineering, Deparment of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Children's Northern California, Sacramento, CA, USA
| | - S J Emerson
- Center for Surgical Bioengineering, Deparment of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Children's Northern California, Sacramento, CA, USA
| | - S Atis
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
| | - C Benedetti
- Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - S Langlois
- Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - A Marquant
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - J Prakash
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500 AE, Enschede, the Netherlands
| | - A Wang
- Center for Surgical Bioengineering, Deparment of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Children's Northern California, Sacramento, CA, USA
| | - J M Devoisselle
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - T Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de La Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200, Brest, France
| | - F Djouad
- IRMB, University of Montpellier, INSERM, 34295, Montpellier, France; Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, 34095, Montpellier, France
| | - J P Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
| | - V Lapinte
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - Marie Morille
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
18
|
Xiao D, Inagaki NF, Kamihira M, Ito T. Prevention of Protein Adsorption and Macrophage Phagocytosis of Perfluorocarbon-Based Microsized Core-Shell Artificial Oxygen Carriers by Facile PEG Coatings. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2190-2199. [PMID: 39686745 DOI: 10.1021/acsami.4c16776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Polyethylene glycol (PEG)-coated microsized artificial oxygen carriers (AOCs) with a perfluorooctyl bromide (PFOB) core and poly(lactide-co-caprolactone) (PLC) shell were successfully fabricated using Shirasu porous glass (SPG) membrane emulsification. The PEG coating was achieved by adding the polylactide-b-polyethylene glycol-b-polylactide (PLA-PEG-PLA) block copolymer to the disperse phase during the SPG membrane emulsification process. During the DCM evaporation process, the three-layer structure of the PEG layer, PLC shell, and PFOB core of the AOCs spontaneously formed by phase separation. By adjustment of the ratio of PLA to PLA-PEG-PLA, the PEG chain density on the AOC surface was controlled and estimated as 0.1-2.4 chains nm-2 based on quantitative proton nuclear magnetic resonance analysis. It was expected that a loop PEG brush structure was formed on the surface of the AOCs owing to the ABA block copolymer structure of PLA-PEG-PLA. With the increase in PEG chain density, nonspecific adsorption of bovine serum albumin, γ-globulin, and fibrinogen to AOCs decreased drastically and reached below 10 μg cm-2. Additionally, phagocytosis of the AOCs, evaluated using the macrophage cell line RAW 264.7, was effectively prevented and the phagocytosis index decreased from 2 to almost 0. Finally, the PEG-coated core-shell AOCs exhibited excellent higher cell viability to RAW 264.7 than bare AOCs and showed oxygen delivery to hypoxia-responsive HeLa cells. Effective facile PEG coating on PFOB/PLC core-shell AOCs was successfully achieved simultaneously with membrane emulsification and subsequent evaporation-induced phase separation. It will be an effective strategy for membrane emulsification technology as well as the preparation of AOCs.
Collapse
Affiliation(s)
- Da Xiao
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Natsuko F Inagaki
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Taichi Ito
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- Department of Radiology and Biomedical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
19
|
Lee H. Effect of PEGylation on the Adsorption and Binding Strength of Plasma Proteins to Nanoparticle Surfaces. Mol Pharm 2025; 22:520-532. [PMID: 39718345 DOI: 10.1021/acs.molpharmaceut.4c01132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The adsorption of plasma proteins (human serum albumin, immunoglobulin γ-1, apolipoproteins A-I and E-III) onto polystyrene surfaces grafted with polyethylene glycol (PEG) at different grafting densities is simulated using an all-atom PEG model validated by comparing the conformations of isolated PEG chains with previous simulation and theoretical values. At high PEG density, the grafted PEG chains extend like brushes, while at low density, they significantly adsorb to the surface due to electrostatic attraction between polystyrene amines and PEG oxygens, forming a PEG layer much thinner than its Flory radius. Free energy calculations show that PEGylation can either increase or decrease the binding strength between proteins and surfaces, to an extent dependent on PEG density and specific proteins involved, in agreement with experiments. In particular, grafted PEG chains not only sterically block the binding between proteins and surfaces but also strongly interact with proteins via hydrogen bonds and electrostatic and hydrophobic interactions, with apolipoproteins exhibiting stronger hydrophobic interactions with PEG than other proteins, implying that these specific protein-PEG interactions help certain proteins remain on the PEGylated surface. These simulation findings help explain experimental observations regarding the abundance of specific plasma proteins adsorbed onto nanoparticles grafted with PEG at different densities.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin-si 16890, South Korea
| |
Collapse
|
20
|
Almutary AG, Chauhan P, Baldaniya L, Menon SV, Kumar MR, Chaturvedi B, Sharma N, Chauhan AS, Abomughaid MM, M D, Paiva-Santos AC, Lakhanpal S, Jha NK. Overcoming challenges in the design of drug delivery systems targeting the central nervous system. Nanomedicine (Lond) 2025; 20:5-8. [PMID: 39564781 DOI: 10.1080/17435889.2024.2421157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Affiliation(s)
- Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak, Haryana 124001, India
| | - Lalji Baldaniya
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences, Marwadi University, Rajkot, 360003, Gujrat, India
| | - Soumya V Menon
- Department of Chemistry & Biochemistry, School of Sciences, JAIN (Deemed to be University), Banglore, Karnataka, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh- 531162, India
| | - Bhumi Chaturvedi
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research & Innovation, Uttaranchal University, Dehradun, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Dhivyadharshni M
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Biosciences & Technology (SBT), Galgotias University, Greater Noida, India
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
- Department of Biotechnology Engineering & Food Technology, Chandigarh University, Mohali, 140413, India
| |
Collapse
|
21
|
Tang H, Wang H, Gan Z, Ding Z, Yu Q. Engineering the Hydrophilic-Hydrophobic Interface of Polymeric Micelles by Cationic Blocks for Enhanced Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69011-69027. [PMID: 39639482 DOI: 10.1021/acsami.4c17024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The cationic surface charge critically influences the biological functions and therapeutic outcomes of the cancer nanomedicines. However, the basic correlation between the cationic group categories and their therapeutic efficacy has not been elucidated. In this study, cationic polymeric nanoparticles with amino groups (primary, tertiary, and quaternary amines) as the single variable were leveraged to investigate the various effects of amino species for enhanced antitumor chemotherapy. The nanoparticles were constructed from a series of triblock polymers with varying cationic repeating units at the hydrophilic-hydrophobic interface. Our results suggested that quaternary ammonium outperforms its primary and tertiary counterparts in destroying mitochondrial membranes to induce apoptosis, penetrating deep inside the tumor tissue, and damaging tumor vasculatures. As a result, we were able to effectively inhibit tumor growth in mice by a quaternary ammonium conjugate without causing significant toxicity. Our work demonstrated that the chemical structures played vital roles in regulating their biological functions and provided valuable information for designing cationic drug delivery systems.
Collapse
Affiliation(s)
- Hao Tang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology; Shenzhen, Guangdong 518055, P. R. China
| | - Hanbing Wang
- The State Key Laboratory of Organic Inorganic Composites, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhihua Gan
- The State Key Laboratory of Organic Inorganic Composites, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhenshan Ding
- Department of Urology, China-Japan Friendship Hospital, Beijing 100029, P. R. China
| | - Qingsong Yu
- The State Key Laboratory of Organic Inorganic Composites, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
22
|
Elsayed N. Selective imaging, gene, and therapeutic delivery using PEGylated and pH-Sensitive nanoparticles for enhanced lung disorder treatment. Int J Pharm 2024; 666:124819. [PMID: 39424084 DOI: 10.1016/j.ijpharm.2024.124819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Lung inflammation involves the activation of immune cells and inflammatory mediators in response to injury and infection. When inflammation persists, fibroblasts, which are resident lung cells, become activated, leading to pulmonary fibrosis (PF), abnormal wound healing, and long-term damage to the alveolar epithelium. This persistent inflammation and fibrosis can also elevate the risk of lung cancer, emphasizing the need for innovative treatments. Current therapies, such as inhaled corticosteroids (ICS) and chemotherapy, have significant limitations. Although conventional nanoparticles (NPs) provide a promising avenue for treating lung disorders, they have limited selectivity and stability. Polyethylene glycol (PEG) grafting can prevent NP aggregation and phagocytosis, thus prolonging their circulation time. When combined with targeting ligands, PEGylated NPs can deliver drugs precisely to specific cells or tissues. Moreover, pH-sensitive NPs offer the advantage of selective drug delivery to inflammatory or tumor-acidic environments, reducing side effects. These NPs can change their size, shape, or surface charge in response to pH variations, improving drug delivery efficiency. This review examines the techniques of PEGylation, the polymers used in pH-sensitive NPs, and their therapeutic applications for lung inflammation, fibrosis, and cancer. By harnessing innovative NP technologies, researchers can develop effective therapies for respiratory conditions, addressing unmet medical needs and enhancing patient outcomes.
Collapse
Affiliation(s)
- Nourhan Elsayed
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, Subang Jaya, Malaysia.
| |
Collapse
|
23
|
Kihara S, Aljabbari A, Bērziņš K, Krog LS, Mota-Santiago P, Terry A, Kirby N, Whitten AE, Boyd BJ. The "gut" corona at the surface of nanoparticles is dependent on exposure to bile salts and phospholipids. J Colloid Interface Sci 2024; 680:797-807. [PMID: 39591792 DOI: 10.1016/j.jcis.2024.11.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/07/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024]
Abstract
HYPOTHESIS The formation of a biomolecular corona on nanoparticle surfaces significantly influences their biological behaviour, particularly in drug delivery applications. Despite the prevalence of ingestion of particles (e.g, during oral drug delivery), our understanding of corona formation within the gastrointestinal (GI) tract remains limited, especially for non-protein components. The hypothesis of this work is that the exposure of nanoparticles to bile components will form a "corona" structure and protein corona will represent proteomes different from the original bile fluid. Two major aspects of biomolecular corona formed in GI fluid (hereby termed "gut corona), which ultimately dictate the fate of particle-based carriers, include the composition and the surface structure of nanoparticle-corona complex. EXPERIMENTS The structure and composition of the biomolecular corona formed on model SiO2 nanoparticles within simulated and extracted bile fluids were determined using small-angle scattering, quantification assays, and liquid chromatography with tandem mass spectrometry (LC-MS/MS) techniques. FINDINGS The formation of raspberry-like structures was identified, with bile micelles adopting ellipsoidal shapes around the nanoparticles, as opposed to a surface covered with a uniform corona (i.e., core-shell structure). Assay quantification and proteomics experiments revealed a notable increase in the ratio of protein to bile salt within the corona compared to the original bile fluid. The composition of the proteome differed between the bovine bile and the protein corona with only 34 proteins associated with the nanoparticles from the top 100 identified in bovine bile. Despite the differences in protein types identified between bovine bile and gut corona, the proportions of protein between different functional classes, such as enzymes and structural proteins, show little variation. This work elucidates the intricate interactions between nanoparticles and gut molecules, offering insights crucial for designing nanoparticle formulations for optimized oral drug delivery and understanding nanoparticle behaviour within the GI tract.
Collapse
Affiliation(s)
- Shinji Kihara
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| | - Anas Aljabbari
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Kārlis Bērziņš
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Lasse S Krog
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | | | - Ann Terry
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - Nigel Kirby
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Andrew E Whitten
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - Ben J Boyd
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
24
|
Lee H. Recent Advances in Simulation Studies on the Protein Corona. Pharmaceutics 2024; 16:1419. [PMID: 39598542 PMCID: PMC11597855 DOI: 10.3390/pharmaceutics16111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
When flowing through the blood stream, drug carriers such as nanoparticles encounter hundreds of plasma proteins, forming a protein layer on the nanoparticle surface, known as the "protein corona". Since the protein corona influences the size, shape, and surface properties of nanoparticles, it can modulate their circulating lifetime, cytotoxicity, and targeting efficiency. Therefore, understanding the mechanism of protein corona formation at the atomic scale is crucial, which has become possible due to advances in computer power and simulation methodologies. This review covers the following topics: (1) the structure, dynamics, and composition of protein corona on nanoparticles; (2) the effects of protein concentration and ionic strength on protein corona formation; (3) the effects of particle size, morphology, and surface properties on corona formation; (4) the interactions among lipids, membranes, and nanoparticles with the protein corona. For each topic, mesoscale, coarse-grained, and all-atom molecular dynamics simulations since 2020 are discussed. These simulations not only successfully reproduce experimental observations but also provide physical insights into the protein corona formation. In particular, these simulation findings can be applied to manipulate the formation of a protein corona that can target specific cells, aiding in the rational design of nanomedicines for drug delivery applications.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin-si 16890, Republic of Korea
| |
Collapse
|
25
|
Yıldırım M, Acet BÖ, Dikici E, Odabaşı M, Acet Ö. Things to Know and Latest Trends in the Design and Application of Nanoplatforms in Cancer Treatment. BIONANOSCIENCE 2024; 14:4167-4188. [DOI: 10.1007/s12668-024-01582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 01/05/2025]
|
26
|
Sumera, Mirza R, Shah KU, Rehman AU. Self-assembled mixed nanomicelles based hydrogel for enhanced transdermal bioavailability of allopurinol in gout therapy: In vitro and In vivo evaluation. J Drug Deliv Sci Technol 2024; 101:106257. [DOI: 10.1016/j.jddst.2024.106257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Khan M. Polymers as Efficient Non-Viral Gene Delivery Vectors: The Role of the Chemical and Physical Architecture of Macromolecules. Polymers (Basel) 2024; 16:2629. [PMID: 39339093 PMCID: PMC11435517 DOI: 10.3390/polym16182629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Gene therapy is the technique of inserting foreign genetic elements into host cells to achieve a therapeutic effect. Although gene therapy was initially formulated as a potential remedy for specific genetic problems, it currently offers solutions for many diseases with varying inheritance patterns and acquired diseases. There are two major groups of vectors for gene therapy: viral vector gene therapy and non-viral vector gene therapy. This review examines the role of a macromolecule's chemical and physical architecture in non-viral gene delivery, including their design and synthesis. Polymers can boost circulation, improve delivery, and control cargo release through various methods. The prominent examples discussed include poly-L-lysine, polyethyleneimine, comb polymers, brush polymers, and star polymers, as well as hydrogels and natural polymers and their modifications. While significant progress has been made, challenges still exist in gene stabilization, targeting specificity, and cellular uptake. Overcoming cytotoxicity, improving delivery efficiency, and utilizing natural polymers and hybrid systems are vital factors for prospects. This comprehensive review provides an illuminating overview of the field, guiding the way toward innovative non-viral-based gene delivery solutions.
Collapse
Affiliation(s)
- Majad Khan
- Department of Chemistry, King Fahd University of Petroleum & Minerals KFUPM, Dahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals KFUPM, Dahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-CRAC), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
28
|
Anaki A, Tzror-Azankot C, Motiei M, Sadan T, Popovtzer R. Impact of synthesis methods on the functionality of antibody-conjugated gold nanoparticles for targeted therapy. NANOSCALE ADVANCES 2024:d4na00134f. [PMID: 39247853 PMCID: PMC11372556 DOI: 10.1039/d4na00134f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024]
Abstract
Gold nanoparticles (GNPs) are emerging as promising modular platforms for antibody-based cancer therapeutics. Their unique physiochemical properties enable efficient binding of multiple antibodies upon a single particle, thereby enhancing therapeutic potential. However, the effect of widely used synthesis techniques on the characteristics and functionality of antibody-GNP platforms has yet to be fully understood. Here, we investigated the effect of key synthesis approaches, namely, covalent binding and physical adsorption, on the properties and anti-cancer functionality of antibody-coated GNPs. By carefully manipulating synthesis variables, including antibody mass in reaction and linker compositions, we revealed a direct impact of these synthesis methods on antibody binding efficiency and anti-cancer functionality. We found that covalent binding of antibodies to GNPs generated a platform with increased cancer cell killing functionality as compared to the adsorption approach. Additionally, a higher antibody mass in the synthesis reaction and a higher polyethylene glycol linker ratio upon covalently bound antibody-GNPs led to increased cell death. Our findings emphasize the critical role of synthesis strategies in determining the functionality of targeted GNPs for effective cancer therapy.
Collapse
Affiliation(s)
- Adi Anaki
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University Ramat Gan 5290002 Israel
| | - Chen Tzror-Azankot
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University Ramat Gan 5290002 Israel
| | - Menachem Motiei
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University Ramat Gan 5290002 Israel
| | - Tamar Sadan
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University Ramat Gan 5290002 Israel
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University Ramat Gan 5290002 Israel
| |
Collapse
|
29
|
Longobardi G, Moore TL, Conte C, Ungaro F, Satchi‐Fainaro R, Quaglia F. Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1990. [PMID: 39217459 PMCID: PMC11670051 DOI: 10.1002/wnan.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Polymeric nanoparticles (NPs), specifically those comprised of biodegradable and biocompatible polyesters, have been heralded as a game-changing drug delivery platform. In fact, poly(α-hydroxy acids) such as polylactide (PLA), poly(lactide-co-glycolide) (PLGA), and poly(ε-caprolactone) (PCL) have been heavily researched in the past three decades as the material basis of polymeric NPs for drug delivery applications. As materials, these polymers have found success in resorbable sutures, biodegradable implants, and even monolithic, biodegradable platforms for sustained release of therapeutics (e.g., proteins and small molecules) and diagnostics. Few fields have gained more attention in drug delivery through polymeric NPs than cancer therapy. However, the clinical translational of polymeric nanomedicines for treating solid tumors has not been congruent with the fervor or funding in this particular field of research. Here, we attempt to provide a comprehensive snapshot of polyester NPs in the context of chemotherapeutic delivery. This includes a preliminary exploration of the polymeric nanomedicine in the cancer research space. We examine the various processes for producing polyester NPs, including methods for surface-functionalization, and related challenges. After a detailed overview of the multiple factors involved with the delivery of NPs to solid tumors, the crosstalk between particle design and interactions with biological systems is discussed. Finally, we report state-of-the-art approaches toward effective delivery of NPs to tumors, aiming at identifying new research areas and re-evaluating the reasons why some research avenues have underdelivered. We hope our effort will contribute to a better understanding of the gap to fill and delineate the future research work needed to bring polyester-based NPs closer to clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Thomas Lee Moore
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Claudia Conte
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Francesca Ungaro
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Fabiana Quaglia
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
30
|
Lee J, De La Torre AL, Rawlinson FL, Ness DB, Lewis LD, Hickey WF, Chang CCY, Chang TY. Characterization of Stealth Liposome-Based Nanoparticles Encapsulating the ACAT1/SOAT1 Inhibitor F26: Efficacy and Toxicity Studies In Vitro and in Wild-Type Mice. Int J Mol Sci 2024; 25:9151. [PMID: 39273099 PMCID: PMC11394700 DOI: 10.3390/ijms25179151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Cholesterol homeostasis is pivotal for cellular function. Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1), also abbreviated as SOAT1, is an enzyme responsible for catalyzing the storage of excess cholesterol to cholesteryl esters. ACAT1 is an emerging target to treat diverse diseases including atherosclerosis, cancer, and neurodegenerative diseases. F12511 is a high-affinity ACAT1 inhibitor. Previously, we developed a stealth liposome-based nanoparticle to encapsulate F12511 to enhance its delivery to the brain and showed its efficacy in treating a mouse model for Alzheimer's disease (AD). In this study, we introduce F26, a close derivative of F12511 metabolite in rats. F26 was encapsulated in the same DSPE-PEG2000/phosphatidylcholine (PC) liposome-based nanoparticle system. We employed various in vitro and in vivo methodologies to assess F26's efficacy and toxicity compared to F12511. The results demonstrate that F26 is more effective and durable than F12511 in inhibiting ACAT1, in both mouse embryonic fibroblasts (MEFs), and in multiple mouse tissues including the brain tissues, without exhibiting any overt systemic or neurotoxic effects. This study demonstrates the superior pharmacokinetic and safety profile of F26 in wild-type mice, and suggests its therapeutic potential against various neurodegenerative diseases including AD.
Collapse
Affiliation(s)
- Junghoon Lee
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (J.L.)
| | - Adrianna L. De La Torre
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (J.L.)
| | - Felix L. Rawlinson
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (J.L.)
| | - Dylan B. Ness
- Clinical Pharmacology Shared Resource, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Lionel D. Lewis
- Clinical Pharmacology Shared Resource, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - William F. Hickey
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Catherine C. Y. Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (J.L.)
| | - Ta Yuan Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (J.L.)
| |
Collapse
|
31
|
Croitoru GA, Pîrvulescu DC, Niculescu AG, Epistatu D, Rădulescu M, Grumezescu AM, Nicolae CL. Nanomaterials in Immunology: Bridging Innovative Approaches in Immune Modulation, Diagnostics, and Therapy. J Funct Biomater 2024; 15:225. [PMID: 39194663 DOI: 10.3390/jfb15080225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
The intersection of immunology and nanotechnology has provided significant advancements in biomedical research and clinical applications over the years. Immunology aims to understand the immune system's defense mechanisms against pathogens. Nanotechnology has demonstrated its potential to manipulate immune responses, as nanomaterials' properties can be modified for the desired application. Research has shown that nanomaterials can be applied in diagnostics, therapy, and vaccine development. In diagnostics, nanomaterials can be used for biosensor development, accurately detecting biomarkers even at very low concentrations. Therapeutically, nanomaterials can act as efficient carriers for delivering drugs, antigens, or genetic material directly to targeted cells or tissues. This targeted delivery improves therapeutic efficacy and reduces the adverse effects on healthy cells and tissues. In vaccine development, nanoparticles can improve vaccine durability and extend immune responses by effectively delivering adjuvants and antigens to immune cells. Despite these advancements, challenges regarding the safety, biocompatibility, and scalability of nanomaterials for clinical applications are still present. This review will cover the fundamental interactions between nanomaterials and the immune system, their potential applications in immunology, and their safety and biocompatibility concerns.
Collapse
Affiliation(s)
- George-Alexandru Croitoru
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania
| | - Diana-Cristina Pîrvulescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Dragoș Epistatu
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania
| | - Marius Rădulescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Carmen-Larisa Nicolae
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania
| |
Collapse
|
32
|
López-Estevez AM, Gref R, Alonso MJ. A journey through the history of PEGylated drug delivery nanocarriers. Drug Deliv Transl Res 2024; 14:2026-2031. [PMID: 38796665 PMCID: PMC11208220 DOI: 10.1007/s13346-024-01608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
This note aims to inspire through providing a personal view of the development and potential Drug Delivery Nanocarriers functionalized with polythyleneglycol (PEG). This polymer has been used extensively in Pharmaceutical Technology in a variety of compositions, including polyethylene oxide (PEO)-based surfactants. However, the concept of PEGylation, which started in the 70's, differs from the functionality of a surfactant, already discloses in the 50's. Here, we strictly adhere to the biological functionality of PEGylated nanocarriers intended to have a reduced interaction with proteins and, therefore, modify their biodistribution as well as facilitate their diffusion across mucus and other biological barriers. We analyze how this concept has evolved over the years and the benefit obtained so far in terms of marketed nanomedicines and provide the readers with a prospect view of the topic.
Collapse
Affiliation(s)
- Ana M López-Estevez
- CIMUS Research Institute and IDIS Research Institute, Santiago de Compostela, Spain
- Department of Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ruxandra Gref
- Institut of Molecular Sciences, Université Paris-Saclay, CNRS, ISMO UMR 8216, Orsay, France
| | - Maria J Alonso
- CIMUS Research Institute and IDIS Research Institute, Santiago de Compostela, Spain.
- Department of Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
33
|
Kamal MAM, Bassil J, Loretz B, Hirsch AKH, Lee S, Lehr CM. Arg-biodynamers as antibiotic potentiators through interacting with Gram-negative outer membrane lipopolysaccharides. Eur J Pharm Biopharm 2024; 200:114336. [PMID: 38795784 DOI: 10.1016/j.ejpb.2024.114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Antimicrobial resistance is becoming more prominent day after day due to a number of mechanisms by microbes, especially the sophisticated biological barriers of bacteria, especially in Gram-negatives. There, the lipopolysaccharides (LPS) layer is a unique component of the outer leaflet of the outer membrane which is highly impermeable and prevents antibiotics from passing passively into the intracellular compartments. Biodynamers, a novel class of dynamically bio-responsive polymers, may open new perspectives to overcome this particular barrier by accommodating various secondary structures and form supramolecular structures in such bacterial microenvironments. Generally, bio-responsive polymers are not only candidates as bio-active molecules against bacteria but also carriers via their interactions with the cargo. Based on their dynamicity, design flexibility, biodegradability, biocompatibility, and pH-responsiveness, we investigated the potential of two peptide-based biodynamers for improving antimicrobial drug delivery. By a range of experimental methods, we discovered a greater affinity of Arg-biodynamers for bacterial membranes than for mammalian membranes as well as an enhanced LPS targeting on the bacterial membrane, opening perspectives for enhancing the delivery of antimicrobials across the Gram-negative bacterial cell envelope. This could be explained by the change of the secondary structure of Arg-biodynamers into a predominant β-sheet character in the LPS microenvironment, by contrast to the α-helical structure typically observed for most lipid membrane-permeabilizing peptides. In comparison to poly-L-arginine, the intrinsic antibacterial activity of Arg-biodynamers was nearly unchanged, but its toxicity against mammalian cells was >128-fold reduced. When used in bacterio as an antibiotic potentiator, however, Arg-biodynamers improved the minimum inhibitory concentration (MIC) against Escherichia coli by 32 times compared to colistin alone. Similar effect has also been observed in two stains of Pseudomonas aeruginosa. Arg-biodynamers may therefore represent an interesting option as an adjuvant for antibiotics against Gram-negative bacteria and to overcome antimicrobial resistance.
Collapse
Affiliation(s)
- Mohamed A M Kamal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany; Saarland University, Department of Pharmacy, 66123 Saarbrücken, Germany
| | - Justine Bassil
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany; Saarland University, Department of Pharmacy, 66123 Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany; Saarland University, Department of Pharmacy, 66123 Saarbrücken, Germany
| | - Sangeun Lee
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany; Saarland University, Department of Pharmacy, 66123 Saarbrücken, Germany.
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany; Saarland University, Department of Pharmacy, 66123 Saarbrücken, Germany.
| |
Collapse
|
34
|
Makharadze D, Kantaria T, Yousef I, del Valle LJ, Katsarava R, Puiggalí J. PEGylated Micro/Nanoparticles Based on Biodegradable Poly(Ester Amides): Preparation and Study of the Core-Shell Structure by Synchrotron Radiation-Based FTIR Microspectroscopy and Electron Microscopy. Int J Mol Sci 2024; 25:6999. [PMID: 39000109 PMCID: PMC11241343 DOI: 10.3390/ijms25136999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Surface modification of drug-loaded particles with polyethylene glycol (PEG) chains is a powerful tool that promotes better transport of therapeutic agents, provides stability, and avoids their detection by the immune system. In this study, we used a new approach to synthesize a biodegradable poly(ester amide) (PEA) and PEGylating surfactant. These were employed to fabricate micro/nanoparticles with a core-shell structure. Nanoparticle (NP)-protein interactions and self-assembling were subsequently studied by synchrotron radiation-based FTIR microspectroscopy (SR-FTIRM) and transmission electron microscopy (TEM) techniques. The core-shell structure was identified using IR absorption bands of characteristic chemical groups. Specifically, the stretching absorption band of the secondary amino group (3300 cm-1) allowed us to identify the poly(ester amide) core, while the band at 1105 cm-1 (C-O-C vibration) was useful to demonstrate the shell structure based on PEG chains. By integration of absorption bands, a 2D intensity map of the particle was built to show a core-shell structure, which was further supported by TEM images.
Collapse
Affiliation(s)
- Davit Makharadze
- Departament de Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (D.M.); (L.J.d.V.)
| | - Temur Kantaria
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi 0159, Georgia; (T.K.); (R.K.)
| | - Ibraheem Yousef
- ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, Cerdanyola del Vallès, 08290 Barcelona, Spain;
| | - Luis J. del Valle
- Departament de Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (D.M.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Ramaz Katsarava
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi 0159, Georgia; (T.K.); (R.K.)
| | - Jordi Puiggalí
- Departament de Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (D.M.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| |
Collapse
|
35
|
Pang ASR, Dinesh T, Pang NYL, Dinesh V, Pang KYL, Yong CL, Lee SJJ, Yip GW, Bay BH, Srinivasan DK. Nanoparticles as Drug Delivery Systems for the Targeted Treatment of Atherosclerosis. Molecules 2024; 29:2873. [PMID: 38930939 PMCID: PMC11206617 DOI: 10.3390/molecules29122873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Atherosclerosis continues to be a leading cause of morbidity and mortality globally. The precise evaluation of the extent of an atherosclerotic plaque is essential for forecasting its likelihood of causing health concerns and tracking treatment outcomes. When compared to conventional methods used, nanoparticles offer clear benefits and excellent development opportunities for the detection and characterisation of susceptible atherosclerotic plaques. In this review, we analyse the recent advancements of nanoparticles as theranostics in the management of atherosclerosis, with an emphasis on applications in drug delivery. Furthermore, the main issues that must be resolved in order to advance clinical utility and future developments of NP research are discussed. It is anticipated that medical NPs will develop into complex and advanced next-generation nanobotics that can carry out a variety of functions in the bloodstream.
Collapse
Affiliation(s)
- Alexander Shao-Rong Pang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (A.S.-R.P.); (N.Y.-L.P.); (C.L.Y.)
| | - Tarini Dinesh
- Department of Medicine, Government Kilpauk Medical College, Chennai 600010, Tamilnadu, India;
| | - Natalie Yan-Lin Pang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (A.S.-R.P.); (N.Y.-L.P.); (C.L.Y.)
| | - Vishalli Dinesh
- Department of Pathology, Dhanalakshmi Srinivasan Medical College Hospital, Perambalur 621113, Tamilnadu, India;
| | - Kimberley Yun-Lin Pang
- Division of Medicine, South Australia Health, Northern Adelaide Local Health Network, Adelaide, SA 5112, Australia; (K.Y.-L.P.); (S.J.J.L.)
| | - Cai Ling Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (A.S.-R.P.); (N.Y.-L.P.); (C.L.Y.)
| | - Shawn Jia Jun Lee
- Division of Medicine, South Australia Health, Northern Adelaide Local Health Network, Adelaide, SA 5112, Australia; (K.Y.-L.P.); (S.J.J.L.)
| | - George W. Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (G.W.Y.); (B.H.B.)
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (G.W.Y.); (B.H.B.)
| | - Dinesh Kumar Srinivasan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (G.W.Y.); (B.H.B.)
| |
Collapse
|
36
|
Douglas-Green SA, Aleman JA, Hammond PT. Electrophoresis-Based Approach for Characterizing Dendrimer-Protein Interactions: A Proof-of-Concept Study. ACS Biomater Sci Eng 2024; 10:3747-3758. [PMID: 38753577 DOI: 10.1021/acsbiomaterials.3c01579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Improving the clinical translation of nanomedicine requires better knowledge about how nanoparticles interact with biological environments. As researchers are recognizing the importance of understanding the protein corona and characterizing how nanocarriers respond in biological systems, new tools and techniques are needed to analyze nanocarrier-protein interactions, especially for smaller size (<10 nm) nanoparticles like polyamidoamine (PAMAM) dendrimers. Here, we developed a streamlined, semiquantitative approach to assess dendrimer-protein interactions using a nondenaturing electrophoresis technique combined with mass spectrometry. With this protocol, we detect fluorescently tagged dendrimers and proteins simultaneously, enabling us to analyze when dendrimers migrate with proteins. We found that PAMAM dendrimers mostly interact with complement proteins, particularly C3 and C4a, which aligns with previously published data, verifying that our approach can be used to isolate and identify dendrimer-protein interactions.
Collapse
Affiliation(s)
- Simone A Douglas-Green
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St, Cambridge, Massachusetts 02142, United States
| | - Juan A Aleman
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Paula T Hammond
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
37
|
Sameer Khan M, Gupta G, Alsayari A, Wahab S, Sahebkar A, Kesharwani P. Advancements in liposomal formulations: A comprehensive exploration of industrial production techniques. Int J Pharm 2024; 658:124212. [PMID: 38723730 DOI: 10.1016/j.ijpharm.2024.124212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Liposomes are nanosized, spherical vesicles consisting of an aqueous core encircled by one or more phospholipid bilayer shells. Liposomes have found extensive use in numerous biomedicine and nanomedicine applications due to their excellent biocompatibility, adaptable chemical composition, ease of preparation, and diverse structural characteristics. These applications include nanocarriers for drug delivery, immunoassays, nutraceuticals, tissue engineering, clinical diagnostics, and theranostics formulations. These applications stimulated significant efforts toward scaling up formation processes in anticipation of appropriate industrial advancement. Despite the advancements in conventional methods and the emergence of new approaches for liposome production, their inherent susceptibility to chemical and mechanical influences contributes to critical challenges, including limited colloidal stability and decreased efficiency in encapsulating cargo molecules. With this context, the current review provides brief insights into liposomes conventional and novel industrial production techniques. With a special focus on the structural parameters, and pivotal elements influencing the synthesis of an appropriate and stable formulation, followed by the various regulatory aspects of industrial production.
Collapse
Affiliation(s)
- Mohammad Sameer Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun 248002, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
38
|
Flint Z, Grannemann H, Baffour K, Koti N, Taylor E, Grier E, Sutton C, Johnson D, Dandawate P, Patel R, Santra S, Banerjee T. Mechanistic Insights Behind the Self-Assembly of Human Insulin under the Influence of Surface-Engineered Gold Nanoparticles. ACS Chem Neurosci 2024; 15:2359-2371. [PMID: 38728258 PMCID: PMC11157486 DOI: 10.1021/acschemneuro.4c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Elucidating the underlying principles of amyloid protein self-assembly at nanobio interfaces is extremely challenging due to the diversity in physicochemical properties of nanomaterials and their physical interactions with biological systems. It is, therefore, important to develop nanoscale materials with dynamic features and heterogeneities. In this work, through engineering of hierarchical polyethylene glycol (PEG) structures on gold nanoparticle (GNP) surfaces, tailored nanomaterials with different surface properties and conformations (GNPs-PEG) are created for modulating the self-assembly of a widely studied protein, insulin, under amyloidogenic conditions. Important biophysical studies including thioflavin T (ThT) binding, circular dichroism (CD), surface plasmon resonance (SPR), and atomic force microscopy (AFM) showed that higher-molecular weight GNPs-PEG triggered the formation of amyloid fibrils by promoting adsorption of proteins at nanoparticle surfaces and favoring primary nucleation rate. Moreover, the modulation of fibrillation kinetics reduces the overall toxicity of insulin oligomers and fibrils. In addition, the interaction between the PEG polymer and amyloidogenic insulin examined using MD simulations revealed major changes in the secondary structural elements of the B chain of insulin. The experimental findings provide molecular-level descriptions of how the PEGylated nanoparticle surface modulates protein adsorption and drives the self-assembly of insulin. This facile approach provides a new avenue for systematically altering the binding affinities on nanoscale surfaces by tailoring their topologies for examining adsorption-induced fibrillogenesis phenomena of amyloid proteins. Together, this study suggests the role of nanobio interfaces during surface-induced heterogeneous nucleation as a primary target for designing therapeutic interventions for amyloid-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Zachary Flint
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States
| | - Haylee Grannemann
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States
| | - Kristos Baffour
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States
| | - Neelima Koti
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States
| | - Emma Taylor
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States
| | - Ethan Grier
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States
| | - Carissa Sutton
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States
| | - David Johnson
- Molecular
Graphics and Modeling Laboratory, University
of Kansas, 2034 Becker
Drive, Lawrence, Kansas 66018, United States
| | - Prasad Dandawate
- Department
of Cancer Biology, The University of Kansas
Medical Center, Kansas City, Kansas 66160, United States
| | - Rishi Patel
- Jordan
Valley Innovation Center, Missouri State
University, 542 N. Boonville
Avenue, Springfield, Missouri 65806, United States
| | - Santimukul Santra
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States
| | - Tuhina Banerjee
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States
| |
Collapse
|
39
|
Yang X, Porcel E, Marichal L, Gonzalez-Vargas C, Khitous A, Salado-Leza D, Li X, Renault JP, Pin S, Remita H, Wien F, Lacombe S. Human Serum Albumin in the Presence of Small Platinum Nanoparticles. J Pharm Sci 2024; 113:1645-1652. [PMID: 38336007 DOI: 10.1016/j.xphs.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Noble metal materials, especially platinum nanoparticles (Pt NPs), have immense potential in nanomedicine as therapeutic agents on account of their high electron density and their high surface area. Intravenous injection is proposed as the best mode to deliver the product to patients. However, our understanding of the reaction of nanoparticles with blood components, especially proteins, is far behind the explosive development of these agents. Using synchrotron radiation circular dichroism (SRCD), we investigated the structural and stability changes of human serum albumin (HSA) upon interaction with PEG-OH coated Pt NPs at nanomolar concentrations, conditions potentially encountered for intravenous injection. There is no strong complexation found between HSA and Pt NPs. However, for the highest molar ratio of NP:HSA of 1:1, an increase of 18 °C in the thermal unfolding of HSA was observed, which is attributed to increased thermal stability of HSA generated by preferential hydration. This work proposes a new and fast method to probe the potential toxicity of nanoparticles intended for clinical use with intravenous injection.
Collapse
Affiliation(s)
- Xiaomin Yang
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Erika Porcel
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Laurent Marichal
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Cesar Gonzalez-Vargas
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Amine Khitous
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France; Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Daniela Salado-Leza
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France; CONAHCYT, Institute of Physics, Autonomous University of San Luis Potosi, 78295 San Luis Potosi, Mexico
| | - Xue Li
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | | | - Serge Pin
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Hynd Remita
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Frank Wien
- Synchrotron Soleil, 91190 Saint-Aubin, France.
| | - Sandrine Lacombe
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France.
| |
Collapse
|
40
|
Beck-Broichsitter M. Bioinspired zwitterionic triblock copolymers designed for colloidal drug delivery: 2 - Biological evaluation. Colloids Surf B Biointerfaces 2024; 238:113886. [PMID: 38608461 DOI: 10.1016/j.colsurfb.2024.113886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024]
Abstract
In this work, poly(lactide) nanoparticles were equipped with a bioinspired coating layer based on poly[2-(methacryloyloxy)ethyl phosphorylcholine] and then evaluated when administered to the lungs and after intravenous injection. Compared to the plain counterparts, the chosen zwitterionic polymer shell prevented the coated colloidal formulation from aggregation and conditioned it for lower cytotoxicity, protein adsorption, complement activation and phagocytic cell uptake. Consequently, no interference with the biophysical function of the lung surfactant system could be detected accompanied by negligible protein and cell influx into the bronchoalveolar space after intratracheal administration. When injected into the central compartment, the coated formulation showed a prolonged circulation half-life and a delayed biodistribution to the liver. Taken together, colloidal drug delivery vehicles would clearly benefit from the investigated poly[2-(methacryloyloxy)ethyl phosphorylcholine]-based polymer coatings.
Collapse
Affiliation(s)
- Moritz Beck-Broichsitter
- Department of Pharmaceutics and Biopharmacy, Philipps-Universität, Marburg, Germany; Medical Clinic II, Department of Internal Medicine, Justus-Liebig-Universität, Giessen, Germany.
| |
Collapse
|
41
|
Jungcharoen P, Panaampon J, Imemkamon T, Saengboonmee C. Magnetic nanoparticles: An emerging nanomedicine for cancer immunotherapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:183-214. [PMID: 39461752 DOI: 10.1016/bs.pmbts.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cancer immunotherapy is a revolutionised strategy that strikingly improves cancer treatment in recent years. However, like other therapeutic modalities, immunotherapy faces several challenges and limitations. Many methods have been developed to overcome those limitations; thus, nanomedicine is one of the emerging fields with a highly promising application. Magnetite nanoparticles (MNPs) have long been used for medical applications, for example, as a contrast medium, and are being investigated as a tool for boosting and synergizing the effects of immunotherapy. With known physicochemical properties and the interaction with the surroundings in biological systems, MNPs are used to improve the efficacy of immunotherapy in both cell-based and antibody-based treatment. This chapter reviews and discusses state-of-the-art MNPs as a tool to advance cancer immunotherapy as well as its limitations that need further investigation for a better therapeutic outcome in preclinical and clinical settings.
Collapse
Affiliation(s)
- Phoomipat Jungcharoen
- Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand
| | - Jutatip Panaampon
- Division of Hematologic Neoplasm, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States; Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection Kumamoto University, Kumamoto, Japan
| | - Thanit Imemkamon
- Division of Medical Oncology, Department of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
42
|
Zumaya ALV, Pavlíčková VS, Rimpelová S, Štějdířová M, Fulem M, Křížová I, Ulbrich P, Řezanka P, Hassouna F. PLGA-based nanocarriers for combined delivery of colchicine and purpurin 18 in cancer therapy: Multimodal approach employing cancer cell spheroids. Int J Pharm 2024; 657:124170. [PMID: 38679244 DOI: 10.1016/j.ijpharm.2024.124170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Improving the anticancer efficacy of chemotherapeutic drugs and photosensitizers requires innovative multifunctional nanoplatforms. This study introduces a chemo- and phototherapeutic drug delivery system (DDS) based on poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs), both PEGylated and non-PEGylated, with a mean size of 200 ± 75 nm. Colchicine (Colch) and purpurin18 (P18) were co-encapsulated into these NPs, and their in vitro drug release profiles were investigated. The anticancer potential of these systems was evaluated across various cell lines (i.e., CaCo-2, PC-3, MCF-7, and MRC-5 cells), demonstrating enhanced NP uptake by cancer cells compared to free drugs. Co-administration of Colch and P18 in 2D and 3D cell line models exhibited a synergistic effect, harnessing both chemotherapeutic and photodynamic effects, leading to higher cancer cell elimination efficacy. This newly developed multifunctional DDS presents a promising platform for combined chemo- and photodynamic therapy in cancer treatment.
Collapse
Affiliation(s)
- Alma Lucia Villela Zumaya
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Vladimíra Svobodová Pavlíčková
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Silvie Rimpelová
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic.
| | - Markéta Štějdířová
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Michal Fulem
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Ivana Křížová
- Faculty of Biotechnology, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Pavel Ulbrich
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Pavel Řezanka
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Fatima Hassouna
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
43
|
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
44
|
Zhang ML, Zhang GP, Ma HS, Pan YZ, Liao XL. Preparation of pH-responsive polyurethane nano micelles and their antibacterial application. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:519-534. [PMID: 38265701 DOI: 10.1080/09205063.2024.2301807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024]
Abstract
Considering the differences in pH between bacterial infection microenvironment and normal tissues, a series of pH-responsive drug-release amphiphilic polyurethane copolymers (DPU-g-PEG) have been prepared in this work. Fourier transform infrared (FT-IR) spectroscopy and 1H NMR was selected to detect the structure of the condensed polymers. The DPU-g-PEG amphiphilic copolymers could form stable micelles with a hydrophilic shell of polyethylene glycol (PEG) and a hydrophobic core of polylactic acid (PLA). We loaded a model drug called triclosan onto DPU-g-PEG micelles and studied how pH affects their particle size, Zeta potential, and drug release performance. The results revealed that when exposed to acidic conditions, the surface potential of DPU-g-PEG micelles changed, the micelles' particle size increased, and the drug release performance was significantly enhanced. These results suggested that the micelles prepared in this study can release more antibacterial substances at sites of bacterial infection. Meanwhile, we also investigated the impact of different ratios of soft and hard segments on the properties of micelles, and the results showed that the pH responsiveness of micelles was strongest when the ratio of soft segments (PLLA diol + PEG 2000): 1,6-hexamethylene diisocyanate (HDI): 2,6-Bis-(2-hydroxy-ethyl)-pyrrolo[3,4-f]isoindole-1,3,5,7-tetraone (DMA) = 1: 1.2: 0.2. Furthermore, the results of inhibition zone test, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) all confirmed the antibacterial activity of triclosan-load DPU-g-PEG micelles. In conclusion, the DPU-g-PEG micelles produced in this study have the potential to be used as intelligent drug delivery systems in the biomedical field.
Collapse
Affiliation(s)
- Mao-Lan Zhang
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Gui-Ping Zhang
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Hong-Shuo Ma
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Yu-Zhu Pan
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, China
| | - Xiao-Ling Liao
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| |
Collapse
|
45
|
Ashkenazi S, Matsanov P, Nassar-Marjiya E, Farah S, Weitz IS. Study of PEG- b-PLA/Eudragit S100 Blends on the Nanoencapsulation of Indigo Carmine Dye and Application in Controlled Release. ACS OMEGA 2024; 9:13382-13390. [PMID: 38524501 PMCID: PMC10956112 DOI: 10.1021/acsomega.3c10447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
A nanocapsule shell of poly(ethylene glycol)-block-poly(d,l-lactic acid) (PEG-b-PLA) mixed with anionic Eudragit S100 (90/10% w/w) was previously used to entrap and define the self-assembly of indigo carmine (IC) within the hydrophilic cavity core. In the present work, binary blends were prepared by solution mixing at different PEG-b-PLA/Eudragit S100 ratios (namely, 100/0, 90/10, 75/25, and 50/50% w/w) to elucidate the role of the capsule shell in tuning the encapsulation of the anionic dye (i.e., IC). The results showed that the higher content of Eudragit S100 in the blend decreases the miscibility of the two polymers due to weak intermolecular interactions between PEG-b-PLA and Eudragit S100. Moreover, with an increase in the amount of Eudragit S100, a higher thermal stability was observed related to the mobility restriction of PEG-b-PLA chains imposed by Eudragit S100. Formulations containing 10 and 25% Eudragit S100 exhibited an optimal interplay of properties between the negative surface charge and the miscibility of the polymer blend. Therefore, the anionic character of the encapsulating agent provides sufficient accumulation of IC molecules in the nanocapsule core, leading to dye aggregates following the self-assembly. At the same time, the blending of the two polymers tunes the IC release properties in the initial stage, achieving slow and controlled release. These findings give important insights into the rational design of polymeric nanosystems containing organic dyes for biomedical applications.
Collapse
Affiliation(s)
- Shaked Ashkenazi
- Department
of Biotechnology Engineering, Braude College
of Engineering Karmiel, Karmiel 2161002, Israel
| | - Pnina Matsanov
- Department
of Biotechnology Engineering, Braude College
of Engineering Karmiel, Karmiel 2161002, Israel
| | - Eid Nassar-Marjiya
- The
Laboratory for Advanced Functional/Medicinal Polymers & Smart
Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Shady Farah
- The
Laboratory for Advanced Functional/Medicinal Polymers & Smart
Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
- The
Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Iris S. Weitz
- Department
of Biotechnology Engineering, Braude College
of Engineering Karmiel, Karmiel 2161002, Israel
| |
Collapse
|
46
|
Lim SH, Wong TW, Tay WX. Overcoming colloidal nanoparticle aggregation in biological milieu for cancer therapeutic delivery: Perspectives of materials and particle design. Adv Colloid Interface Sci 2024; 325:103094. [PMID: 38359673 DOI: 10.1016/j.cis.2024.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/17/2024]
Abstract
Nanoparticles as cancer therapeutic carrier fail in clinical translation due to complex biological environments in vivo consisting of electrolytes and proteins which render nanoparticle aggregation and unable to reach action site. This review identifies the desirable characteristics of nanoparticles and their constituent materials that prevent aggregation from site of administration (oral, lung, injection) to target site. Oral nanoparticles should ideally be 75-100 nm whereas the size of pulmonary nanoparticles minimally affects their aggregation. Nanoparticles generally should carry excess negative surface charges particularly in fasting state and exert steric hindrance through surface decoration with citrate, anionic surfactants and large polymeric chains (polyethylene glycol and polyvinylpyrrolidone) to prevent aggregation. Anionic as well as cationic nanoparticles are both predisposed to protein corona formation as a function of biological protein isoelectric points. Their nanoparticulate surface composition as such should confer hydrophilicity or steric hindrance to evade protein corona formation or its formation should translate into steric hindrance or surface negative charges to prevent further aggregation. Unexpectedly, smaller and cationic nanoparticles are less prone to aggregation at cancer cell interface favoring endocytosis whereas aggregation is essential to enable nanoparticles retention and subsequent cancer cell uptake in tumor microenvironment. Present studies are largely conducted in vitro with simplified simulated biological media. Future aggregation assessment of nanoparticles in biological fluids that mimic that of patients is imperative to address conflicting materials and designs required as a function of body sites in order to realize the future clinical benefits.
Collapse
Affiliation(s)
- Shi Huan Lim
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Republic of Singapore 117543
| | - Tin Wui Wong
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Republic of Singapore 117543; Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research institute, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; UM-UiTM Excipient Development Research Unit (EXDEU), Faculty of Pharmacy, Universiti Malaya, Lembah Pantai 50603, Kuala Lumpur, Malaysia.
| | - Wei Xian Tay
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Republic of Singapore 117543
| |
Collapse
|
47
|
Wang L, Quine S, Frickenstein AN, Lee M, Yang W, Sheth VM, Bourlon MD, He Y, Lyu S, Garcia-Contreras L, Zhao YD, Wilhelm S. Exploring and Analyzing the Systemic Delivery Barriers for Nanoparticles. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2308446. [PMID: 38828467 PMCID: PMC11142462 DOI: 10.1002/adfm.202308446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Indexed: 06/05/2024]
Abstract
Most nanomedicines require efficient in vivo delivery to elicit diagnostic and therapeutic effects. However, en route to their intended tissues, systemically administered nanoparticles often encounter delivery barriers. To describe these barriers, we propose the term "nanoparticle blood removal pathways" (NBRP), which summarizes the interactions between nanoparticles and the body's various cell-dependent and cell-independent blood clearance mechanisms. We reviewed nanoparticle design and biological modulation strategies to mitigate nanoparticle-NBRP interactions. As these interactions affect nanoparticle delivery, we studied the preclinical literature from 2011-2021 and analyzed nanoparticle blood circulation and organ biodistribution data. Our findings revealed that nanoparticle surface chemistry affected the in vivo behavior more than other nanoparticle design parameters. Combinatory biological-PEG surface modification improved the blood area under the curve by ~418%, with a decrease in liver accumulation of up to 47%. A greater understanding of nanoparticle-NBRP interactions and associated delivery trends will provide new nanoparticle design and biological modulation strategies for safer, more effective, and more efficient nanomedicines.
Collapse
Affiliation(s)
- Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Skyler Quine
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Michael Lee
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Vinit M. Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Margaret D. Bourlon
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73117, USA
| | - Yuxin He
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Shanxin Lyu
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Lucila Garcia-Contreras
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73117, USA
| | - Yan D. Zhao
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73012, USA
- Stephenson Cancer Center, Oklahoma City, Oklahoma, 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, Oklahoma City, Oklahoma, 73104, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), Norman, Oklahoma, 73019, USA
| |
Collapse
|
48
|
Sinsinbar G, Bindra AK, Liu S, Chia TW, Yoong Eng EC, Loo SY, Lam JH, Schultheis K, Nallani M. Amphiphilic Block Copolymer Nanostructures as a Tunable Delivery Platform: Perspective and Framework for the Future Drug Product Development. Biomacromolecules 2024; 25:541-563. [PMID: 38240244 DOI: 10.1021/acs.biomac.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Nanoformulation of active payloads or pharmaceutical ingredients (APIs) has always been an area of interest to achieve targeted, sustained, and efficacious delivery. Various delivery platforms have been explored, but loading and delivery of APIs have been challenging because of the chemical and structural properties of these molecules. Polymersomes made from amphiphilic block copolymers (ABCPs) have shown enormous promise as a tunable API delivery platform and confer multifold advantages over lipid-based systems. For example, a COVID booster vaccine comprising polymersomes encapsulating spike protein (ACM-001) has recently completed a Phase I clinical trial and provides a case for developing safe drug products based on ABCP delivery platforms. However, several limitations need to be resolved before they can reach their full potential. In this Perspective, we would like to highlight such aspects requiring further development for translating an ABCP-based delivery platform from a proof of concept to a viable commercial product.
Collapse
Affiliation(s)
- Gaurav Sinsinbar
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Anivind Kaur Bindra
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Shaoqiong Liu
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Teck Wan Chia
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Eunice Chia Yoong Eng
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Ser Yue Loo
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Jian Hang Lam
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Katherine Schultheis
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Madhavan Nallani
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| |
Collapse
|
49
|
Bona BL, Lagarrigue P, Chirizzi C, Espinoza MIM, Pipino C, Metrangolo P, Cellesi F, Baldelli Bombelli F. Design of fluorinated stealth poly(ε-caprolactone) nanocarriers. Colloids Surf B Biointerfaces 2024; 234:113730. [PMID: 38176337 DOI: 10.1016/j.colsurfb.2023.113730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/06/2024]
Abstract
The covalent functionalization of polymers with fluorinated moieties represents a promising strategy for the development of multimodal systems. Moreover, polymer fluorination often endows the resulting nanocarriers with improved colloidal stability in the biological environment. In this work, we developed fluorinated pegylated (PEG) biodegradable poly(ε-caprolactone) (PCL) drug nanocarriers showing both high colloidal stability and stealth properties, as well as being (19F)-Nuclear Magnetic Resonance (NMR) detectable. The optimized nanocarriers were obtained mixing a PEG-PCL block copolymer with a nonafluoro-functionalized PCL polymer. The role of PEGylation and fluorination on self-assembly and colloidal behavior of the obtained nanoparticles (NPs) was investigated, as well as their respective role on stealth properties and colloidal stability. To prove the feasibility of the developed NPs as potential 19F NMR detectable drug delivery systems, a hydrophobic drug was successfully encapsulated, and the maintenance of the relevant 19F NMR properties evaluated. Drug-loaded fluorinated NPs still retained a sharp and intense 19F NMR signal and good relaxivity parameters (i.e., T1 and T2 relaxation times) in water, which were not impaired by drug encapsulation.
Collapse
Affiliation(s)
- Beatrice Lucia Bona
- SupraBioNanoLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy
| | - Prescillia Lagarrigue
- SupraBioNanoLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy; Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy
| | - Cristina Chirizzi
- SupraBioNanoLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy
| | - Maria Isabel Martinez Espinoza
- SupraBioNanoLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy
| | - Christian Pipino
- SupraBioNanoLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy
| | - Pierangelo Metrangolo
- SupraBioNanoLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy
| | - Francesco Cellesi
- SupraBioNanoLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy; Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy
| | - Francesca Baldelli Bombelli
- SupraBioNanoLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy.
| |
Collapse
|
50
|
Ding M, Gao T, Song Y, Yi L, Li W, Deng C, Zhou W, Xie M, Zhang L. Nanoparticle-based T cell immunoimaging and immunomodulatory for diagnosing and treating transplant rejection. Heliyon 2024; 10:e24203. [PMID: 38312645 PMCID: PMC10835187 DOI: 10.1016/j.heliyon.2024.e24203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
T cells serve a pivotal role in the rejection of transplants, both by directly attacking the graft and by recruiting other immune cells, which intensifies the rejection process. Therefore, monitoring T cells becomes crucial for early detection of transplant rejection, while targeted drug delivery specifically to T cells can significantly enhance the effectiveness of rejection therapy. However, regulating the activity of T cells within transplanted organs is challenging, and the prolonged use of immunosuppressive drugs is associated with notable side effects and complications. Functionalized nanoparticles offer a potential solution by targeting T cells within transplants or lymph nodes, thereby reducing the off-target effects and improving the long-term survival of the graft. In this review, we will provide an overview of recent advancements in T cell-targeted imaging molecular probes for diagnosing transplant rejection and the progress of T cell-regulating nanomedicines for treating transplant rejection. Additionally, we will discuss future directions and the challenges in clinical translation.
Collapse
Affiliation(s)
- Mengdan Ding
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yishu Song
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Luyang Yi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wenqu Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Cheng Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wuqi Zhou
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| |
Collapse
|