1
|
Abstract
Non-invasive in-vivo molecular genetic imaging developed over the past decade and predominantly utilises radiotracer (PET, gamma camera, autoradiography), magnetic resonance and optical imaging technology. Molecular genetic imaging has its roots in both molecular biology and cell biology. The convergence of these disciplines and imaging modalities has provided the opportunity to address new research questions, including oncogenesis, tumour maintenance and progression, as well as responses to molecular-targeted therapy. Three different imaging strategies are described: (1) "bio-marker" or "surrogate" imaging; (2) "direct" imaging of specific molecules and pathway activity; (3) "indirect" reporter gene imaging. Examples of each imaging strategy are presented and discussed. Several applications of PET- and optical-based reporter imaging are demonstrated, including signal transduction pathway monitoring, oncogenesis in genetic mouse models, endogenous molecular genetic/biological processes and the response to therapy in animal models of human disease. Molecular imaging studies will compliment established ex-vivo molecular-biological assays that require tissue sampling by providing a spatial and a temporal dimension to our understanding of disease development and progression, as well as response to treatment. Although molecular imaging studies are currently being performed primarily in experimental animals, we optimistically expect they will be translated to human subjects with cancer and other diseases in the near future.
Collapse
Affiliation(s)
- Inna Serganova
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
2
|
Lessard J, Aicha SB, Fournier A, Calvo E, Lavergne E, Pelletier M, Labrie C. Characterization of the RSL1-dependent conditional expression system in LNCaP prostate cancer cells and development of a single vector format. Prostate 2007; 67:808-19. [PMID: 17373718 DOI: 10.1002/pros.20559] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Conditional expression systems are useful tools for the study of gene function but the use of these systems in prostate cancer cells is limited by the undesired biological effects of the inducing ligands. The RheoSwitch system employs RheoSwitch Ligand 1 (RSL1), a non-steroidal analog of the insect hormone ecdysone, to activate a modified nuclear receptor heterodimer that controls target gene expression via GAL4 response elements. This system has not been tested in prostate cancer cells. METHODS We established LNCaP human prostate cancer cell lines that constitutively express RheoSwitch transcription factors to quantify RSL1-dependent expression and assess the effects of RSL1 on cell proliferation and endogenous gene expression. Potential RSL1-responsive genes were identified using Affymetrix microarrays and validated by Northern blot hybridization. A single-vector format was developed to establish cell lines that conditionally produce a recombinant protein. RESULTS Stable cell lines displayed tight and potent (over several orders of magnitude) RSL1-dependent regulation of a transiently transfected luciferase reporter gene. RSL1 did not affect basal or androgen-stimulated cell proliferation and exerted minimal effects on the expression of endogenous genes. Cell lines established using the single-vector system also displayed strictly RSL1-dependent production of the recombinant protein encoded by the stably integrated RSL1-responsive expression cassette. CONCLUSIONS The RheoSwitch system is well suited for conditional gene expression in prostate cancer cells. The single-vector format should facilitate the production of stable cell lines. This system should be useful for the study of proteins involved in prostate cancer in both cell and animal models of the disease.
Collapse
Affiliation(s)
- Julie Lessard
- Molecular Endocrinology and Oncology Research Center, Laval University Medical Research Center (CHUQ), Québec, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
Noninvasive in vivo molecular-genetic imaging uses nuclear, magnetic resonance, and optical imaging techniques. Described and discussed are "direct" imaging of specific molecules and pathway activity, "indirect" reporter gene imaging, and "bio-marker" or "surrogate" imaging. Applications of PET- and optical-based reporter imaging are demonstrated, including imaging of oncogenesis in genetic mouse models, endogenous molecular-genetic-biological properties, and response to therapy in animal models of human disease. Molecular imaging studies complement established ex vivo molecular-biological assays that require tissue sampling by providing a spatial as well as temporal dimension to our understanding of oncogenesis, and the progression and treatment of cancer. Molecular imaging studies being performed in experimental animals will be translated to animals in the near future.
Collapse
Affiliation(s)
- Inna Serganova
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
4
|
Crumling MA, Raphael Y. Manipulating gene expression in the mature inner ear. Brain Res 2006; 1091:265-9. [PMID: 16513096 DOI: 10.1016/j.brainres.2006.01.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Revised: 01/18/2006] [Accepted: 01/21/2006] [Indexed: 10/25/2022]
Abstract
It is possible to manipulate gene expression in cochlear tissue, but technical issues have made this challenging in the mature in vivo inner ear. Generally, the most common reasons for such manipulations involve basic science or therapeutic quests. Examples of experimental studies are those designed to elucidate the role of a specific gene or a gene expression cascade or to understand the function of a particular cell type. Therapeutic goals may include replacing a defective gene or enhancing tissue protection, repair, or regeneration. This review summarizes the main technical approaches that are viable options for in vivo manipulation of gene expression in the mature inner ear, as well as major research and clinical issues likely to benefit from such genetic manipulations.
Collapse
Affiliation(s)
- Mark A Crumling
- Kresge Hearing Research Institute, The University of Michigan, MSRB III Room-9303, Ann Arbor, MI 48109-0648, USA
| | | |
Collapse
|
5
|
Dumortier J, Schönig K, Oberwinkler H, Löw R, Giese T, Bujard H, Schirmacher P, Protzer U. Liver-specific expression of interferon gamma following adenoviral gene transfer controls hepatitis B virus replication in mice. Gene Ther 2005; 12:668-77. [PMID: 15647761 DOI: 10.1038/sj.gt.3302449] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interferons control viral replication and the growth of some malignant tumors. Since systemic application may cause severe adverse effects, tissue-specific expression is an attractive alternative. Liver-directed interferon gene therapy offers promising applications such as chronic viral hepatitis B or C or hepatocellular carcinoma and thus needs testing in vivo in suitable animal models. We therefore used the Tet-On system to regulate gene expression in adenoviral vectors, and studied the effect of liver-specific and regulated interferon gamma expression in a mouse model of chronic hepatitis B virus (HBV) infection. In a first generation adenoviral vector, genes encoding for firefly luciferase and interferons alpha, beta or gamma, respectively, were coexpressed under control of the bidirectional tetracycline-regulated promoter P(tet)bi. Liver-specific promoters driving expression of the reverse tetracycline controlled transactivator ensured local expression in the livers of HBV transgenic mice. Following gene transfer, we demonstrated low background, tight regulation and a 1000-fold induction of gene expression by doxycycline. Both genes within the bidirectional transcription unit were expressed simultaneously, and in a liver-specific fashion in cell culture and in living mice. Doxycycline-dependent interferon gamma expression effectively controlled HBV replication in mice, but did not eliminate HBV transcripts. This system will help to study the effects of local cytokine expression in mouse disease models in detail.
Collapse
Affiliation(s)
- J Dumortier
- Department of Virology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Gonzalez-Nicolini V, Fussenegger M. A novel binary adenovirus-based dual-regulated expression system for independent transcription control of two different transgenes. J Gene Med 2005; 7:1573-85. [PMID: 16052603 DOI: 10.1002/jgm.787] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Stringent multitransgene control is a prerequisite for future gene-therapy and tissue-engineering scenarios and requires constant improvements in design to achieve optimal conditional transcription profiles. METHODS We have pioneered a variety of recombinant adenoviruses which (i) enable streptogramin-responsive transgene transduction in a compact autoregulated one-virus format, (ii) manage independent streptogramin- and tetracycline-responsive control of two different transgenes from a single divergent expression unit, and (iii) control sense and antisense expression of the human cyclin-dependent kinase inhibitor p27(Kip1) to engineer conditional positive (enforced S-phase entry, p27(Kip1)-antisense expression) or negative (G1-phase-specific growth arrest, p27(Kip1)-sense expression) growth control in mammalian cell lines and human primary cells. RESULTS The transgene control performance of all adenoviral expression configurations has been rigorously optimized for tight, balanced and maximum expression levels and was validated for intracellular as well as for secreted product in a variety of biotechnologically relevant cell lines (Chinese hamster ovary cells [CHO-K1], baby hamster kidney cells [BHK-21]) as well as in human cell lines (human fibrosarcoma cells [HT-1080]) and primary cells (human aortic fibroblasts [HAFs]). CONCLUSIONS We believe that multiregulated multigene-controlled adenoviruses are important assets for successful therapeutic reprogramming of mammalian cells in clinically relevant scenarios.
Collapse
Affiliation(s)
- Valeria Gonzalez-Nicolini
- Institute for Chemical and Bio-Engineering, Swiss Federal Institute of Technology, ETH Hoenggerberg, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
7
|
Affiliation(s)
- Michael Doubrovin
- Cotzias Neuro-Oncology Lab, Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | | | | |
Collapse
|
8
|
Chiocca EA. Gene therapy: a primer for neurosurgeons. Neurosurgery 2003; 53:364-73; discussion 373. [PMID: 12925253 DOI: 10.1227/01.neu.0000073532.05714.2b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2003] [Accepted: 04/11/2003] [Indexed: 11/19/2022] Open
Abstract
Gene therapy involves the transfer of genes into cells with therapeutic intent. Although several methods can accomplish this, vectors based on viruses still provide the most efficient approach. For neurosurgical purposes, preclinical and clinical applications in the areas of glioma therapy, spinal neurosurgery, and neuroprotection for treatment of Parkinson's disease and cerebral ischemia are reviewed. In general, therapies applied in the neurosurgical realm have proven relatively safe, despite occasional, well-publicized cases of morbidity and death in non-neurosurgical trials. However, continued clinical and preclinical research in this area is critical, to fully elucidate potential toxicities and to generate truly effective treatments that can be applied in neurological diseases.
Collapse
Affiliation(s)
- E Antonio Chiocca
- Molecular Neuro-oncology Laboratory, Neurosurgery Service, Massachusetts General Hospital, Brain Tumor Center, Boston, Massachusetts 02114, USA.
| |
Collapse
|
9
|
Tietge UJF, Kozarsky KF, Donahee MH, Rader DJ. A tetracycline-regulated adenoviral expression system for in vivo delivery of transgenes to lung and liver. J Gene Med 2003; 5:567-75. [PMID: 12825196 DOI: 10.1002/jgm.384] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Recombinant adenoviruses are an established tool for somatic gene transfer to multiple cell types in animals as well as in tissue culture. However, generation of adenoviruses expressing transgenes that are potentially toxic to the host cell line represents a practical problem. The aim of this study was to construct an adenoviral expression system that prevents transgene expression during the generation and propagation of the virus, and allows efficient gene transfer to lung and liver, major target organs of gene therapy. METHODS Using the tet-off system we constructed tetracycline (tet) regulatable recombinant adenoviruses expressing the marker gene LacZ (Adtet-off.LacZ) as well as a secretory protein, human group IIA secretory phospholipase A(2) (Adtet-off.hsPLA(2)). Expression (Western blot, activity assay) was tested in vitro (HeLa cells), and in vivo by gene transfer to lung and liver. RESULTS Without addition of tetracycline we demonstrated expression of LacZ (Adtet-off.LacZ) and sPLA(2) (Adtet-off.hsPLA(2)) in HeLa cells. Providing additional tet-transactivator (tTA) protein either by stable transfection or coinfection with a tTA-expressing adenovirus resulted in a further increase of LacZ and sPLA(2) expression. Transgene expression in vitro was eliminated by the addition of tetracycline to the culture medium. Adtet-off.LacZ and Adtet-off.hsPLA(2) allowed successful gene transfer in vivo to lung and liver. While the expression was highly efficient within the lungs, however, additional tTA was necessary to achieve high-level expression within liver. CONCLUSIONS Tet-regulatable adenoviral expression systems may facilitate the construction of recombinant adenoviruses encoding potentially toxic transgenes and permit regulated transgene expression.
Collapse
Affiliation(s)
- Uwe J F Tietge
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | | | | | | |
Collapse
|
10
|
Block A, Puls F, Müller J, Milasinovic D, Igelmann D, Schäfer P, Kupfermann N, Schmoldt A, Ameis D, Greten H. Highly suppressible expression of single-chain interleukin-12 by doxycycline following adenoviral infection with a single-vector Tet-regulatory system. J Gene Med 2003; 5:190-200. [PMID: 12666185 DOI: 10.1002/jgm.334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Adenoviral vectors have been shown to efficiently transfer DNA into a wide variety of eukaryotic cells in vitro and in vivo. However, the therapeutic benefit of this approach is limited by severe side effects as a result of uncontrolled transgene expression. METHODS A bi-directional promoter that controls the desired transgene as well as a tetracycline-suppressible transactivator (tTA) was cloned into the E1-region of E1-deleted recombinant adenoviral vectors. Autoregulation within this construct was obtained by tTA expression under control of the operator, to which tTA binds in the absence of tetracycline. Consequently, binding of tetracycline to tTA results in downregulation of tTA as well as the co-expressed transgene in the infected cell. RESULTS We were able to suppress luciferase-reporter gene expression by up to 16 000-fold in the presence of doxycycline (dox, 2 micro g/ml). Under control of this tetracycline-regulated system, single-chain interleukin-12 (scIL12) was expressed. Adenovirally mediated expression of this potentially lethal cytokine with strong activation of antitumoral immune response was downregulated by up to 6000-fold in the presence of dox. Subsequently, this downregulation also resulted in a highly significant reduction of interferon-gamma secretion by stimulated splenocytes. These mainly contribute to the toxicity of this immunotherapeutic approach. CONCLUSIONS With expression levels exceeding those of the cytomegalovirus (CMV) promoter in almost all cell lines tested, these new vectors will also contribute to the safety of adenoviral approaches by controlled expression without compromising on maximum expression levels.
Collapse
Affiliation(s)
- Andreas Block
- Department of Medicine, University Hospital Hamburg-Eppendorf, D-20246 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nakagawa S, Mayumi T. Development of Novel Technology of DDS for Gene Therapy. Drug Metab Pharmacokinet 2003; 18:223-9. [PMID: 15618739 DOI: 10.2133/dmpk.18.223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the near future, not only "systemic pharmacokinetics" but also "intracellular pharmacokinetics" seems to be important in Drug Delivery System (DDS) research for gene therapy. Beyond the basic philosophy of DDS of "delivering the optimal amounts of drugs to a target site", it is now necessary to "express the gene (as a drug) efficiently in a target cell for a required period" in gene therapy. To achieve these objectives, vectors for introducing the gene into the target cell are being improved, and techniques to efficiently express the transgene and to regulate the transgene expression are being developed. DDS is expected to play a large part in achieving this goal. Here, we review a novel DDS technology to satisfy these criteria.
Collapse
Affiliation(s)
- Shinsaku Nakagawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | | |
Collapse
|
12
|
Régulier E, Pereira de Almeida L, Sommer B, Aebischer P, Déglon N. Dose-dependent neuroprotective effect of ciliary neurotrophic factor delivered via tetracycline-regulated lentiviral vectors in the quinolinic acid rat model of Huntington's disease. Hum Gene Ther 2002; 13:1981-90. [PMID: 12427308 DOI: 10.1089/10430340260355383] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ability to regulate gene expression constitutes a prerequisite for the development of gene therapy strategies aimed at the treatment of neurologic disorders. In the present work, we used tetracycline (Tet)-regulated lentiviral vectors to investigate the dose-dependent neuroprotective effect of human ciliary neurotrophic factor (CNTF) in the quinolinic acid (QA) model of Huntington's disease (HD). The Tet system was split in two lentiviruses, the first one containing the CNTF or green fluorescent protein (GFP) cDNAs under the control of the Tet-response element (TRE) and a second vector encoding the transactivator (tTA). Preliminary coinfection study demonstrated that 63.8% +/- 2.0% of infected cells contain at least two viral copies. Adult rats were then injected with CNTF- and GFP-expressing viral vectors followed 3 weeks later by an intrastriatal administration of QA. A significant reduction of apomorphine-induced rotations was observed in the CNTF-on group. In contrast, GFP-treated animals or CNTF-off rats displayed an ipsilateral turning behavior in response to apomorphine. A selective sparing of DARPP-32-, choline acetyltransferase (ChAT)-, and NADPH-d-positive neurons was observed in the striatum of CNTF-on rats compared to GFP animals and CNTF-off group. Enzyme-linked immunosorbent assay (ELISA) performed on striatal samples of rats sacrificed at the same time point indicated that this neuroprotective effect was associated with the production of 15.5 +/- 4.7 ng CNTF per milligram of protein whereas the residual CNTF expression in the off state (0.54 +/- 0.02 ng/mg of protein) was not sufficient to protect against QA toxicity. These results establish the proof of principle of neurotrophic factor dosing for neurodegenerative diseases and demonstrate the feasibility of lentiviral-mediated tetracycline-regulated gene transfer in the brain.
Collapse
Affiliation(s)
- E Régulier
- Institute of Neurosciences, Swiss Federal Institute of Technology Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
13
|
Abstract
Noninvasive molecular imaging has developed over the past decade and involves nuclear (positron emission tomography [PET], gamma camera), magnetic resonance, and optical imaging systems. Most current molecular imaging strategies are "indirect" and involve the coupling of a "reporter gene" with a complementary "reporter probe." Imaging the level of probe accumulation provides indirect information related to the level of reporter gene expression. Reporter gene constructs are driven by upstream promoter/enhancer elements; reporter gene expression can be leading to continuous transcription and used to identify the site of transduction and to monitor the level and duration of gene (vector) activity. Alternatively, reporter gene expression can be leading to controlled gene expression, or reporter genes can function as a "sensor" to monitor the level of endogenous promoters and transcription factors. The development of versatile and sensitive assays that do require tissue sampling will be of considerable value for monitoring molecular-genetic and cellular processes in animal models of human disease, as well as for studies in human subjects in the future. Noninvasive imaging of molecular-genetic and cellular processes will complement established molecular-biologic assays that require tissue sampling, and will provide a spatial as well as a temporal dimension to our understanding of various diseases. Several examples of imaging endogenous biologic processes in animals using reporter constructs, radiolabeled probes, and PET imaging are reviewed (e.g., p53-dependent gene expression, T-cell receptor-dependent activation of T-lymphocytes, and preliminary studies of endogenous HIF-1alpha expression). Issues related to the translation of noninvasive molecular imaging technology into the clinic are also discussed.
Collapse
Affiliation(s)
- Ronald Blasberg
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| |
Collapse
|
14
|
Abstract
Molecular imaging is a relatively new discipline, which developed over the past decade, initially driven by in situ reporter imaging technology. Noninvasive in vivo molecular–genetic imaging developed more recently and is based on nuclear (positron emission tomography [PET], gamma camera, autoradiography) imaging as well as magnetic resonance (MR) and in vivo optical imaging. Molecular–genetic imaging has its roots in both molecular biology and cell biology, as well as in new imaging technologies. The focus of this presentation will be nuclear-based molecular–genetic imaging, but it will comment on the value and utility of combining different imaging modalities. Nuclear-based molecular imaging can be viewed in terms of three different imaging strategies: (1) “indirect” reporter gene imaging; (2) “direct” imaging of endogenous molecules; or (3) “surrogate” or “bio-marker” imaging. Examples of each imaging strategy will be presented and discussed. The rapid growth of in vivo molecular imaging is due to the established base of in vivo imaging technologies, the established programs in molecular and cell biology, and the convergence of these disciplines. The development of versatile and sensitive assays that do not require tissue samples will be of considerable value for monitoring molecular–genetic and cellular processes in animal models of human disease, as well as for studies in human subjects in the future. Noninvasive imaging of molecular–genetic and cellular processes will complement established ex vivo molecular–biological assays that require tissue sampling, and will provide a spatial as well as a temporal dimension to our understanding of various diseases and disease processes.
Collapse
Affiliation(s)
- Ronald G Blasberg
- Departments of Neurology and Radiology, Memorial Sloan-Kettering Cancer Center, Box 52, 1275 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
15
|
Kaminski JM, Nguyen K, Buyyounouski M, Pollack A. Prostate cancer gene therapy and the role of radiation. Cancer Treat Rev 2002; 28:49-64. [PMID: 12027414 DOI: 10.1053/ctrv.2002.0250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Even though prostate cancer is detected earlier than in the pre-PSA era, prostate cancer is the second leading cause of cancer mortality in the American male. Prostate cancer therapy is not ideal, especially for high-risk localized and metastatic cancer; therefore, investigators have sought new therapeutic modalities such as angiogenesis inhibitors, inhibitors of the cell signaling pathway, vaccines, and gene therapy. Gene therapy has emerged as potential therapy for both localized and systemic prostate cancer. Gene therapy has been shown to work supra-additively with radiation in controlling prostate cancer in vivo. With further technological advances in radiation therapy, gene therapy, and the understanding of prostate cancer biology, gene therapy will potentially have an important role in prostate cancer therapy.
Collapse
Affiliation(s)
- J M Kaminski
- Department of Radiation Oncology, Fox Chase Cancer Center, 7701 Burolme Avenue, Philadelphia, PA 19111, USA.
| | | | | | | |
Collapse
|