1
|
Martin KAC, Sägesser FD. A strong direct link from the layer 3/4 border to layer 6 of cat primary visual cortex. Brain Struct Funct 2024; 229:1397-1415. [PMID: 38753019 PMCID: PMC11176106 DOI: 10.1007/s00429-024-02806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 05/05/2024] [Indexed: 06/15/2024]
Abstract
The cat primary visual cortex (V1) is a cortical area for which we have one of the most detailed estimates of the connection 'weights' (expressed as number of synapses) between different neural populations in different layers (Binzegger et al in J Neurosci 24:8441-8453, 2004). Nevertheless, the majority of excitatory input sources to layer 6, the deepest layer in a local translaminar excitatory feedforward loop, was not accounted for by the known neuron types used to generate the quantitative Binzegger diagram. We aimed to fill this gap by using a retrograde tracer that would label neural cell bodies in and outside V1 that directly connect to layer 6 of V1. We found that more than 80% of labeled neurons projecting to layer 6 were within V1 itself. Our data indicate that a substantial fraction of the missing input is provided by a previously unidentified population of layer 3/4 border neurons, laterally distributed and connecting more strongly to layer 6 than the typical superficial layer pyramidal neurons considered by Binzegger et al. (Binzegger et al in J Neurosci 24:8441-8453, 2004). This layer 3/4 to layer 6 connection may be a parallel route to the layer 3 - layer 5 - layer 6 feedforward pathway, be associated with the fast-conducting, movement-related Y pathway and provide convergent input from distant (5-10 degrees) regions of the visual field.
Collapse
|
2
|
Wan S, Sun Y, Ye Q, Gu Y, Sommer W, Cao X. Processing objects of perceptual expertise: Differential interhemispheric transmission efficiency but similar transmission direction advantages. Neuropsychologia 2023; 188:108568. [PMID: 37150438 DOI: 10.1016/j.neuropsychologia.2023.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/31/2022] [Accepted: 04/20/2023] [Indexed: 05/09/2023]
Abstract
Faces and Chinese characters are both objects of perceptual expertise. In this study, we investigated the characteristics of interhemispheric transmission times (IHTTs) in both transmission direction and transmission efficiency during the processing of objects of perceptual expertise. A total of 112 participants engaged in a divided visual field paradigm for faces, Chinese characters, and houses in both upright and inverted orientations. The N170 amplitudes elicited by the objects of perceptual expertise (faces and Chinese characters) involved in this study were larger than those elicited by the non-perceptual expertise objects (houses). We used the latencies of the N170 component of the event-related potential (ERP) recorded in the left and right hemispheres to calculate the IHTTs. For all objects, the N170-related IHTTs from the right to the left hemispheres were shorter than those in the opposite direction. Essentially, the N170-related IHTTs for faces were shorter, that is, more efficient than those for Chinese characters and houses. This result indicates that the IHTTs during perceptual expertise and non-perceptual expertise object processing share a common transmission direction advantage, but transmission efficiency is face-specific.
Collapse
Affiliation(s)
- Simin Wan
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Yini Sun
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Qing Ye
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Yu Gu
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Werner Sommer
- Department of Psychology, Zhejiang Normal University, Jinhua, China; Institut für Psychologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Xiaohua Cao
- Department of Psychology, Zhejiang Normal University, Jinhua, China; Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China.
| |
Collapse
|
3
|
Carson RG. Inter‐hemispheric inhibition sculpts the output of neural circuits by co‐opting the two cerebral hemispheres. J Physiol 2020; 598:4781-4802. [DOI: 10.1113/jp279793] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/04/2020] [Indexed: 01/11/2023] Open
Affiliation(s)
- Richard G. Carson
- Trinity College Institute of Neuroscience and School of Psychology Trinity College Dublin Dublin 2 Ireland
- School of Psychology Queen's University Belfast Belfast BT7 1NN UK
- School of Human Movement and Nutrition Sciences University of Queensland St Lucia QLD 4072 Australia
| |
Collapse
|
4
|
Marquardt I, De Weerd P, Schneider M, Gulban OF, Ivanov D, Wang Y, Uludağ K. Feedback contribution to surface motion perception in the human early visual cortex. eLife 2020; 9:e50933. [PMID: 32496189 PMCID: PMC7314553 DOI: 10.7554/elife.50933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 06/03/2020] [Indexed: 01/03/2023] Open
Abstract
Human visual surface perception has neural correlates in early visual cortex, but the role of feedback during surface segmentation in human early visual cortex remains unknown. Feedback projections preferentially enter superficial and deep anatomical layers, which provides a hypothesis for the cortical depth distribution of fMRI activity related to feedback. Using ultra-high field fMRI, we report a depth distribution of activation in line with feedback during the (illusory) perception of surface motion. Our results fit with a signal re-entering in superficial depths of V1, followed by a feedforward sweep of the re-entered information through V2 and V3. The magnitude and sign of the BOLD response strongly depended on the presence of texture in the background, and was additionally modulated by the presence of illusory motion perception compatible with feedback. In summary, the present study demonstrates the potential of depth-resolved fMRI in tackling biomechanical questions on perception.
Collapse
Affiliation(s)
- Ingo Marquardt
- Department of Cognitive Neuroscience, Maastricht Brain Imaging Centre (MBIC) Faculty of Psychology and Neuroscience, Maastricht UniversityMaastrichtNetherlands
| | - Peter De Weerd
- Department of Cognitive Neuroscience, Maastricht Brain Imaging Centre (MBIC) Faculty of Psychology and Neuroscience, Maastricht UniversityMaastrichtNetherlands
- Maastricht Center of Systems Biology (MACSBIO), Faculty of Science & Engineering, Maastricht UniversityMaastrichtNetherlands
| | - Marian Schneider
- Department of Cognitive Neuroscience, Maastricht Brain Imaging Centre (MBIC) Faculty of Psychology and Neuroscience, Maastricht UniversityMaastrichtNetherlands
| | - Omer Faruk Gulban
- Department of Cognitive Neuroscience, Maastricht Brain Imaging Centre (MBIC) Faculty of Psychology and Neuroscience, Maastricht UniversityMaastrichtNetherlands
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Maastricht Brain Imaging Centre (MBIC) Faculty of Psychology and Neuroscience, Maastricht UniversityMaastrichtNetherlands
| | - Yawen Wang
- Department of Cognitive Neuroscience, Maastricht Brain Imaging Centre (MBIC) Faculty of Psychology and Neuroscience, Maastricht UniversityMaastrichtNetherlands
| | - Kâmil Uludağ
- Center for Neuroscience Imaging Research, Institute for Basic Science and Department of Biomedical Engineering, N Center, Sungkyunkwan UniversityJangan-guRepublic of Korea
- Techna Institute and Koerner Scientist in MR Imaging, University Health NetworkTorontoCanada
| |
Collapse
|
5
|
Structural and Functional Cortical Connectivity Mediating Cross Education of Motor Function. J Neurosci 2017; 37:2555-2564. [PMID: 28154150 PMCID: PMC5354316 DOI: 10.1523/jneurosci.2536-16.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/04/2017] [Accepted: 01/12/2017] [Indexed: 12/13/2022] Open
Abstract
Cross-education (CE) is the process whereby training with one limb leads to subsequent improvement in performance by the opposite untrained limb. We used multimodal neuroimaging in humans to investigate the mediating neural mechanisms by relating quantitative estimates of functional and structural cortical connectivity to individual levels of interlimb transfer. Resting-state (rs)-fMRI and diffusion weighted imaging (DWI) scans were undertaken before unilateral ballistic wrist flexion training. The rs-fMRI sequence was repeated immediately afterward. The increase in performance of the untrained limb was 83.6% of that observed for the trained limb and significantly greater than that of a control group who undertook no training. Functional connectivity in the resting motor network between right and left supplementary motor areas (SMA) was elevated after training. These changes were not, however, correlated with individual levels of transfer. Analysis of the DWI data using constrained spherical deconvolution-based tractography indicated that fractional anisotropy and apparent fiber density in tracts connecting bilateral SMA were negatively correlated with and predictive of transfer. The findings suggest that interhemispheric interactions between bilateral SMA play an instrumental role in CE and that the structural integrity of the connecting white matter pathways influences the level of transfer. SIGNIFICANCE STATEMENT Strength or skill training with one limb also brings about improvements in the performance of the opposite, untrained limb. This phenomenon, termed cross-education (CE), has obvious potential for the rehabilitation of functional capacity that has been lost through brain insult or musculoskeletal injury. The neural mechanisms that give rise to CE are, however, poorly understood. We used a combination of neuroimaging methods to investigate the pathways in the human brain that mediate CE. We determined that the supplementary motor area (SMA) plays an important role in the interlimb transfer of performance gains and demonstrate that the quality of the white matter fibers connecting right and left SMA predicts the benefit that an individual derives from CE.
Collapse
|
6
|
Gan J, Yi J, Zhong M, Cao X, Jin X, Liu W, Zhu X. Abnormal white matter structural connectivity in treatment-naïve young adults with borderline personality disorder. Acta Psychiatr Scand 2016; 134:494-503. [PMID: 27611589 DOI: 10.1111/acps.12640] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The pathogenesis of borderline personality disorder (BPD) is not well understood. We examined the microstructure of white matter in patients with BPD. METHOD Treatment-naïve young adult with BPD (N = 30) and young-adult healthy controls (HCs; N = 31) were subjected diffusion tensor imaging (DTI). Microstructural parameters were analyzed via tract-based spatial statistics (TBSS) and post hoc tractography. RESULTS TBSS analysis revealed that, relative to the HC group, the BPD group had significantly lower fractional anisotropy (FA) values in the genu and body of the corpus callosum (CC), right superior corona radiate, right anterior corona radiate, as well as higher radial diffusivity (RD) in the left anterior thalamic radiation. Tractography showed that FA values of fiber bundles passing through the fornix were significantly reduced in BPD group relative to HCs. No significant correlations were observed between clinical symptom and DTI indices in BPD group (FDR corrected). CONCLUSION Focal microstructural alterations were found in BPD group, mainly in the limbic system and CC. The present findings support the fronto-limbic disconnectivity hypothesis and suggest that abnormal maturation of white matter structures may play an important role in mechanism of BPD.
Collapse
Affiliation(s)
- J Gan
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Medical Psychological Institute of Central South University, Changsha, Hunan, China
| | - J Yi
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Medical Psychological Institute of Central South University, Changsha, Hunan, China
| | - M Zhong
- Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - X Cao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Medical Psychological Institute of Central South University, Changsha, Hunan, China
| | - X Jin
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Medical Psychological Institute of Central South University, Changsha, Hunan, China
| | - W Liu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Medical Psychological Institute of Central South University, Changsha, Hunan, China
| | - X Zhu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Medical Psychological Institute of Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Restani L, Caleo M. Reorganization of Visual Callosal Connections Following Alterations of Retinal Input and Brain Damage. Front Syst Neurosci 2016; 10:86. [PMID: 27895559 PMCID: PMC5107575 DOI: 10.3389/fnsys.2016.00086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/25/2016] [Indexed: 01/16/2023] Open
Abstract
Vision is a very important sensory modality in humans. Visual disorders are numerous and arising from diverse and complex causes. Deficits in visual function are highly disabling from a social point of view and in addition cause a considerable economic burden. For all these reasons there is an intense effort by the scientific community to gather knowledge on visual deficit mechanisms and to find possible new strategies for recovery and treatment. In this review, we focus on an important and sometimes neglected player of the visual function, the corpus callosum (CC). The CC is the major white matter structure in the brain and is involved in information processing between the two hemispheres. In particular, visual callosal connections interconnect homologous areas of visual cortices, binding together the two halves of the visual field. This interhemispheric communication plays a significant role in visual cortical output. Here, we will first review the essential literature on the physiology of the callosal connections in normal vision. The available data support the view that the callosum contributes to both excitation and inhibition to the target hemisphere, with a dynamic adaptation to the strength of the incoming visual input. Next, we will focus on data showing how callosal connections may sense visual alterations and respond to the classical paradigm for the study of visual plasticity, i.e., monocular deprivation (MD). This is a prototypical example of a model for the study of callosal plasticity in pathological conditions (e.g., strabismus and amblyopia) characterized by unbalanced input from the two eyes. We will also discuss the findings of callosal alterations in blind subjects. Noteworthy, we will discuss data showing that inter-hemispheric transfer mediates recovery of visual responsiveness following cortical damage. Finally, we will provide an overview of how callosal projections dysfunction could contribute to pathologies such as neglect and occipital epilepsy. A particular focus will be on reviewing noninvasive brain stimulation techniques and optogenetic approaches that allow to selectively manipulate callosal function and to probe its involvement in cortical processing and plasticity. Overall, the data indicate that experience can potently impact on transcallosal connectivity, and that the callosum itself is crucial for plasticity and recovery in various disorders of the visual pathway.
Collapse
Affiliation(s)
- Laura Restani
- Neuroscience Institute, National Research Council (CNR) Pisa, Italy
| | - Matteo Caleo
- Neuroscience Institute, National Research Council (CNR) Pisa, Italy
| |
Collapse
|
8
|
De Benedictis A, Petit L, Descoteaux M, Marras CE, Barbareschi M, Corsini F, Dallabona M, Chioffi F, Sarubbo S. New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography. Hum Brain Mapp 2016; 37:4718-4735. [PMID: 27500966 DOI: 10.1002/hbm.23339] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/12/2016] [Accepted: 07/26/2016] [Indexed: 12/16/2022] Open
Abstract
Extensive studies revealed that the human corpus callosum (CC) plays a crucial role in providing large-scale bi-hemispheric integration of sensory, motor and cognitive processing, especially within the frontal lobe. However, the literature lacks of conclusive data regarding the structural macroscopic connectivity of the frontal CC. In this study, a novel microdissection approach was adopted, to expose the frontal fibers of CC from the dorsum to the lateral cortex in eight hemispheres and in one entire brain. Post-mortem results were then combined with data from advanced constrained spherical deconvolution in 130 healthy subjects. We demonstrated as the frontal CC provides dense inter-hemispheric connections. In particular, we found three types of fronto-callosal fibers, having a dorso-ventral organization. First, the dorso-medial CC fibers subserve homotopic connections between the homologous medial cortices of the superior frontal gyrus. Second, the ventro-lateral CC fibers subserve homotopic connections between lateral frontal cortices, including both the middle frontal gyrus and the inferior frontal gyrus, as well as heterotopic connections between the medial and lateral frontal cortices. Third, the ventro-striatal CC fibers connect the medial and lateral frontal cortices with the contralateral putamen and caudate nucleus. We also highlighted an intricate crossing of CC fibers with the main association pathways terminating in the lateral regions of the frontal lobes. This combined approach of ex vivo microdissection and in vivo diffusion tractography allowed demonstrating a previously unappreciated three-dimensional architecture of the anterior frontal CC, thus clarifying the functional role of the CC in mediating the inter-hemispheric connectivity. Hum Brain Mapp 37:4718-4735, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alessandro De Benedictis
- Department of Neuroscience and Neurorehabilitation, Neurosurgery Unit, Bambino Gesù Children's Hospital - IRCCS, 4 Piazza Sant'Onofrio, Roma, 00165, Italy
| | - Laurent Petit
- Groupe D'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives - UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab, University of Sherbrooke, Sherbrooke, Québec, Canada
| | - Carlo Efisio Marras
- Department of Neuroscience and Neurorehabilitation, Neurosurgery Unit, Bambino Gesù Children's Hospital - IRCCS, 4 Piazza Sant'Onofrio, Roma, 00165, Italy
| | - Mattia Barbareschi
- Department of Histopathology, "S. Chiara" Hospital, Trento APSS - 9 Largo Medaglie D'Oro, Trento, 38122, Italy
| | - Francesco Corsini
- Department of Neurosciences, Division of Neurosurgery, "S. Chiara" Hospital, Trento APSS - 9 Largo Medaglie D'Oro, Trento, 38122, Italy.,Structural and Functional Connectivity Lab, Division of Neurosurgery, "S. Chiara" Hospital, Trento APSS - 9 Largo Medaglie D'Oro, Trento, 38122, Italy
| | - Monica Dallabona
- Department of Neurosciences, Division of Neurosurgery, "S. Chiara" Hospital, Trento APSS - 9 Largo Medaglie D'Oro, Trento, 38122, Italy.,Structural and Functional Connectivity Lab, Division of Neurosurgery, "S. Chiara" Hospital, Trento APSS - 9 Largo Medaglie D'Oro, Trento, 38122, Italy
| | - Franco Chioffi
- Department of Neurosciences, Division of Neurosurgery, "S. Chiara" Hospital, Trento APSS - 9 Largo Medaglie D'Oro, Trento, 38122, Italy.,Structural and Functional Connectivity Lab, Division of Neurosurgery, "S. Chiara" Hospital, Trento APSS - 9 Largo Medaglie D'Oro, Trento, 38122, Italy
| | - Silvio Sarubbo
- Department of Neurosciences, Division of Neurosurgery, "S. Chiara" Hospital, Trento APSS - 9 Largo Medaglie D'Oro, Trento, 38122, Italy.,Structural and Functional Connectivity Lab, Division of Neurosurgery, "S. Chiara" Hospital, Trento APSS - 9 Largo Medaglie D'Oro, Trento, 38122, Italy
| |
Collapse
|
9
|
Altered recovery from inhibitory repetitive transcranial magnetic stimulation (rTMS) in subjects with photosensitive epilepsy. Clin Neurophysiol 2016; 127:3353-61. [PMID: 27407061 DOI: 10.1016/j.clinph.2016.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 06/08/2016] [Accepted: 06/18/2016] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To investigate functional changes underlying photosensitivity, we studied the response of the visual cortex to low-frequency, inhibitory repetitive transcranial magnetic stimulation (rTMS) in drug-free patients with photosensitive seizures and healthy volunteers. METHODS Visual evoked potentials (VEPs) triggered by grating stimuli of different contrasts were recorded in both hemispheres before and after transient functional inactivation of the occipital cortex of one side via low-frequency rTMS (0.5Hz for 20'). VEPs were recorded before (T0), immediately after (T1) and 45' following the completion of rTMS (T2). RESULTS Baseline amplitudes of the early VEP components (N1 and P1) were enhanced in photosensitive patients. At T1, rTMS produced an inhibitory effect on VEPs amplitudes at all contrasts in the targeted side and a concurrent facilitation of responses in the contralateral hemisphere. Compared with PSE subjects, VEP amplitudes remained persistently dampened in the stimulated hemisphere of controls (Holm-Sidak post-hoc method, p<0.05). In the contralateral hemisphere, we found a clear enhancement of VEP amplitude in photosensitive subjects but not controls at T2 (Holm-Sidak test, p<0.001). CONCLUSIONS Visual responses recovered more quickly in the stimulated hemisphere, and disinhibition persisted in the contralateral side of photosensitive subjects. SIGNIFICANCE The rapid recovery of excitability and the persistent transcallosal disinhibition following perturbation of cortical activity may play a role in the pathophysiology of photosensitive epilepsy.
Collapse
|
10
|
Collin G, van den Heuvel MP, Abramovic L, Vreeker A, de Reus MA, van Haren NEM, Boks MPM, Ophoff RA, Kahn RS. Brain network analysis reveals affected connectome structure in bipolar I disorder. Hum Brain Mapp 2015; 37:122-34. [PMID: 26454006 DOI: 10.1002/hbm.23017] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/18/2015] [Accepted: 09/24/2015] [Indexed: 12/14/2022] Open
Abstract
The notion that healthy brain function emerges from coordinated neural activity constrained by the brain's network of anatomical connections--i.e., the connectome--suggests that alterations in the connectome's wiring pattern may underlie brain disorders. Corroborating this hypothesis, studies in schizophrenia are indicative of altered connectome architecture including reduced communication efficiency, disruptions of central brain hubs, and affected "rich club" organization. Whether similar deficits are present in bipolar disorder is currently unknown. This study examines structural connectome topology in 216 bipolar I disorder patients as compared to 144 healthy controls, focusing in particular on central regions (i.e., brain hubs) and connections (i.e., rich club connections, interhemispheric connections) of the brain's network. We find that bipolar I disorder patients exhibit reduced global efficiency (-4.4%, P =0.002) and that this deficit relates (r = 0.56, P < 0.001) to reduced connectivity strength of interhemispheric connections (-13.0%, P = 0.001). Bipolar disorder patients were found not to show predominant alterations in the strength of brain hub connections in general, or of connections spanning brain hubs (i.e., "rich club" connections) in particular (all P > 0.1). These findings highlight a role for aberrant brain network architecture in bipolar I disorder with reduced global efficiency in association with disruptions in interhemispheric connectivity, while the central "rich club" system appears not to be particularly affected.
Collapse
Affiliation(s)
- Guusje Collin
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn P van den Heuvel
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lucija Abramovic
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annabel Vreeker
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel A de Reus
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Neeltje E M van Haren
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marco P M Boks
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roel A Ophoff
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, California.,Department of Human Genetics, University of California Los Angeles, Los Angeles, California
| | - René S Kahn
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
11
|
Santarnecchi E, Tatti E, Rossi S, Serino V, Rossi A. Intelligence-related differences in the asymmetry of spontaneous cerebral activity. Hum Brain Mapp 2015; 36:3586-602. [PMID: 26059228 PMCID: PMC6868935 DOI: 10.1002/hbm.22864] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/16/2015] [Accepted: 05/19/2015] [Indexed: 12/16/2022] Open
Abstract
Recent evidence suggests the spontaneous BOLD signal synchronization of corresponding interhemispheric, homotopic regions as a stable trait of human brain physiology, with emerging differences in such organization being also related to some pathological conditions. To understand whether such brain functional symmetries play a role into higher-order cognitive functioning, here we correlated the functional homotopy profiles of 119 healthy subjects with their intelligence level. Counterintuitively, reduced homotopic connectivity in above average-IQ versus average-IQ subjects was observed, with significant reductions in visual and somatosensory cortices, supplementary motor area, rolandic operculum, and middle temporal gyrus, possibly suggesting that a downgrading of interhemispheric talk at rest could be associated with higher cognitive functioning. These regions also showed an increased spontaneous synchrony with medial structures located in ipsi- and contralateral hemispheres, with such pattern being mostly detectable for regions placed in the left hemisphere. The interactions with age and gender have been also tested, with different patterns for subjects above and below 25 years old and less homotopic connectivity in the prefrontal cortex and posterior midline regions in female participants with higher IQ scores. These findings support prior evidence suggesting a functional role for homotopic connectivity in human cognitive expression, promoting the reduction of synchrony between primary sensory regions as a predictor of higher intelligence levels.
Collapse
Affiliation(s)
- Emiliano Santarnecchi
- Siena‐Brain Investigation & Neuromodulation Lab (SiBin), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology SectionUniversity of SienaItaly
- Berenson‐Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston MAUSA.
- Siena Robotics and Systems Lab (SIRS‐Lab), Engineering and Mathematics DepartmentUniversity of SienaItaly
| | - Elisa Tatti
- Siena‐Brain Investigation & Neuromodulation Lab (SiBin), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology SectionUniversity of SienaItaly
| | - Simone Rossi
- Siena‐Brain Investigation & Neuromodulation Lab (SiBin), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology SectionUniversity of SienaItaly
| | - Vinicio Serino
- Siena‐Brain Investigation & Neuromodulation Lab (SiBin), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology SectionUniversity of SienaItaly
| | - Alessandro Rossi
- Siena‐Brain Investigation & Neuromodulation Lab (SiBin), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology SectionUniversity of SienaItaly
| |
Collapse
|
12
|
Nebel MB, Joel SE, Muschelli J, Barber AD, Caffo BS, Pekar JJ, Mostofsky SH. Disruption of functional organization within the primary motor cortex in children with autism. Hum Brain Mapp 2014; 35:567-80. [PMID: 23118015 PMCID: PMC3864146 DOI: 10.1002/hbm.22188] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 07/02/2012] [Accepted: 08/03/2012] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence suggests that motor impairments are prevalent in autism spectrum disorder (ASD), relate to the social and communicative deficits at the core of the diagnosis and may reflect abnormal connectivity within brain networks underlying motor control and learning. Parcellation of resting-state functional connectivity data using spectral clustering approaches has been shown to be an effective means of visualizing functional organization within the brain but has most commonly been applied to explorations of normal brain function. This article presents a parcellation of a key area of the motor network, the primary motor cortex (M1), a key area of the motor control network, in adults, typically developing (TD) children and children with ASD and introduces methods for selecting the number of parcels, matching parcels across groups and testing group differences. The parcellation is based solely on patterns of connectivity between individual M1 voxels and all voxels outside of M1, and within all groups, a gross dorsomedial to ventrolateral organization emerged within M1 which was left-right symmetric. Although this gross organizational scheme was present in both groups of children, statistically significant group differences in the size and segregation of M1 parcels within regions of the motor homunculus corresponding to the upper and lower limbs were observed. Qualitative comparison of the M1 parcellation for children with ASD with that of younger and older TD children suggests that these organizational differences, with a lack of differentiation between lower limb/trunk regions and upper limb/hand regions, may be due, at least in part, to a delay in functional specialization within the motor cortex.
Collapse
Affiliation(s)
- Mary Beth Nebel
- Laboratory for Neurocognitive and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | |
Collapse
|
13
|
de Lacy N, King BH. Revisiting the relationship between autism and schizophrenia: toward an integrated neurobiology. Annu Rev Clin Psychol 2013; 9:555-87. [PMID: 23537488 DOI: 10.1146/annurev-clinpsy-050212-185627] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Schizophrenia and autism have been linked since their earliest descriptions. Both are disorders of cerebral specialization originating in the embryonic period. Genetic, molecular, and cytologic research highlights a variety of shared contributory mechanisms that may lead to patterns of abnormal connectivity arising from altered development and topology. Overt behavioral pathology likely emerges during or after neurosensitive periods in which resource demands overwhelm system resources and the individual's ability to compensate using interregional activation fails. We are at the threshold of being able to chart autism and schizophrenia from the inside out. In so doing, the door is opened to the consideration of new therapeutics that are developed based upon molecular, synaptic, and systems targets common to both disorders.
Collapse
Affiliation(s)
- Nina de Lacy
- University of Washington and Seattle Children's Hospital, Seattle, Washington 98195, USA
| | | |
Collapse
|
14
|
Ruddy KL, Carson RG. Neural pathways mediating cross education of motor function. Front Hum Neurosci 2013; 7:397. [PMID: 23908616 PMCID: PMC3725409 DOI: 10.3389/fnhum.2013.00397] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/07/2013] [Indexed: 12/24/2022] Open
Abstract
Cross education is the process whereby training of one limb gives rise to enhancements in the performance of the opposite, untrained limb. Despite interest in this phenomenon having been sustained for more than a century, a comprehensive explanation of the mediating neural mechanisms remains elusive. With new evidence emerging that cross education may have therapeutic utility, the need to provide a principled evidential basis upon which to design interventions becomes ever more pressing. Generally, mechanistic accounts of cross education align with one of two explanatory frameworks. Models of the “cross activation” variety encapsulate the observation that unilateral execution of a movement task gives rise to bilateral increases in corticospinal excitability. The related conjecture is that such distributed activity, when present during unilateral practice, leads to simultaneous adaptations in neural circuits that project to the muscles of the untrained limb, thus facilitating subsequent performance of the task. Alternatively, “bilateral access” models entail that motor engrams formed during unilateral practice, may subsequently be utilized bilaterally—that is, by the neural circuitry that constitutes the control centers for movements of both limbs. At present there is a paucity of direct evidence that allows the corresponding neural processes to be delineated, or their relative contributions in different task contexts to be ascertained. In the current review we seek to synthesize and assimilate the fragmentary information that is available, including consideration of knowledge that has emerged as a result of technological advances in structural and functional brain imaging. An emphasis upon task dependency is maintained throughout, the conviction being that the neural mechanisms that mediate cross education may only be understood in this context.
Collapse
Affiliation(s)
- Kathy L Ruddy
- School of Psychology, Queen's University Belfast Belfast, UK ; Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin Dublin, Ireland
| | | |
Collapse
|
15
|
Perception of illusory contours forms intermodulation responses of steady state visual evoked potentials as a neural signature of spatial integration. Biol Psychol 2013; 94:55-60. [PMID: 23665197 DOI: 10.1016/j.biopsycho.2013.04.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/27/2013] [Accepted: 04/23/2013] [Indexed: 11/22/2022]
Abstract
Perception of illusory contours was shown to be a consequence of neural activity related to spatial integration in early visual areas. Candidates for such filling-in phenomena are long-range horizontal connections of neurons in V1/V2, and feedback from higher order visual areas. To get a direct measure of spatial integration in early visual cortex, we presented two differently flickering inducers, which evoked steady-state visual evoked potentials (SSVEPs) while manipulating the formation of an illusory rectangle. As a neural marker of integration we tested differences in amplitudes of intermodulation frequencies i.e. linear combinations of the driving frequencies. These were significantly increased when an illusory rectangle was perceived. Increases were neither due to changes of any of the two driving frequencies nor in the frequency that tagged the processing of the compound object, indicating that results are not a consequence of paying more attention to inducers when the illusory rectangle was visible.
Collapse
|
16
|
The visual callosal connection: a connection like any other? Neural Plast 2013; 2013:397176. [PMID: 23634306 PMCID: PMC3619632 DOI: 10.1155/2013/397176] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/27/2013] [Indexed: 11/23/2022] Open
Abstract
Recent work about the role of visual callosal connections in ferrets and cats is reviewed, and morphological and functional homologies between the lateral intrinsic and callosal network in early visual areas are discussed. Both networks selectively link distributed neuronal groups with similar response properties, and the actions exerted by callosal input reflect the functional topography of those networks. This supports the notion that callosal connections perpetuate the function of the lateral intrahemispheric circuit onto the other hemisphere. Reversible deactivation studies indicate that the main action of visual callosal input is a multiplicative shift of responses rather than a changing response selectivity. Both the gain of that action and its excitatory-inhibitory balance seem to be dynamically adapted to the feedforward drive by the visual stimulus onto primary visual cortex. Taken together anatomical and functional evidence from corticocortical and lateral circuits further leads to the conclusion that visual callosal connections share more features with lateral intrahemispheric connections on the same hierarchical level and less with feedback connections. I propose that experimental results about the callosal circuit in early visual areas can be interpreted with respect to lateral connectivity in general.
Collapse
|
17
|
The corpus callosum and the visual cortex: plasticity is a game for two. Neural Plast 2012; 2012:838672. [PMID: 22792494 PMCID: PMC3388387 DOI: 10.1155/2012/838672] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/19/2012] [Indexed: 01/03/2023] Open
Abstract
Throughout life, experience shapes and selects the most appropriate brain functional connectivity to adapt to a changing environment. An ideal system to study experience-dependent plasticity is the visual cortex, because visual experience can be easily manipulated. In this paper, we focus on the role of interhemispheric, transcallosal projections in experience-dependent plasticity of the visual cortex. We review data showing that deprivation of sensory experience can modify the morphology of callosal fibres, thus altering the communication between the two hemispheres. More importantly, manipulation of callosal input activity during an early critical period alters developmental maturation of functional properties in visual cortex and modifies its ability to remodel in response to experience. We also discuss recent data in rat visual cortex, demonstrating that the corpus callosum plays a role in binocularity of cortical neurons and is involved in the plastic shift of eye preference that follows a period of monocular eyelid suture (monocular deprivation) in early age. Thus, experience can modify the fine connectivity of the corpus callosum, and callosal connections represent a major pathway through which experience can mediate functional maturation and plastic rearrangements in the visual cortex.
Collapse
|
18
|
Vision modulates corticospinal suppression in a functionally specific manner during movement of the opposite limb. J Neurosci 2012; 32:646-52. [PMID: 22238100 DOI: 10.1523/jneurosci.4435-11.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effect of vision on the excitability of corticospinal projections to the flexor carpi radialis (FCR) and extensor carpi radialis (ECR) muscles of right human forearm was investigated before and during discrete movement of the opposite limb. An external force opposed the initial phase of the movement (wrist flexion) and assisted the reverse phase, so that recruitment of the wrist extensors was minimized. Three conditions were used as follows: viewing the inactive right limb (Vision), viewing the mirror image of the moving left limb (Mirror), and with vision of the right limb occluded (No Vision). Transcranial magnetic stimulation was delivered to the left motor cortex: before, at the onset of, or during the left limb movement to obtain motor evoked potentials (MEPs) in the muscles of the right forearm. At and following movement onset, MEPs obtained in the right FCR were smaller in the Vision condition than in the Mirror and No Vision conditions. A distinct pattern of variation was obtained for the ECR. In all conditions, MEPs in this muscle were elevated upon or following movement of the opposite limb. An additional analysis of ipsilateral silent periods indicated that interhemispheric inhibition plays a role in mediating these effects. Activity-dependent changes in corticospinal output to a resting limb during discrete actions of the opposite limb are thus directly contingent upon where one looks. Furthermore, the extent to which vision exerts an influence upon projections to specific muscles varies in accordance with the functional contribution of their homologs to the intended action.
Collapse
|
19
|
Transcallosal inhibition dampens neural responses to high contrast stimuli in human visual cortex. Neuroscience 2011; 187:43-51. [PMID: 21557988 DOI: 10.1016/j.neuroscience.2011.04.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 04/21/2011] [Accepted: 04/21/2011] [Indexed: 11/22/2022]
Abstract
Visual cortical areas in the two hemispheres interact via the corpus callosum, but the precise role of the callosal pathway in visual processing remains controversial. Here we have investigated the function of transcallosal projections in human primary visual cortex (V1). Visual evoked potentials (VEPs) triggered by grating stimuli of different contrasts were recorded before and after functional inactivation of the occipital cortex of one hemisphere via off-line low-frequency repetitive transcranial magnetic stimulation (rTMS; 0.5 Hz stimulation for 20 min). VEPs were recorded in V1 before (T0), immediately after (T1) and 45' following the completion of rTMS (T2). We found that low-frequency rTMS had an inhibitory effect on VEPs amplitudes at all contrasts in the treated side. Remarkably, reduction of VEP amplitudes in the inhibited hemisphere at T1 was accompanied by an increase in VEP amplitudes in the contralateral side only at mid-high contrasts (50-90%). This disinhibitory effect was observed with both central and hemifield stimulation. No changes in VEP amplitudes were observed when rTMS was applied to a cortical site more anterior with respect to V1. These data provide the first evidence that a mechanism of transcallosal inhibition dampens neural responses at high contrasts in human visual cortex.
Collapse
|
20
|
Casanova MF, El-Baz A, Elnakib A, Switala AE, Williams EL, Williams DL, Minshew NJ, Conturo TE. Quantitative analysis of the shape of the corpus callosum in patients with autism and comparison individuals. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2011; 15:223-38. [PMID: 21363871 DOI: 10.1177/1362361310386506] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple studies suggest that the corpus callosum in patients with autism is reduced in size. This study attempts to elucidate the nature of this morphometric abnormality by analyzing the shape of this structure in 17 high-functioning patients with autism and an equal number of comparison participants matched for age, sex, IQ, and handedness. The corpus callosum was segmented from T1 weighted images acquired with a Siemens 1.5 T scanner. Transformed coordinates of the curvilinear axis were aggregated into a parametric map and compared across series to derive regions of statistical significance. Our results indicate that a reduction in size of the corpus callosum occurs over all of its subdivisions (genu, body, splenium) in patients with autism. Since the commissural fibers that traverse the different anatomical compartments of the corpus callosum originate in disparate brain regions our results suggest the presence of widely distributed cortical abnormalities in people with autism.
Collapse
|
21
|
Soteropoulos DS, Perez MA. Physiological changes underlying bilateral isometric arm voluntary contractions in healthy humans. J Neurophysiol 2011; 105:1594-602. [PMID: 21273315 DOI: 10.1152/jn.00678.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many bilateral motor tasks engage simultaneous activation of distal and proximal arm muscles, but little is known about their physiological interactions. Here, we used transcranial magnetic stimulation to examine motor-evoked potentials (MEPs), interhemispheric inhibition at a conditioning-test interval of 10 (IHI(10)) and 40 ms (IHI(40)), and short-interval intracortical inhibition (SICI) in the left first dorsal interosseous (FDI) muscle during isometric index finger abduction. The right side remained at rest or performed isometric voluntary contraction with the FDI, biceps or triceps brachii, or the tibialis anterior. Left FDI MEPs were suppressed to a similar extent during contraction of the right FDI and biceps and triceps brachii but remained unchanged during contraction of the right tibialis anterior. IHI(10) and IHI(40) were decreased during contraction of the right biceps and triceps brachii compared with contraction of the right FDI. SICI was increased during activation of the right biceps and triceps brachii and decreased during activation of the right FDI. The present results indicate that an isometric voluntary contraction with either a distal or a proximal arm muscle, but not a foot dorsiflexor, decreases corticospinal output in a contralateral active finger muscle. Transcallosal inhibitory effects were strong during bilateral activation of distal hand muscles and weak during simultaneous activation of a distal and a proximal arm muscle, whereas GABAergic intracortical activity was modulated in the opposite manner. These findings suggest that in intact humans crossed interactions at the level of the motor cortex involved different physiological mechanisms when bilateral distal hand muscles are active and when a distal and a proximal arm muscle are simultaneously active.
Collapse
Affiliation(s)
- Demetris S Soteropoulos
- Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
22
|
Bojak I, Liley DTJ. Axonal velocity distributions in neural field equations. PLoS Comput Biol 2010; 6:e1000653. [PMID: 20126532 PMCID: PMC2813262 DOI: 10.1371/journal.pcbi.1000653] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 12/18/2009] [Indexed: 11/19/2022] Open
Abstract
By modelling the average activity of large neuronal populations, continuum mean field models (MFMs) have become an increasingly important theoretical tool for understanding the emergent activity of cortical tissue. In order to be computationally tractable, long-range propagation of activity in MFMs is often approximated with partial differential equations (PDEs). However, PDE approximations in current use correspond to underlying axonal velocity distributions incompatible with experimental measurements. In order to rectify this deficiency, we here introduce novel propagation PDEs that give rise to smooth unimodal distributions of axonal conduction velocities. We also argue that velocities estimated from fibre diameters in slice and from latency measurements, respectively, relate quite differently to such distributions, a significant point for any phenomenological description. Our PDEs are then successfully fit to fibre diameter data from human corpus callosum and rat subcortical white matter. This allows for the first time to simulate long-range conduction in the mammalian brain with realistic, convenient PDEs. Furthermore, the obtained results suggest that the propagation of activity in rat and human differs significantly beyond mere scaling. The dynamical consequences of our new formulation are investigated in the context of a well known neural field model. On the basis of Turing instability analyses, we conclude that pattern formation is more easily initiated using our more realistic propagator. By increasing characteristic conduction velocities, a smooth transition can occur from self-sustaining bulk oscillations to travelling waves of various wavelengths, which may influence axonal growth during development. Our analytic results are also corroborated numerically using simulations on a large spatial grid. Thus we provide here a comprehensive analysis of empirically constrained activity propagation in the context of MFMs, which will allow more realistic studies of mammalian brain activity in the future.
Collapse
Affiliation(s)
- Ingo Bojak
- Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | |
Collapse
|
23
|
Restani L, Cerri C, Pietrasanta M, Gianfranceschi L, Maffei L, Caleo M. Functional masking of deprived eye responses by callosal input during ocular dominance plasticity. Neuron 2010; 64:707-18. [PMID: 20005826 DOI: 10.1016/j.neuron.2009.10.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
Abstract
Monocular deprivation (MD) is a well-known paradigm of experience-dependent plasticity in which cortical neurons exhibit a shift of ocular dominance (OD) toward the open eye. The mechanisms underlying this form of plasticity are incompletely understood. Here we demonstrate the involvement of callosal connections in the synaptic modifications occurring during MD. Rats at the peak of the critical period were deprived for 7 days, resulting in the expected OD shift toward the open eye. Acute microinjection of the activity blocker muscimol into the visual cortex contralateral to the recording site restored binocularity of cortical cells. Continuous silencing of callosal input throughout the period of MD also resulted in substantial attenuation of the OD shift. Blockade of interhemispheric communication selectively enhanced deprived eye responses with no effect on open eye-driven activity. We conclude that callosal inputs play a key role in functional weakening of less active connections during OD plasticity.
Collapse
Affiliation(s)
- Laura Restani
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, via G. Moruzzi 1, 56100 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Kalaycıoğlu C, Nalçacı E, Schmiedt-Fehr C, Başar-Eroğlu C. Corpus callosum has different channels for transmission of spatial frequency information. Brain Res 2009; 1296:85-93. [DOI: 10.1016/j.brainres.2009.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 07/16/2009] [Accepted: 08/06/2009] [Indexed: 10/20/2022]
|
25
|
Nowicka A, Tacikowski P. Transcallosal transfer of information and functional asymmetry of the human brain. Laterality 2009; 16:35-74. [PMID: 19657954 DOI: 10.1080/13576500903154231] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The corpus callosum is the largest commissure in the brain and acts as a "bridge" of nerve fibres connecting the two cerebral hemispheres. It plays a crucial role in interhemispheric integration and is responsible for normal communication and cooperation between the two hemispheres. Evolutionary pressures guiding brain size are accompanied by reduced interhemispheric and enhanced intrahemispheric connectivity. Some lines of evidence suggest that the speed of transcallosal conduction is limited in large brains (e.g., in humans), thus favouring intrahemispheric processing and brain lateralisation. Patterns of directional symmetry/asymmetry of transcallosal transfer time may be related to the degree of brain lateralisation. Neural network modelling and electrophysiological studies on interhemispheric transmission provide data supporting this supposition.
Collapse
Affiliation(s)
- Anna Nowicka
- Nencki Institute of Experimental Biology, Department of Neurophysiology, Warsaw, Poland.
| | | |
Collapse
|
26
|
Casanova MF, El-Baz A, Mott M, Mannheim G, Hassan H, Fahmi R, Giedd J, Rumsey JM, Switala AE, Farag A. Reduced gyral window and corpus callosum size in autism: possible macroscopic correlates of a minicolumnopathy. J Autism Dev Disord 2009; 39:751-64. [PMID: 19148739 PMCID: PMC2911778 DOI: 10.1007/s10803-008-0681-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 12/10/2008] [Indexed: 12/15/2022]
Abstract
Minicolumnar changes that generalize throughout a significant portion of the cortex have macroscopic structural correlates that may be visualized with modern structural neuroimaging techniques. In magnetic resonance images (MRIs) of fourteen autistic patients and 28 controls, the present study found macroscopic morphological correlates to recent neuropathological findings suggesting a minicolumnopathy in autism. Autistic patients manifested a significant reduction in the aperture for afferent/efferent cortical connections, i.e., gyral window. Furthermore, the size of the gyral window directly correlated to the size of the corpus callosum. A reduced gyral window constrains the possible size of projection fibers and biases connectivity towards shorter corticocortical fibers at the expense of longer association/commisural fibers. The findings may help explain abnormalities in motor skill development, differences in postnatal brain growth, and the regression of acquired functions observed in some autistic patients.
Collapse
Affiliation(s)
- Manuel F Casanova
- Department of Psychiatry, University of Louisville, Louisville, KY 40292, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rochefort NL, Buzás P, Quenech'du N, Koza A, Eysel UT, Milleret C, Kisvárday ZF. Functional Selectivity of Interhemispheric Connections in Cat Visual Cortex. Cereb Cortex 2009; 19:2451-65. [DOI: 10.1093/cercor/bhp001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Keogh MJ, Ridgway SH. Neuronal Fiber Composition of the Corpus Callosum Within Some Odontocetes. Anat Rec (Hoboken) 2008; 291:781-9. [DOI: 10.1002/ar.20701] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Caleo M, Restani L, Gianfranceschi L, Costantin L, Rossi C, Rossetto O, Montecucco C, Maffei L. Transient synaptic silencing of developing striate cortex has persistent effects on visual function and plasticity. J Neurosci 2007; 27:4530-40. [PMID: 17460066 PMCID: PMC6672996 DOI: 10.1523/jneurosci.0772-07.2007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural circuits in the cerebral cortex are shaped by experience during "critical periods" early in life. For example, visual cortex is immature at the time of eye opening and gradually develops its functional properties during a sensitive period. Very few reports have addressed the role of intrinsic neural activity in cortical maturation. Here we have exploited the bacterial enzyme botulinum neurotoxin E (BoNT/E) to produce a unilateral, reversible blockade of neural activity in rat visual cortex during the sensitive period. BoNT/E is a highly selective protease that interferes with transmitter release via cleavage of the synaptic protein SNAP-25 (synaptosomal-associated protein of 25 kDa). Unilateral, intracortical injections of BoNT/E were made at the time of eye opening and resulted in the silencing of the treated, but not contralateral, hemisphere for a period of 2 weeks. We found that visual acuity was permanently reduced in the blocked hemisphere, and the critical period for ocular dominance plasticity persisted into adulthood. Unexpectedly, these effects extended equally to the contralateral, uninjected side, demonstrating a fundamental role for interhemispheric connections in cortical maturation.
Collapse
Affiliation(s)
- Matteo Caleo
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 56100 Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Mihrshahi R. The corpus callosum as an evolutionary innovation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2006; 306:8-17. [PMID: 16116611 DOI: 10.1002/jez.b.21067] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The corpus callosum (CC) is the major interhemispheric fibre bundle in the eutherian brain and has been described as a true evolutionary innovation. This paper reviews the current literature with regard to functional, developmental and genetic concepts that may help elucidate the evolutionary origin of this structure. It has been suggested that the CC arose in the eutherian brain as a more direct and, therefore, more effective system for the interhemispheric integration of topographically organized sensory cortices than the anterior commissure (AC) and hippocampal commissure (HC) already present in nonplacental mammals. It can also be argued, however, that the ability of the CC to integrate the newly evolving motor cortices of placental mammals may have played a role in the evolutionary fixation of this structure. Investigations into the developmental mechanism involved in the formation of the CC and their underlying patterns of gene expression make it possible to formulate a tentative hypothesis about the evolutionary origin of this commissure. This paper suggests that changes in the developmental patterns of the expression of certain regulatory genes may have allowed a first group of callosal pioneering axons to cross the cortical midline. These pioneering fibres may have used the axons of the HC to find their way across the midline. Additional callosal fibres may then have fasciculated with these pioneers. Once the CC had formed in this way, more complex systems of axonal guidance may have evolved over time, thus enabling a gradual increase in the size and complexity of the CC.
Collapse
Affiliation(s)
- Robin Mihrshahi
- Department of Biological Sciences, Macquarie University, Sydney, North Ryde 2109, Australia.
| |
Collapse
|
31
|
Urgesi C, Bricolo E, Aglioti SM. Hemispheric metacontrol and cerebral dominance in healthy individuals investigated by means of chimeric faces. ACTA ACUST UNITED AC 2005; 24:513-25. [PMID: 16099363 DOI: 10.1016/j.cogbrainres.2005.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 02/28/2005] [Accepted: 03/02/2005] [Indexed: 11/20/2022]
Abstract
Cerebral dominance and hemispheric metacontrol were investigated by testing the ability of healthy participants to match chimeric, entire, or half faces presented tachistoscopically. The two hemi-faces compounding chimeric or entire stimuli were presented simultaneously or asynchronously at different exposure times. Participants did not consciously detect chimeric faces for simultaneous presentations lasting up to 40 ms. Interestingly, a 20 ms separation between each half-chimera was sufficient to induce detection of conflicts at a conscious level. Although the presence of chimeric faces was not consciously perceived, performance on chimeric faces was poorer than on entire- and half-faces stimuli, thus indicating an implicit processing of perceptual conflicts. Moreover, the precedence of hemispheric stimulation over-ruled the right hemisphere dominance for face processing, insofar as the hemisphere stimulated last appeared to influence the response. This dynamic reversal of cerebral dominance, however, was not caused by a shift in hemispheric specialization, since the level of performance always reflected the right hemisphere specialization for face recognition. Thus, the dissociation between hemispheric dominance and specialization found in the present study hints at the existence of hemispheric metacontrol in healthy individuals.
Collapse
Affiliation(s)
- Cosimo Urgesi
- Dipartimento di Scienze Neurologiche e della Visione, Sezione di Fisiologia Umana, Università degli Studi di Verona, Verona, Italy
| | | | | |
Collapse
|
32
|
Houzel JC, Carvalho ML, Lent R. Interhemispheric connections between primary visual areas: beyond the midline rule. Braz J Med Biol Res 2002; 35:1441-53. [PMID: 12436187 DOI: 10.1590/s0100-879x2002001200005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the last five years, a number of detailed anatomical, electrophysiological, optical imaging and simulation studies performed in a variety of non-human species have revealed that the functional organization of callosal connections between primary visual areas is more elaborate than previously thought. Callosal cell bodies and terminals are clustered in columns whose correspondence to features mapped in the visual cortex, such as orientation and ocularity, are starting to be understood. Callosal connections are not restricted to the vertical midline representation nor do they establish merely point-to-point retinotopic correspondences across the hemispheres, as traditionally believed. In addition, anatomical studies have revealed the existence of an ipsilateral component of callosal axons. The aim of this short review is to propose how these new data can be integrated into an updated scheme of the circuits responsible for assembling the primary visual field map.
Collapse
Affiliation(s)
- J-C Houzel
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil.
| | | | | |
Collapse
|
33
|
Abstract
The minicolumn is a continuing source of research and debate more than half a century after it was identified as a component of brain organization. The minicolumn is a sophisticated local network that contains within it the elements for redundancy and plasticity. Although it is sometimes compared to subcortical nuclei, the design of the minicolumn is a distinctive form of module that has evolved specifically in the neocortex. It unites the horizontal and vertical components of cortex within the same cortical space. Minicolumns are often considered highly repetitive, even clone-like, units. However, they display considerable heterogeneity between areas and species, perhaps even within a given macrocolumn. Despite a growing recognition of the anatomical basis of the cortical minicolumn, as well as its physiological properties, the potential of the minicolumn has not been exploited in fields such as comparative neuroanatomy, abnormalities of the brain and mind, and evolution.
Collapse
|
34
|
Affiliation(s)
- M P Stryker
- W.M. Keck Foundation Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, California 94143-0444, USA.
| | | |
Collapse
|