1
|
Valizadeh M, Derafsh E, Abdi Abyaneh F, Parsamatin SK, Noshabad FZR, Alinaghipour A, Yaghoobi Z, Taheri AT, Dadgostar E, Aschner M, Mirzaei H, Tamtaji OR, Nabavizadeh F. Non-Coding RNAs and Neurodegenerative Diseases: Information of their Roles in Apoptosis. Mol Neurobiol 2024; 61:4508-4537. [PMID: 38102518 DOI: 10.1007/s12035-023-03849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Apoptosis can be known as a key factor in the pathogenesis of neurodegenerative disorders. In disease conditions, the rate of apoptosis expands and tissue damage may become apparent. Recently, the scientific studies of the non-coding RNAs (ncRNAs) has provided new information of the molecular mechanisms that contribute to neurodegenerative disorders. Numerous reports have documented that ncRNAs have important contributions to several biological processes associated with the increase of neurodegenerative disorders. In addition, microRNAs (miRNAs), circular RNAs (circRNAs), as well as, long ncRNAs (lncRNAs) represent ncRNAs subtypes with the usual dysregulation in neurodegenerative disorders. Dysregulating ncRNAs has been associated with inhibiting or stimulating apoptosis in neurodegenerative disorders. Therefore, this review highlighted several ncRNAs linked to apoptosis in neurodegenerative disorders. CircRNAs, lncRNAs, and miRNAs were also illustrated completely regarding the respective signaling pathways of apoptosis.
Collapse
Affiliation(s)
| | - Ehsan Derafsh
- Windsor University School of Medicine, Cayon, Canada
| | | | - Sayedeh Kiana Parsamatin
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Azam Alinaghipour
- School of Medical Sciences, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Zahra Yaghoobi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, IR, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR, Iran
| | - Abdolkarim Talebi Taheri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, IR, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, IR, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, IR, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR, Iran.
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, IR, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR, Iran
| |
Collapse
|
2
|
Dong W, Zhang W, Yuan L, Xie Y, Li Y, Li K, Zhu W. Rescuers from the Other Shore: Intercellular Mitochondrial Transfer and Its Implications in Central Nervous System Injury and Diseases. Cell Mol Neurobiol 2023; 43:2525-2540. [PMID: 36867301 PMCID: PMC11410152 DOI: 10.1007/s10571-023-01331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
As the powerhouse and core of cellular metabolism and survival, mitochondria are the essential organelle in mammalian cells and maintain cellular homeostasis by changing their content and morphology to meet demands through mitochondrial quality control. It has been observed that mitochondria can move between cells under physiological and pathophysiological conditions, which provides a novel strategy for preserving mitochondrial homeostasis and also a therapeutic target for applications in clinical settings. Therefore, in this review, we will summarize currently known mechanisms of intercellular mitochondrial transfer, including modes, triggers, and functions. Due to the highly demanded energy and indispensable intercellular linkages of the central nervous system (CNS), we highlight the mitochondrial transfer in CNS. We also discuss future application possibilities and difficulties that need to be addressed in the treatment of CNS injury and diseases. This clarification should shed light on its potential clinical applications as a promising therapeutic target in neurological diseases. Intercellular mitochondrial transfer maintains the homeostasis of central nervous system (CNS), and its alteration is related to several neurological diseases. Supplementing exogenous mitochondrial donor cells and mitochondria, or utilizing some medications to regulate the process of transfer might mitigate the disease and injury.
Collapse
Affiliation(s)
- Weichen Dong
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu Province, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu Province, China
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Iron Metabolism and Mitochondrial Function, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu Province, China
| | - Wenxin Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu Province, China
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Iron Metabolism and Mitochondrial Function, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu Province, China
| | - Linying Yuan
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu Province, China
| | - Yi Xie
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu Province, China
| | - Yunzi Li
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu Province, China
| | - Kuanyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu Province, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Iron Metabolism and Mitochondrial Function, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu Province, China.
| | - Wusheng Zhu
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu Province, China.
| |
Collapse
|
3
|
Yin R, Zhang Y, Su L, Chen D, Lou S, Luo X, Wang L, Tang R, Zhang L, Tian X. The mechanism of trans-δ-viniferin inhibiting the proliferation of lung cancer cells A549 by targeting the mitochondria. Front Pharmacol 2023; 14:1190127. [PMID: 37274109 PMCID: PMC10232840 DOI: 10.3389/fphar.2023.1190127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Trans-δ-viniferin (TVN), as a natural extract, is a resveratrol dimer with attractive biological activities, particularly its anti-tumor character. However, the mechanism of TVN interfering with cancerous proliferation has not been fully understood. Herein in this study, we found that TVN could trigger cancerous mitochondrial membrane potential (ΔΨm) reduction, with intracellular reactive oxidative species (ROS) level increasing, leading to apoptosis, which makes TVN a promising candidate for lung cancer cells A549 treatment. Therefore, this study provides TVN as an option to meet the demand for higher antitumor availability with lower biotoxicity and other clinical applications.
Collapse
Affiliation(s)
- Ruochun Yin
- School of Life Science, Anhui University, Hefei, China
- Hefei Ting Xiandu Biological Technology Co, Ltd., Hefei, China
| | - Yiling Zhang
- School of Life Science, Anhui University, Hefei, China
| | - Liping Su
- School of Life Science, Anhui University, Hefei, China
| | - Dongdong Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Shidi Lou
- School of Life Science, Anhui University, Hefei, China
| | - Xuecai Luo
- Hefei Ting Xiandu Biological Technology Co, Ltd., Hefei, China
| | - Lin Wang
- School of Life Science, Anhui University, Hefei, China
- Hefei Ting Xiandu Biological Technology Co, Ltd., Hefei, China
| | - Rupei Tang
- School of Life Science, Anhui University, Hefei, China
| | - Liang Zhang
- School of Life Science, Anhui University, Hefei, China
| | - Xiaohe Tian
- School of Life Science, Anhui University, Hefei, China
| |
Collapse
|
4
|
Hyun DH, Lee J. A New Insight into an Alternative Therapeutic Approach to Restore Redox Homeostasis and Functional Mitochondria in Neurodegenerative Diseases. Antioxidants (Basel) 2021; 11:antiox11010007. [PMID: 35052511 PMCID: PMC8772965 DOI: 10.3390/antiox11010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative diseases are accompanied by oxidative stress and mitochondrial dysfunction, leading to a progressive loss of neuronal cells, formation of protein aggregates, and a decrease in cognitive or motor functions. Mitochondrial dysfunction occurs at the early stage of neurodegenerative diseases. Protein aggregates containing oxidatively damaged biomolecules and other misfolded proteins and neuroinflammation have been identified in animal models and patients with neurodegenerative diseases. A variety of neurodegenerative diseases commonly exhibits decreased activity of antioxidant enzymes, lower amounts of antioxidants, and altered cellular signalling. Although several molecules have been approved clinically, there is no known cure for neurodegenerative diseases, though some drugs are focused on improving mitochondrial function. Mitochondrial dysfunction is caused by oxidative damage and impaired cellular signalling, including that of peroxisome proliferator-activated receptor gamma coactivator 1α. Mitochondrial function can also be modulated by mitochondrial biogenesis and the mitochondrial fusion/fission cycle. Mitochondrial biogenesis is regulated mainly by sirtuin 1, NAD+, AMP-activated protein kinase, mammalian target of rapamycin, and peroxisome proliferator-activated receptor γ. Altered mitochondrial dynamics, such as increased fission proteins and decreased fusion products, are shown in neurodegenerative diseases. Due to the restrictions of a target-based approach, a phenotype-based approach has been performed to find novel proteins or pathways. Alternatively, plasma membrane redox enzymes improve mitochondrial function without the further production of reactive oxygen species. In addition, inducers of antioxidant response elements can be useful to induce a series of detoxifying enzymes. Thus, redox homeostasis and metabolic regulation can be important therapeutic targets for delaying the progression of neurodegenerative diseases.
Collapse
|
5
|
ROS Homeostasis and Plant Salt Tolerance: Plant Nanobiotechnology Updates. SUSTAINABILITY 2021. [DOI: 10.3390/su13063552] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Salinity is an issue impairing crop production across the globe. Under salinity stress, besides the osmotic stress and Na+ toxicity, ROS (reactive oxygen species) overaccumulation is a secondary stress which further impairs plant performance. Chloroplasts, mitochondria, the apoplast, and peroxisomes are the main ROS generation sites in salt-stressed plants. In this review, we summarize ROS generation, enzymatic and non-enzymatic antioxidant systems in salt-stressed plants, and the potential for plant biotechnology to maintain ROS homeostasis. Overall, this review summarizes the current understanding of ROS homeostasis of salt-stressed plants and highlights potential applications of plant nanobiotechnology to enhance plant tolerance to stresses.
Collapse
|
6
|
Huang X, Liu Z, Wang M, Yin X, Wang Y, Dai L, Wang H. Platinum(IV) complexes conjugated with chalcone analogs as dual targeting anticancer agents: In vitro and in vivo studies. Bioorg Chem 2020; 105:104430. [PMID: 33171407 DOI: 10.1016/j.bioorg.2020.104430] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/22/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022]
Abstract
For the sake to develop novel platinum(IV) complexes to reverse cisplatin (CDDP) resistence, four multifunctional platinum(IV) prodrugs via conjugating chalcones with the related platinum(IV) complexes derived from cisplatin were designed and evaluated for anti-tumor actyivities in vitro and in vivo. Among them, complex 9 exhibited excellent anticancer activities in vitro with IC50 values at the submicromolar level against the tested human cancer cells, whereas showed low cytotoxicity towards human normal liver cells HL-7702. Further mechanistic studies indicated that complex 9 induced G2/M phase arrest and apoptosis in A549 cells, which was associated with a collapse of the mitochondrial membrane potential (MMP), alterations in the expression of some apoptosis-related proteins, and enhanced level of the intracellular reactive oxygen species (ROS). More importantly, complex 9 significantly suppressed the tumor growth in the A549 xenograft model without obvious hints of toxicity.
Collapse
Affiliation(s)
- Xiaochao Huang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, and National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223003, China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Zhikun Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Meng Wang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, and National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Xiulian Yin
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, and National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223003, China
| | - Yanming Wang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, and National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223003, China
| | - Lumei Dai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
7
|
Hyun DH. Insights into the New Cancer Therapy through Redox Homeostasis and Metabolic Shifts. Cancers (Basel) 2020; 12:cancers12071822. [PMID: 32645959 PMCID: PMC7408991 DOI: 10.3390/cancers12071822] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
Modest levels of reactive oxygen species (ROS) are necessary for intracellular signaling, cell division, and enzyme activation. These ROS are later eliminated by the body’s antioxidant defense system. High amounts of ROS cause carcinogenesis by altering the signaling pathways associated with metabolism, proliferation, metastasis, and cell survival. Cancer cells exhibit enhanced ATP production and high ROS levels, which allow them to maintain elevated proliferation through metabolic reprograming. In order to prevent further ROS generation, cancer cells rely on more glycolysis to produce ATP and on the pentose phosphate pathway to provide NADPH. Pro-oxidant therapy can induce more ROS generation beyond the physiologic thresholds in cancer cells. Alternatively, antioxidant therapy can protect normal cells by activating cell survival signaling cascades, such as the nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway, in response to radio- and chemotherapeutic drugs. Nrf2 is a key regulator that protects cells from oxidative stress. Under normal conditions, Nrf2 is tightly bound to Keap1 and is ubiquitinated and degraded by the proteasome. However, under oxidative stress, or when treated with Nrf2 activators, Nrf2 is liberated from the Nrf2-Keap1 complex, translocated into the nucleus, and bound to the antioxidant response element in association with other factors. This cascade results in the expression of detoxifying enzymes, including NADH-quinone oxidoreductase 1 (NQO1) and heme oxygenase 1. NQO1 and cytochrome b5 reductase can neutralize ROS in the plasma membrane and induce a high NAD+/NADH ratio, which then activates SIRT1 and mitochondrial bioenergetics. NQO1 can also stabilize the tumor suppressor p53. Given their roles in cancer pathogenesis, redox homeostasis and the metabolic shift from glycolysis to oxidative phosphorylation (through activation of Nrf2 and NQO1) seem to be good targets for cancer therapy. Therefore, Nrf2 modulation and NQO1 stimulation could be important therapeutic targets for cancer prevention and treatment.
Collapse
Affiliation(s)
- Dong-Hoon Hyun
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
8
|
Yang YX, Yu S, Jia BX, Liu N, Wu A. Metabolomic profiling reveals similar cytotoxic effects and protective functions of quercetin during deoxynivalenol- and 15-acetyl deoxynivalenol-induced cell apoptosis. Toxicol In Vitro 2020; 66:104838. [PMID: 32229167 DOI: 10.1016/j.tiv.2020.104838] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022]
Abstract
Among the family of mycotoxins of deoxynivalenol (DON) detected in nature, high proportions of 15-acetyldeoxynivalenol (15ADON) co-occur with the prototype DON and increase the combined exposure and synergistic health risks. The current study aimed to explore the mechanisms underlying the toxicity of 15ADON and compare them with those of DON. As the natural flavonoid compound quercetin (QUE) possesses antioxidant properties, we also aimed to determine the antioxidant effects of QUE on the tested mycotoxins. First, the global metabolomics approach was applied and showed that the metabolites produced from 15ADON or DON were almost identical, while QUE reversed the changes in the levels of key metabolites. Specifically, both DON and 15ADON activated the cell apoptosis pathway mediated by p38 and JNK, but inhibited the cell survival pathway mediated by ERK1/2 in GES-1 cells. Simultaneously, 15ADON induced FOXO3a nuclear translocation, similar to the results described for DON in our recent report. Furthermore, the addition of QUE appeared to counteract the detrimental effects of 15ADON and DON. We observed the effects of QUE treatment on mutant yeast strains with defects in their antioxidant system. More interestingly, QUE also substantially restored the increased ROS levels and the inhibited the growth rate following exposure to the mycotoxins DON and 15ADON. The data reported here support the hypothesis that QUE rescues the toxic effects of DON or 15ADON due to the similar mechanisms of DON and 15ADON toxicity.
Collapse
Affiliation(s)
- Y X Yang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, PR China
| | - S Yu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, PR China
| | - B X Jia
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, PR China
| | - Na Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, PR China
| | - Aibo Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, PR China.
| |
Collapse
|
9
|
Liu Z, Wang M, Wang H, Fang L, Gou S. Platinum-Based Modification of Styrylbenzylsulfones as Multifunctional Antitumor Agents: Targeting the RAS/RAF Pathway, Enhancing Antitumor Activity, and Overcoming Multidrug Resistance. J Med Chem 2019; 63:186-204. [DOI: 10.1021/acs.jmedchem.9b01223] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zhikun Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Meng Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
10
|
Hyun DH. Plasma membrane redox enzymes: new therapeutic targets for neurodegenerative diseases. Arch Pharm Res 2019; 42:436-445. [PMID: 30919268 DOI: 10.1007/s12272-019-01147-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/16/2019] [Indexed: 01/06/2023]
Abstract
Mitochondrial dysfunction caused by oxidative stress appears at early stages of aging and age-related diseases. Plasma membrane redox enzymes act in a compensatory manner to decrease oxidative stress and supply reductive capacity to ensure cell survival. Plasma membrane redox enzymes transfer electrons from NAD(P)H to oxidized ubiquinone and α-tocopherol, resulting in inhibition of further oxidative damage. Plasma membrane redox enzymes and their partners are affected by aging, leading to progression of neurodegenerative disease pathogenesis. Up-regulating plasma membrane redox enzymes via calorie restriction and phytochemicals make cells more resistant to oxidative damage under stress conditions by maintaining redox homeostasis and improving mitochondrial function. Investigation into plasma membrane redox enzymes can provide mechanistic details underlying the relationships between plasma membrane redox enzymes and mitochondrial complexes and provide a good therapeutic target for prevention and delay of neurodegenerative disorders.
Collapse
Affiliation(s)
- Dong-Hoon Hyun
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea.
| |
Collapse
|
11
|
Yim NH, Gu MJ, Park HR, Hwang YH, Ma JY. Enhancement of neuroprotective activity of Sagunja-tang by fermentation with lactobacillus strains. Altern Ther Health Med 2018; 18:312. [PMID: 30486879 PMCID: PMC6263064 DOI: 10.1186/s12906-018-2361-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/25/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Sagunja-tang (SGT) is widely used in traditional herbal medicine to treat immune system and gastrointestinal disorders and reportedly has protective effects against inflammation, cancer, and osteoporosis. In this study, we fermented SGT with different Latobacillus strains and investigated the change in phytochemical compositions in SGT and enhancement of it neuroprotective effects in SH-SY5Y human neuroblastoma. METHODS Marker components, including ginsenoside Rg1, glycyrrhizin, liquiritin, liquiritigenin, atractylenolide I, atractylenolide II, atractylenolide III, and pachymic acid, in SGT, were qualitatively and quantitatively analyzed using high-performance liquid chromatography-diode array detection and liquid chromatography-mass spectrometry. SGT was fermented with eight different Lactobacillus strains to yield eight fermented SGTs (FSGTs). The conversion efficiencies of SGT marker components were determined in each FSGT. To detect the protective effect of SGT and FSGT, reactive oxygen species (ROS) assay and mitochondrial membrane potentials (MMPs) assay were performed in SH-SY5Y cells. RESULTS Compared with the other FSGTs, SGT166, i.e., SGT fermented with L. plantarum 166, had high conversion efficiency, as indicated by increased amounts of glycyrrhizin, liquiritigenin, and atractylenolides I-III. In SH-SY5Y cells, protection against cell death induced by H2O2 and etoposide was high using SGT166 and very low using SGT. Furthermore, ROS production and mitochondrial membrane potential disruption in SH-SY5Y cells were markedly suppressed by SGT166 treatment, which demonstrated that inhibition of ROS generation may be one of the neuroprotective mechanisms of SGT166. CONCLUSIONS This study demonstrated that fermentation of SGT with L. plantarum 166 enhanced suppression of oxidative stress and MMP loss. This enhanced neuroprotective effect was thought to be caused by the conversion of SGT phytochemicals by fermentation. SGT166 shows potential for treating neurological damage-related diseases.
Collapse
|
12
|
Paliwal S, Chaudhuri R, Agrawal A, Mohanty S. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J Biomed Sci 2018; 25:31. [PMID: 29602309 PMCID: PMC5877369 DOI: 10.1186/s12929-018-0429-1] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/14/2018] [Indexed: 12/27/2022] Open
Abstract
The past decade has witnessed an upsurge in studies demonstrating mitochondrial transfer as one of the emerging mechanisms through which mesenchymal stem cells (MSCs) can regenerate and repair damaged cells or tissues. It has been found to play a critical role in healing several diseases related to brain injury, cardiac myopathies, muscle sepsis, lung disorders and acute respiratory disorders. Several studies have shown that various mechanisms are involved in mitochondrial transfer that includes tunnel tube formation, micro vesicle formation, gap junctions, cell fusion and others modes of transfer. Few studies have investigated the mechanisms that contribute to mitochondrial transfer, primarily comprising of signaling pathways involved in tunnel tube formation that facilitates tunnel tube formation for movement of mitochondria from one cell to another. Various stress signals such as release of damaged mitochondria, mtDNA and mitochondrial products along with elevated reactive oxygen species levels trigger the transfer of mitochondria from MSCs to recipient cells. However, extensive cell signaling pathways that lead to mitochondrial transfer from healthy cells are still under investigation and the changes that contribute to restoration of mitochondrial bioenergetics in recipient cells remain largely elusive. In this review, we have discussed the phenomenon of mitochondrial transfer from MSCs to neighboring stressed cells, and how this aids in cellular repair and regeneration of different organs such as lung, heart, eye, brain and kidney. The potential scope of mitochondrial transfer in providing novel therapeutic strategies for treatment of various pathophysiological conditions has also been discussed.
Collapse
Affiliation(s)
- Swati Paliwal
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rituparna Chaudhuri
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Anurag Agrawal
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-Institute of Genomics and Integrative Biology, Delhi, 110007, India.
| | - Sujata Mohanty
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
13
|
Wang D, Hu S, Zhang J, Li Q, Liu X, Li Y. Investigation of the neuroprotective effects of a novel synthetic compound via the mitochondrial pathway. Mol Med Rep 2017. [PMID: 28627694 PMCID: PMC5562046 DOI: 10.3892/mmr.2017.6745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The present study aimed to investigate the neuroprotective effect of a novel synthetic compound (5zou) on differentiated PC12 cells against 6-hydroxydopamine (6-OHDA) and L-glutamic acid (L-Glu) neurotoxin-induced cell injury and the potential mechanisms involved. 5zou is a 2, 2-disubstituted 1,2-dihydropyridine. PC12 cells were treated with 6-OHDA and L-Glu to establish neurotoxic cell models. MTT assay, DCFH-DA staining, Fluo-4-AM staining, JC-1 staining and western blotting were used to determine the changes in cell viability, intracellular reactive oxygen species concentration, Ca2+ influx, mitochondrial membrane potential and the protein expressions of B-cell lymphoma-2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xL). Morphological analysis demonstrated the effect of 5zous on neuritogenesis and differentiation in PC12 cells. The results suggested that 5zou rescued the cell viability, intracellular ROS level, Ca2+ influx, mitochondrial membrane potential, and expression of Bcl-2 and Bcl-xL, which were altered by 6-OHDA and L-Glu. The study confirmed that 5zou has neuroprotective effects on neurotoxin-induced differentiated PC12 cells injury, potentially via the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Shuang Hu
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Junrong Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Qiuyue Li
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Xinyu Liu
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| |
Collapse
|
14
|
Bota DA, Davies KJA. Mitochondrial Lon protease in human disease and aging: Including an etiologic classification of Lon-related diseases and disorders. Free Radic Biol Med 2016; 100:188-198. [PMID: 27387767 PMCID: PMC5183306 DOI: 10.1016/j.freeradbiomed.2016.06.031] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/21/2016] [Accepted: 06/29/2016] [Indexed: 12/20/2022]
Abstract
The Mitochondrial Lon protease, also called LonP1 is a product of the nuclear gene LONP1. Lon is a major regulator of mitochondrial metabolism and response to free radical damage, as well as an essential factor for the maintenance and repair of mitochondrial DNA. Lon is an ATP-stimulated protease that cycles between being bound (at the inner surface of the inner mitochondrial membrane) to the mitochondrial genome, and being released into the mitochondrial matrix where it can degrade matrix proteins. At least three different roles or functions have been ascribed to Lon: 1) Proteolytic digestion of oxidized proteins and the turnover of specific essential mitochondrial enzymes such as aconitase, TFAM, and StAR; 2) Mitochondrial (mt)DNA-binding protein, involved in mtDNA replication and mitogenesis; and 3) Protein chaperone, interacting with the Hsp60-mtHsp70 complex. LONP1 orthologs have been studied in bacteria, yeast, flies, worms, and mammals, evincing the widespread importance of the gene, as well as its remarkable evolutionary conservation. In recent years, we have witnessed a significant increase in knowledge regarding Lon's involvement in physiological functions, as well as in an expanding array of human disorders, including cancer, neurodegeneration, heart disease, and stroke. In addition, Lon appears to have a significant role in the aging process. A number of mitochondrial diseases have now been identified whose mechanisms involve various degrees of Lon dysfunction. In this paper we review current knowledge of Lon's function, under normal conditions, and we propose a new classification of human diseases characterized by a either over-expression or decline or loss of function of Lon. Lon has also been implicated in human aging, and we review the data currently available as well as speculating about possible interactions of aging and disease. Finally, we also discuss Lon as potential therapeutic target in human disease.
Collapse
Affiliation(s)
- Daniela A Bota
- Department of Neurology and Chao Family Comprehensive Cancer Center, UC Irvine School of Medicine, 200 S. Manchester Ave., Suite 206, Orange, CA 92868, USA.
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, Los Angeles, CA 90089-0191, USA; Division of Molecular & Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, & Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA
| |
Collapse
|
15
|
Hung KM, Calkins MJ. Mitochondrial homeostatic disruptions are sensitive indicators of stress in neurons with defective mitochondrial DNA transactions. Mitochondrion 2016; 31:9-19. [PMID: 27581214 DOI: 10.1016/j.mito.2016.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/17/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023]
Abstract
Neurodegeneration and mitochondrial dysfunction are closely linked across many clinical conditions. In genetic diseases that result from defects in mitochondrial DNA (mtDNA) synthesis or maintenance, neurodegeneration is a frequent and major component of the disease pathology. In sporadic neurodegenerative diseases such as Alzheimer's and Parkinson's disease, mtDNA defects have been observed clinically. Mitochondrial stress related to mtDNA dysregulation can produce neuronal dysfunction and death via impaired electron transport chain activity, which results in deficient ATP production and related increases in mitochondrial reactive oxygen species (ROS) production. However, mtDNA dysregulation in post-mitotic neurons may also produce disturbances in mitochondrial homeostasis that are known to impair neuronal function as well. In this study, we used sub-toxic doses of ethidium bromide (EtBr) to induce mtDNA-associated mitochondrial stress in primary cortical neurons and measured several aspects of mitochondrial homeostasis, mitochondrial function and cell death. We found that low-dose EtBr severely depletes mtDNA synthesis and mitochondrial mRNA levels. Furthermore, homeostatic processes are especially disrupted in toxin treated neurons while mitochondrial function is relatively preserved. Mitochondria become fragmented and motility is abolished, while respiration and mitochondrial polarization are partially maintained. Moreover at these doses, cells do not exhibit increased ROS production, clear neurite retraction or loss of viability. These results indicate that mitochondrial homeostasis is a sensitive marker of mtDNA associated stress compared to mitochondria-functional outputs or endpoints related to cellular toxicity. These homeostatic disruptions are expected to contribute to neuronal dysfunction and potentially drive neurodegenerative disease pathology.
Collapse
Affiliation(s)
- Kui-Ming Hung
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Marcus J Calkins
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
16
|
Zeng J, Chen QW, Yu ZY, Zhang JR, Chen DL, Song C, Luo J, Zhang C, Wang SL, Chen JP. Regulation of intrinsic apoptosis in cycloheximide-treated macrophages by the Sichuan human strain of Chinese Leishmania isolates. Acta Trop 2016; 153:101-10. [PMID: 26482137 DOI: 10.1016/j.actatropica.2015.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 08/27/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Leishmania spp. are able to survive and proliferate inside mammals' mononuclear phagocytes, causing Leishmaniasis. Previous studies have noted that the regulation of apoptosis in host cells by these parasites may contribute to their ability to evade the immune system. However, current results remain unclear about whether the parasites can promote or delay the apoptotic process in host cells, because the regulatory effect of Leishmania was assumed to be strain-, species- and even infection time-dependent. The aim of this study was to investigate whether the Sichuan isolates of Chinese Leishmania (SC10H2) can alter the process of intrinsic apoptosis induced by cycloheximide in different types of macrophage cell lines and to determine in which steps of the signaling pathway the parasites were involved. Human THP-1 and mouse RAW264.7 macrophages were infected by SC10H2 promastigotes followed by cycloheximide stimulation to assess the alteration of intrinsic apoptosis in these cells. The results indicated that SC10H2 infection of human THP-1 macrophages could promote the initiation of intrinsic apoptosis, but completely opposite results were found in mouse RAW264.7 macrophages. Nevertheless, the expression of Bcl-2 and the DNA fragmentation rates were not altered by SC10H2 infection in the cell lines used in the experiments. This study suggests that SC10H2 promastigote infection is able to promote and delay the transduction of early apoptotic signals induced by cycloheximide in THP-1 and RAW264.7 macrophages, revealing that the regulation of intrinsic apoptosis in host cells by SC10H2 in vitro occurs in a host cell-dependent manner. The data from this study might play a significant role in further understanding the relationship between Leishmania and different host cells.
Collapse
|
17
|
The Role of Oxidative Stress-Induced Epigenetic Alterations in Amyloid-β Production in Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:604658. [PMID: 26543520 PMCID: PMC4620382 DOI: 10.1155/2015/604658] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/15/2014] [Indexed: 11/17/2022]
Abstract
An increasing number of studies have proposed a strong correlation between reactive oxygen species (ROS)-induced oxidative stress (OS) and the pathogenesis of Alzheimer's disease (AD). With over five million people diagnosed in the United States alone, AD is the most common type of dementia worldwide. AD includes progressive neurodegeneration, followed by memory loss and reduced cognitive ability. Characterized by the formation of amyloid-beta (Aβ) plaques as a hallmark, the connection between ROS and AD is compelling. Analyzing the ROS response of essential proteins in the amyloidogenic pathway, such as amyloid-beta precursor protein (APP) and beta-secretase (BACE1), along with influential signaling programs of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and c-Jun N-terminal kinase (JNK), has helped visualize the path between OS and Aβ overproduction. In this review, attention will be paid to significant advances in the area of OS, epigenetics, and their influence on Aβ plaque assembly. Additionally, we aim to discuss available treatment options for AD that include antioxidant supplements, Asian traditional medicines, metal-protein-attenuating compounds, and histone modifying inhibitors.
Collapse
|
18
|
Liu T, Zhu L, Han Y, Wang J, Wang J, Zhao Y. The cytotoxic and genotoxic effects of metalaxy-M on earthworms (Eisenia fetida). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2344-2350. [PMID: 25043480 DOI: 10.1002/etc.2682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/13/2014] [Accepted: 07/10/2014] [Indexed: 06/03/2023]
Abstract
As the main optical isomer of metalaxyl, metalaxyl-M has been widely used worldwide in recent years because of its notable effect on the prevention and control of crop diseases. Together with the toxicity and degradation of metalaxyl-M, the chemical has attracted the attention of researchers. The present study examined the toxic effects of metalaxyl-M on earthworms at 0 mg kg(-1) , 0.1 mg kg(-1) , 1 mg kg(-1) , and 3 mg kg(-1) on days 7, 14, 21 and 28 after exposure. The results showed that metalaxyl-M could cause an obvious increase in the production of reactive oxygen species (ROS) when the concentration was higher than 0.1 mg kg(-1) , which led to lipid peroxidation in earthworms. Metalaxyl-M can induce DNA damage in earthworms, and the level of DNA damage markedly increased with increasing the concentration of metalaxyl-M. Metalaxyl-M also has a serious influence on the activities of antioxidant enzymes, which results in irreversible oxidative damage in cells. The changes of these indicators all indicated that metalaxyl-M may cause cytotoxic and genotoxic effects on earthworms.
Collapse
Affiliation(s)
- Tong Liu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agriculture University, Taian, Peoples Republic of China, China
| | | | | | | | | | | |
Collapse
|
19
|
NG as a novel nitric oxide donor induces apoptosis by increasing reactive oxygen species and inhibiting mitochondrial function in MGC803 cells. Int Immunopharmacol 2014; 23:27-36. [PMID: 25135879 DOI: 10.1016/j.intimp.2014.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/20/2014] [Accepted: 08/06/2014] [Indexed: 02/06/2023]
Abstract
NG, O(2)-(2,4-dinitro-5-{[2-(12-en-28-β-D-galactopyranosyl-oleanolate-3-yl)-oxy-2-oxoethyl] amino} phenyl) 1-(N-hydroxyethylmethylamino) diazen-1-ium-1,2-diolate, was identified in our laboratory as a novel nitric oxide-releasing prodrug with antitumor effects. A previous study showed that NG inhibited cell growth, and induced apoptosis in HepG2 cells. In this study, the inhibitory effects of NG on the viability of MGC803 cells were examined using methylthiazolyl tetrazolium biomide (MTT) assay, neutral red assay and trypan blue exclusion test. The results showed that NG had strong cytotoxicity to induce apoptosis, which was characterized by a significant externalization of phosphatidylserine, nuclear morphological changes and enhanced Bax-to-Bcl-2 ratio. Moreover, the release of cytochrome c (Cyt c) from mitochondria and the activation of caspase-9/3 were also detected, indicating that NG may induce apoptosis through a mitochondrial-mediated pathway. NG induced mitochondrial dysfunction in MGC803 cells by altering membrane potential (△Ψm), the inhibition of complexes I, II and IV consequently decreasing ATP level. Furthermore, the treatment of MGC803 cells with NG caused a marked rise in oxidative stress as characterized by accumulation of reactive oxygen species (ROS), excessive malondialdehyde (MDA) production and a reduction in glutathione hormone (GSH) level and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity. In addition, pretreatment with N-acetylcysteine (NAC), a GSH synthesis precursor, was partially protective against the NG-induced ROS generation and cell apoptosis. In contrast, pretreatment of MGC803 cells with L-buthionine-S, R-sulfoximine (BSO), a GSH synthesis inhibitor, increased the ROS levels, and aggravated cell apoptosis by NG. These results suggest that NG-induced apoptosis in MGC803 cells is mediated, at least in part, by the increase in ROS production, oxidative stress and mitochondrial dysfunction.
Collapse
|
20
|
Effects of carbonic anhydrase-related protein VIII on human cells harbouring an A8344G mitochondrial DNA mutation. Biochem J 2014; 459:149-60. [PMID: 24476000 DOI: 10.1042/bj20131235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MERRF (myoclonus epilepsy associated with ragged-red fibres) is a maternally inherited mitochondrial encephalomyopathy with various syndromes involving both muscular and nervous systems. The most common mutation in MERRF syndrome, the A8344G mutation in mtDNA, has been associated with severe defects in the respiratory function of mitochondria. In the present study, we show that there is a significant decrease in CA8 (carbonic anhydrase-related protein VIII) in cybrids harbouring the MERRF A8344G mutation. CA8 deficiency and mutations were found to be associated with a distinctive lifelong gait disorder in wdl (Waddles) mice and novel syndromes characterized by cerebellar ataxia and mental retardation in humans. The results of the present study showed that overexpression of CA8 in MERRF cybrids significantly decreased cell death induced by STS (staurosporine) treatment, suggesting a protective function of CA8 in cells harbouring the A8344G mutation of mtDNA. Interestingly, an increase in the formation of LC3-II (microtubule-associated protein 1 light chain 3-II) was found in the cybrids with down-regulated CA8 expression, suggesting that reduced expression of CA8 leads to autophagy activation. Furthermore, cybrids exhibiting down-regulated CA8 showed increased cytosolic Ca2+ signals and reduced levels of phospho-Akt compared with those in the cybrids with overexpressed CA8, indicating that phospho-Akt is involved in the protection of cells by CA8. Our findings suggest that CA8 is involved in the autophagic pathway and may have a protective role in cultured cells from patients with MERRF. Targeting CA8 and the downstream autophagic pathway might help develop therapeutic agents for treatment of MERRF syndrome in the future.
Collapse
|
21
|
Pharmacological effects of active compounds on neurodegenerative disease with gastrodia and uncaria decoction, a commonly used poststroke decoction. ScientificWorldJournal 2013; 2013:896873. [PMID: 24348193 PMCID: PMC3851952 DOI: 10.1155/2013/896873] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 09/17/2013] [Indexed: 01/14/2023] Open
Abstract
Neurodegenerative diseases refer to the selective loss of neuronal systems in patients. The diseases cause high morbidity and mortality to approximately 22 million people worldwide and the number is expected to be tripled by 2050. Up to now, there is no effective prevention and treatment for the neurodegenerative diseases. Although some of the clinical therapies target at slowing down the progression of symptoms of the diseases, the general effectiveness of the drugs has been far from satisfactory. Traditional Chinese medicine becomes popular alternative remedies as it has been practiced clinically for more than thousands of years in China. As neurodegenerative diseases are mediated through different pathways, herbal decoction with multiple herbs is used as an effective therapeutic approach to work on multiple targets. Gastrodia and Uncaria Decoction, a popular TCM decoction, has been used to treat stroke in China. The decoction contains compounds including alkaloids, flavonoids, iridoids, carotenoids, and natural phenols, which have been found to possess anti-inflammatory, antioxidative, and antiapoptotic effects. In this review, we will summarize the recent publications of the pharmacological effects of these five groups of compounds. Understanding the mechanisms of action of these compounds may provide new treatment opportunities for the patients with neurodegenerative diseases.
Collapse
|
22
|
Wu SB, Wu YT, Wu TP, Wei YH. Role of AMPK-mediated adaptive responses in human cells with mitochondrial dysfunction to oxidative stress. Biochim Biophys Acta Gen Subj 2013; 1840:1331-44. [PMID: 24513455 DOI: 10.1016/j.bbagen.2013.10.034] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/06/2013] [Accepted: 10/22/2013] [Indexed: 02/09/2023]
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) mutations are an important cause of mitochondrial diseases, for which there is no effective treatment due to complex pathophysiology. It has been suggested that mitochondrial dysfunction-elicited reactive oxygen species (ROS) plays a vital role in the pathogenesis of mitochondrial diseases, and the expression levels of several clusters of genes are altered in response to the elevated oxidative stress. Recently, we reported that glycolysis in affected cells with mitochondrial dysfunction is upregulated by AMP-activated protein kinase (AMPK), and such an adaptive response of metabolic reprogramming plays an important role in the pathophysiology of mitochondrial diseases. SCOPE OF REVIEW We summarize recent findings regarding the role of AMPK-mediated signaling pathways that are involved in: (1) metabolic reprogramming, (2) alteration of cellular redox status and antioxidant enzyme expression, (3) mitochondrial biogenesis, and (4) autophagy, a master regulator of mitochondrial quality control in skin fibroblasts from patients with mitochondrial diseases. MAJOR CONCLUSION Induction of adaptive responses via AMPK-PFK2, AMPK-FOXO3a, AMPK-PGC-1α, and AMPK-mTOR signaling pathways, respectively is modulated for the survival of human cells under oxidative stress induced by mitochondrial dysfunction. We suggest that AMPK may be a potential target for the development of therapeutic agents for the treatment of mitochondrial diseases. GENERAL SIGNIFICANCE Elucidation of the adaptive mechanism involved in AMPK activation cascades would lead us to gain a deeper insight into the crosstalk between mitochondria and the nucleus in affected tissue cells from patients with mitochondrial diseases. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Shi-Bei Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Yu-Ting Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Tsung-Pu Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Yau-Huei Wei
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
| |
Collapse
|
23
|
Chen T, Yang YF, Luo P, Liu W, Dai SH, Zheng XR, Fei Z, Jiang XF. Homer1 knockdown protects dopamine neurons through regulating calcium homeostasis in an in vitro model of Parkinson's disease. Cell Signal 2013; 25:2863-70. [PMID: 24036210 DOI: 10.1016/j.cellsig.2013.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/15/2013] [Accepted: 09/02/2013] [Indexed: 11/26/2022]
Abstract
Homer1 protein is an important scaffold protein at postsynaptic density and has been demonstrated to play a central role in calcium signaling in the central nervous system. The aim of this study was to investigate the effects of Homer1 knockdown on MPP(+) induced neuronal injury in cultured dopamine (DA) neurons. We found that down-regulating Homer1 expression with specific small interfering RNA (siRNA) significantly suppressed LDH release, reduced Propidium iodide (PI) or Hoechst staining, increased the number of tyrosine hydroxylase (TH) positive cells and DA uptake, and attenuated apoptotic and necrotic cell death after MPP(+) injury. Homer1 knockdown decreased intracellular reactive oxygen species (ROS) generation through inhibition of intracellular calcium overload, but did not affect the endogenous antioxidant enzyme activities. Calcium imaging was used to examine the changes of intracellular Ca(2+) concentration ([Ca(2+)]cyt) and Ca(2+) in endoplasmic reticulum (ER) ([Ca(2+)]ER), and the results showed that Homer1 siRNA transfection attenuated ER Ca(2+) release up to 120min after MPP(+) injury. Furthermore, decrease of [Ca(2+)]cyt induced by Homer1 knockdown in MPP(+) treated neurons was further enhanced by NMDA receptor antagonists MK-801 and AP-5, but not canonical transient receptor potential (TRPC) channel antagonist SKF-96365. l-type calcium antagonist isradipine but not nimodipine further inhibited intracellular calcium overload after MPP(+) insult in Homer1 down-regulated neurons. These results suggest that Homer1 knockdown has protective effects against neuronal injury in in vitro PD model by reducing calcium overload mediated ROS generation, and this protection may be dependent at least in part on the regulatory effects on the function of calcium channels in both plasma membrane and ER.
Collapse
Affiliation(s)
- Tao Chen
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth, Military Medical University, Xi'an, Shaanxi 710032, China; Department of Neurosurgery, The 123th Hospital of PLA, Bengbu, Anhui 233000, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lee CH, Wu SB, Hong CH, Yu HS, Wei YH. Molecular Mechanisms of UV-Induced Apoptosis and Its Effects on Skin Residential Cells: The Implication in UV-Based Phototherapy. Int J Mol Sci 2013; 14:6414-35. [PMID: 23519108 PMCID: PMC3634415 DOI: 10.3390/ijms14036414] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 12/31/2022] Open
Abstract
The human skin is an integral system that acts as a physical and immunological barrier to outside pathogens, toxicants, and harmful irradiations. Environmental ultraviolet rays (UV) from the sun might potentially play a more active role in regulating several important biological responses in the context of global warming. UV rays first encounter the uppermost epidermal keratinocytes causing apoptosis. The molecular mechanisms of UV-induced apoptosis of keratinocytes include direct DNA damage (intrinsic), clustering of death receptors on the cell surface (extrinsic), and generation of ROS. When apoptotic keratinocytes are processed by adjacent immature Langerhans cells (LCs), the inappropriately activated Langerhans cells could result in immunosuppression. Furthermore, UV can deplete LCs in the epidermis and impair their migratory capacity, leading to their accumulation in the dermis. Intriguingly, receptor activator of NF-κB (RANK) activation of LCs by UV can induce the pro-survival and anti-apoptotic signals due to the upregulation of Bcl-xL, leading to the generation of regulatory T cells. Meanwhile, a physiological dosage of UV can also enhance melanocyte survival and melanogenesis. Analogous to its effect in keratinocytes, a therapeutic dosage of UV can induce cell cycle arrest, activate antioxidant and DNA repair enzymes, and induce apoptosis through translocation of the Bcl-2 family proteins in melanocytes to ensure genomic integrity and survival of melanocytes. Furthermore, UV can elicit the synthesis of vitamin D, an important molecule in calcium homeostasis of various types of skin cells contributing to DNA repair and immunomodulation. Taken together, the above-mentioned effects of UV on apoptosis and its related biological effects such as proliferation inhibition, melanin synthesis, and immunomodulations on skin residential cells have provided an integrated biochemical and molecular biological basis for phototherapy that has been widely used in the treatment of many dermatological diseases.
Collapse
Affiliation(s)
- Chih-Hung Lee
- Department of Dermatology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 812, Taiwan; E-Mail:
- Department of Dermatology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; E-Mail:
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Shi-Bei Wu
- Department of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan; E-Mail:
| | - Chien-Hui Hong
- Department of Dermatology, National Yang-Ming University, Taipei 112, Taiwan; E-Mail:
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung City 813, Taiwan
| | - Hsin-Su Yu
- Department of Dermatology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; E-Mail:
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Yau-Huei Wei
- Department of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan; E-Mail:
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-2-2826-7118; Fax: +886-2-2826-4843
| |
Collapse
|
25
|
Li PL, Zhang Y. Cross talk between ceramide and redox signaling: implications for endothelial dysfunction and renal disease. Handb Exp Pharmacol 2013:171-97. [PMID: 23563657 DOI: 10.1007/978-3-7091-1511-4_9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have demonstrated that cross talk between ceramide and redox signaling modulates various cell activities and functions and contributes to the development of cardiovascular diseases and renal dysfunctions. Ceramide triggers the generation of reactive oxygen species (ROS) and increases oxidative stress in many mammalian cells and animal models. On the other hand, inhibition of ROS-generating enzymes or treatment of antioxidants impairs sphingomyelinase activation and ceramide production. As a mechanism, ceramide-enriched signaling platforms, special cell membrane rafts (MR) (formerly lipid rafts), provide an important microenvironment to mediate the cross talk of ceramide and redox signaling to exert a corresponding regulatory role on cell and organ functions. In this regard, activation of acid sphingomyelinase and generation of ceramide mediate the formation of ceramide-enriched membrane platforms, where transmembrane signals are transmitted or amplified through recruitment, clustering, assembling, or integration of various signaling molecules. A typical such signaling platform is MR redox signaling platform that is centered on ceramide production and aggregation leading to recruitment and assembling of NADPH oxidase to form an active complex in the cell plasma membrane. This redox signaling platform not only conducts redox signaling or regulation but also facilitates a feedforward amplification of both ceramide and redox signaling. In addition to this membrane MR redox signaling platform, the cross talk between ceramide and redox signaling may occur in other cell compartments. This book chapter focuses on the molecular mechanisms, spatial-temporal regulations, and implications of this cross talk between ceramide and redox signaling, which may provide novel insights into the understanding of both ceramide and redox signaling pathways.
Collapse
Affiliation(s)
- Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | |
Collapse
|
26
|
Zhao YF, Zhang C, Suo YR. MMPT as a reactive oxygen species generator induces apoptosis via the depletion of intracellular GSH contents in A549 cells. Eur J Pharmacol 2012; 688:6-13. [DOI: 10.1016/j.ejphar.2012.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 04/23/2012] [Accepted: 05/04/2012] [Indexed: 02/07/2023]
|
27
|
Chen HF, Chen CY, Lin TH, Huang ZW, Chi TH, Ma YS, Wu SB, Wei YH, Hsieh M. The protective roles of phosphorylated heat shock protein 27 in human cells harboring myoclonus epilepsy with ragged-red fibers A8344G mtDNA mutation. FEBS J 2012; 279:2987-3001. [DOI: 10.1111/j.1742-4658.2012.08678.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Rommelaere G, Michel S, Malaisse J, Charlier S, Arnould T, Renard P. Hypersensitivity of A8344G MERRF mutated cybrid cells to staurosporine-induced cell death is mediated by calcium-dependent activation of calpains. Int J Biochem Cell Biol 2011; 44:139-49. [PMID: 22037425 DOI: 10.1016/j.biocel.2011.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 10/13/2011] [Accepted: 10/16/2011] [Indexed: 11/18/2022]
Abstract
Mutations in the mitochondrial DNA can lead to the development of mitochondrial diseases such as Myoclonic Epilepsy with Ragged Red Fibers (MERRF) or Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like episodes (MELAS). We first show that human 143B-derived cybrid cells harboring either the A8344G (MERRF) or the A3243G (MELAS) mutation, are more prone to undergo apoptosis then their wild-type counterpart, when challenged with various apoptotic inducers such as staurosporine, etoposide and TRAIL. In addition, investigating the mechanisms underlying A8344G cybrid cells hypersensitivity to staurosporine-induced cell death, we found that staurosporine treatment activates caspases independently of cytochrome c release in both wild-type and mutated cells. Caspases are activated, at least partly, through the activation of calcium-dependent calpain proteases, a pathway that is more strongly activated in mutated cybrid cells than in wild-type cells exposed to staurosporine. These results suggest that calcium homeostasis perturbation induced by mitochondrial dysfunction could predispose cells to apoptosis, a process that could take part into the progressive cell degeneration observed in MERRF syndrome, and more generally in mitochondrial diseases.
Collapse
Affiliation(s)
- Guillaume Rommelaere
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (NAmur Research Institute for Life Sciences), University of Namur (FUNDP), Namur, Belgium
| | | | | | | | | | | |
Collapse
|
29
|
Jin S, Zhou F, Katirai F, Li PL. Lipid raft redox signaling: molecular mechanisms in health and disease. Antioxid Redox Signal 2011; 15:1043-83. [PMID: 21294649 PMCID: PMC3135227 DOI: 10.1089/ars.2010.3619] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lipid rafts, the sphingolipid and cholesterol-enriched membrane microdomains, are able to form different membrane macrodomains or platforms upon stimulations, including redox signaling platforms, which serve as a critical signaling mechanism to mediate or regulate cellular activities or functions. In particular, this raft platform formation provides an important driving force for the assembling of NADPH oxidase subunits and the recruitment of other related receptors, effectors, and regulatory components, resulting, in turn, in the activation of NADPH oxidase and downstream redox regulation of cell functions. This comprehensive review attempts to summarize all basic and advanced information about the formation, regulation, and functions of lipid raft redox signaling platforms as well as their physiological and pathophysiological relevance. Several molecular mechanisms involving the formation of lipid raft redox signaling platforms and the related therapeutic strategies targeting them are discussed. It is hoped that all information and thoughts included in this review could provide more comprehensive insights into the understanding of lipid raft redox signaling, in particular, of their molecular mechanisms, spatial-temporal regulations, and physiological, pathophysiological relevances to human health and diseases.
Collapse
Affiliation(s)
- Si Jin
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | | | | | | |
Collapse
|
30
|
Apoptotic effects of hydrogen peroxide and vitamin C on chicken embryonic fibroblasts: redox state and programmed cell death. Cytotechnology 2011; 63:461-71. [PMID: 21822683 DOI: 10.1007/s10616-011-9360-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 05/02/2011] [Indexed: 10/17/2022] Open
Abstract
The pro-apoptotic effects of hydrogen peroxide and the purported anti-apoptotic effects of Vitamin C on chicken embryonic fibroblasts were investigated. Hydrogen peroxide induced morphological changes in a dose dependent manner, and a myriad of autophagosomes were observed using transmission electron microscopy. Doxorubicin elicited alterations were not inhibited by co-incubation with Vitamin C except that mitochondrial structure was slightly improved. TUNEL assay, cytotoxicity analysis and flow cytometry revealed that the cytotoxicity, DNA fragmentation and apoptotic rates were dose dependent upon treatment with hydrogen peroxide. Calcium homeostasis was disrupted in a dose dependent manner, and cell cycle was blocked at G(2)/M checkpoint at low concentration and S/G(2) checkpoint at high concentration respectively upon treatment with hydrogen peroxide. The administration of Vitamin C only has a modest effect against doxorubicin induced apoptosis, calcium homeostasis disruption and cell cycle arrest. This research demonstrated that the elevation of reactive oxygen species is sufficient to induce the apoptosis of chicken embryonic fibroblasts, whereas the administration of Vitamin C does not necessarily have certain anti-apoptotic effects, especially when the stimulus is not directly linked with redox state.
Collapse
|
31
|
Inhibitory effects of Vitamin E on UVB-induced apoptosis of chicken embryonic fibroblasts. Cell Biol Int 2011; 35:381-9. [DOI: 10.1042/cbi20090285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
32
|
Santos JM, Mohammad G, Zhong Q, Kowluru RA. Diabetic retinopathy, superoxide damage and antioxidants. Curr Pharm Biotechnol 2011; 12:352-61. [PMID: 20939803 PMCID: PMC3214730 DOI: 10.2174/138920111794480507] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 05/31/2010] [Indexed: 01/01/2023]
Abstract
Retinopathy, the leading cause of acquired blindness in young adults, is one of the most feared complications of diabetes, and hyperglycemia is considered as the major trigger for its development. The microvasculature of the retina is constantly bombarded by high glucose, and this insult results in many metabolic, structural and functional changes. Retinal mitochondria become dysfunctional, its DNA is damaged and proteins encoded by its DNA are decreased. The electron transport chain system becomes compromised, further producing superoxide and providing no relief to the retina from a continuous cycle of damage. Although the retina attempts to initiate repair mechanisms by inducing gene expressions of the repair enzymes, their mitochondrial accumulation remains deficient. Understanding the molecular mechanism of mitochondrial damage should help identify therapies to treat/retard this sight threatening complication of diabetes. Our hope is that if the retinal mitochondria are maintained healthy with adjunct therapies, the development and progression of diabetic retinopathy can be inhibited.
Collapse
Affiliation(s)
- Julia M Santos
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| | | | | | | |
Collapse
|
33
|
Theiss AL, Sitaraman SV. The role and therapeutic potential of prohibitin in disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1137-43. [PMID: 21296110 DOI: 10.1016/j.bbamcr.2011.01.033] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 12/12/2022]
Abstract
Prohibitin 1 (PHB1), a pleiotropic protein in the cell, has been implicated in the regulation of proliferation, apoptosis, transcription, mitochondrial protein folding, and as a cell-surface receptor. This diverse array of functions of PHB1 is attributed to the cell type studied and its subcellular localization. This review discusses recent data that indicate a diverse role of PHB1 in disease pathogenesis and suggest that targeting PHB1 may be a potential therapeutic option for treatment of diseases including cancer, inflammatory bowel disease, insulin resistance/type 2 diabetes, and obesity. These diseases are associated with increased oxidative stress and mitochondrial dysfunction and therefore, the role of PHB1 in both responses will also be discussed.
Collapse
Affiliation(s)
- Arianne L Theiss
- Department of Internal Medicine, Baylor University Medical Center, Dallas, TX 75246, USA.
| | | |
Collapse
|
34
|
Wang ZY, Wang DM, Loo TY, Cheng Y, Chen LL, Shen JG, Yang DP, Chow LWC, Guan XY, Chen JP. Spatholobus suberectus inhibits cancer cell growth by inducing apoptosis and arresting cell cycle at G2/M checkpoint. JOURNAL OF ETHNOPHARMACOLOGY 2011; 133:751-758. [PMID: 21073941 DOI: 10.1016/j.jep.2010.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 10/07/2010] [Accepted: 11/01/2010] [Indexed: 05/30/2023]
Abstract
AIM OF THE STUDY Although herbs have long been alternatively applied for cancer treatment in China, its treatment effects and their potential mechanisms have not been sufficiently investigated. The chinese herb Spatholobus suberectus (SS) is commonly prescribed to cancer patients. In this study, the anti-cancer effect of SS and its molecular mechanisms have been investigated. MATERIALS AND METHODS The effect of SS on cell proliferation was studied by cell growth assay and flow cytometry on breast cancer cell lines MCF-7 and colon cancer cell line HT-29. The role of SS in apoptosis was studied by flow cytometry, DNA fragmentation assay and mitochondrial membrane potential assay. Expression of proteins associated with cell cycle and apoptosis was determined by Western blot analysis. The in vivo effect of SS was tested in nude mouse cancer xenografts. RESULTS Cell growth assay showed that SS effectively inhibits tumor cell growth in a dose-dependent manner. Flow cytometry analysis showed that SS could arrest the cell cycle at G2/M checkpoint, which is associated with DNA damage and activation of phosphor-Chk1/Chk2. The pro-apoptotic effect of SS was demonstrated by Annexin V-PI staining and mitochondrial membrane potential assay. In vivo experiments show that the efficiency of SS alone group was superior to docetaxel or to docetaxel and SS combined. No obvious body weight loss or blood toxicity was observed in SS tested animals. CONCLUSIONS Our data demonstrates that SS is a potential herb for cancer treatment by inhibiting tumor growth via induction of apoptosis and arrest of the cell cycle at G2/M phase.
Collapse
Affiliation(s)
- Zhi-Yu Wang
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Eukaryotic organisms evolved under aerobic conditions subjecting nuclear DNA to damage provoked by reactive oxygen species (ROS). Although ROS are thought to be a major cause of DNA damage, little is known about the molecular mechanisms protecting nuclear DNA from oxidative stress. Here we show that protection of nuclear DNA in plants requires a coordinated function of ROS-scavenging pathways residing in the cytosol and peroxisomes, demonstrating that nuclear ROS scavengers such as peroxiredoxin and glutathione are insufficient to safeguard DNA integrity. Both catalase (CAT2) and cytosolic ascorbate peroxidase (APX1) play a key role in protecting the plant genome against photorespiratory-dependent H(2)O(2)-induced DNA damage. In apx1/cat2 double-mutant plants, a DNA damage response is activated, suppressing growth via a WEE1 kinase-dependent cell-cycle checkpoint. This response is correlated with enhanced tolerance to oxidative stress, DNA stress-causing agents, and inhibited programmed cell death.
Collapse
|
36
|
Abstract
The complex antioxidant network of plant and animal cells has the thiol tripeptide GSH at its centre to buffer ROS (reactive oxygen species) and facilitate cellular redox signalling which controls growth, development and defence. GSH is found in nearly every compartment of the cell, including the nucleus. Transport between the different intracellular compartments is pivotal to the regulation of cell proliferation. GSH co-localizes with nuclear DNA at the early stages of proliferation in plant and animal cells. Moreover, GSH recruitment and sequestration in the nucleus during the G1- and S-phases of the cell cycle has a profound impact on cellular redox homoeostasis and on gene expression. For example, the abundance of transcripts encoding stress and defence proteins is decreased when GSH is sequestered in the nucleus. The functions of GSHn (nuclear GSH) are considered in the present review in the context of whole-cell redox homoeostasis and signalling, as well as potential mechanisms for GSH transport into the nucleus. We also discuss the possible role of GSHn as a regulator of nuclear proteins such as histones and PARP [poly(ADP-ribose) polymerase] that control genetic and epigenetic events. In this way, a high level of GSH in the nucleus may not only have an immediate effect on gene expression patterns, but also contribute to how cells retain a memory of the cellular redox environment that is transferred through generations.
Collapse
|
37
|
Wu YT, Wu SB, Lee WY, Wei YH. Mitochondrial respiratory dysfunction-elicited oxidative stress and posttranslational protein modification in mitochondrial diseases. Ann N Y Acad Sci 2010; 1201:147-56. [DOI: 10.1111/j.1749-6632.2010.05631.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
38
|
Mitochondrial DNA Mutation-Elicited Oxidative Stress, Oxidative Damage, and Altered Gene Expression in Cultured Cells of Patients with MERRF Syndrome. Mol Neurobiol 2010; 41:256-66. [DOI: 10.1007/s12035-010-8123-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 03/23/2010] [Indexed: 12/12/2022]
|