1
|
Immune profiling of the progression of a BALB/c mouse aerosol infection by Burkholderia pseudomallei and the therapeutic implications of targeting HMGB1. Int J Infect Dis 2015; 40:1-8. [DOI: 10.1016/j.ijid.2015.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/20/2015] [Accepted: 09/01/2015] [Indexed: 11/21/2022] Open
|
2
|
Efficacy of post exposure administration of doxycycline in a murine model of inhalational melioidosis. Sci Rep 2013; 3:1146. [PMID: 23359492 PMCID: PMC3556592 DOI: 10.1038/srep01146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/26/2012] [Indexed: 11/08/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis. Treatment of melioidosis is suboptimal and developing improved melioidosis therapies requires animal models. In this report, we exposed male BALB/c mice to various amounts of aerosolized B. pseudomallei 1026b to determine lethality. After establishing a median lethal dose (LD(50)) of 2,772 colony forming units (cfu)/animal, we tested the ability of doxycycline administered 6 hours after exposure to a uniformly lethal dose of ~20 LD(50) to prevent death and eliminate bacteria from the lung and spleens. Tissue bacterial burdens were examined by PCR analysis. We found that 100% of mice treated with doxycycline survived and B. pseudomallei DNA was not amplified from the lungs or spleens of most surviving mice. We conclude the BALB/c mouse is a useful model of melioidosis. Furthermore, the data generated in this mouse model indicate that doxycycline is likely to be effective in post-exposure prophylaxis of melioidosis.
Collapse
|
3
|
West TE, Myers ND, Liggitt HD, Skerrett SJ. Murine pulmonary infection and inflammation induced by inhalation of Burkholderia pseudomallei. Int J Exp Pathol 2013; 93:421-8. [PMID: 23136994 DOI: 10.1111/j.1365-2613.2012.00842.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Melioidosis is a tropical disease caused by ingestion, percutaneous inoculation or inhalation of the Gram-negative soil saprophyte Burkholderia pseudomallei. We developed a reproducible experimental murine model of pneumonic melioidosis induced by inhalation of aerosolized B. pseudomallei 1026b. In a series of experiments performed to bracket the lethal dose, we found that C57BL/6 mice were modestly more resistant than BALB/c mice (median lethal dose 334 CFU/lung vs 204 CFU/lung). We further characterized infection and pulmonary inflammation in C57BL/6 mice infected with a sublethal dose. We observed pulmonary replication and dissemination of bacteria to distant organs in the first days after infection, followed by bacterial containment by day 4 and no evidence of recrudescent infection for up to 2 months. We measured a robust host inflammatory response notable for a neutrophilic bronchoalveolar lavage fluid profile, elevated cytokines and chemokines in the lung and serum and scattered foci of neutrophilic infiltrates in the alveoli and in a perivascular distribution on histological analysis. We previously noted a similar pattern of inflammation in mice infected with aerosolized B. thailandensis. This report builds on the limited literature describing experimental murine pneumonic melioidosis induced by aerosol and characterizes pulmonary infection and resultant inflammation in C57BL/6 mice infected with aerosolized B. pseudomallei. This model has utility for the study of bacterial and host factors that contribute to the virulence of melioidosis.
Collapse
Affiliation(s)
- T Eoin West
- Division of Pulmonary and Critical Care Medicine, Harborview Medical Center, University of Washington, Seattle, WA 98104-2499, USA.
| | | | | | | |
Collapse
|
4
|
Lever MS, Nelson M, Stagg AJ, Beedham RJ, Simpson AJH. Experimental acute respiratory Burkholderia pseudomallei infection in BALB/c mice. Int J Exp Pathol 2009; 90:16-25. [PMID: 19200247 DOI: 10.1111/j.1365-2613.2008.00619.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, which is considered a potential deliberate release agent. The objective of this study was to establish and characterise a relevant, acute respiratory Burkholderia pseudomallei infection in BALB/c mice. Mice were infected with 100 B. pseudomallei strain BRI bacteria by the aerosol route (approximately 20 median lethal doses). Bacterial counts within lung, liver, spleen, brain, kidney and blood over 5 days were determined and histopathological and immunocytochemical profiles were assessed. Bacterial numbers in the lungs reached approximately 10(8) cfu/ml at day 5 post-infection. Bacterial numbers in other tissues were lower, reaching between 10(3) and 10(5) cfu/ml at day 4. Blood counts remained relatively constant at approximately 1.0 x 10(2) cfu/ml. Foci of acute inflammation and necrosis were seen within lungs, liver and spleen. These results suggest that the BALB/c mouse is highly susceptible to B. pseudomallei by the aerosol route and represents a relevant model system of acute human melioidosis.
Collapse
Affiliation(s)
- Mark S Lever
- Biomedical Sciences, Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, UK.
| | | | | | | | | |
Collapse
|
5
|
Bottex C, Gauthier YP, Hagen RM, Finke EJ, Splettstösser WD, Thibault FM, Neubauer H, Vidal DR. Attempted passive prophylaxis with a monoclonal anti-Burkholderia pseudomallei exopolysaccharide antibody in a murine model of melioidosis. Immunopharmacol Immunotoxicol 2006; 27:565-83. [PMID: 16435577 DOI: 10.1080/08923970500493995] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Melioidosis is a severe gram-negative infection caused by the facultative intracellular bacterium Burkholderia pseudomallei, which is responsible for a broad spectrum of symptoms in both humans and animals. No licensed vaccine currently exists. This study evaluated the protective effect of a monoclonal antibody (Mab Ps6F6) specific to B. pseudomallei exopolysaccharide in an outbred murine model of sub-acute melioidosis. When administered before the infectious challenge, Ps6F6 significantly increased resistance to infection and restrained bacterial burden in the spleen over a 30-days period. Patterns of IFN-gamma production were similar in the treated and non treated groups of mice. However, Ps6F6 lowered IFN-gamma levels over the duration of the assay period, except on day 1, suggesting a transient and rapid production of IFN-gamma under Ps6F6 control. Minor but persisting increases occurred in IL-12 levels while TNF-alpha was detected only in the controls at the later stages of infection. No IL-10 secretion was detected in both groups of mice. These data suggest that passive prophylaxis with Mab Ps6F6 provide a moderate and transient induction of inflammatory responses in infected mice but failed to trigger a sterilizing protective immunity.
Collapse
Affiliation(s)
- Chantal Bottex
- Centre de Recherches du Service de Santé des Armées Emile Pardé, Unité de Microbiologie, La Tronche, France.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Melioidosis, caused by the gram-negative saprophyte Burkholderia pseudomallei, is a disease of public health importance in southeast Asia and northern Australia that is associated with high case-fatality rates in animals and humans. It has the potential for epidemic spread to areas where it is not endemic, and sporadic case reports elsewhere in the world suggest that as-yet-unrecognized foci of infection may exist. Environmental determinants of this infection, apart from a close association with rainfall, are yet to be elucidated. The sequencing of the genome of a strain of B. pseudomallei has recently been completed and will help in the further identification of virulence factors. The presence of specific risk factors for infection, such as diabetes, suggests that functional neutrophil defects are important in the pathogenesis of melioidosis; other studies have defined virulence factors (including a type III secretion system) that allow evasion of killing mechanisms by phagocytes. There is a possible role for cell-mediated immunity, but repeated environmental exposure does not elicit protective humoral or cellular immunity. A vaccine is under development, but economic constraints may make vaccination an unrealistic option for many regions of endemicity. Disease manifestations are protean, and no inexpensive, practical, and accurate rapid diagnostic tests are commercially available; diagnosis relies on culture of the organism. Despite the introduction of ceftazidime- and carbapenem-based intravenous treatments, melioidosis is still associated with a significant mortality attributable to severe sepsis and its complications. A long course of oral eradication therapy is required to prevent relapse. Studies exploring the role of preventative measures, earlier clinical identification, and better management of severe sepsis are required to reduce the burden of this disease.
Collapse
Affiliation(s)
- Allen C Cheng
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | | |
Collapse
|
7
|
Najdenski H, Kussovski V, Vesselinova A. Experimental Burkholderia pseudomallei infection of pigs. ACTA ACUST UNITED AC 2004; 51:225-30. [PMID: 15330982 DOI: 10.1111/j.1439-0450.2004.00754.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Experimental infection with Burkholderia pseudomallei was successfully produced after a single intravenous challenge of 2-month-old pigs with a dose of 5.0 x 10(9) bacterial cells. Clinical, paraclinical and morphological findings of the infectious process and post-infectious immunity were examined up to day 30 post infection (p.i.). A transient and short hyperthermia accompanied by enhanced and longer demonstrated pulse frequency. An increased erythrocyte sedimentation rate and tachypnea were observed too after clinical examination. The infection starts with significant leucopenia, and a reduced number of alveolar and peritoneal macrophages which have been overcome in the latest intervals of infection. In contrast, the phagocytic activity of leucocytes was statistically increased during the course of infection and up to day 15 p.i. in the case of alveolar macrophages. Burkholderia pseudomallei was able to colonize the lungs during the whole experiment and was only present 3 days in the spleen and mesenterial lymph nodes (MLN). Significant antibody response was developed as early as day 7 p.i. Hyperaemia, haemorrhages and necrotic foci were found in the brain, liver spleen and MLN. Lung tissue was also hyperaemic, with formation of small abscesses and signs of catarrhal pneumonia. Data obtained in this study revealed that B. pseudomallei causes a chronic generalized infection in pigs, even after intravenous challenge.
Collapse
Affiliation(s)
- H Najdenski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | | |
Collapse
|
8
|
Gauthier YP, Hagen RM, Brochier GS, Neubauer H, Splettstoesser WD, Finke EJ, Vidal DR. Study on the pathophysiology of experimental Burkholderia pseudomallei infection in mice. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2001; 30:53-63. [PMID: 11172992 DOI: 10.1111/j.1574-695x.2001.tb01550.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Burkholderia pseudomallei is the etiological agent of melioidosis, a potentially fatal disease occurring in man and animals. The aim of this study was to investigate the pathophysiological course of experimental melioidosis, and to identify the target organs, in an animal model. For this purpose SWISS mice were infected intraperitoneally with the virulent strain B. pseudomallei 6068. The bacterial load of various organs was quantified daily by bacteriological analysis and by an enzyme-linked immunosorbent assay (ELISA) based on a monoclonal antibody specific to B. pseudomallei exopolysaccharide (EPS). Electron microscopic investigation of the spleen was performed to locate the bacteria at the cellular level. In this model of acute melioidosis, B. pseudomallei had a marked organ tropism for liver and spleen, and showed evidence of in vivo growth with a bacterial burden of 1.6x10(9) colony forming units (CFU) per gram of spleen 5 days after infection with 200 CFU. The highest bacterial loads were detected in the spleen at all time points, in a range from 2x10(6) to 2x10(9) CFU g(-1). They were still 50-80 times greater than the load of the liver at the time of peak burden. Other investigated organs such as lungs, kidneys, and bone marrow were 10(2)-10(4)-fold less infected than the spleen, with loads ranging from 3x10(2) to 3x10(6) CFU g(-1). The heart and the brain were sites of a delayed infection, with counts in a range from 10(3) to 10(7) times lower than bacterial counts in the spleen. The EPS-specific ELISA proved to be highly sensitive, particularly at the level of those tissues in which colony counting on agar revealed low contamination. In the blood, EPS was detected at concentrations corresponding to bacterial loads ranging from 8x10(3) to 6x10(4) CFU ml(-1). Electron microscopic examination of the spleen revealed figures of phagocytosis, and the presence of large numbers of intact bacteria, which occurred either as single cells or densely packed into vacuoles. Sparse figures suggesting bacterial replication were also observed. In addition, some bacteria could be seen in vacuoles that seemed to have lost their membrane. These observations provide a basis for further investigations on the pathogenesis of the disease.
Collapse
Affiliation(s)
- Y P Gauthier
- Centre de Recherches du Service de Santé des Armées Emile Pardé, Unité de Microbiologie, La Tronche, France.
| | | | | | | | | | | | | |
Collapse
|
9
|
Gauthier YP, Thibault FM, Paucod JC, Vidal DR. Protease production by Burkholderia pseudomallei and virulence in mice. Acta Trop 2000; 74:215-20. [PMID: 10674652 DOI: 10.1016/s0001-706x(99)00073-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of this study was to assess protease production and virulence of various Burkholderia pseudomallei strains. Protease activity was evaluated in filtrates from cultures grown for 50 h in TSB Dialysate by azocasein hydrolysis, and expressed as absorbancy at 405 nm. Virulence was assessed in 8 weeks old SWISS mice, by intraperitoneal injection of 6-6 x 10(5) CFU, and the LD50 was calculated after 30 days by the method of Reed and Muench. The lethal activity was studied for five strains of B. pseudomallei and the type strains of Burkholderia pseudomallei, Burkholderia mallei, and Burkholderia cepacia. The three type strains appeared to be low protease producers (A405 = 0.11, 0.09 and 0.00, respectively) and avirulent. The two more virulent B. pseudomallei strains exhibited significantly different LD50, 3.5 x 10(2) (IPP 6068 VIR) versus 2.1 x 10(5) CFU/mouse (40/97), and protease activities (A405 = 0.046 and 0.79, respectively). Moreover, the avirulent parent of IPP 6068 (AG), was a better protease producer than the 6068 VIR strain, A405 = 0.26 versus 0.046. These results suggest that there is no correlation between virulence and level of exoproteolytic activity, when B. pseudomallei is injected to mice via the intraperitoneal route.
Collapse
Affiliation(s)
- Y P Gauthier
- Unité de Microbiologie, Centre de Recherche du Service de Santé des Armées Emile Pardé, La Tronche, France
| | | | | | | |
Collapse
|
10
|
Santanirand P, Harley VS, Dance DA, Drasar BS, Bancroft GJ. Obligatory role of gamma interferon for host survival in a murine model of infection with Burkholderia pseudomallei. Infect Immun 1999; 67:3593-600. [PMID: 10377144 PMCID: PMC116549 DOI: 10.1128/iai.67.7.3593-3600.1999] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/1998] [Accepted: 04/07/1999] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is a gram-negative bacterium capable of causing either acute lethal sepsis or chronic but eventually fatal disease in infected individuals. However, despite the clinical importance of this infection in areas where it is endemic, there is essentially no information on the mechanisms of protective immunity to the bacterium. We describe here a murine model of either acute or chronic infection with B. pseudomallei in Taylor Outbred (TO) mice which mimics many features of the human pathology. Intraperitoneal infection of TO mice at doses of >10(6) CFU resulted in acute septic shock and death within 2 days. In contrast, at lower doses mice were able to clear the inoculum from the liver and spleen over a 3- to 4-week period, but persistence of the organism at other sites resulted in a chronic infection of between 2 and 16 months duration which was eventually lethal in all of the animals tested. Resistance to acute infection with B. pseudomallei was absolutely dependent upon the production of gamma interferon (IFN-gamma) in vivo. Administration of neutralizing monoclonal antibody against IFN-gamma lowered the 50% lethal dose from >5 x 10(5) to ca. 2 CFU and was associated with 8,500- and 4,400-fold increases in the bacterial burdens in the liver and spleen, respectively, together with extensive destruction of lymphoid architecture in the latter organ within 48 h. Neutralization of either tumor necrosis factor alpha or interleukin-12 but not granulocyte-macrophage colony-stimulating factor, also increased susceptibility to infection in vivo. Together, these results provide the first evidence of a host protective mechanism against B. pseudomallei. The rapid production of IFN-gamma within the first day of infection determines whether the infection proceeds to an acute lethal outcome or becomes chronic.
Collapse
Affiliation(s)
- P Santanirand
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Markova N, Kussovski V, Radoucheva T. Killing of Pseudomonas pseudomallei by polymorphonuclear leukocytes and peritoneal macrophages from chicken, sheep, swine and rabbits. ZENTRALBLATT FUR BAKTERIOLOGIE : INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY 1998; 288:103-10. [PMID: 9728410 DOI: 10.1016/s0934-8840(98)80106-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Differences in the kinetics of Pseudomonas pseudomallei killing by peritoneal macrophages (PM) and polymorphonuclear leucocytes (PMNL) from chickens, sheep, swine and rabbits were found. P. pseudomallei was rapidly killed by porcine PM and PMNL. However the bacterial killing by ovine and lapine PM and PMNL proceeded at a slower rate. In contrast, chicken PM and PMNL ingested and killed the lowest number of P. pseudomallei bacteria. The differences in the bactericidal activity of PM and PMNL from different animal species correlated with the level of their acid phosphatase and glycolytic activity.
Collapse
Affiliation(s)
- N Markova
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | |
Collapse
|