1
|
Tsunokuma N, Tetteh DN, Isono K, Kuniishi-Hikosaka M, Tsuneto M, Ishii K, Yamazaki H. Depletion of Neural Crest-Derived Cells Leads to Plasma Noradrenaline Decrease and Alters T Cell Development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1494-1505. [PMID: 37747298 DOI: 10.4049/jimmunol.2300045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023]
Abstract
The differentiation of neural crest (NC) cells into various cell lineages contributes to the formation of many organs, including the thymus. In this study, we explored the role of NC cells in thymic T cell development. In double-transgenic mice expressing NC-specific Cre and the Cre-driven diphtheria toxin receptor, plasma noradrenaline and adrenaline levels were significantly reduced, as were thymic T cell progenitors, when NC-derived cells were ablated with short-term administration of diphtheria toxin. Additionally, yellow fluorescent protein+ NC-derived mesenchymal cells, perivascular cells, and tyrosine hydroxylase+ sympathetic nerves in the thymus significantly decreased. Furthermore, i.p. administration of 6-hydroxydopamine, a known neurotoxin for noradrenergic neurons, resulted in a significant decrease in thymic tyrosine hydroxylase+ nerves, a phenotype similar to that of depleted NC-derived cells, whereas administration of a noradrenaline precursor for ablating NC-derived cells or sympathetic nerves rarely rescued this phenotype. To clarify the role of NC-derived cells in the adult thymus, we transplanted thymus into the renal capsules of wild-type mice and observed abnormal T cell development in lethally irradiated thymus with ablation of NC-derived cells or sympathetic nerves, suggesting that NC-derived cells inside and outside of the thymus contribute to T cell development. In particular, the ablation of NC-derived mesenchymal cells in the thymus decreases the number of thymocytes and T cell progenitors. Overall, ablation of NC-derived cells, including sympathetic nerves, in the thymus leads to abnormal T cell development in part by lowering plasma noradrenalin levels. This study reveals that NC-derived cells including mesenchymal cells and sympathetic nerves within thymus regulate T cell development.
Collapse
Affiliation(s)
- Naoki Tsunokuma
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Doris Narki Tetteh
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kana Isono
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Mari Kuniishi-Hikosaka
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Japan
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmacological Science, University of Toyama, Toyama, Japan
| | - Motokazu Tsuneto
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Japan
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University, Yonago, Japan
| | - Kenichiro Ishii
- Department of Nursing, Nagoya University of Arts and Sciences, Nagoya, Japan
| | - Hidetoshi Yamazaki
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
2
|
Bellinger DL, Lorton D. Autonomic regulation of cellular immune function. Auton Neurosci 2014; 182:15-41. [PMID: 24685093 DOI: 10.1016/j.autneu.2014.01.006] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/17/2014] [Indexed: 12/21/2022]
Abstract
The nervous system and the immune system (IS) are two integrative systems that work together to detect threats and provide host defense, and to maintain/restore homeostasis. Cross-talk between the nervous system and the IS is vital for health and well-being. One of the major neural pathways responsible for regulating host defense against injury and foreign antigens and pathogens is the sympathetic nervous system (SNS). Stimulation of adrenergic receptors (ARs) on immune cells regulates immune cell development, survival, proliferative capacity, circulation, trafficking for immune surveillance and recruitment, and directs the cell surface expression of molecules and cytokine production important for cell-to-cell interactions necessary for a coordinated immune response. Finally, AR stimulation of effector immune cells regulates the activational state of immune cells and modulates their functional capacity. This review focuses on our current understanding of the role of the SNS in regulating host defense and immune homeostasis. SNS regulation of IS functioning is a critical link to the development and exacerbation of chronic immune-mediated diseases. However, there are many mechanisms that need to be further unraveled in order to develop sound treatment strategies that act on neural-immune interaction to resolve or prevent chronic inflammatory diseases, and to improve health and quality of life.
Collapse
Affiliation(s)
- Denise L Bellinger
- Department of Pathology and Human Anatomy, Loma Linda University, School of Medicine, Loma Linda, CA, 92350, USA.
| | - Dianne Lorton
- College of Arts and Sciences, Kent State University and the Kent Summa Initiative for Clinical and Translational Research, Summa Health System, Akron, OH 44304, USA
| |
Collapse
|
3
|
Koçkaya EA, Kılıç A, Karacaoğlu E, Selmanoğlu G. Does furan affect the thymus in growing male rats? Drug Chem Toxicol 2012; 35:316-23. [PMID: 22289615 DOI: 10.3109/01480545.2011.619191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Furan has been identified in foods such as heat-treated foods, including coffee, canned meat, hazelnuts, and infant foods and formulas. Children may be exposed to furan via either consumption of these foods or their derivatives. We evaluated the effects of furan on the thymus of weaning male rats in the present study. Five separate groups containing male rats were used: control, oil control, and three furan-treated groups. Furan was given orally to rats in the treatment groups at doses of 2, 4, and 8 mg/kg/day for 90 days. At the end of the experiment, thymus of the rats were examined morphologically, histopathologically, and immunohistochemically. We observed that absolute and relative weights of thymus were decreased significantly in rats treated with 4- and 8-mg/kg/day doses of furan. In histopathological examination, enlargement of interstitial connective tissue between the thymic lobules, lymphocyte depletion, and hemorrhage were observed. We detected an increase in apoptotic cell counts in thymus of the treatment groups. In addition, we found significant differences in the distribution of fibronectin and transforming growth factor-beta in the thymus of the treatment groups. In conclusion, we suggest that furan has affected the thymus in growing male rats.
Collapse
Affiliation(s)
- E Arzu Koçkaya
- The Higher Vocational School of Health Services, Gazi University, Ankara, Turkey.
| | | | | | | |
Collapse
|
4
|
Roggero E, Besedovsky HO, del Rey A. The role of the sympathetic nervous system in the thymus in health and disease. Neuroimmunomodulation 2011; 18:339-49. [PMID: 21952686 DOI: 10.1159/000329581] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The existence of a network of immunoneuroendocrine interactions that results in the reciprocal modulation of the classical functions of each system is well established at present. Most of the evidence derives from studies on secondary lymphoid organs, such as the spleen and lymph nodes. In this article, several aspects relevant to understand the role of the sympathetic nervous system in the establishment of these interactions in the thymus are discussed. At present, the sympathetic innervation of the thymus, the expression of adrenergic receptors in thymic cells, particularly of β-adrenergic receptors, and the effect of sympathetic neurotransmitters, although mainly derived from in vitro or pharmacological studies, seem to be relatively well studied. However, other aspects, such as the relevance that immune-sympathetic interactions at the thymic level may have for certain diseases, specially autoimmune or other diseases that primarily involve the activation of the immune system, as well as how the integration of sympathetic and hormonal signals at local levels may affect thymic functions, certainly deserve further investigation.
Collapse
Affiliation(s)
- Eduardo Roggero
- Department of Physiology, Faculty of Medicine, Universidad Abierta Interamericana, Rosario, Argentina
| | | | | |
Collapse
|
5
|
Leposavić G, Pilipović I, Radojević K, Pešić V, Perišić M, Kosec D. Catecholamines as immunomodulators: A role for adrenoceptor-mediated mechanisms in fine tuning of T-cell development. Auton Neurosci 2008; 144:1-12. [DOI: 10.1016/j.autneu.2008.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/16/2008] [Indexed: 01/28/2023]
|
6
|
Pesić V, Plećas-Solarović B, Radojević K, Kosec D, Pilipović I, Perisić M, Leposavić G. Long-term beta-adrenergic receptor blockade increases levels of the most mature thymocyte subsets in aged rats. Int Immunopharmacol 2007; 7:674-86. [PMID: 17386415 DOI: 10.1016/j.intimp.2007.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 01/18/2007] [Accepted: 01/23/2007] [Indexed: 11/27/2022]
Abstract
Age-related increase in the density of thymic noradrenergic fibres and noradrenaline (NA) concentration is proposed to be associated with thymic involution and altered thymopoiesis. To test this hypothesis thymocyte differentiation/maturation and thymic structure were studied in 18-month-old male Wistar rats subjected to 14-day-long propranolol (P) blockade of beta-adrenoceptors (beta-ARs). The treatment primarily resulted in changes in the T-cell receptor (TCR)-dependent stages of thymopoiesis, which led to an increase in both the relative and absolute numbers of the most mature single positive (SP) CD4(+)CD8(-) (including cells with the CD4(+)CD25(+) regulatory phenotype) and CD4(-)CD8(+) TCRalphabeta(high) thymocytes. Accordingly, in the thymi of these rats an increase in both numerical density and absolute number of medullary thymocytes encompassing mainly the most mature SP cells was found. These findings, together with an increase in the thymocyte surface expression of the regulatory molecule Thy-1 (CD90) (implicated in negative regulation of TCRalphabeta-dependent thymocyte selection thresholds) in the same rats, may suggest increased positive/reduced negative thymocyte selection. Collectively, the results indicate that a decline in thymic efficiency in generating both conventional and regulatory T cells, and consequently in immune function, in aged rats may be, at least partly, attenuated by long-term blockade of beta-ARs with P.
Collapse
Affiliation(s)
- V Pesić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Republic of Serbia
| | | | | | | | | | | | | |
Collapse
|
7
|
Plećas-Solarović B, Pesić V, Radojević K, Leposavić G. Morphometrical Characteristics of Age-Associated Changes in the Thymus of Old Male Wistar Rats. Anat Histol Embryol 2006; 35:380-6. [PMID: 17156091 DOI: 10.1111/j.1439-0264.2006.00695.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In order to provide a morphometrical description of the changes in the aged rat thymus and to relate them to apoptotic and proliferative activity of thymocytes, the thymuses from 3- and 18-month-old male Wistar rats and the percentages of bromodeoxyuridine-incorporating and apoptotic cells in cultures of thymocytes were assessed by stereological analysis and flow cytometry, respectively. In old rats the volume of lymphoepithelial thymic tissue is markedly reduced, reflecting a sharp decrease in the total number of thymocytes. A reduction in the proliferative capacity of thymocytes and increase in their susceptibility to apoptosis are, most likely, primarily responsible for a 7-fold reduction in thymic cellularity in old animals. Furthermore, only the volume of cortical compartment was affected by aging, while that of medulla, despite of reduced cellularity, was not significantly altered. The loss of functional tissue in aged thymus is compensated by a substantial increase in the volume of inter-lobular connective and adipose tissue, so the thymic weight remained unaltered in old rats. These results suggest that thymus of aged Wistar rats exhibits morphological characteristics similar to those found in aged human thymus and thus may serve as an animal model for further investigations of thymus-related changes in immunological aging.
Collapse
Affiliation(s)
- B Plećas-Solarović
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | | | | | | |
Collapse
|
8
|
Leposavić G, Radojević K, Vidić-Danković B, Kosec D, Pilipović I, Perisić M. Early postnatal castration affects thymic and thymocyte noradrenaline levels and beta-adrenoceptor-mediated influence on the thymopoiesis in adult rats. J Neuroimmunol 2006; 182:100-15. [PMID: 17141332 DOI: 10.1016/j.jneuroim.2006.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 10/06/2006] [Accepted: 10/06/2006] [Indexed: 11/22/2022]
Abstract
The interactions among the nervous, endocrine and immune system were studied by examining: i) thymic and thymocyte catecholamine levels in adult rats castrated (Cx) at postnatal day 3 and ii) effects of 14-day-long propranolol (P) treatment on main thymocyte differentiational molecule expression in adult non-Cx and Cx rat. The results demonstrated that castration in early postnatal period lowers levels of both neurally- and thymocyte-derived noradrenaline in adult rats, and thereby diminishes beta-adrenoceptor-mediated fine tuning of the T-cell differentiation/maturation. In non-Cx rats P affected TCRalphabeta-dependent stages of thymocyte differentiation/maturation decreasing frequency of CD4+8+ double positive (DP) TCRalphabeta(low) cells entering selection processes and increasing relative number of positively selected DP TCRalphabeta(high) (most likely due to an increased thymocyte surface density of Thy-1 that is involved in negative control of TCRalphabeta-mediated signaling/selection thresholds) and the most mature CD4+8- TCRalphabeta(high) cells (including CD4+25+ regulatory cells). However, in Cx rats P failed to produce any significant changes in thymocyte subset composition.
Collapse
Affiliation(s)
- Gordana Leposavić
- Immunology Research Centre Branislav Janković, Institute of Immunology and Virology Torlak, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
9
|
Leposavić G, Pesić V, Kosec D, Radojević K, Arsenović-Ranin N, Pilipović I, Perisić M, Plećas-Solarović B. Age-associated changes in CD90 expression on thymocytes and in TCR-dependent stages of thymocyte maturation in male rats. Exp Gerontol 2006; 41:574-89. [PMID: 16632291 DOI: 10.1016/j.exger.2006.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 03/01/2006] [Accepted: 03/07/2006] [Indexed: 01/28/2023]
Abstract
To elucidate the effects of ageing on T-cell-maturation, in 3- and 18-month-old rats, we analysed the expression of: (i) CD4/CD8/TCRalphabeta and (ii) Thy-1, which is supposed to be a regulator of TCRalphabeta signalling, and thereby the thymocyte selection thresholds. Since an essential role for TCRalphabeta signalling in the development of CD4+25+T(reg)-cells was suggested, the frequency of these cells was also quantified. We demonstrated that, as for mice, early thymocyte differentiational steps within the CD4-8- double negative (DN) developmental stage are age-sensitive. Furthermore, we revealed that TCRalphabeta-dependent stages of T-cell development are affected by ageing, most likely due to an impaired expression of Thy-1 on TCRalphabeta(low) thymocytes entering selection processes. The diminished frequency of the post-selection CD4+8+ double positive (DP) cells in aged rats, together with an overrepresentation of mature single positive (SP) cells, most probably suggests more efficient differentiational transition from the DP TCRalphabeta(high) to the SP TCRalphabeta(high) developmental stage, which is followed by an increase in pre-migration proliferation of the mature SP cells. Moreover, the study indicated impaired intrathymic generation of CD4+25+T(reg)-cells in aged rats, thus providing a possible explanation for the increased frequency of autoimmune diseases in ageing.
Collapse
MESH Headings
- Aging/immunology
- Animals
- Antigens, Surface/genetics
- Antigens, Surface/physiology
- Apoptosis/physiology
- Autoimmune Diseases/immunology
- CD4 Antigens/genetics
- CD4 Antigens/physiology
- CD8 Antigens/genetics
- CD8 Antigens/physiology
- Cell Movement
- Cell Proliferation
- Gene Expression Regulation
- Interleukin-2 Receptor alpha Subunit/genetics
- Interleukin-2 Receptor alpha Subunit/physiology
- Lectins, C-Type/genetics
- Lectins, C-Type/physiology
- Male
- NK Cell Lectin-Like Receptor Subfamily B
- Rats
- Rats, Wistar
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Thy-1 Antigens/genetics
- Thy-1 Antigens/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Gordana Leposavić
- Institute of Immunology and Virology Torlak, Immunology Research Center Branislav Janković, Belgrade, Serbia and Montenegro.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Leposavić G, Pekić S, Kosec D. Gonadotropin-releasing hormone agonist administration affects the thymopoiesis in adult female rats independently on gonadal hormone production. Am J Reprod Immunol 2005; 53:30-41. [PMID: 15667523 DOI: 10.1111/j.1600-0897.2004.00244.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PROBLEM In addition to having an indirect effect on the T-cell development by controlling the production of ovarian steroids, an accumulating body of evidence suggest that GnRH analogue (GnRH-A) administration may exert a thymopoietic regulatory effect that is not mediated by ovarian hormones. METHOD OF STUDY In non-ovariectomized (non-OVX) and OVX adult female AO rats treated s.c. with GnRH-A or saline (controls), over 14 days, were estimated the thymic cellularity and thymocyte expression of CD4/CD8/TCRalphabeta by stereological analysis and three-color flow cytometry, respectively. RESULTS GnRH-A in both groups of rats diminished the thymic cellularity. In non-OVX rats GnRH-A increased the relative numbers of immature cells (CD4-8-TCRalphabeta(-), CD4-8-TCRalphabeta(low) and CD4+8-TCRalphabeta(low)), and reduced those of positively selected CD4+8+TCRalphabeta(high) and mature (CD4-8+TCRalphabeta(high), CD4(+8)-TCRalphabeta(high)) cells, suggesting decelerated expression of TCRalphabeta followed by less efficient positive selection and further maturation of the selected cells. Differently, in OVX rats GnRH-A decreased the percentage of immature (CD4-8-TCRalphabeta(-), CD4+8+ TCRalphabeta(-)) cells and increased those of all TCRalphabeta(high) subsets, suggesting an increased rate of early thymocyte differentiation, more efficient positive selection and further maturation of the selected cells. CONCLUSIONS The effect of GnRH-A administration is affected by the presence of ovarian steroids.
Collapse
Affiliation(s)
- Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, Belgrade, Serbia and Montenegro.
| | | | | |
Collapse
|
11
|
Filipov NM, Pinchuk LM, Boyd BL, Crittenden PL. Immunotoxic Effects of Short-term Atrazine Exposure in Young Male C57BL/6 Mice. Toxicol Sci 2005; 86:324-32. [PMID: 15888671 DOI: 10.1093/toxsci/kfi188] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The herbicide atrazine (ATR) is a very widely used pesticide; yet the immunotoxicological potential of ATR has not been studied extensively. Our objective was to examine the effect of ATR on selected immune parameters in juvenile mice. ATR (up to 250 mg/kg) was administered by oral gavage for 14 days to one-month-old male C57BL/6 mice. One day, one week, and seven weeks after the last ATR dose, mice were sacrificed, and blood, spleens, and thymuses were collected and processed for cell counting and flow cytometry. Thymus and spleen weights were decreased by ATR, with the thymus being more sensitive than the spleen; this effect was still present at seven days, but not at seven weeks after the last ATR dose. Similarly, organ cellularity was persistently decreased in the thymus and in the spleen, with the splenic, but not thymic cellularity still being depressed at seven weeks post ATR. Peripheral blood leukocyte counts were not affected by ATR. There were also alterations in the cell phenotypes in that ATR exposure decreased all phenotypes in the thymus, with the number of CD4(+)/CD8(+) being affected the least. At the higher doses, the decreases in the thymic T-cell populations were still present one week after the last ATR dose. In the spleen, the CD8(+) were increased and MHC-II(+) and CD19(+) cells were decreased one day after the last ATR dose. Also, ATR treatment decreased the number of splenic naïve T helper and T cytotoxic cells, whereas it increased the percentage of highly activated cytotoxic/memory T cells. Interestingly, the proportion of mature splenic dendritic cells (DC; CD11c(high)), was also decreased and it persisted for at least one week, suggesting that ATR inhibited DC maturation. In the circulation, ATR exposure decreased CD4(+) lymphocytes at one day, whereas at seven days after the last ATR dose, in addition to the decrease in CD4(+) lymphocytes, the MHC-II(+) cells were also decreased at the 250 mg/kg dose. Thus, ATR exposure appears to be detrimental to the immune system of juvenile mice by decreasing cellularity and affecting lymphocyte distribution, with certain effects persisting long after exposure has been terminated.
Collapse
Affiliation(s)
- Nikolay M Filipov
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762-6100, USA.
| | | | | | | |
Collapse
|