1
|
Li J, Ritelli M, Ma CS, Rao G, Habib T, Corvilain E, Bougarn S, Cypowyj S, Grodecká L, Lévy R, Béziat V, Shang L, Payne K, Avery DT, Migaud M, Boucherit S, Boughorbel S, Guennoun A, Chrabieh M, Rapaport F, Bigio B, Itan Y, Boisson B, Cormier-Daire V, Syx D, Malfait F, Zoppi N, Abel L, Freiberger T, Dietz HC, Marr N, Tangye SG, Colombi M, Casanova JL, Puel A. Chronic mucocutaneous candidiasis and connective tissue disorder in humans with impaired JNK1-dependent responses to IL-17A/F and TGF-β. Sci Immunol 2020; 4:4/41/eaax7965. [PMID: 31784499 DOI: 10.1126/sciimmunol.aax7965] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022]
Abstract
Genetic etiologies of chronic mucocutaneous candidiasis (CMC) disrupt human IL-17A/F-dependent immunity at mucosal surfaces, whereas those of connective tissue disorders (CTDs) often impair the TGF-β-dependent homeostasis of connective tissues. The signaling pathways involved are incompletely understood. We report a three-generation family with an autosomal dominant (AD) combination of CMC and a previously undescribed form of CTD that clinically overlaps with Ehlers-Danlos syndrome (EDS). The patients are heterozygous for a private splice-site variant of MAPK8, the gene encoding c-Jun N-terminal kinase 1 (JNK1), a component of the MAPK signaling pathway. This variant is loss-of-expression and loss-of-function in the patients' fibroblasts, which display AD JNK1 deficiency by haploinsufficiency. These cells have impaired, but not abolished, responses to IL-17A and IL-17F. Moreover, the development of the patients' TH17 cells was impaired ex vivo and in vitro, probably due to the involvement of JNK1 in the TGF-β-responsive pathway and further accounting for the patients' CMC. Consistently, the patients' fibroblasts displayed impaired JNK1- and c-Jun/ATF-2-dependent induction of key extracellular matrix (ECM) components and regulators, but not of EDS-causing gene products, in response to TGF-β. Furthermore, they displayed a transcriptional pattern in response to TGF-β different from that of fibroblasts from patients with Loeys-Dietz syndrome caused by mutations of TGFBR2 or SMAD3, further accounting for the patients' complex and unusual CTD phenotype. This experiment of nature indicates that the integrity of the human JNK1-dependent MAPK signaling pathway is essential for IL-17A- and IL-17F-dependent mucocutaneous immunity to Candida and for the TGF-β-dependent homeostasis of connective tissues.
Collapse
Affiliation(s)
- Juan Li
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Geetha Rao
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | | | - Emilie Corvilain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France.,University of Paris, Imagine Institute, 75015 Paris, France
| | | | - Sophie Cypowyj
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Lucie Grodecká
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, Brno 65691, Czech Republic
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France.,University of Paris, Imagine Institute, 75015 Paris, France
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France.,University of Paris, Imagine Institute, 75015 Paris, France
| | - Lei Shang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Kathryn Payne
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Danielle T Avery
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France.,University of Paris, Imagine Institute, 75015 Paris, France
| | - Soraya Boucherit
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France.,University of Paris, Imagine Institute, 75015 Paris, France
| | | | | | - Maya Chrabieh
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France.,University of Paris, Imagine Institute, 75015 Paris, France
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Yuval Itan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA.,The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France.,University of Paris, Imagine Institute, 75015 Paris, France
| | - Valérie Cormier-Daire
- University of Paris, Imagine Institute, 75015 Paris, France.,Department of Medical Genetics, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
| | - Delfien Syx
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Fransiska Malfait
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Nicoletta Zoppi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France.,University of Paris, Imagine Institute, 75015 Paris, France
| | - Tomáš Freiberger
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, Brno 65691, Czech Republic.,Faculty of Medicine and Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Nico Marr
- Sidra Medicine, P.O. Box 26999, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. .,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France.,University of Paris, Imagine Institute, 75015 Paris, France.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France.,Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. .,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France.,University of Paris, Imagine Institute, 75015 Paris, France
| |
Collapse
|
4
|
Li H, Haudenschild D, Posey K, Hecht J, Di Cesare P, Yik J. Comparative analysis with collagen type II distinguishes cartilage oligomeric matrix protein as a primary TGFβ-responsive gene. Osteoarthritis Cartilage 2011; 19:1246-53. [PMID: 21843649 PMCID: PMC4098880 DOI: 10.1016/j.joca.2011.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 07/15/2011] [Accepted: 07/25/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study aims to investigate the regulation of expression of Cartilage oligomeric matrix protein (COMP), which is predominately expressed by chondrocytes and functions to organize the extracellular matrix. Mutations in COMP cause two skeletal dysplasias: pseudoachondroplasia and multiple epiphyseal dysplasia. The mechanism controlling COMP expression during chondrocyte differentiation is still poorly understood. DESIGN Primary human bone marrow-derived stem cells were induced to differentiate into chondrocyte by pellet cultures. We then compared the temporal expression of COMP with the well-characterized cartilage-specific Type II collagen (Col2a1), and their response to transforming growth factor (TGF)β and Sox trio (Sox5, 6, and 9) stimulation. RESULTS COMP and Col2a1 expression are differentially regulated by three distinct mechanisms. First, upregulation of COMP mRNA precedes Col2a1 by several days during chondrogenesis. Second, COMP expression is independent of high cell density but requires TGF-β1. Induction of COMP mRNA by TGF-β1 is detected within 2h in the absence of protein synthesis and is blocked by specific inhibitors of the TGFβ signaling pathway; and therefore, COMP is a primary TFGβ-response gene. Lastly, while Col2a1 expression is intimately controlled by the Sox trio, overexpression of Sox trio fails to activate the COMP promoter. CONCLUSION COMP and Col2a1 expression are regulated differently during chondrogenesis. COMP is a primary response gene of TGFβ and its fast induction during chondrogenesis suggests that COMP is suitable for rapidly accessing the chondrogenic potential of stem cells.
Collapse
Affiliation(s)
- H. Li
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - D.R. Haudenschild
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - K.L. Posey
- Department of Pediatrics, University of Texas Medical School at Houston, Texas, USA
| | - J.T. Hecht
- Department of Pediatrics, University of Texas Medical School at Houston, Texas, USA
| | - P.E. Di Cesare
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - J.H.N. Yik
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA,Address correspondence and reprint requests to: J.H.N. Yik, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, 4635 Second Ave, Research Building 1, Room 2000, Sacramento, CA 95817, USA. Fax: 1-916-734-5750. (J.H.N. Yik)
| |
Collapse
|