1
|
Abstract
There is a great deal of interest in obtaining recombinant collagen as an alternative source of material for biomedical applications and as an approach for obtaining basic structural and biological information. However, application of recombinant technology to collagen presents challenges, most notably the need for post-translational hydroxylation of prolines for triple-helix stability. Full length recombinant human collagens have been successfully expressed in cell lines, yeast, and several plant systems, while collagen fragments have been expressed in E. coli. In addition, bacterial collagen-like proteins can be expressed in high yields in E. coli and easily manipulated to incorporate biologically active sequences from human collagens. These expression systems allow manipulation of biologically active sequences within collagen, which has furthered our understanding of the relationships between collagen sequences, structure and function. Here, recombinant studies on collagen interactions with cell receptors, extracellular matrix proteins, and matrix metalloproteinases are reviewed, and discussed in terms of their potential biomaterial and biomedical applications.
Collapse
Affiliation(s)
- Barbara Brodsky
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| | - John A M Ramshaw
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3169, Australia
| |
Collapse
|
2
|
Chung HJ, Jensen DA, Gawron K, Steplewski A, Fertala A. R992C (p.R1192C) Substitution in collagen II alters the structure of mutant molecules and induces the unfolded protein response. J Mol Biol 2009; 390:306-18. [PMID: 19433093 PMCID: PMC2749300 DOI: 10.1016/j.jmb.2009.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 04/30/2009] [Accepted: 05/05/2009] [Indexed: 11/18/2022]
Abstract
We investigated the molecular bases of spondyloepiphyseal dysplasia (SED) associated with the R992C (p.R1192C) substitution in collagen II. At the protein level, we analyzed the structure and integrity of mutant molecules, and at the cellular level, we specifically studied the effects of the presence of the R992C collagen II on the biological processes taking place in host cells. Our studies demonstrated that mutant collagen II molecules were characterized by altered electrophoretic mobility, relatively low thermostability, the presence of atypical disulfide bonds, and slow rates of secretion into the extracellular space. Analyses of cellular responses to the presence of the mutant molecules showed that excessive accumulation of thermolabile collagen II was associated with the activation of an "unfolded protein response" and an increase in apoptosis of host cells. Collectively, these data suggest that molecular mechanisms of SED may be driven not only by structural changes in the architecture of extracellular collagenous matrices, but also by intracellular processes activated by the presence of mutant collagen II molecules.
Collapse
Affiliation(s)
- Hye Jin Chung
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
3
|
Farmer RS, Top A, Argust LM, Liu S, Kiick KL. Evaluation of conformation and association behavior of multivalent alanine-rich polypeptides. Pharm Res 2008; 25:700-8. [PMID: 17674161 PMCID: PMC2632585 DOI: 10.1007/s11095-007-9344-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2007] [Accepted: 05/11/2007] [Indexed: 11/24/2022]
Abstract
PURPOSE Helical alanine-rich polypeptides with functional groups displayed along the backbone can display desired molecules such as saccharides or therapeutic molecules at a prescribed spacing. Because these polypeptides have promise for application as biomaterials, the conformation and association of these molecules have been investigated under biologically relevant conditions. METHODS Three polypeptide sequences, 17-H-3, 17-H-6, and 35-H-6, have been produced through recombinant techniques. Circular dichroic (CD) spectroscopy was used to monitor the secondary structure of the polypeptides in PBS (phosphate buffered saline, pH 7.4). The aggregation behavior in PBS was monitored via analytical ultracentrifugation and non-denaturing polyacrylamide gel electrophoresis. RESULTS The three polypeptides adopt a highly helical structure at low and ambient temperatures, and when heated, undergo a helix-to-coil transition, typical of other alanine-rich peptide sequences. The melting temperatures and van't Hoff enthalpies, extracted from the CD data, suggest similar stability of the sequences. Although alanine-rich sequences can be prone to aggregation, there is no indication of aggregation for the three polypeptides at a range of concentrations relevant for possible biological applications. CONCLUSIONS The helical polypeptides are monomeric under biologically relevant conditions enabling application of these polypeptides as useful scaffolds for ligand or drug display.
Collapse
Affiliation(s)
- Robin S Farmer
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19711, USA
| | | | | | | | | |
Collapse
|
4
|
Baronas‐Lowell D, Lauer‐Fields JL, Fields GB. Defining the Roles of Collagen and Collagen‐Like Proteins Within the Proteome. J LIQ CHROMATOGR R T 2007. [DOI: 10.1081/jlc-120023245] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Diane Baronas‐Lowell
- a Department of Chemistry and Biochemistry , Florida Atlantic University , 777 Glades Road, Boca Raton , Florida , 33431‐0991 , USA
| | - Janelle L. Lauer‐Fields
- a Department of Chemistry and Biochemistry , Florida Atlantic University , 777 Glades Road, Boca Raton , Florida , 33431‐0991 , USA
| | - Gregg B. Fields
- a Department of Chemistry and Biochemistry , Florida Atlantic University , 777 Glades Road, Boca Raton , Florida , 33431‐0991 , USA
| |
Collapse
|
5
|
Steplewski A, Hintze V, Fertala A. Molecular basis of organization of collagen fibrils. J Struct Biol 2006; 157:297-307. [PMID: 17126032 DOI: 10.1016/j.jsb.2006.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 09/25/2006] [Accepted: 10/05/2006] [Indexed: 11/29/2022]
Abstract
The collagen fibrils are formed by self-assembly of individual collagen molecules, but the mechanism that drives their orderly packing during fibril formation is not clearly defined. To identify structural determinants critical for the D-periodic alignment of collagen molecules we employed three sets of genetically engineered collagen II variants: (i) a set in which domains corresponding to the specific D periods have been purposely deleted, (ii) a set of collagen variants consisting of tandem repeats of a specific D period, and (iii) a set lacking definite fragments of the D4 period. All collagen variants were analyzed for their ability to assemble into D-periodic fibrils. Even though all genetically engineered collagen variants differ significantly from the wild-type collagen II, most of them were able to form filamentous structures. The D-periodic banding pattern, an indication of the staggered arrangement of collagen monomers, however, occurred only when the D1, D4, and D0.4 domains of interacting collagen monomers could potentially cluster together to form a triad through telopeptide-mediated binding. Our results identify a critical step in the formation of collagenous matrices and provide experimental evidence for the active involvement of the N-terminal and C-terminal regions of fibrillar collagens in this process.
Collapse
Affiliation(s)
- Andrzej Steplewski
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, BLSB, Room 424, 233 S. 10th Street, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
6
|
Ito H, Steplewski A, Alabyeva T, Fertala A. Testing the utility of rationally engineered recombinant collagen-like proteins for applications in tissue engineering. J Biomed Mater Res A 2006; 76:551-60. [PMID: 16278869 DOI: 10.1002/jbm.a.30551] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Collagens are attractive proteins as materials for tissue engineering. Over the last decade, significant progress has been made in developing technologies for large-scale production of native-like human recombinant collagens. Yet, the rational design of customized collagen-like proteins for smart biomaterials to enhance the quality of engineered tissues has not been explored. We mapped the D4 domain of human collagen II as most critical for supporting migration of chondrocytes and used this information to genetically engineer a collagen-like protein consisting of tandem repeats of the D4 domain (mD4 collagen). This novel collagen has been utilized to fabricate a scaffold for support of chondrocytes. We determined superior qualities of cartilaginous constructs created by chondrocytes cultured in scaffolds containing the mD4 collagen in comparison to those formed by chondrocytes cultured in bare scaffolds or those coated with wild-type collagen II. Our results are a first attempt to rationally engineer collagen-like proteins with characteristics tailored for specific needs of cartilage engineering and provide a basis for rational engineering of similar proteins for a variety of biomedical applications.
Collapse
Affiliation(s)
- Hidetoshi Ito
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
7
|
Ito H, Rucker E, Steplewski A, McAdams E, Brittingham RJ, Alabyeva T, Fertala A. Guilty by association: some collagen II mutants alter the formation of ECM as a result of atypical interaction with fibronectin. J Mol Biol 2005; 352:382-95. [PMID: 16083907 DOI: 10.1016/j.jmb.2005.07.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 06/30/2005] [Accepted: 07/11/2005] [Indexed: 11/16/2022]
Abstract
Among the structural components of extracellular matrices (ECM) fibrillar collagens play a critical role, and single amino acid substitutions in these proteins lead to pathological changes in tissues in which they are expressed. Employing a biologically relevant experimental model consisting of cells expressing R75C, R519C, R789C, and G853E procollagen II mutants, we found that the R789C mutation causing a decrease in the thermostability of collagen not only alters individual collagen molecules and collagen fibrils, but also has a negative impact on fibronectin. We propose that thermolabile collagen molecules are able to bind to fibronectin, thereby altering intracellular and extracellular processes in which fibronectin takes part, and we postulate that such an atypical interaction could change the architecture of the ECM of affected tissues in patients harboring mutations in genes encoding fibrillar collagens.
Collapse
Affiliation(s)
- Hidetoshi Ito
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Leitinger B, Steplewski A, Fertala A. The D2 period of collagen II contains a specific binding site for the human discoidin domain receptor, DDR2. J Mol Biol 2005; 344:993-1003. [PMID: 15544808 DOI: 10.1016/j.jmb.2004.09.089] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 09/28/2004] [Accepted: 09/28/2004] [Indexed: 11/23/2022]
Abstract
The human discoidin domain receptors (DDRs), DDR1 and DDR2, are expressed widely and, uniquely among receptor tyrosine kinases, activated by the extracellular matrix protein collagen. This activation is due to a direct interaction of collagen with the DDR discoidin domain. Here, we localised a specific DDR2 binding site on the triple-helical region of collagen II. Collagen II was found to be a much better ligand for DDR2 than for DDR1. As expected, DDR2 binding to collagen II was dependent on triple-helical collagen and was mediated by the DDR2 discoidin domain. Collagen II served as a potent stimulator of DDR2 autophosphorylation, the first step in transmembrane signalling. To map the DDR2 binding site(s) on collagen II, we used recombinant collagen II variants with specific deletions of one of the four repeating D periods. We found that the D2 period of collagen II was essential for DDR2 binding and receptor autophosphorylation, whereas the D3 and D4 periods were dispensable. The DDR2 binding site on collagen II was further defined by recombinant collagen II-like proteins consisting predominantly of tandem repeats of the D2 or D4 period. The D2 construct, but not the D4 construct, mediated DDR2 binding and receptor autophosphorylation, demonstrating that the D2 period of collagen II harbours a specific DDR2 recognition site. The discovery of a site-specific interaction of DDR2 with collagen II gives novel insight into the nature of the interaction of collagen II with matrix receptors.
Collapse
Affiliation(s)
- Birgit Leitinger
- Department of Medicine, The Sackler Institute for Muscular Skeletal Research, University College London, 5 University Street, London WC1E 6JJ, UK.
| | | | | |
Collapse
|
9
|
Steplewski A, Majsterek I, McAdams E, Rucker E, Brittingham RJ, Ito H, Hirai K, Adachi E, Jimenez SA, Fertala A. Thermostability Gradient in the Collagen Triple Helix Reveals its Multi-domain Structure. J Mol Biol 2004; 338:989-98. [PMID: 15111062 DOI: 10.1016/j.jmb.2004.03.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 03/04/2004] [Accepted: 03/08/2004] [Indexed: 11/25/2022]
Abstract
A triple-helical conformation and stability at physiological temperature are critical for the mechanical and biological functions of the fibril-forming collagens. Here, we characterized the role of consecutive domains of collagen II in stabilizing the triple helix. Analysis of melting temperatures of genetically engineered collagen-like proteins consisting of tandem repeats of the D1, D2, D3 or D4 collagen II periods revealed the presence of a gradient of thermostability along the collagen molecule with thermolabile N-terminal domains and thermostable C-terminal domains. These results imply a multi-domain character of the collagen triple helix. Assays of thermostabilities of the Arg75Cys and Arg789Cys collagen II mutants suggest that, in contrast to the thermostable domains, the thermolabile domains are able to accommodate amino acid substitutions without altering the thermostability of the entire collagen molecule.
Collapse
Affiliation(s)
- Andrzej Steplewski
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Majsterek I, McAdams E, Adachi E, Dhume ST, Fertala A. Prospects and limitations of the rational engineering of fibrillar collagens. Protein Sci 2003; 12:2063-72. [PMID: 12931004 PMCID: PMC2324002 DOI: 10.1110/ps.0385103] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recombinant collagens are attractive proteins for a number of biomedical applications. To date, significant progress was made in the large-scale production of nonmodified recombinant collagens; however, engineering of novel collagen-like proteins according to customized specifications has not been addressed. Herein we investigated the possibility of rational engineering of collagen-like proteins with specifically assigned characteristics. We have genetically engineered two DNA constructs encoding multi-D4 collagens defined as collagen-like proteins, consisting primarily of a tandem of the collagen II D4 periods that correspond to the biologically active region. We have also attempted to decrease enzymatic degradation of novel collagen by mutating a matrix metalloproteinase 1 cleavage site present in the D4 period. We demonstrated that the recombinant collagen alpha-chains consisting predominantly of the D4 period but lacking most of the other D periods found in native collagen fold into a typical collagen triple helix, and the novel procollagens are correctly processed by procollagen N-proteinase and procollagen C-proteinase. The nonmutated multi-D4 collagen had a normal melting point of 41 degrees C and a similar carbohydrate content as that of control. In contrast, the mutant multi-D4 collagen had a markedly lower thermostability of 36 degrees C and a significantly higher carbohydrate content. Both collagens were cleaved at multiple sites by matrix metalloproteinase 1, but the rate of hydrolysis of the mutant multi-D4 collagen was lower. These results provide a basis for the rational engineering of collagenous proteins and identifying any undesirable consequences of altering the collagenous amino acid sequences.
Collapse
Affiliation(s)
- Ireneusz Majsterek
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
11
|
Sieron AL, Louneva N, Fertala A. Site-specific interaction of bone morphogenetic protein 2 with procollagen II. Cytokine 2002; 18:214-21. [PMID: 12126644 DOI: 10.1006/cyto.2002.1035] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bone morphogenetic proteins (BMPs) play a critical role in embryo development, organogenesis, and regeneration of damaged tissues. Biological activity of BMPs depends on their local concentration, which is regulated by intracellular enzymatic processing of pro-BMPs, and then the binding of secreted BMPs to antagonizing extracellular proteins. It has been suggested that BMPs interact with structural proteins of the extracellular matrix, but this process is poorly understood. To study interactions of BMPs with fibrillar collagens in detail we expressed recombinant procollagen II variants in which specific domains that correspond to the D-periods were deleted. Subsequently, the procollagen II variants were used in biosensor and immuno-precipitation binding assays to map the regions of procollagen II with a high affinity for the BMP-2. Our data suggest that interaction of BMP-2 with procollagen II is site-specific, and that the high-affinity binding site is located in the D4-period of the collagen triple helix. We hypothesize that the binding of BMP-2 to collagen II reflects a general mechanism of interaction between the fibrillar collagens and morphogens that belong to the transforming growth factor (TGF)-beta superfamily.
Collapse
Affiliation(s)
- Aleksander L Sieron
- Department of General and Molecular Biology and Genetics, Medical University of Silesia, 40-752 Katowice, Poland
| | | | | |
Collapse
|
12
|
Fertala A, Han WB, Ko FK. Mapping critical sites in collagen II for rational design of gene-engineered proteins for cell-supporting materials. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2001; 57:48-58. [PMID: 11416848 DOI: 10.1002/1097-4636(200110)57:1<48::aid-jbm1140>3.0.co;2-s] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Collagen II is the most abundant protein of cartilage and forms a network of fibrils extended by proteoglycans that enables cartilage to resist pressure. The surface of the collagen fibril serves as a platform for the attachment of collagen IX, growth factors, and cells. In this study we examined the mechanism of the interaction of chondrocytes with recombinant versions of procollagen II, in which one of the four blocks of 234 amino acids that define repeating D periods of the collagen triple helix has been deleted. Analysis of the attachment of chondrocytes to collagen II variants with deleted D periods indicated that the collagen II monomer contains randomly distributed sites critical for cell binding. However, as was shown by spreading and migration assays, the D4 period, which is between residues 703 to 936, contains amino acids critical for cell motility. We also showed that binding, spreading, and migration of chondrocytes through three-dimensional nanofibrillar collagenous matrices are controlled by an interaction of the collagen triple helix with beta1 integrins. The results of this study provide a basis for the rational design of a scaffold containing genetically engineered collagen with a high density of specific sites of interaction.
Collapse
Affiliation(s)
- A Fertala
- Center for Gene Therapy, MCP Hahnemann University, Philadelphia, Pennsylvania 19102, USA.
| | | | | |
Collapse
|
13
|
John DC, Watson R, Kind AJ, Scott AR, Kadler KE, Bulleid NJ. Expression of an engineered form of recombinant procollagen in mouse milk. Nat Biotechnol 1999; 17:385-9. [PMID: 10207889 DOI: 10.1038/7945] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have examined the suitability of the mouse mammary gland for expression of novel recombinant procollagens that can be used for biomedical applications. We generated transgenic mouse lines containing cDNA constructs encoding recombinant procollagen, along with the alpha and beta subunits of prolyl 4-hydroxylase, an enzyme that modifies the collagen into a form that is stable at body temperature. The lines expressed relatively high levels (50-200 micrograms/ml) of recombinant procollagen in milk. As engineered, the recombinant procollagen was shortened and consisted of a pro alpha 2(I) chain capable of forming a triple-helical homotrimer not normally found in nature. Analysis of the product demonstrated that (1) the pro alpha chains formed disulphide-linked trimers, (2) the trimers contained a thermostable triple-helical domain, (3) the N-propeptides were aligned correctly, and (4) the expressed procollagen was not proteolytically processed to collagen in milk.
Collapse
Affiliation(s)
- D C John
- School of Biological Sciences, Wellcome Trust Centre For Cell-Matrix Research, University of Manchester, UK
| | | | | | | | | | | |
Collapse
|
14
|
Arnold WV, Fertala A, Sieron AL, Hattori H, Mechling D, Bächinger HP, Prockop DJ. Recombinant procollagen II: Deletion of D period segments identifies sequences that are required for helix stabilization and generates a temperature-sensitive N-proteinase cleavage site. J Biol Chem 1998; 273:31822-8. [PMID: 9822649 DOI: 10.1074/jbc.273.48.31822] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A cDNA cassette system was used to synthesize recombinant versions of procollagen II in which one of the four blocks of 234 amino acids that define a repeating D periods of the collagen triple helix were deleted. All the proteins were triple helical and all underwent a helix-to-coil transition between 25 and 42 degreesC as assayed by circular dichroism. However, the details of the melting curves varied. The procollagen lacking the D1 period unfolded 3 degreesC lower than a full-length molecule. With the procollagen lacking the D4 period, the first 25% of unfolding occurred at a lower temperature than the full-length molecule, but the rest of the structure unfolded at the same temperature. With the procollagen lacking the terminal D0.4 period, the protein unfolded 3 degreesC lower than the full-length molecule and a smaller fraction of the protein was secreted by stably transfected clones than with the other recombinant procollagens. The results confirmed previous suggestions that the collagen triple helix contains regions of varying stability and they demonstrated that the two D periods at the end of the molecule contain sequences that serve as clamps for folding and for stabilizing the triple helix. Reaction of the recombinant procollagens with procollagen N-proteinase indicated that in the procollagen lacking the sequences, the D1 period assumed an unusual temperature-sensitive conformation at 35 degreesC that allowed cleavage at an otherwise resistant Gly-Ala bond between residues 394 and 395 of the alpha1(II) chain.
Collapse
Affiliation(s)
- W V Arnold
- Department of Biochemistry and Molecular Biology, Jefferson Institute of Molecular Medicine, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Prockop DJ, Sieron AL, Li SW. Procollagen N-proteinase and procollagen C-proteinase. Two unusual metalloproteinases that are essential for procollagen processing probably have important roles in development and cell signaling. Matrix Biol 1998; 16:399-408. [PMID: 9524360 DOI: 10.1016/s0945-053x(98)90013-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As soon as procollagen precursors of fibrillar collagens were discovered in the early 1970s, it became apparent that connective tissues must contain proteolytic activities that cleave the N-propeptides and the C-propeptides from procollagens. Isolation and characterization of the enzymic activities, however, proved to be unexpectedly difficult. Both proteinases are large and are synthesized in several different forms with polypeptide chains ranging in size from 70 kDa to about 130 kDa. The N-proteinase has the unusual property of cleaving the N-propeptides from type I and type II procollagens if the proteins are in a native conformation, but not if the proteins are partially unfolded so that the N-telopeptides are no longer in a hair-pin configuration. The C-proteinase specifically cleaves native and denatured types I, II and III procollagens. It also specifically cleaves a precursor of lysyl oxidase and laminin 5. Both enzymes and their variants have structures that place them in a large and expanding super-family of over 200 zinc-binding metalloproteinases. The larger of two forms of the N-proteinase contains an RGD sequence for binding through integrins and properdin repeats similar to those found in thrombospondin. The shorter 70 kDa form of the C-proteinase is identical to the protein that was previously identified as bone morphogenic protein-1. Both the 70 kDa C-proteinase and two larger forms are homologous to proteins that are expressed early in development in a variety of organisms, including Drosophila, sea urchin, and fish. Therefore, the data suggest that both the N- and C-proteinases have important biological functions in addition to the roles in the processing of procollagens.
Collapse
Affiliation(s)
- D J Prockop
- Center for Gene Therapy, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|