1
|
Shelby SA, Veatch SL. The Membrane Phase Transition Gives Rise to Responsive Plasma Membrane Structure and Function. Cold Spring Harb Perspect Biol 2023; 15:a041395. [PMID: 37553204 PMCID: PMC10626261 DOI: 10.1101/cshperspect.a041395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Several groups have recently reported evidence for the emergence of domains in cell plasma membranes when membrane proteins are organized by ligand binding or assembly of membrane proximal scaffolds. These domains recruit and retain components that favor the liquid-ordered phase, adding to a decades-old literature interrogating the contribution of membrane phase separation in plasma membrane organization and function. Here we propose that both past and present observations are consistent with a model in which membranes have a high compositional susceptibility, arising from their thermodynamic state in a single phase that is close to a miscibility phase transition. This rigorous framework naturally allows for both transient structure in the form of composition fluctuations and long-lived structure in the form of induced domains. In this way, the biological tuning of plasma membrane composition enables a responsive compositional landscape that facilitates and augments cellular biochemistry vital to plasma membrane functions.
Collapse
Affiliation(s)
- Sarah A Shelby
- Biochemistry & Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, Tennessee 37996, USA
| | - Sarah L Veatch
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
2
|
Saini P, Anugula S, Fong YW. The Role of ATP-Binding Cassette Proteins in Stem Cell Pluripotency. Biomedicines 2023; 11:1868. [PMID: 37509507 PMCID: PMC10377311 DOI: 10.3390/biomedicines11071868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Pluripotent stem cells (PSCs) are highly proliferative cells that can self-renew indefinitely in vitro. Upon receiving appropriate signals, PSCs undergo differentiation and can generate every cell type in the body. These unique properties of PSCs require specific gene expression patterns that define stem cell identity and dynamic regulation of intracellular metabolism to support cell growth and cell fate transitions. PSCs are prone to DNA damage due to elevated replicative and transcriptional stress. Therefore, mechanisms to prevent deleterious mutations in PSCs that compromise stem cell function or increase the risk of tumor formation from becoming amplified and propagated to progenitor cells are essential for embryonic development and for using PSCs including induced PSCs (iPSCs) as a cell source for regenerative medicine. In this review, we discuss the role of the ATP-binding cassette (ABC) superfamily in maintaining PSC homeostasis, and propose how their activities can influence cellular signaling and stem cell fate decisions. Finally, we highlight recent discoveries that not all ABC family members perform only canonical metabolite and peptide transport functions in PSCs; rather, they can participate in diverse cellular processes from genome surveillance to gene transcription and mRNA translation, which are likely to maintain the pristine state of PSCs.
Collapse
Affiliation(s)
- Prince Saini
- Brigham Regenerative Medicine Center, Brigham and Women’s Hospital, Boston, MA 02115, USA; (P.S.); (S.A.)
- Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Sharath Anugula
- Brigham Regenerative Medicine Center, Brigham and Women’s Hospital, Boston, MA 02115, USA; (P.S.); (S.A.)
- Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Yick W. Fong
- Brigham Regenerative Medicine Center, Brigham and Women’s Hospital, Boston, MA 02115, USA; (P.S.); (S.A.)
- Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
3
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
4
|
Krasnobaev VD, Batishchev OV. The Role of Lipid Domains and Physical Properties of Membranes in the Development of Age-Related Neurodegenerative Diseases. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2022. [DOI: 10.1134/s199074782209001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Stomatin modulates adipogenesis through the ERK pathway and regulates fatty acid uptake and lipid droplet growth. Nat Commun 2022; 13:4174. [PMID: 35854007 PMCID: PMC9296665 DOI: 10.1038/s41467-022-31825-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 07/01/2022] [Indexed: 11/08/2022] Open
Abstract
Regulation of fatty acid uptake, lipid production and storage, and metabolism of lipid droplets (LDs), is closely related to lipid homeostasis, adipocyte hypertrophy and obesity. We report here that stomatin, a major constituent of lipid raft, participates in adipogenesis and adipocyte maturation by modulating related signaling pathways. In adipocyte-like cells, increased stomatin promotes LD growth or enlargements by facilitating LD-LD fusion. It also promotes fatty acid uptake from extracellular environment by recruiting effector molecules, such as FAT/CD36 translocase, to lipid rafts to promote internalization of fatty acids. Stomatin transgenic mice fed with high-fat diet exhibit obesity, insulin resistance and hepatic impairments; however, such phenotypes are not seen in transgenic animals fed with regular diet. Inhibitions of stomatin by gene knockdown or OB-1 inhibit adipogenic differentiation and LD growth through downregulation of PPARγ pathway. Effects of stomatin on PPARγ involves ERK signaling; however, an alternate pathway may also exist. Stomatin is a component of lipid rafts. Here, Wu et al. show that stomatin modulates the differentiation and functions of adipocytes by regulating adipogenesis signaling and fatty acid influx such that with excessive calorie intake, increased stomatin induces adiposity.
Collapse
|
6
|
Wu A, Wojtowicz K, Savary S, Hamon Y, Trombik T. Do ABC transporters regulate plasma membrane organization? Cell Mol Biol Lett 2020; 25:37. [PMID: 32647530 PMCID: PMC7336681 DOI: 10.1186/s11658-020-00224-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/05/2020] [Indexed: 12/29/2022] Open
Abstract
The plasma membrane (PM) spatiotemporal organization is one of the major factors controlling cell signaling and whole-cell homeostasis. The PM lipids, including cholesterol, determine the physicochemical properties of the membrane bilayer and thus play a crucial role in all membrane-dependent cellular processes. It is known that lipid content and distribution in the PM are not random, and their transversal and lateral organization is highly controlled. Mainly sphingolipid- and cholesterol-rich lipid nanodomains, historically referred to as rafts, are extremely dynamic “hot spots” of the PM controlling the function of many cell surface proteins and receptors. In the first part of this review, we will focus on the recent advances of PM investigation and the current PM concept. In the second part, we will discuss the importance of several classes of ABC transporters whose substrates are lipids for the PM organization and dynamics. Finally, we will briefly present the significance of lipid ABC transporters for immune responses.
Collapse
Affiliation(s)
- Ambroise Wu
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | - Stephane Savary
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, Dijon, France
| | - Yannick Hamon
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Tomasz Trombik
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
7
|
Alanazi SA, Alanazi F, Haq N, Shakeel F, Badran MM, Harisa GI. Lipoproteins-Nanocarriers as a Promising Approach for Targeting Liver Cancer: Present Status and Application Prospects. Curr Drug Deliv 2020; 17:826-844. [PMID: 32026776 DOI: 10.2174/1567201817666200206104338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/27/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
Abstract
The prevalence of liver cancer is increasing over the years and it is the fifth leading cause of mortality worldwide. The intrusive features and burden of low survival rate make it a global health issue in both developing and developed countries. The recommended chemotherapy drugs for patients in the intermediate and advanced stages of various liver cancers yield a low response rate due to the nonspecific nature of drug delivery, thus warranting the search for new therapeutic strategies and potential drug delivery carriers. There are several new drug delivery methods available to ferry the targeted molecules to the specific biological environment. In recent years, the nano assembly of lipoprotein moieties (lipidic nanoparticles) has emerged as a promising and efficiently tailored drug delivery system in liver cancer treatment. This increased precision of nano lipoproteins conjugates in chemotherapeutic targeting offers new avenues for the treatment of liver cancer with high specificity and efficiency. This present review is focused on concisely outlining the knowledge of liver cancer diagnosis, existing treatment strategies, lipoproteins, their preparation, mechanism and their potential application in the treatment of liver cancer.
Collapse
Affiliation(s)
- Saleh A Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fars Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nazrul Haq
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M Badran
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gamaleldin I Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Gerth E, Mattner J. The Role of Adaptor Proteins in the Biology of Natural Killer T (NKT) Cells. Front Immunol 2019; 10:1449. [PMID: 31293596 PMCID: PMC6603179 DOI: 10.3389/fimmu.2019.01449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Adaptor proteins contribute to the selection, differentiation and activation of natural killer T (NKT) cells, an innate(-like) lymphocyte population endowed with powerful immunomodulatory properties. Distinct from conventional T lymphocytes NKT cells preferentially home to the liver, undergo a thymic maturation and differentiation process and recognize glycolipid antigens presented by the MHC class I-like molecule CD1d on antigen presenting cells. NKT cells express a semi-invariant T cell receptor (TCR), which combines the Vα14-Jα18 chain with a Vβ2, Vβ7, or Vβ8 chain in mice and the Vα24 chain with the Vβ11 chain in humans. The avidity of interactions between their TCR, the presented glycolipid antigen and CD1d govern the selection and differentiation of NKT cells. Compared to TCR ligation on conventional T cells engagement of the NKT cell TCR delivers substantially stronger signals, which trigger the unique NKT cell developmental program. Furthermore, NKT cells express a panoply of primarily inhibitory NK cell receptors (NKRs) that control their self-reactivity and avoid autoimmune activation. Adaptor proteins influence NKT cell biology through the integration of TCR, NKR and/or SLAM (signaling lymphocyte-activation molecule) receptor signals or the variation of CD1d-restricted antigen presentation. TCR and NKR ligation engage the SH2 domain-containing leukocyte protein of 76kDa slp-76 whereas the SLAM associated protein SAP serves as adaptor for the SLAM receptor family. Indeed, the selection and differentiation of NKT cells selectively requires co-stimulation via SLAM receptors. Furthermore, SAP deficiency causes X-linked lymphoproliferative disease with multiple immune defects including a lack of circulating NKT cells. While a deletion of slp-76 leads to a complete loss of all peripheral T cell populations, mutations in the SH2 domain of slp-76 selectively affect NKT cell biology. Furthermore, adaptor proteins influence the expression and trafficking of CD1d in antigen presenting cells and subsequently selection and activation of NKT cells. Adaptor protein complex 3 (AP-3), for example, is required for the efficient presentation of glycolipid antigens which require internalization and processing. Thus, our review will focus on the complex contribution of adaptor proteins to the delivery of TCR, NKR and SLAM receptor signals in the unique biology of NKT cells and CD1d-restricted antigen presentation.
Collapse
MESH Headings
- Adaptor Protein Complex 3/immunology
- Adaptor Protein Complex 3/metabolism
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antigen Presentation/immunology
- Antigens, CD1d/immunology
- Antigens, CD1d/metabolism
- Humans
- Lymphocyte Activation/immunology
- Mice
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Phosphoproteins/immunology
- Phosphoproteins/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Natural Killer Cell/immunology
- Receptors, Natural Killer Cell/metabolism
- Signaling Lymphocytic Activation Molecule Family/immunology
- Signaling Lymphocytic Activation Molecule Family/metabolism
Collapse
Affiliation(s)
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
9
|
Nizsalóczki E, Nagy P, Mocsár G, Szabó Á, Csomós I, Waldmann TA, Vámosi G, Mátyus L, Bodnár A. Minimum degree of overlap between IL-9R and IL-2R on human T lymphoma cells: A quantitative CLSM and FRET analysis. Cytometry A 2018; 93:1106-1117. [PMID: 30378727 PMCID: PMC8108070 DOI: 10.1002/cyto.a.23634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/30/2018] [Accepted: 09/18/2018] [Indexed: 01/15/2023]
Abstract
The heterodimeric receptor complex of IL-9 consists of the cytokine-specific α-subunit and the common γc -chain shared with other cytokines, including IL-2, a central regulator of T cell function. We have shown previously the bipartite spatial relationship of IL-9 and IL-2 receptors at the surface of human T lymphoma cells: in addition to common clusters, expression of the two receptor kinds could also be observed in segregated membrane areas. Here we analyzed further the mutual cell surface organization of IL-9 and IL-2 receptors. Complementing Pearson correlation data with co-occurrence analysis of confocal microscopic images revealed that a minimum degree of IL-9R/IL-2R co-localization exists at the cell surface regardless of the overall spatial correlation of the two receptor kinds. Moreover, our FRET experiments demonstrated molecular scale assemblies of the elements of the IL-9/IL-2R system. Binding of IL-9 altered the structure and/or composition of these clusters. It is hypothesized, that by sequestering receptor subunits in common membrane areas, the overlapping domains of IL-9R and IL-2R provide a platform enabling both the formation of the appropriate receptor complex as well as subunit sharing between related cytokines. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Enikő Nizsalóczki
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Mocsár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ágnes Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Csomós
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Thomas A. Waldmann
- Lymphoid Malignancies Branch, National Institutes of Health, Bethesda, Maryland
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Mátyus
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Bodnár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
10
|
Eckard AR, Meissner EG, Singh I, McComsey GA. Cardiovascular Disease, Statins, and HIV. J Infect Dis 2017; 214 Suppl 2:S83-92. [PMID: 27625435 DOI: 10.1093/infdis/jiw288] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human immunodeficiency virus (HIV)-infected patients are at an increased risk of serious, non-AIDS-defining comorbidities, even in the setting of viral suppression with combination antiretroviral therapy. This increased risk is due in part to immune dysfunction and heightened inflammation and immune activation associated with chronic HIV infection. Statins have wide-reaching immunomodulatory effects, and their use in the HIV-infected population may be of particular benefit. In this article, we review the pathogenesis of increased inflammation during HIV infection and how it contributes to the risk of cardiovascular disease among HIV-infected individuals. We then we review the immunomodulatory effects of statins and how they may attenuate the risk of cardiovascular disease and other comorbidities in this unique patient population.
Collapse
|
11
|
Peng Q, Jia SH, Parodo J, Ai Y, Marshall JC. Pre-B cell colony enhancing factor induces Nampt-dependent translocation of the insulin receptor out of lipid microdomains in A549 lung epithelial cells. Am J Physiol Endocrinol Metab 2015; 308:E324-33. [PMID: 25516545 DOI: 10.1152/ajpendo.00006.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pre-B cell colony-enhancing factor (PBEF) is a highly conserved pleiotropic protein reported to be an alternate ligand for the insulin receptor (IR). We sought to clarify the relationship between PBEF and insulin signaling by evaluating the effects of PBEF on the localization of the IRβ chain to lipid rafts in A549 epithelial cells. We isolated lipid rafts from A549 cells and detected the IR by immunoprecipitation from raft fractions or whole cell lysates. Cells were treated with rPBEF, its enzymatic product nicotinamide adenine dinucleotide (NAD), or the Nampt inhibitor daporinad to study the effect of PBEF on IRβ movement. We used coimmunoprecipitation studies in cells transfected with PBEF and IRβ constructs to detect interactions between PBEF, the IRβ, and caveolin-1 (Cav-1). PBEF was present in both lipid raft and nonraft fractions, whereas the IR was found only in lipid raft fractions of resting A549 cells. The IR-, PBEF-, and Cav-1-coimmunoprecipitated rPBEF treatment resulted in the movement of IRβ- and tyrosine-phosphorylated Cav-1 from lipid rafts to nonrafts, an effect that could be blocked by daporinad, suggesting that this effect was facilitated by the Nampt activity of PBEF. The addition of PBEF to insulin-treated cells resulted in reduced Akt phosphorylation of both Ser⁴⁷³ and Thr³⁰⁸. We conclude that PBEF can inhibit insulin signaling through the IR by Nampt-dependent promotion of IR translocation into the nonraft domains of A549 epithelial cells. PBEF-induced alterations in the spatial geometry of the IR provide a mechanistic explanation for insulin resistance in inflammatory states associated with upregulation of PBEF.
Collapse
Affiliation(s)
- Qianyi Peng
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and the Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; and Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Song Hui Jia
- Department of Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and the Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Jean Parodo
- Department of Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and the Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Yuhang Ai
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - John C Marshall
- Department of Surgery, Department of Critical Care Medicine, and Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and the Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; and
| |
Collapse
|
12
|
Characterization of cholesterol crystalline domains in model and biological membranes using X-ray diffraction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 842:231-45. [PMID: 25408347 DOI: 10.1007/978-3-319-11280-0_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Nizsalóczki E, Csomós I, Nagy P, Fazekas Z, Goldman CK, Waldmann TA, Damjanovich S, Vámosi G, Mátyus L, Bodnár A. Distinct spatial relationship of the interleukin-9 receptor with interleukin-2 receptor and major histocompatibility complex glycoproteins in human T lymphoma cells. Chemphyschem 2014; 15:3969-78. [PMID: 25297818 DOI: 10.1002/cphc.201402501] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/16/2014] [Indexed: 11/07/2022]
Abstract
The interleukin-9 receptor (IL-9R) consists of an α subunit and a γ(c) chain that are shared with other cytokine receptors, including interleukin-2 receptor (IL-2R), an important regulator of T cells. We previously showed that IL-2R is expressed in common clusters with major histocompatibility complex (MHC) glycoproteins in lipid rafts of human T lymphoma cells, which raised the question about what the relationship between clusters of IL-2R/MHC and IL-9R is. Confocal microscopy colocalization and fluorescence resonance energy transfer experiments capable of detecting membrane protein organization at different size scales revealed nonrandom association of IL-9R with IL-2R/MHC clusters at the surface of human T lymphoma cells. Accommodation of IL-9Rα in membrane areas segregated from the IL-2R/MHC domains was also detected. The bipartite nature of IL-9R distribution was mirrored by signal transducer and activator of transcription (STAT) activation results. Our data indicate that co-compartmentalization with MHC glycoproteins is a general property of γ(c) receptors. Distribution of receptor chains between different membrane domains may regulate their function.
Collapse
Affiliation(s)
- Enikő Nizsalóczki
- Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, University of Debrecen, P.O.B. 39., 4012, Debrecen (Hungary)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Paul LK, Rinne PLH, van der Schoot C. Refurbishing the plasmodesmal chamber: a role for lipid bodies? FRONTIERS IN PLANT SCIENCE 2014; 5:40. [PMID: 24605115 PMCID: PMC3932414 DOI: 10.3389/fpls.2014.00040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/28/2014] [Indexed: 05/04/2023]
Abstract
Lipid bodies (LBs) are universal constituents of both animal and plant cells. They are produced by specialized membrane domains at the tubular endoplasmic reticulum (ER), and consist of a core of neutral lipids and a surrounding monolayer of phospholipid with embedded amphipathic proteins. Although originally regarded as simple depots for lipids, they have recently emerged as organelles that interact with other cellular constituents, exchanging lipids, proteins and signaling molecules, and shuttling them between various intracellular destinations, including the plasmamembrane (PM). Recent data showed that in plants LBs can deliver a subset of 1,3-β-glucanases to the plasmodesmal (PD) channel. We hypothesize that this may represent a more general mechanism, which complements the delivery of glycosylphosphatidylinositol (GPI)-anchored proteins to the PD exterior via the secretory pathway. We propose that LBs may contribute to the maintenance of the PD chamber and the delivery of regulatory molecules as well as proteins destined for transport to adjacent cells. In addition, we speculate that LBs deliver their cargo through interaction with membrane domains in the cytofacial side of the PM.
Collapse
Affiliation(s)
| | | | - Christiaan van der Schoot
- *Correspondence: Christiaan van der Schoot, Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, P.O. Box 1432, Ås, Norway e-mail:
| |
Collapse
|
15
|
Abbas W, Herbein G. Plasma membrane signaling in HIV-1 infection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1132-42. [PMID: 23806647 DOI: 10.1016/j.bbamem.2013.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/12/2013] [Accepted: 06/16/2013] [Indexed: 10/26/2022]
Abstract
Plasma membrane is a multifunctional structure that acts as the initial barrier against infection by intracellular pathogens. The productive HIV-1 infection depends upon the initial interaction of virus and host plasma membrane. Immune cells such as CD4+ T cells and macrophages contain essential cell surface receptors and molecules such as CD4, CXCR4, CCR5 and lipid raft components that facilitate HIV-1 entry. From plasma membrane HIV-1 activates signaling pathways that prepare the grounds for viral replication. Through viral proteins HIV-1 hijacks host plasma membrane receptors such as Fas, TNFRs and DR4/DR5, which results in immune evasion and apoptosis both in infected and uninfected bystander cells. These events are hallmark in HIV-1 pathogenesis that leads towards AIDS. The interplay between HIV-1 and plasma membrane signaling has much to offer in terms of viral fitness and pathogenicity, and a better understanding of this interplay may lead to development of new therapeutic approaches. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.
Collapse
Affiliation(s)
- Wasim Abbas
- Department of Virology, EA 4266 "Pathogens & Inflammation", SFR FED4234, University of Franche-Comte, CHRU Besançon, F-25030 Besançon, France.
| | - Georges Herbein
- Department of Virology, EA 4266 "Pathogens & Inflammation", SFR FED4234, University of Franche-Comte, CHRU Besançon, F-25030 Besançon, France.
| |
Collapse
|
16
|
Shi Q, Hou Y, Hou J, Pan P, Liu Z, Jiang M, Gao J, Bai G. Glycyrrhetic acid synergistically enhances β₂-adrenergic receptor-Gs signaling by changing the location of Gαs in lipid rafts. PLoS One 2012; 7:e44921. [PMID: 23028680 PMCID: PMC3459958 DOI: 10.1371/journal.pone.0044921] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/09/2012] [Indexed: 11/26/2022] Open
Abstract
Glycyrrhetic acid (GA) exerts synergistic anti-asthmatic effects via a β2-adrenergic receptor (β2AR)-mediated pathway. Cholesterol is an important component of the structure and function of lipid rafts, which play critical roles in the β2AR-Gs-adenylate cyclase (AC)-mediated signaling pathway. Owing to the structural similarities between GA and cholesterol, we investigated the possibility that GA enhances β2AR signaling by altering cholesterol distribution. Azide-terminal GA (ATGA) was synthesized and applied to human embryonic kidney 293 (HEK293) cells expressing fusion β2AR, and the electron spin resonance (ESR) technique was utilized. GA was determined to be localized predominantly on membrane and decreased their cholesterol contents. Thus, the fluidity of the hydrophobic region increased but not the polar surface of the cell membrane. The conformations of membrane proteins were also changed. GA further changed the localization of Gαs from lipid rafts to non-raft regions, resulting the binding of β2AR and Gαs, as well as in reduced β2AR internalization. Co-localization of β2AR, Gαs, and AC increased isoproterenol-induced cAMP production and cholesterol reloading attenuated this effect. A speculation wherein GA enhances beta-adrenergic activity by increasing the functional linkage between the subcomponents of the membrane β2AR-protein kinase A (PKA) signaling pathway was proposed. The enhanced efficacy of β2AR agonists by this novel mechanism could prevent tachyphylaxis.
Collapse
Affiliation(s)
- Qian Shi
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yuanyuan Hou
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Jie Hou
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Penwei Pan
- College of Life Sciences, Nankai University, Tianjin, China
| | - Ze Liu
- College of Medicine, Nankai University, Tianjin, China
| | - Min Jiang
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Jie Gao
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Gang Bai
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- * E-mail:
| |
Collapse
|
17
|
Benslimane N, Hassan GS, Yacoub D, Mourad W. Requirement of transmembrane domain for CD154 association to lipid rafts and subsequent biological events. PLoS One 2012; 7:e43070. [PMID: 22905203 PMCID: PMC3419174 DOI: 10.1371/journal.pone.0043070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/16/2012] [Indexed: 12/22/2022] Open
Abstract
Interaction of CD40 with CD154 leads to recruitment of both molecules into lipid rafts, resulting in bi-directional cell activation. The precise mechanism by which CD154 is translocated into lipid rafts and its impact on CD154 signaling remain largely unknown. Our aim is to identify the domain of CD154 facilitating its association to lipid rafts and the impact of such association on signaling events and cytokine production. Thus, we generated Jurkat cell lines expressing truncated CD154 lacking the cytoplasmic domain or chimeric CD154 in which the transmembrane domain was replaced by that of transferrin receptor I, known to be excluded from lipid rafts. Our results show that cell stimulation with soluble CD40 leads to the association of CD154 wild-type and CD154-truncated, but not CD154-chimera, with lipid rafts. This is correlated with failure of CD154-chimera to activate Akt and p38 MAP kinases, known effectors of CD154 signaling. We also found that CD154-chimera lost the ability to promote IL-2 production upon T cell stimulation with anti-CD3/CD28 and soluble CD40. These results demonstrate the implication of the transmembrane domain of CD154 in lipid raft association, and that this association is necessary for CD154-mediated Akt and p38 activation with consequent enhancement of IL-2 production.
Collapse
Affiliation(s)
- Nadir Benslimane
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre Hospitalier de l’Université de Montréal, Hôpital Saint-Luc, Montréal, Quebec, Canada
| | - Ghada S. Hassan
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre Hospitalier de l’Université de Montréal, Hôpital Saint-Luc, Montréal, Quebec, Canada
| | - Daniel Yacoub
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre Hospitalier de l’Université de Montréal, Hôpital Saint-Luc, Montréal, Quebec, Canada
| | - Walid Mourad
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre Hospitalier de l’Université de Montréal, Hôpital Saint-Luc, Montréal, Quebec, Canada
- * E-mail:
| |
Collapse
|
18
|
Garcia-Garcia E, Grayfer L, Stafford JL, Belosevic M. Evidence for the presence of functional lipid rafts in immune cells of ectothermic organisms. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:257-269. [PMID: 22450166 DOI: 10.1016/j.dci.2012.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/12/2012] [Accepted: 03/15/2012] [Indexed: 05/31/2023]
Abstract
The role of lipid rafts in non-mammalian leukocytes has been scarcely investigated. We performed biochemical and functional analysis of lipid rafts in fish leukocytes. Fish Flotillin-1 and a fish GM1-like molecule (fGM1-L) were found in low density detergent-resistant membranes (LD-DRM) in goldfish macrophages and catfish B lymphocytes, similarly to mammals. The presence of flotillin-1 and fGM1-L in LD-DRM was sensitive to increased detergent concentrations, and cholesterol extraction. Confocal microscopy analysis of flotillin-1 and fGM1-L in fish leukocytes showed a distinctive punctuated staining pattern, suggestive of pre-existing rafts. Confocal microscopy analysis of macrophages showed that the membrane of phagosomes containing serum-opsonized zymosan was enriched in fGM1-L, and zymosan phagocytosis was reduced after cholesterol extraction. The presence of flotillin-1 and fGM1-L in LD-DRM, the microscopic evidence of flotillin-1 and fGM1-L on fish macrophages and B-cells, and the sensitivity of phagocytosis to cholesterol extraction, indicate that lipid rafts are biochemically and functionally similar in leukocytes from fish and mammals.
Collapse
Affiliation(s)
- Erick Garcia-Garcia
- Department of Biological Sciences, University of Alberta, Edmonton, Canada AB T6G 2E9
| | | | | | | |
Collapse
|
19
|
Lee WT, Prasad A, Watson ARO. Anergy in CD4 memory T lymphocytes. II. Abrogation of TCR-induced formation of membrane signaling complexes. Cell Immunol 2012; 276:26-34. [PMID: 22663768 DOI: 10.1016/j.cellimm.2012.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 05/11/2012] [Accepted: 05/12/2012] [Indexed: 01/15/2023]
Abstract
Memory and naive CD4 T cells have unique regulatory pathways for self/non-self discrimination. A memory cell specific regulatory pathway was revealed using superantigens to trigger the TCR. Upon stimulation by bacterial superantigens, like staphylococcal enterotoxin B (SEB), TCR proximal signaling is impaired leading to clonal tolerance (anergy). In the present report, we show that memory cell anergy results from the sequestration of the protein tyrosine kinase ZAP-70 away from the TCR/CD3ζ chain. During SEB-induced signaling, ZAP-70 is excluded from both detergent-resistant membrane microdomains and the immunological synapse, thus blocking downstream signaling. We also show that the mechanism underlying memory cell anergy must involve Fyn kinase, given that the suppression of Fyn activity restores the movement of ZAP-70 to the immunological synapse, TCR proximal signaling, and cell proliferation. Thus, toleragens, including microbial toxins, may modulate memory responses by targeting the organizational structure of memory cell signaling complexes.
Collapse
Affiliation(s)
- William T Lee
- The Department of Biomedical Sciences, The School of Public Health, The University at Albany, Albany, New York 12201-0509, United States.
| | | | | |
Collapse
|
20
|
McGraw KL, Fuhler GM, Johnson JO, Clark JA, Caceres GC, Sokol L, List AF. Erythropoietin receptor signaling is membrane raft dependent. PLoS One 2012; 7:e34477. [PMID: 22509308 PMCID: PMC3317978 DOI: 10.1371/journal.pone.0034477] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 03/05/2012] [Indexed: 01/30/2023] Open
Abstract
Upon erythropoietin (Epo) engagement, Epo-receptor (R) homodimerizes to activate JAK2 and Lyn, which phosphorylate STAT5. Although recent investigations have identified key negative regulators of Epo-R signaling, little is known about the role of membrane localization in controlling receptor signal fidelity. Here we show a critical role for membrane raft (MR) microdomains in creation of discrete signaling platforms essential for Epo-R signaling. Treatment of UT7 cells with Epo induced MR assembly and coalescence. Confocal microscopy showed that raft aggregates significantly increased after Epo stimulation (mean, 4.3±1.4(SE) vs. 25.6±3.2 aggregates/cell; p≤0.001), accompanied by a >3-fold increase in cluster size (p≤0.001). Raft fraction immunoblotting showed Epo-R translocation to MR after Epo stimulation and was confirmed by fluorescence microscopy in Epo stimulated UT7 cells and primary erythroid bursts. Receptor recruitment into MR was accompanied by incorporation of JAK2, Lyn, and STAT5 and their activated forms. Raft disruption by cholesterol depletion extinguished Epo induced Jak2, STAT5, Akt and MAPK phosphorylation in UT7 cells and erythroid progenitors. Furthermore, inhibition of the Rho GTPases Rac1 or RhoA blocked receptor recruitment into raft fractions, indicating a role for these GTPases in receptor trafficking. These data establish a critical role for MR in recruitment and assembly of Epo-R and signal intermediates into discrete membrane signaling units.
Collapse
Affiliation(s)
- Kathy L. McGraw
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, United States of America
| | - Gwenny M. Fuhler
- Department of Gasteroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Joseph O. Johnson
- Analytic Microscopy Core Facility, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Justine A. Clark
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Gisela C. Caceres
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Lubomir Sokol
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Alan F. List
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
21
|
Mattei V, Matarrese P, Garofalo T, Tinari A, Gambardella L, Ciarlo L, Manganelli V, Tasciotti V, Misasi R, Malorni W, Sorice M. Recruitment of cellular prion protein to mitochondrial raft-like microdomains contributes to apoptosis execution. Mol Biol Cell 2011; 22:4842-53. [PMID: 22031292 PMCID: PMC3237627 DOI: 10.1091/mbc.e11-04-0348] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PrPC is identified as a new component of mitochondrial raft-like microdomains in T cells undergoing CD95/Fas–mediated apoptosis, and microtubular network integrity and function could play a role in the redistribution of PrPC from the plasma membrane to the mitochondria. We examined the possibility that cellular prion protein (PrPC) plays a role in the receptor-mediated apoptotic pathway. We first found that CD95/Fas triggering induced a redistribution of PrPC to the mitochondria of T lymphoblastoid CEM cells via a mechanism that brings into play microtubular network integrity and function. In particular, we demonstrated that PrPC was redistributed to raft-like microdomains at the mitochondrial membrane, as well as at endoplasmic reticulum-mitochondria–associated membranes. Our in vitro experiments also demonstrated that, although PrPC had such an effect on mitochondria, it induced the loss of mitochondrial membrane potential and cytochrome c release only after a contained rise of calcium concentration. Finally, the involvement of PrPC in apoptosis execution was also analyzed in PrPC-small interfering RNA–transfected cells, which were found to be significantly less susceptible to CD95/Fas–induced apoptosis. Taken together, these results suggest that PrPC might play a role in the complex multimolecular signaling associated with CD95/Fas receptor–mediated apoptosis.
Collapse
Affiliation(s)
- Vincenzo Mattei
- Laboratory of Experimental Medicine and Environmental Pathology, Sabina Universitas, 02100 Rieti, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nadiri A, Polyak MJ, Jundi M, Alturaihi H, Reyes-Moreno C, Hassan GS, Mourad W. CD40 translocation to lipid rafts: Signaling requirements and downstream biological events. Eur J Immunol 2011; 41:2358-67. [DOI: 10.1002/eji.201041143] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 04/05/2011] [Accepted: 05/06/2011] [Indexed: 12/19/2022]
|
23
|
Kim BW, Lee CS, Yi JS, Lee JH, Lee JW, Choo HJ, Jung SY, Kim MS, Lee SW, Lee MS, Yoon G, Ko YG. Lipid raft proteome reveals that oxidative phosphorylation system is associated with the plasma membrane. Expert Rev Proteomics 2011; 7:849-66. [PMID: 21142887 DOI: 10.1586/epr.10.87] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although accumulating proteomic analyses have supported the fact that mitochondrial oxidative phosphorylation (OXPHOS) complexes are localized in lipid rafts, which mediate cell signaling, immune response and host-pathogen interactions, there has been no in-depth study of the physiological functions of lipid-raft OXPHOS complexes. Here, we show that many subunits of OXPHOS complexes were identified from the lipid rafts of human adipocytes, C2C12 myotubes, Jurkat cells and surface biotin-labeled Jurkat cells via shotgun proteomic analysis. We discuss the findings of OXPHOS complexes in lipid rafts, the role of the surface ATP synthase complex as a receptor for various ligands and extracellular superoxide generation by plasma membrane oxidative phosphorylation complexes.
Collapse
Affiliation(s)
- Bong-Woo Kim
- College of Life Sciences and Biotechnology, Korea University, 1, 5-ka, Anam-dong, Sungbuk-ku, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ríos-Marco P, Jiménez-López JM, Marco C, Segovia JL, Carrasco MP. Antitumoral alkylphospholipids induce cholesterol efflux from the plasma membrane in HepG2 cells. J Pharmacol Exp Ther 2011; 336:866-73. [PMID: 21148684 DOI: 10.1124/jpet.110.172890] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Alkylphospholipid (APL) analogs are promising candidates in the search for treatments of cancer. Previous studies conducted in our laboratory indicate that, after prolonged treatment, they alter cholesterol homeostasis in HepG2 cells. Here we describe the effects that different APLs exert upon this cell line after a 1-h exposure in a serum-free medium, including 1) a rapid, significant increase in cholesterol efflux into the extracellular medium, which consequently provoked a depletion of cholesterol in the plasma membrane (further assays conducted in an attempt to return to control cholesterol levels were only partially successful); 2) use of methyl-β-cyclodextrin, which indicated that APLs acted in a way similar to this agent that is used frequently to modulate membrane cholesterol levels; 3) the phosphorylation of Akt that showed that this critical regulator for cell survival was modulated by changes in cholesterol levels induced in the plasma membrane by APLs; and 4) membrane cholesterol depletion that is not related to the impairment of cholesterol traffic produced by APLs. Thus, we have found that antitumoral APLs efficiently deplete membrane cholesterol, which may be one important factor in determining the early biological actions of APLs.
Collapse
Affiliation(s)
- Pablo Ríos-Marco
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain
| | | | | | | | | |
Collapse
|
25
|
Raghu H, Sodadasu PK, Malla RR, Gondi CS, Estes N, Rao JS. Localization of uPAR and MMP-9 in lipid rafts is critical for migration, invasion and angiogenesis in human breast cancer cells. BMC Cancer 2010; 10:647. [PMID: 21106094 PMCID: PMC3002355 DOI: 10.1186/1471-2407-10-647] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 11/24/2010] [Indexed: 12/13/2022] Open
Abstract
Background uPAR and MMP-9, which play critical roles in tumor cell invasion, migration and angiogenesis, have been shown to be associated with lipid rafts. Methods To investigate whether cholesterol could regulate uPAR and MMP-9 in breast carcinoma, we used MβCD (methyl beta cyclodextrin, which extracts cholesterol from lipid rafts) to disrupt lipid rafts and studied its effect on breast cancer cell migration, invasion, angiogenesis and signaling. Results Morphological evidence showed the association of uPAR with lipid rafts in breast carcinoma cells. MβCD treatment significantly reduced the colocalization of uPAR and MMP-9 with lipid raft markers and also significantly reduced uPAR and MMP-9 at both the protein and mRNA levels. Spheroid migration and invasion assays showed inhibition of breast carcinoma cell migration and invasion after MβCD treatment. In vitro angiogenesis studies showed a significant decrease in the angiogenic potential of cells pretreated with MβCD. MβCD treatment significantly reduced the levels of MMP-9 and uPAR in raft fractions of MDA-MB-231 and ZR 751 cells. Phosphorylated forms of Src, FAK, Cav, Akt and ERK were significantly inhibited upon MβCD treatment. Increased levels of soluble uPAR were observed upon MβCD treatment. Cholesterol supplementation restored uPAR expression to basal levels in breast carcinoma cell lines. Increased colocalization of uPAR with the lysosomal marker LAMP1 was observed in MβCD-treated cells when compared with untreated cells. Conclusion Taken together, our results suggest that cholesterol levels in lipid rafts are critical for the migration, invasion, and angiogenesis of breast carcinoma cells and could be a critical regulatory factor in these cancer cell processes mediated by uPAR and MMP-9.
Collapse
Affiliation(s)
- Hari Raghu
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL 61605, USA
| | | | | | | | | | | |
Collapse
|
26
|
Jia Z, Zhao R, Tian Y, Huang Z, Tian Z, Shen Z, Wang Q, Wang J, Fu X, Wu Y. A novel splice variant of FR4 predominantly expressed in CD4+CD25+ regulatory T cells. Immunol Invest 2010; 38:718-29. [PMID: 19860584 DOI: 10.3109/08820130903171003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Folate receptor 4 (FR4) is recently found as a lymphoid tissue specific protein. In this study, we have identified an alternative splicing variant of the FR4 gene from murine splenocytes, termed FR4v, which is almost identical to FR4 cDNA sequence except with the retained 108 bp intron 3 between exon 3 and 4 of FR4 gene. FR4v mRNA encodes a larger protein than FR4 and is constitutively expressed on CD4(+)CD25(+) regulatory T cell (Treg) membrane via a GPI anchor mechanism. Whether FR4v plays a redundant or unique functional role in Tregs should be investigated further in the future.
Collapse
Affiliation(s)
- Zhengcai Jia
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Goksu EI, Longo ML. Ternary lipid bilayers containing cholesterol in a high curvature silica xerogel environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:8614-24. [PMID: 20143868 DOI: 10.1021/la9046885] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The phase behavior of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) (1/1 mol ratio)/cholesterol (0-60 mol %) supported lipid bilayers agreed with a DOPC/DSPC/cholesterol ternary phase diagram by Zhao et al. when a mica support was used (Zhao, J.; Wu, J.; Heberle, F. A.; Mills, T. T.; Klawitter, P.; Huang, G.; Costanza, G.; Feigenson, G. W. Biochim. Biophys. Acta, Biomembr. 2007, 1768, 2764-2776). However, when a silica xerogel support was used, the phase behavior deviated from the phase diagram. Specifically, miscibility and trend lines of DSPC-rich domain area fraction, domain shape, and domain size versus cholesterol, obtained by analysis of fluorescence and atomic force microscopy (AFM) images, were as expected for mica-supported lipid bilayers, but were substantially stretched to higher cholesterol concentrations for silica xerogel-supported lipid bilayers. In addition, this behavior was found in three other ternary lipid compositions substituting slightly shorter acyl chain lengths in comparison to DSPC or a saturated lipid versus unsaturated DOPC. Qualitative comparison of domain characteristics of DOPC/DSPC/cholesterol (0 and 15 mol %) bilayers supported by silica xerogel, mica, borosilicate glass, and quartz showed that the networked surface layer of high curvature (0.04 nm(-1)) silica beads was the dominant influence as opposed to the surface chemistry. Based upon the literature, we postulate two curvature-based mechanisms that explain our results. In the first mechanism, cholesterol was transferred from the higher curvature supported lipid bilayer to the lower curvature vesicles in the medium during the vesicle fusion and thermal cooling step, resulting in a lowered cholesterol concentration of the supported lipid bilayer. In the second mechanism, high curvature promoted sustained lipid demixing as the cholesterol concentration was increased, thus creating a new phase diagram in which coexisting phases persist to a higher cholesterol concentration. These results suggest that a surface layer of high curvature features can be used to observe and study curvature-induced intrabilayer transport or demixing over large areas and that curvature can play an important role in sorting and localization of biomembrane components.
Collapse
Affiliation(s)
- Emel I Goksu
- Department of Chemical Engineering & Materials Science, University of California, Davis, California 95616, USA
| | | |
Collapse
|
28
|
El Fakhry Y, Alturaihi H, Diallo D, Merhi Y, Mourad W. Critical role of lipid rafts in CD154-mediated T cell signaling. Eur J Immunol 2010; 40:770-9. [PMID: 20039299 DOI: 10.1002/eji.200939646] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although signal pathways triggered via the CD40 molecule are well characterized, those induced via CD154 are less known. This study demonstrates that engagement of CD154 in Jurkat D1.1 cells with soluble CD40 leads to PKC alpha and delta activation, calcium mobilization, and phosphorylation of the Map kinases ERK1/2 and p38. Such response is accompanied by significant recruitment of CD154 into lipid rafts. Disruption of lipid rafts integrity with nystatin or methyl beta-cyclodextrin abrogated PKCalpha PKCdelta and p38 phosphorylation, but had no effect on ERK1/2 phosphorylation. Inhibition of PKC activation completely abolished p38 phosphorylation but had no effect on ERK1/2 phosphorylation, suggesting that localization of CD154 within lipid rafts is an absolute requirement for CD154-induced PKCalpha- and PKCdelta-dependent p38 phosphorylation. Furthermore, CD154 acts as co-stimulator for the production of IL-2 in an APC-superantigen-T-cell activation model. The results obtained demonstrate for the first time, that lipid rafts are of immunological relevance for CD154-triggered signals, and reinforce the importance of CD154 in T-cell activation.
Collapse
Affiliation(s)
- Youssef El Fakhry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Hôpital Saint Luc, Montréal, Que., Canada H2X 1P1
| | | | | | | | | |
Collapse
|
29
|
Jiménez-López JM, Ríos-Marco P, Marco C, Segovia JL, Carrasco MP. Alterations in the homeostasis of phospholipids and cholesterol by antitumor alkylphospholipids. Lipids Health Dis 2010; 9:33. [PMID: 20338039 PMCID: PMC2859738 DOI: 10.1186/1476-511x-9-33] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 03/25/2010] [Indexed: 11/15/2022] Open
Abstract
The alkylphospholipid analog miltefosine (hexadecylphosphocholine) is a membrane-directed antitumoral and antileishmanial drug belonging to the alkylphosphocholines, a group of synthetic antiproliferative agents that are promising candidates in anticancer therapy. A variety of mechanisms have been suggested to explain the actions of these compounds, which can induce apoptosis and/or cell growth arrest. In this review, we focus on recent advances in our understanding of the actions of miltefosine and other alkylphospholipids on the human hepatoma HepG2 cell line, with a special emphasis on lipid metabolism. Results obtained in our laboratory indicate that miltefosine displays cytostatic activity and causes apoptosis in HepG2 cells. Likewise, treatment with miltefosine produces an interference with the biosynthesis of phosphatidylcholine via both CDP-choline and phosphatidylethanolamine methylation. With regard to sphingolipid metabolism, miltefosine hinders the formation of sphingomyelin, which promotes intracellular accumulation of ceramide. We have demonstrated for the first time that treatment with miltefosine strongly impedes the esterification of cholesterol and that this effect is accompanied by a considerable increase in the synthesis of cholesterol, which leads to higher levels of cholesterol in the cells. Indeed, miltefosine early impairs cholesterol transport from the plasma membrane to the endoplasmic reticulum, causing a deregulation of cholesterol homeostasis. Similar to miltefosine, other clinically-relevant synthetic alkylphospholipids such as edelfosine, erucylphosphocholine and perifosine show growth inhibitory effects on HepG2 cells. All the tested alkylphospholipids also inhibit the arrival of plasma-membrane cholesterol to the endoplasmic reticulum, which induces a significant cholesterogenic response in these cells, involving an increased gene expression and higher levels of several proteins related to the pathway of biosynthesis as well as the receptor-mediated uptake of cholesterol. Thus, membrane-targeted alkylphospholipids exhibit a common mechanism of action through disruption of cholesterol homeostasis. The accumulation of cholesterol within the cell and the reduction in phosphatidylcholine and sphingomyelin biosyntheses certainly alter the ratio of choline-bearing phospholipids to cholesterol, which is critical for the integrity and functionality of specific membrane microdomains such as lipid rafts. Alkylphospholipid-induced alterations in lipid homeostasis with probable disturbance of the native membrane structure could well affect signaling processes vital to cell survival and growth.
Collapse
Affiliation(s)
- José M Jiménez-López
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av, Fuentenueva s/n, Granada, Spain
| | | | | | | | | |
Collapse
|
30
|
Chiu YG, Shao T, Feng C, Mensah KA, Thullen M, Schwarz EM, Ritchlin CT. CD16 (FcRgammaIII) as a potential marker of osteoclast precursors in psoriatic arthritis. Arthritis Res Ther 2010; 12:R14. [PMID: 20102624 PMCID: PMC2875642 DOI: 10.1186/ar2915] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 12/11/2009] [Accepted: 01/26/2010] [Indexed: 12/17/2022] Open
Abstract
Introduction Psoriatic arthritis (PsA) is a chronic inflammatory arthritis characterized by bone erosion mediated by osteoclasts (OC). Our previous studies showed an elevated frequency of OC precursors (OCP) in PsA patients. Here, we examined if OC arise from CD16-positive monocytes in PsA. Methods Peripheral blood mononuclear cells (PBMC) or monocytes were isolated from human peripheral blood and sorted based on CD16 expression. Sorted cells were cultured alone or with bone wafers in the presence of receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Enumeration and bone erosion activity of OC were examined after culture. The effects of tumor necrosis factor-alpha (TNFα), OC-promoting (M-CSF plus RANKL), and dendritic cell (DC)-promoting (GM-CSF plus interleukin (IL)-4) cytokines on CD16 surface expression were examined by flow cytometry. Results PsA and psoriasis (Ps) subjects had a higher percentage of circulating inflammatory CD14+CD16+ cells than healthy controls (HC). Exposure of cells to OC-promoting, but not DC-promoting media, was associated with CD16 up-regulation. PBMC of Ps and PsA had a higher frequency of cells expressing intermediate levels of CD16. OC were mainly derived from CD16+ cells in PsA. Increased CD16 expression was associated with a higher bone erosion activity in PsA. Conclusions An increased frequency of circulating CD14+CD16+ cells was noted in PsA compared to controls, and intermediate levels of CD16 may suggest a transitional state of OCP during osteoclastogenesis. Intriguingly, TNFα blocked CD16 expression on a subset of CD14+ monocytes. Collectively, our data suggest that CD16 has the potential to serve as an OCP marker in inflammatory arthritis.
Collapse
Affiliation(s)
- Yahui Grace Chiu
- Allergy/Immunology & Rheumatology Unit, University of Rochester Medical School, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Kaneko M, Takimoto H, Sugiyama T, Seki Y, Kawaguchi K, Kumazawa Y. Suppressive effects of the flavonoids quercetin and luteolin on the accumulation of lipid rafts after signal transduction via receptors. Immunopharmacol Immunotoxicol 2010; 30:867-82. [PMID: 18720166 DOI: 10.1080/08923970802135690] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Quercetin (QUER) and luteolin (LUTE) are dietary flavonoids capable of regulating the production of cytokines, such as tumor necrosis factor-alpha (TNF-alpha), and interleukin-6 (IL-6). However, their mechanisms of action are not fully understood. In lipopolysaccharide-triggered (LPS)-triggered signaling via Toll-like receptor 4 (TLR4), QUER and LUTE suppresses not only the degradation of the inhibitor of kappaB (IkappaB), with resultant activation of nuclear factor-kappaB (NF-kappaB), but also the phosphorylation of p38 and Akt in bone marrow-derived macrophages that have been stimulated with LPS. We report here that, in TNF-alpha-induced signaling, QUER and LUTE significantly suppressed the production of IL-6 and activation of NF-kappaB. Accumulation of lipid rafts, the initial step in the signaling pathway, was significantly inhibited when macrophages were treated with QUER or with LUTE prior to exposure to LPS. Similarly, the accumulation of lipid rafts was inhibited by the flavonoids when B cells were activated via the membrane IgM and when T cells were activated via CD3. In contrast, QUER and LUTE did not inhibit the activation of phorbol myristate acetate-induced NF-kappaB in macrophages. Our observations suggest that QUER and LUTE interact with receptors on the cell surface and suppress the accumulation of lipid rafts that occurs downstream of the activation of the receptors.
Collapse
Affiliation(s)
- Masahiro Kaneko
- Department of Biosciences, School of Science and Graduate School of Fundamental Life Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Sigalov AB. The SCHOOL of nature: I. Transmembrane signaling. SELF/NONSELF 2010; 1:4-39. [PMID: 21559175 PMCID: PMC3091606 DOI: 10.4161/self.1.1.10832] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 11/19/2022]
Abstract
Receptor-mediated transmembrane signaling plays an important role in health and disease. Recent significant advances in our understanding of the molecular mechanisms linking ligand binding to receptor activation revealed previously unrecognized striking similarities in the basic structural principles of function of numerous cell surface receptors. In this work, I demonstrate that the Signaling Chain Homooligomerization (SCHOOL)-based mechanism represents a general biological mechanism of transmembrane signal transduction mediated by a variety of functionally unrelated single- and multichain activating receptors. within the SCHOOL platform, ligand binding-induced receptor clustering is translated across the membrane into protein oligomerization in cytoplasmic milieu. This platform resolves a long-standing puzzle in transmembrane signal transduction and reveals the major driving forces coupling recognition and activation functions at the level of protein-protein interactions-biochemical processes that can be influenced and controlled. The basic principles of transmembrane signaling learned from the SCHOOL model can be used in different fields of immunology, virology, molecular and cell biology and others to describe, explain and predict various phenomena and processes mediated by a variety of functionally diverse and unrelated receptors. Beyond providing novel perspectives for fundamental research, the platform opens new avenues for drug discovery and development.
Collapse
Affiliation(s)
- Alexander B Sigalov
- Department of Pathology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
33
|
Glycyrrhizin, the main active compound in liquorice, attenuates pro-inflammatory responses by interfering with membrane-dependent receptor signalling. Biochem J 2009; 421:473-82. [PMID: 19442240 DOI: 10.1042/bj20082416] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The triterpene glycoside glycyrrhizin is the main active compound in liquorice. It is used as a herbal medicine owing to its anticancer, antiviral and anti-inflammatory properties. Its mode of action, however, remains widely unknown. In the present study, we aimed to elucidate the molecular mechanism of glycyrrhizin in attenuating inflammatory responses in macrophages. Using microarray analysis, we found that glycyrrhizin caused a broad block in the induction of pro-inflammatory mediators induced by the TLR (Toll-like receptor) 9 agonist CpG-DNA in RAW 264.7 cells. Furthermore, we found that glycyrrhizin also strongly attenuated inflammatory responses induced by TLR3 and TLR4 ligands. The inhibition was accompanied by decreased activation not only of the NF-kappaB (nuclear factor kappaB) pathway but also of the parallel MAPK (mitogen-activated protein kinase) signalling cascade upon stimulation with TLR9 and TLR4 agonists. Further analysis of upstream events revealed that glycyrrhizin treatment decreased cellular attachment and/or uptake of CpG-DNA and strongly impaired TLR4 internalization. Moreover, we found that the anti-inflammatory effects were specific for membrane-dependent receptor-mediated stimuli, as glycyrrhizin was ineffective in blocking Tnfa (tumour necrosis factor alpha gene) induction upon stimulation with PMA, a receptor- and membrane-independent stimulus. These observations suggest that the broad anti-inflammatory activity of glycyrrhizin is mediated by the interaction with the lipid bilayer, thereby attenuating receptor-mediated signalling.
Collapse
|
34
|
Podojil JR, Miller SD. Molecular mechanisms of T-cell receptor and costimulatory molecule ligation/blockade in autoimmune disease therapy. Immunol Rev 2009; 229:337-55. [PMID: 19426232 PMCID: PMC2845642 DOI: 10.1111/j.1600-065x.2009.00773.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SUMMARY Pro-inflammatory CD4(+) T-cell-mediated autoimmune diseases, such as multiple sclerosis and type 1 diabetes, are hypothesized to be initiated and maintained by activated antigen-presenting cells presenting self antigen to self-reactive interferon-gamma and interleukin-17-producing CD4(+) T-helper (Th) type 1/Th17 cells. To date, the majority of Food and Drug Administration-approved therapies for autoimmune disease primarily focus on the global inhibition of immune inflammatory activity. The goal of ongoing research in this field is to develop both therapies that inhibit/eliminate activated autoreactive cells as well as antigen-specific treatments, which allow for the directed blockade of the deleterious effects of self-reactive immune cell function. According to the two-signal hypothesis, activation of a naive antigen-specific CD4(+) T cell requires both stimulation of the T-cell receptor (TCR) (signal 1) and stimulation of costimulatory molecules (signal 2). There also exists a balance between pro-inflammatory and anti-inflammatory immune cell activity, which is regulated by the type and strength of the activating signal as well as the local cytokine milieu in which the naive CD4(+) T cell is activated. To this end, the majority of ongoing research is focused on the delivery of suboptimal TCR stimulation in the absence of costimulatory molecule stimulation, or potential blockade of stimulatory accessory molecules. Therefore, the signaling pathways involved in the induction of CD4(+) T-cell anergy, as apposed to activation, are topics of intense interest.
Collapse
Affiliation(s)
- Joseph R Podojil
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
35
|
Abstract
Tyrosine phosphorylation and dephosphorylation of proteins play a critical role for many T-cell functions. The opposing actions of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) determine the level of tyrosine phosphorylation at any time. It is well accepted that PTKs are essential during T-cell signaling; however, the role and importance of PTPs are much less known and appreciated. Both transmembrane and cytoplasmic tyrosine phosphatases have been identified in T cells and shown to regulate T-cell responses. This review focuses on the roles of the two cytoplasmic PTPs, the Src-homology 2 domain (SH2)-containing SHP-1 and SHP-2, in T-cell signaling, development, differentiation, and function.
Collapse
Affiliation(s)
- Ulrike Lorenz
- Department of Microbiology and The Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908-0734, USA.
| |
Collapse
|
36
|
Signaling Chain Homooligomerization (SCHOOL) Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:121-63. [DOI: 10.1007/978-0-387-09789-3_12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
|
38
|
Abstract
Ligand binding to the multichain immune recognition receptors (MIRRs) leads to receptor triggering and subsequent lymphocyte activation. MIRR signal transduction pathways have been extensively studied, but it is still not clear how binding of the ligand to the receptor is initially communicated across the plasma membrane to the cells interior. Models proposed for MIRR triggering can be grouped into three categories. Firstly, ligand binding invokes receptor clustering, resulting in the approximation of kinases to the MIRR and receptor phosphorylation. Secondly, ligand binding induces a conformational change of the receptor. Thirdly, upon ligand-binding, receptors and kinases are segregated from phosphatases, leading to a net phosphorylation of the receptor. In this review, we focus on the homodclustering induced by multivalent ligands, the heterodustering induced by simultaneous binding of the ligand to the MIRR and a coreceptor and the pseudodimer model.
Collapse
|
39
|
Garcia-Marcos M, Dehaye JP, Marino A. Membrane compartments and purinergic signalling: the role of plasma membrane microdomains in the modulation of P2XR-mediated signalling. FEBS J 2008; 276:330-40. [DOI: 10.1111/j.1742-4658.2008.06794.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Hexadecylphosphocholine alters nonvesicular cholesterol traffic from the plasma membrane to the endoplasmic reticulum and inhibits the synthesis of sphingomyelin in HepG2 cells. Int J Biochem Cell Biol 2008; 41:1296-303. [PMID: 19084611 DOI: 10.1016/j.biocel.2008.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 11/11/2008] [Accepted: 11/11/2008] [Indexed: 01/05/2023]
Abstract
The synthetic lipid analogue, hexadecylphosphocholine is an antitumoral and antileishmanial agent that acts on cell membranes and can induce apoptosis. We have previously investigated the effect of hexadecylphosphocholine on the biosynthesis and intracellular transport of cholesterol in the human hepatoma HepG2 cell line. Here we show that the traffic of endocytosed-cholesterol from LDL to the plasma membrane and the transport of newly synthesized cholesterol from the endoplasmic reticulum to the plasma membrane were unaffected by alkylphosphocholine exposure. On the contrary, cholesterol traffic from the plasma membrane to the endoplasmic reticulum was drastically interrupted after 1 h of cell exposition to HePC and, consequently, the intracellular esterification of cholesterol was substantially decreased. Our results also demonstrate that this alkylphosphocholine exclusively affected the nonvesicular, energy-independent cholesterol traffic, without altering the vesicular transport. In addition, hydrolysis of plasma membrane sphingomyelin by exogenously added sphingomyelinase resulted in enhanced plasma-membrane cholesterol esterification, but sphingomyelinase treatment did not prevent the inhibition in cholesteryl ester formation caused by hexadecylphosphocholine. We also found that sphingomyelin synthesis was significantly inhibited in HepG2 cells after exposure to hexadecylphosphocholine. Since sphingomyelin and cholesterol are major lipid constituents of membrane raft microdomains, these results suggest that hexadecylphosphocholine could disturb membrane raft integrity and thence its functionality.
Collapse
|
41
|
Influenza virus infection augments NK cell inhibition through reorganization of major histocompatibility complex class I proteins. J Virol 2008; 82:8030-7. [PMID: 18524833 DOI: 10.1128/jvi.00870-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The killing by natural killer (NK) cells is regulated by inhibitory, costimulatory, and activating receptors. The inhibitory receptors recognize mainly major histocompatibility complex (MHC) class I molecules, while the activating NK receptors recognize stress-induced ligands and viral products. Thus, changes in the expression of the various inhibitory and activating ligands will determine whether target cells will be killed or protected. Here, we demonstrate that after influenza virus infection the binding of the two NK inhibitory receptors, KIR2DL1 and the LIR1, to the infected cells is specifically increased. The increased binding occurs shortly after the influenza virus infection, prior to the increased recognition of the infected cells by the NK activating receptor, NKp46. We also elucidate the mechanism responsible for this effect and demonstrate that, after influenza virus infection, MHC class I proteins redistribute on the cell surface and accumulate in the lipid raft microdomains. Such redistribution allows better recognition by the NK inhibitory receptors and consequently increases resistance to NK cell attack. In contrast, T-cell activity was not influenced by the redistribution of MHC class I proteins. Thus, we present here a novel mechanism, developed by the influenza virus, of inhibition of NK cell cytotoxicity, through the reorganization of MHC class I proteins on the cell surface.
Collapse
|
42
|
Tolar P, Sohn HW, Pierce SK. Viewing the antigen-induced initiation of B-cell activation in living cells. Immunol Rev 2008; 221:64-76. [PMID: 18275475 DOI: 10.1111/j.1600-065x.2008.00583.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pavel Tolar
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | |
Collapse
|
43
|
Podojil JR, Turley DM, Miller SD. Therapeutic blockade of T-cell antigen receptor signal transduction and costimulation in autoimmune disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:234-51. [PMID: 19065796 PMCID: PMC2853772 DOI: 10.1007/978-0-387-09789-3_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CD4+ T-cell-mediated autoimmune diseases are initiated and maintained by the presentation of self-antigen by antigen-presenting cells (APCs) to self-reactive CD4+ T-cells. According to the two-signal hypothesis, activation of a naive antigen-specific CD4+ T-cell requires stimulation of both the T-cell antigen receptor (signal 1) and costimulatory molecules such as CD28 (signal 2). To date, the majority of therapies for autoimmune diseases approved by the Food and Drug Administration primarily focus on the global inhibition of immune inflammatory activity. The goal of ongoing research in this field is to develop antigen-specific treatments which block the deleterious effects of self-reactive immune cell function while maintaining the ability of the immune system to clear nonself antigens. To this end, the signaling pathways involved in the induction of CD4+ T-cell anergy, as apposed to activation, are a topic of intense interest. This chapter discusses components of the CD4+ T-cell activation pathway that may serve as therapeutic targets for the treatment of autoimmune disease.
Collapse
Affiliation(s)
- Joseph R. Podojil
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Danielle M. Turley
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Stephen D. Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
44
|
Bionda C, Hadchity E, Alphonse G, Chapet O, Rousson R, Rodriguez-Lafrasse C, Ardail D. Radioresistance of human carcinoma cells is correlated to a defect in raft membrane clustering. Free Radic Biol Med 2007; 43:681-94. [PMID: 17664132 DOI: 10.1016/j.freeradbiomed.2007.04.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 03/29/2007] [Accepted: 04/27/2007] [Indexed: 11/17/2022]
Abstract
In addition to DNA damage, exposure to irradiation involves the plasma membrane in the early phases of gamma-ray-induced cell death. The involvement of raft microdomains following gamma-radiation derives essentially from the role of ceramide as a critical component leading to apoptosis. It is demonstrated here that gamma-irradiation of a radiosensitive human head and neck squamous carcinoma cell line (SCC61) results in the triggering of raft coalescence to larger membrane platforms associated with the externalization of an acid sphingomyelinase (A-SMase), leading to ceramide release in raft, 30 min postirradiation. For the first time, we show that this structural rearrangement is defective in the radioresistant SQ20B cells and associated with the lack of A-SMase activation and translocation, a result which could explain in part their resistance to apoptosis following ionizing radiation. Moreover, we show that SQ20B are protected against radiation injury through a fivefold upper level of endogenous glutathione compared to SCC61. Overcoming the endogenous antioxidant defenses of SQ20B through either H(2)O(2) treatment or GSH depletion triggers A-SMase activation and translocation, raft coalescence, and apoptosis. On the contrary, ROS scavengers abolished these events in radiosensitive SCC61 cells. Translation of this concept to tumor biology suggests that manipulation of rafts through redox equilibrium may provide opportunities for radiosensitization of tumor cells.
Collapse
|
45
|
Sankarshanan M, Ma Z, Iype T, Lorenz U. Identification of a novel lipid raft-targeting motif in Src homology 2-containing phosphatase 1. THE JOURNAL OF IMMUNOLOGY 2007; 179:483-90. [PMID: 17579069 DOI: 10.4049/jimmunol.179.1.483] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The tyrosine phosphatase Src homology 2-containing phosphatase 1 (SHP-1) is a key negative regulator of TCR-mediated signaling. Previous studies have shown that in T cells a fraction of SHP-1 constitutively localizes to membrane microdomains, commonly referred to as lipid rafts. Although this localization of SHP-1 is required for its functional regulation of T cell activation events, how SHP-1 is targeted to the lipid rafts was unclear. In this study, we identify a novel, six-amino acid, lipid raft-targeting motif within the C terminus of SHP-1 based on several biochemical and functional observations. First, mutations of this motif in the context of full-length SHP-1 result in the loss of lipid raft localization of SHP-1. Second, this motif alone restores raft localization when fused to a mutant of SHP-1 (SHP-1 DeltaC) that fails to localize to rafts. Third, a peptide encompassing the 6-mer motif directly binds to phospholipids whereas a mutation of this motif abolishes lipid binding. Fourth, whereas full-length SHP-1 potently inhibits TCR-induced tyrosine phosphorylation of specific proteins, expression of a SHP-1-carrying mutation within the 6-mer motif does not. Additionally, although SHP-1 DeltaC was functionally inactive, the addition of the 6-mer motif restored its functionality in inhibiting TCR-induced tyrosine phosphorylation. Finally, this 6-mer mediated targeting of SHP-1 lipid rafts was essential for the function of this phosphatase in regulating IL-2 production downstream of TCR. Taken together, these data define a novel 6-mer motif within SHP-1 that is necessary and sufficient for lipid raft localization and for the function of SHP-1 as a negative regulator of TCR signaling.
Collapse
Affiliation(s)
- Mohan Sankarshanan
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
46
|
Liu Y, Sun R, Wan W, Wang J, Oppenheim JJ, Chen L, Zhang N. The involvement of lipid rafts in epidermal growth factor-induced chemotaxis of breast cancer cells. Mol Membr Biol 2007; 24:91-101. [PMID: 17453416 DOI: 10.1080/10929080600990500] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Metastasis is the major cause of morbidity and mortality in cancer. Recent studies reveal a role of chemotaxis in cancer cell metastasis. Epidermal growth factor receptors (EGFR) have potent chemotactic effects on human breast cancer cells. Lipid rafts, organized microdomain on plasma membranes, regulate the activation of many membrane receptors. In the current study, we investigated the role of lipid rafts in EGFR-mediated cancer cell chemotaxis. Our confocal microscopy results suggested that EGFR co-localized with GM1-positive rafts. Disrupting rafts with methyl-beta-cyclodextrin (mbetaCD) inhibited EGF-induced chemotaxis of human breast cancer cells. Supplementation with cholesterol reversed the inhibitory effects. Pretreatment with mbetaCD also impaired directional migration of cells in an in vitro "wound healing" assay, EGF-induced cell adhesion, actin polymerization, Akt phosphorylation and protein kinase Czeta (PKCzeta) translocation. Taken together, our study indicated that integrity of lipid rafts was critical in EGF-induced chemotaxis of human breast cancer cells.
Collapse
Affiliation(s)
- Ying Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Siddiqui RA, Harvey KA, Zaloga GP, Stillwell W. Modulation of lipid rafts by Omega-3 fatty acids in inflammation and cancer: implications for use of lipids during nutrition support. Nutr Clin Pract 2007; 22:74-88. [PMID: 17242459 DOI: 10.1177/011542650702200174] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Current understanding of biologic membrane structure and function is largely based on the concept of lipid rafts. Lipid rafts are composed primarily of tightly packed, liquid-ordered sphingolipids/cholesterol/saturated phospholipids that float in a sea of more unsaturated and loosely packed, liquid-disordered lipids. Lipid rafts have important clinical implications because many important membrane-signaling proteins are located within the raft regions of the membrane, and alterations in raft structure can alter activity of these signaling proteins. Because rafts are lipid-based, their composition, structure, and function are susceptible to manipulation by dietary components such as omega-3 polyunsaturated fatty acids and by cholesterol depletion. We review how alteration of raft lipids affects the raft/nonraft localization and hence the function of several proteins involved in cell signaling. We focus our discussion of raft-signaling proteins on inflammation and cancer.
Collapse
Affiliation(s)
- Rafat A Siddiqui
- Methodist Research Institute, Cellular Biochemistry, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
48
|
Villena J, Mainez J, Noguer O, Contreras H, Granés F, Reina M, Fabregat I, Vilaró S. Syndecan-2 expression increases serum-withdrawal-induced apoptosis, mediated by re-distribution of Fas into lipid rafts, in stably transfected Swiss 3T3 cells. Apoptosis 2006; 11:2065-75. [PMID: 17041758 DOI: 10.1007/s10495-006-0193-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To examine the function of syndecan-2, one of the most abundant heparan sulfate proteoglycans in fibroblasts, we obtained stably transfected Swiss 3T3 clones. We examined the effects of stable syndecan-2 overexpression on programmed cell death, finding that syndecan-2 transfected cells were more sensitive to apoptosis induced by serum-withdrawal than control cells. In addition, overexpression of syndecan-2 correlates with increased membrane levels of the Fas/CD95 receptor, suggesting that the increased serum-withdrawal apoptosis observed in Swiss 3T3 cells might be Fas receptor-dependent. Differences in Fas membrane levels between both control and syndecan-2 transfected cells result from a redistribution of the Fas receptor. Our data clearly demonstrate that increased Fas levels are primarily related to lipid rafts and that this increase is a key factor in Fas/CD95-mediated apoptosis. Moreover, disruption of lipid rafts with methyl-beta-cyclodextrin or filipin significantly reduced apoptosis in response to serum withdrawal. The differences in Fas/CD95 membrane distribution could explain why syndecan-2 transfected cells have a higher susceptibility to serum-withdrawal-induced apoptosis.
Collapse
Affiliation(s)
- Joan Villena
- Department of Cellular Biology, Faculty of Biology, University of Barcelona, Diagonal 645, 08028, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Stetzkowski-Marden F, Gaus K, Recouvreur M, Cartaud A, Cartaud J. Agrin elicits membrane lipid condensation at sites of acetylcholine receptor clusters in C2C12 myotubes. J Lipid Res 2006; 47:2121-33. [PMID: 16816402 DOI: 10.1194/jlr.m600182-jlr200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The formation of the neuromuscular junction is characterized by the progressive accumulation of nicotinic acetylcholine receptors (AChRs) in the postsynaptic membrane facing the nerve terminal, induced predominantly through the agrin/muscle-specific kinase (MuSK) signaling cascade. However, the cellular mechanisms linking MuSK activation to AChR clustering are still poorly understood. Here, we investigate whether lipid rafts are involved in agrin-elicited AChR clustering in a mouse C2C12 cell line. We observed that in C2C12 myotubes, both AChR clustering and cluster stability were dependent on cholesterol, because depletion by methyl-beta-cyclodextrin inhibited cluster formation or dispersed established clusters. Importantly, AChR clusters resided in ordered membrane domains, a biophysical property of rafts, as probed by Laurdan two-photon fluorescence microscopy. We isolated detergent-resistant membranes (DRMs) by three different biochemical procedures, all of which generate membranes with similar cholesterol/GM1 ganglioside contents, and these were enriched in several postsynaptic components, notably AChR, syntrophin, and raft markers flotillin-2 and caveolin-3. Agrin did not recruit AChRs into DRMs, suggesting that they are present in rafts independently of agrin activation. Consequently, in C2C12 myotubes, agrin likely triggers AChR clustering or maintains clusters through the coalescence of lipid rafts. These data led us to propose a model in which lipid rafts play a pivotal role in the assembly of the postsynaptic membrane at the neuromuscular junction upon agrin signaling.
Collapse
Affiliation(s)
- Françoise Stetzkowski-Marden
- Biologie Cellulaire des Membranes, Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Université Paris 6, Université Paris 7, F-75251 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Experimental and epidemiological evidence suggests that cholesterol may play a promotional role in prostate cancer development and progression. This review seeks to provide an overview of established links between cholesterol and prostate cancer, with an emphasis on very recent scientific contributions supporting a role of cholesterol in prostate cancer etiology. RECENT FINDINGS Elevated cholesterol levels in prostate cancer cells have been found to result from aberrant regulation of cholesterol metabolism. Recent studies have identified Akt/protein kinase B and sterol response element binding proteins as major players regulating cholesterol biosynthesis and feedback regulation. It has also become apparent that prostate cancer cells process critical cell survival cues via specialized membrane microdomains that are dependent on cholesterol for signal transduction. These findings converge to support a scenario in which abnormal cholesterol metabolism influences signal transduction events at the membrane in a manner that promotes tumor cell growth, inhibits apoptotic signals and potentially stimulates other malignant cellular behaviors. SUMMARY Recent experimental evidence has invigorated the discussion of a role for cholesterol in prostate cancer. The identification of cholesterol as a critical component in signal transduction events in prostate cancer cells has not only provided new mechanistic insights but also opened up new avenues for chemotherapeutic intervention.
Collapse
Affiliation(s)
- Martin H Hager
- The Urological Diseases Research Center, Department of Urology, Children's Hospital Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|