1
|
He X, Deng B, Zhang C, Zhang G, Yang F, Zhu D, Yang Y, Ma B, Hu X, Wang Y, Kang X. HSPA1A inhibits pyroptosis and neuroinflammation after spinal cord injury via DUSP1 inhibition of the MAPK signaling pathway. Mol Med 2025; 31:53. [PMID: 39924492 PMCID: PMC11809008 DOI: 10.1186/s10020-025-01086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Inflammation and proinflammatory programmed cell death, referred to as pyroptosis, are important causes of poor functional recovery after traumatic spinal cord injury (TSCI). Heat shock protein family A member 1A (HSPA1A) is a molecular chaperone protein that is highly expressed after TSCI and is thought to be neuroprotective. However, the mechanisms underlying the protective effects of HSPA1A after TSCI are unclear. METHODS The levels of pyroptosis and inflammation after TSCI were determined by enzyme-linked immunosorbent assay (ELISA) and western blotting analysis. The role of HSPA1A in regulating pyroptosis and inflammation in TSCI was verified by in vivo and in vitro experiments. The molecular mechanism of the effects of HSPA1A in TSCI was elucidated by bioinformatics and coimmunoprecipitation analyses. RESULTS Pyroptosis and inflammation are significantly increased after TSCI. HSPA1A overexpression in microglia attenuated nigericin- and lipopolysaccharide (LPS)-induced pyroptosis and inflammation in vitro, whereas knockdown of HSPA1A aggravated pyroptosis and inflammation. In vivo, overexpression of HSPA1A reduced tissue damage, nerve cell death, pyroptosis, and inflammation in TSCI rats and promoted functional recovery. Mechanistically, we identified that HSPA1A interacts with dual specificity phosphatase 1 (DUSP1) and inhibits activation of the mitogen-activated protein kinase (MAPK) pathway, thereby attenuating pyroptosis and inflammation. CONCLUSION HSPA1A reduces pyroptosis and inflammation after TSCI by upregulating DUSP1 and inhibiting MAPK pathway activation. HSPA1A activation has potential as a therapeutic approach to promote functional recovery after TSCI.
Collapse
Affiliation(s)
- Xuegang He
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bo Deng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Cangyu Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Fengguang Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Daxue Zhu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Yong Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Bing Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Xuchang Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China.
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China.
| | - Yonggang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China.
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China.
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China.
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
2
|
Nakiboneka R, Walbaum N, Musisi E, Nevels M, Nyirenda T, Nliwasa M, Msefula CL, Sloan D, Sabiiti W. Specific human gene expression in response to infection is an effective marker for diagnosis of latent and active tuberculosis. Sci Rep 2024; 14:26884. [PMID: 39505948 PMCID: PMC11541504 DOI: 10.1038/s41598-024-77164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
RNA sequencing and microarray analysis revealed transcriptional markers expressed in whole blood can differentiate active pulmonary TB (ATB) from other respiratory diseases (ORDs), and latent TB infection (LTBI) from healthy controls (HC). Here we describe a streamlined reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) assay that could be applied at near point-of-care for diagnosing and distinguishing ATB from ORDs and LTBI from HC. A literature review was undertaken to identify the most plausible host-gene markers (HGM) of TB infection. Primers, and dual labelled hydrolysis probes were designed and analytically evaluated for accuracy in an in-vitro model of infection using a lung fibroblast cell-line. Best performing genes were multiplexed into panels of 2-4 targets and taken forward for clinical evaluation. Mycobacteria Growth Indicator Tube and QuantiFERON-TB Gold Plus were used as reference tests for ATB and LTBI respectively. A total of 16 HGM were selected and incorporated into five multiplex RT-qPCR panels. PCR assay efficiency of all evaluated targets was ≥ 90% with a median analytical sensitivity of 292 copies/µl [IQR: 215.0-358.3 copies/µl], and a median limit of quantification of 61.7 copies/µl [IQR: 29.4-176.3 copies/µl]. Clinically, ATB was characterised by higher gene expression than ORDs, while LTBI was associated with lower gene expression than HC, Kruskal-Wallis p < 0.0001. Crucially, BATF2, CD64, GBP5, C1QB, GBP6, DUSP3, and GAS6 exhibited high differentiative ability for ATB from ORDs, LTBI or HC while KLF2, PTPRC, NEMF, ASUN, and ZNF296 independently discriminated LTBI from HC. Our results show that different HGM maybe required for ATB and LTBI differentiation from ORDs or HC respectively and demonstrate the feasibility of host gene-based RT-qPCR to diagnose ATB and LTBI at near point-of-care.
Collapse
Affiliation(s)
- Ritah Nakiboneka
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, KY16 9TF, UK
- Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi
- Helse Nord Tuberculosis Initiative (HNTI), Pathology Department, Kamuzu University of Health Sciences, Blantyre, Malawi
- Africa Centre for Public Health and Herbal Medicines (ACEPHEM), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Natasha Walbaum
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, KY16 9TF, UK
| | - Emmanuel Musisi
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, KY16 9TF, UK
- Adroit Biomedical and Bio-entrepreneurship Research Services (ABBRS), Kampala, Uganda
| | - Michael Nevels
- Biomedical Sciences Research Complex (BSRC), School of Biology, University of St Andrews, St Andrews, UK
| | - Tonney Nyirenda
- Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Marriott Nliwasa
- Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi
- Helse Nord Tuberculosis Initiative (HNTI), Pathology Department, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Chisomo L Msefula
- Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi
- Helse Nord Tuberculosis Initiative (HNTI), Pathology Department, Kamuzu University of Health Sciences, Blantyre, Malawi
- Africa Centre for Public Health and Herbal Medicines (ACEPHEM), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Derek Sloan
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, KY16 9TF, UK
| | - Wilber Sabiiti
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, KY16 9TF, UK.
| |
Collapse
|
3
|
Nakiboneka R, Margaritella N, Nyirenda T, Chaima D, Walbaum N, Musisi E, Tionge S, Msosa T, Nliwasa M, Msefula CL, Sloan D, Sabiiti W. Suppression of host gene expression is associated with latent TB infection: a possible diagnostic biomarker. Sci Rep 2024; 14:15621. [PMID: 38972907 PMCID: PMC11228037 DOI: 10.1038/s41598-024-66486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
The World Health Organization End TB strategy aims for a 90% reduction of tuberculosis (TB) incidence by 2035. Systematic testing and treatment of latent TB infection (LTBI) among contacts of active TB patients is recommended as one of the ways to curtail TB incidence. However, there is a shortage of tools to accurately diagnose LTBI. We assessed the appropriateness of whole blood host transcriptomic markers (TM) to diagnose LTBI among household contacts of bacteriologically confirmed index cases compared to HIV negative healthy controls (HC). QuantiFERON-TB Gold Plus Interferon gamma release assay (IGRA) and reverse-transcriptase quantitative PCR were used to determine LTBI and quantify TM expression respectively. Association between TM expression and LTBI was evaluated by logistic regression modelling. A total of 100 participants, 49 TB exposed (TBEx) household contacts and 51 HC, were enrolled. Twenty-five (51%) TBEx individuals tested positive by IGRA, and were denoted as LTBI individuals, and 37 (72.5%) HC were IGRA-negative. Expression of 11 evaluated TM was significantly suppressed among LTBI compared to HC. Out of the 11 TM, ZNF296 and KLF2 expression were strongly associated with LTBI and successfully differentiated LTBI from HC. Paradoxically, 21 (49%) TBEx participants who tested IGRA negative exhibited the same pattern of suppressed TM expression as IGRA positive (LTBI-confirmed individuals). Results suggest that suppression of gene expression underlies LTBI and may be a more sensitive diagnostic biomarker than standard-of-care IGRA.
Collapse
Grants
- Wellcome Trust
- 204821/Z/16/Z Wellcome Trust Institutional Strategic Support fund of the University of St Andrews
- Helse Nord Tuberculosis Initiative (HNTI), Pathology Department, Kamuzu University of Health Sciences
- Africa Centre for Public Health and Herbal Medicines (ACEPHEM), Kamuzu University of Health Sciences
- School of Medicine, University of St Andrews, UK
- Uganda Virus Research Institute, Entebbe, Uganda
- School of Mathematics and Statistics, University of St Andrews, UK
- Department of Pathology, Kamuzu University of Health Sciences
- Adroit Biomedical and Bioentrepreneurship Research Service
Collapse
Affiliation(s)
- Ritah Nakiboneka
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, UK
- Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi
- Pathology Department, Helse Nord Tuberculosis Initiative (HNTI), Kamuzu University of Health Sciences, Blantyre, Malawi
- Africa Centre for Public Health and Herbal Medicines (ACEPHEM), Kamuzu University of Health Sciences, Blantyre, Malawi
- Uganda Virus Research Institute, Entebbe, Uganda
| | - Nicolò Margaritella
- School of Mathematics and Statistics, University of St Andrews, St Andrews, UK
| | - Tonney Nyirenda
- Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - David Chaima
- Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Natasha Walbaum
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, UK
| | - Emmanuel Musisi
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, UK
- Adroit Biomedical and Bioentrepreneurship Research Service, Kampala, Uganda
| | - Sikwese Tionge
- Pathology Department, Helse Nord Tuberculosis Initiative (HNTI), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Takondwa Msosa
- Pathology Department, Helse Nord Tuberculosis Initiative (HNTI), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Marriott Nliwasa
- Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi
- Pathology Department, Helse Nord Tuberculosis Initiative (HNTI), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Chisomo L Msefula
- Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi
- Pathology Department, Helse Nord Tuberculosis Initiative (HNTI), Kamuzu University of Health Sciences, Blantyre, Malawi
- Africa Centre for Public Health and Herbal Medicines (ACEPHEM), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Derek Sloan
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, UK
| | - Wilber Sabiiti
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, UK.
| |
Collapse
|
4
|
Liu S, Zhang F, Su J, Fang A, Tian B, Yu Y, Bi C, Ma D, Xiao S, Yang Y. CRISPR-targeted mutagenesis of mitogen-activated protein kinase phosphatase 1 improves both immunity and yield in wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1929-1941. [PMID: 38366355 PMCID: PMC11182583 DOI: 10.1111/pbi.14312] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Plants have evolved a sophisticated immunity system for specific detection of pathogens and rapid induction of measured defences. Over- or constitutive activation of defences would negatively affect plant growth and development. Hence, the plant immune system is under tight positive and negative regulation. MAP kinase phosphatase1 (MKP1) has been identified as a negative regulator of plant immunity in model plant Arabidopsis. However, the molecular mechanisms by which MKP1 regulates immune signalling in wheat (Triticum aestivum) are poorly understood. In this study, we investigated the role of TaMKP1 in wheat defence against two devastating fungal pathogens and determined its subcellular localization. We demonstrated that knock-down of TaMKP1 by CRISPR/Cas9 in wheat resulted in enhanced resistance to rust caused by Puccinia striiformis f. sp. tritici (Pst) and powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt), indicating that TaMKP1 negatively regulates disease resistance in wheat. Unexpectedly, while Tamkp1 mutant plants showed increased resistance to the two tested fungal pathogens they also had higher yield compared with wild-type control plants without infection. Our results suggested that TaMKP1 interacts directly with dephosphorylated and activated TaMPK3/4/6, and TaMPK4 interacts directly with TaPAL. Taken together, we demonstrated TaMKP1 exert negative modulating roles in the activation of TaMPK3/4/6, which are required for MAPK-mediated defence signalling. This facilitates our understanding of the important roles of MAP kinase phosphatases and MAPK cascades in plant immunity and production, and provides germplasm resources for breeding for high resistance and high yield.
Collapse
Affiliation(s)
- Saifei Liu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant ProtectionSouthwest UniversityChongqingChina
- Institute for Plant Sciences, Cluster of Excellence on Plant SciencesUniversity of CologneCologneGermany
| | - Fengfeng Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Jiaxuan Su
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Anfei Fang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Binnian Tian
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Yang Yu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Chaowei Bi
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Dongfang Ma
- Hubei Collaborative Innovation Center for Grain Industry/College of AgricultureYangtze UniversityJingzhouHubeiChina
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandRockvilleMarylandUSA
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
| | - Yuheng Yang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant ProtectionSouthwest UniversityChongqingChina
| |
Collapse
|
5
|
Wang Q, Zhou JY, Liu L, Yin ZY, Li YY, Wang M, Zhang JB, Lu H, Zhou XY, Zhang B. Resveratrol activates MAPK/ERK pathway to regulate oestrogen metabolism in type I endometrial cancer. BMC Complement Med Ther 2024; 24:227. [PMID: 38862934 PMCID: PMC11167854 DOI: 10.1186/s12906-024-04509-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
OBJECTIVE Endometrial cancer (EC) is an oestrogen-dependent tumour, the occurrence of which is closely related to an imbalance of oestrogen homeostasis. Our previous studies explored the effects of Resveratrol(Res) on oestrogen metabolism. However, systematic research on the exact mechanism of action of Res is still lacking. Based on network pharmacology, molecular docking and animal experiments, the effects and molecular mechanisms of Res on endometrial cancer were investigated. METHODS The target of Res was obtained from the high-throughput experiment and reference-guided database of TCM (HERB) and the Encyclopedia of Traditional Chinese Medicine (ETCM) databases, and the target of endometrial cancer was obtained by using the Genecards database. Venny map was used to obtain the intersection target of Res in the treatment of endometrial cancer, and the protein interaction network of the intersection target was constructed by importing the data into the STRING database. Then, the drug-disease-target interaction network was constructed based on Cytoscape 3.9.1 software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for intersection targets using the OmicShare cloud platform. Res and core targets were analysed by molecular docking. EC model mice induced by MNNG were randomly divided into the control group, Res group, MNNG group, MNNG + Res group, and MNNG + Res + MAPK/ERKi group. The protein levels of ERK and p-ERK in the mouse uterus were detected by Western blot. The levels of E1, E2, E3, 16-epiE3, 17-epiE3, 2-MeOE1, 4-MeOE1, 2-MeOE2, 4-MeOE2, 3-MeOE1, 2-OHE1, 4-OHE1, 2-OHE2, 4-OHE2, and 16α-OHE1 in the serum and endometrial tissue of mice were measured by LC‒MS/MS. RESULTS A total of 174 intersection targets of Res anti-endometrial cancer were obtained. The signalling pathways analysed by KEGG enrichment included the AGE-RAGE signalling pathway in diabetic complications, the PI3K-Akt signalling pathway and the MAPK signalling pathway. The top 10 core targets were MAPK3, JUN, TP53, CASP3, TNF, IL1B, AKT1, FOS, VEGFA and INS. Molecular docking showed that in addition to TNF, other targets had good affinity for Res, and the binding activity with MAPK3 was stable. Western blot results showed that Res increased the phosphorylation level of ERK and that MAPK/ERKi decreased ERK activation. In the LC-MS/MS analysis, the levels of 2-MeOE1, 2-MeOE2 and 4-MeOE1 in serum and uterine tissue showed a significantly decreasing trend in the MNNG group, while that of 4-OHE2 was increased (P < 0.05). The concentrations of 4-MeOE1 in serum and 2-MeOE1 and 2-MeOE2 in the endometrial tissue of mice were significantly increased after Res treatment, and those of 4-OHE2 in the serum and uterus of mice were significantly decreased (P < 0.05). Meanwhile, in the MAPK/ERKi intervention group, the effect of Res on the reversal of oestrogen homeostasis imbalance was obviously weakened. CONCLUSION Res has multiple targets and multiple approaches in the treatment of endometrial cancer. In this study, it was found that Res regulates oestrogen metabolism by activating the MAPK/ERK pathway. This finding provides a new perspective for subsequent research on the treatment of endometrial cancer.
Collapse
Affiliation(s)
- Qing Wang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jia-Yun Zhou
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Li Liu
- Department of Obstetrics and Gynecology, Graduate School of Bengbu Medical University, Bengbu, China
| | - Ze-Yuan Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yan-Yu Li
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng Wang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing-Bo Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hui Lu
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Physical Examination Center, Xuzhou Central Hospital, Xuzhou, China
| | - Xue-Yan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Bei Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
6
|
Feng L, Wang H, Chen C, Fu J, Zhao L, Zhao X, Geng M, Ren M, Tong L, Li Y, Gu J, Wang C. MKP1 may be involved in the occurrence of depression by regulating hippocampal autophagy in rats. Behav Brain Res 2024; 465:114962. [PMID: 38499157 DOI: 10.1016/j.bbr.2024.114962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP1) is upregulated in the hippocampus of patients with depression, while pharmacological inhibition of hippocampal MKP1 can mitigate depression-like behaviors in rodents. In addition, MAPK signaling regulates autophagy, and antidepressants were recently shown to target autophagic signaling pathways. We speculated that MKP1 contributes to depression by enhancing hippocampal autophagy through dephosphorylation of the MAPK isoform ERK1/2. METHODS We established a rat depression model by exposure to chronic unpredictable mild stress (CUMS), and then examined depression-like behaviors in the sucrose preference test (SPT) and forced swimming test (FST) as well as expression changes in hippocampal MKP1, ERK1/2, phosphorylated ERK1/2, and autophagy-related proteins LC3II by Western blotting and immunostaining. These same measurements were repeated in rats exposed to CUMS following hippocampal infusion of a MKP1-targeted shRNA. Finally, the effects of MKP1 expression level on autophagy we examined in rat GMI-R1 microglia. RESULTS CUMS-exposed rats demonstrated anhedonia in the SPT and helplessness in the FST, two core depression-like behaviors. Expression levels of MKP1 and LC3II were upregulated in the hippocampus of CUMS rats, suggesting enhanced autophagy, while pERK/ERK was downregulated. Knockdown of hippocampal MKP1 mitigated depression-like behaviors, downregulated hippocampal LC3II expression, and upregulated hippocampal pERK/ERK. Similarly, MKP1 knockdown in GMI-R1 cells upregulated pERK/ERK and reduced the number of LC3II autophagosomes, while MKP1 overexpression had the opposite effects. CONCLUSION Enhanced hippocampal autophagy via MKP1-mediated ERK dephosphorylation may contribute to the development of depression.
Collapse
Affiliation(s)
- Laipeng Feng
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China
| | - Huiying Wang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China
| | - Chen Chen
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jiacheng Fu
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China
| | - Liqin Zhao
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xia Zhao
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Mengjun Geng
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Mengdi Ren
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China
| | - Lidan Tong
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China
| | - Yan Li
- Zhengzhou University, Zhengzhou, China
| | - Jingyang Gu
- Chaohu Hospital of Anhui Medical University, Hefei, China.
| | - Changhong Wang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
7
|
Fortier SM, Walker NM, Penke LR, Baas JD, Shen Q, Speth JM, Huang SK, Zemans RL, Bennett AM, Peters-Golden M. MAPK phosphatase 1 inhibition of p38α within lung myofibroblasts is essential for spontaneous fibrosis resolution. J Clin Invest 2024; 134:e172826. [PMID: 38512415 PMCID: PMC11093610 DOI: 10.1172/jci172826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Fibrosis following tissue injury is distinguished from normal repair by the accumulation of pathogenic and apoptosis-resistant myofibroblasts (MFs), which arise primarily by differentiation from resident fibroblasts. Endogenous molecular brakes that promote MF dedifferentiation and clearance during spontaneous resolution of experimental lung fibrosis may provide insights that could inform and improve the treatment of progressive pulmonary fibrosis in patients. MAPK phosphatase 1 (MKP1) influences the cellular phenotype and fate through precise and timely regulation of MAPK activity within various cell types and tissues, yet its role in lung fibroblasts and pulmonary fibrosis has not been explored. Using gain- and loss-of-function studies, we found that MKP1 promoted lung MF dedifferentiation and restored the sensitivity of these cells to apoptosis - effects determined to be mainly dependent on MKP1's dephosphorylation of p38α MAPK (p38α). Fibroblast-specific deletion of MKP1 following peak bleomycin-induced lung fibrosis largely abrogated its subsequent spontaneous resolution. Such resolution was restored by treating these transgenic mice with the p38α inhibitor VX-702. We conclude that MKP1 is a critical antifibrotic brake whose inhibition of pathogenic p38α in lung fibroblasts is necessary for fibrosis resolution following lung injury.
Collapse
Affiliation(s)
- Sean M. Fortier
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Natalie M. Walker
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Loka R. Penke
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jared D. Baas
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Qinxue Shen
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jennifer M. Speth
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Steven K. Huang
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Rachel L. Zemans
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anton M. Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Li J, Wang L, Zeng Q, He J, Tang Q, Wang K, He G. MKP-1 regulates the inflammatory activation of microglia against Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14409. [PMID: 37602891 PMCID: PMC10848084 DOI: 10.1111/cns.14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most common neurodegenerative diseases leading to dementia in elderly people. Microglia-mediated neuroinflammation plays an important role in AD pathogenesis, so modulation of neuroinflammation has emerged as an essential therapeutic method to improve AD. The current study aims to investigate whether MKP-1 can regulate microglia phenotype and inflammatory factor release in AD and explore its possible mechanisms. METHODS Amyloid precursor protein/PS1 double transgenic mice and wild-type mice were selected to study the locations of microglia and amyloid-β (Aβ) plaques in different regions of mice brains. Changes in MKP-1 of microglia were detected using AD model mice and AD model cells. Changes in phenotype and the release of inflammatory factors within immortalized BV2 murine microglia were investigated by regulating the expression of MKP-1. RESULTS The distribution of microglia and Aβ plaques in the AD brain was region-specific. MKP-1 expression was downregulated in AD mice, and in vitro, with increasing Aβ concentrations, MKP-1 expression was reduced. MKP-1 over-expression increased M2 microglia but decreased M1 microglia accompanied by changes in inflammatory factors and inhibition of MKP-1 yielded the opposite result. CONCLUSION MKP-1 regulated microglia phenotype and inflammatory factor release in AD through modulation of the p38 signaling pathway.
Collapse
Affiliation(s)
- Junhua Li
- Institute of Neuroscience, Basic Medical CollegeChongqing Medical UniversityChongqingChina
- Department of Anatomy, Basic Medical CollegeChongqing Medical UniversityChongqingChina
| | - Lin Wang
- Department of Basic MedicineChongqing College of Traditional Chinese MedicineChongqingChina
| | - Qinhua Zeng
- Institute of Neuroscience, Basic Medical CollegeChongqing Medical UniversityChongqingChina
- Department of Anatomy, Basic Medical CollegeChongqing Medical UniversityChongqingChina
| | - Jing He
- Institute of Neuroscience, Basic Medical CollegeChongqing Medical UniversityChongqingChina
- Department of Anatomy, Basic Medical CollegeChongqing Medical UniversityChongqingChina
| | - Qing Tang
- Institute of Neuroscience, Basic Medical CollegeChongqing Medical UniversityChongqingChina
- Department of Anatomy, Basic Medical CollegeChongqing Medical UniversityChongqingChina
| | - Kejian Wang
- Institute of Neuroscience, Basic Medical CollegeChongqing Medical UniversityChongqingChina
- Department of Anatomy, Basic Medical CollegeChongqing Medical UniversityChongqingChina
| | - Guiqiong He
- Institute of Neuroscience, Basic Medical CollegeChongqing Medical UniversityChongqingChina
- Department of Anatomy, Basic Medical CollegeChongqing Medical UniversityChongqingChina
| |
Collapse
|
9
|
Benkafadar N, Sato MP, Ling AH, Janesick A, Scheibinger M, Jan TA, Heller S. An essential signaling cascade for avian auditory hair cell regeneration. Dev Cell 2024; 59:280-291.e5. [PMID: 38128539 PMCID: PMC11681615 DOI: 10.1016/j.devcel.2023.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/27/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Hearing loss is a chronic disease affecting millions of people worldwide, yet no restorative treatment options are available. Although non-mammalian species can regenerate their auditory sensory hair cells, mammals cannot. Birds retain facultative stem cells known as supporting cells that engage in proliferative regeneration when surrounding hair cells die. Here, we investigated gene expression changes in chicken supporting cells during auditory hair cell death. This identified a pathway involving the receptor F2RL1, HBEGF, EGFR, and ERK signaling. We propose a cascade starting with the proteolytic activation of F2RL1, followed by matrix-metalloprotease-mediated HBEGF shedding, and culminating in EGFR-mediated ERK signaling. Each component of this cascade is essential for supporting cell S-phase entry in vivo and is integral for hair cell regeneration. Furthermore, STAT3-phosphorylation converges with this signaling toward upregulation of transcription factors ATF3, FOSL2, and CREM. Our findings could provide a basis for designing treatments for hearing and balance disorders.
Collapse
Affiliation(s)
- Nesrine Benkafadar
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Mitsuo P Sato
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Angela H Ling
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Amanda Janesick
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mirko Scheibinger
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Taha A Jan
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Stefan Heller
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Hamdin CD, Wu ML, Chen CM, Ho YC, Jiang WC, Gung PY, Ho HH, Chuang HC, Tan TH, Yet SF. Dual-Specificity Phosphatase 6 Deficiency Attenuates Arterial-Injury-Induced Intimal Hyperplasia in Mice. Int J Mol Sci 2023; 24:17136. [PMID: 38138967 PMCID: PMC10742470 DOI: 10.3390/ijms242417136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/29/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
In response to injury, vascular smooth muscle cells (VSMCs) of the arterial wall dedifferentiate into a proliferative and migratory phenotype, leading to intimal hyperplasia. The ERK1/2 pathway participates in cellular proliferation and migration, while dual-specificity phosphatase 6 (DUSP6, also named MKP3) can dephosphorylate activated ERK1/2. We showed that DUSP6 was expressed in low baseline levels in normal arteries; however, arterial injury significantly increased DUSP6 levels in the vessel wall. Compared with wild-type mice, Dusp6-deficient mice had smaller neointima. In vitro, IL-1β induced DUSP6 expression and increased VSMC proliferation and migration. Lack of DUSP6 reduced IL-1β-induced VSMC proliferation and migration. DUSP6 deficiency did not affect IL-1β-stimulated ERK1/2 activation. Instead, ERK1/2 inhibitor U0126 prevented DUSP6 induction by IL-1β, indicating that ERK1/2 functions upstream of DUSP6 to regulate DUSP6 expression in VSMCs rather than downstream as a DUSP6 substrate. IL-1β decreased the levels of cell cycle inhibitor p27 and cell-cell adhesion molecule N-cadherin in VSMCs, whereas lack of DUSP6 maintained their high levels, revealing novel functions of DUSP6 in regulating these two molecules. Taken together, our results indicate that lack of DUSP6 attenuated neointima formation following arterial injury by reducing VSMC proliferation and migration, which were likely mediated via maintaining p27 and N-cadherin levels.
Collapse
Affiliation(s)
- Candra D. Hamdin
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350401, Taiwan; (C.D.H.); (P.-Y.G.); (H.-H.H.)
- National Health Research Institutes and Department of Life Sciences, National Central University Joint Ph.D. Program in Biomedicine, Zhongli District, Taoyuan 320317, Taiwan
| | - Meng-Ling Wu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (M.-L.W.); (Y.-C.H.)
| | - Chen-Mei Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350401, Taiwan; (C.D.H.); (P.-Y.G.); (H.-H.H.)
| | - Yen-Chun Ho
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (M.-L.W.); (Y.-C.H.)
| | - Wei-Cheng Jiang
- Department of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Pei-Yu Gung
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350401, Taiwan; (C.D.H.); (P.-Y.G.); (H.-H.H.)
| | - Hua-Hui Ho
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350401, Taiwan; (C.D.H.); (P.-Y.G.); (H.-H.H.)
| | - Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan 350401, Taiwan; (H.-C.C.); (T.-H.T.)
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan 350401, Taiwan; (H.-C.C.); (T.-H.T.)
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350401, Taiwan; (C.D.H.); (P.-Y.G.); (H.-H.H.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
11
|
Chakraborty J, Chakraborty S, Chakraborty S, Narayan MN. Entanglement of MAPK pathways with gene expression and its omnipresence in the etiology for cancer and neurodegenerative disorders. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194988. [PMID: 37739217 DOI: 10.1016/j.bbagrm.2023.194988] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Mitogen Activated Protein Kinase (MAPK) is one of the most well characterized cellular signaling pathways that controls fundamental cellular processes including proliferation, differentiation, and apoptosis. These cellular functions are consequences of transcription of regulatory genes that are influenced and regulated by the MAP-Kinase signaling cascade. MAP kinase components such as Receptor Tyrosine Kinases (RTKs) sense external cues or ligands and transmit these signals via multiple protein complexes such as RAS-RAF, MEK, and ERKs and eventually modulate the transcription factors inside the nucleus to induce transcription and other regulatory functions. Aberrant activation, dysregulation of this signaling pathway, and genetic alterations in any of these components results in the developmental disorders, cancer, and neurodegenerative disorders. Over the years, the MAPK pathway has been a prime pharmacological target, to treat complex human disorders that are genetically linked such as cancer, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The current review re-visits the mechanism of MAPK pathways in gene expression regulation. Further, a current update on the progress of the mechanistic understanding of MAPK components is discussed from a disease perspective.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Institute for Advancing Health through Agriculture, Texas A&M Agrilife, College Station, TX, USA
| | - Sayan Chakraborty
- Department of Anesthesiology, Weill Cornell School of Medicine, New York, USA
| | - Sohag Chakraborty
- Human Oncology & Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, USA
| | - Mahesh N Narayan
- Department of Chemistry and Biochemistry, University of Texas, El Paso, TX, USA.
| |
Collapse
|
12
|
Klemm S, Evert K, Utpatel K, Muggli A, Simile MM, Chen X, Evert M, Calvisi DF, Scheiter A. Identification of DUSP4/6 overexpression as a potential rheostat to NRAS-induced hepatocarcinogenesis. BMC Cancer 2023; 23:1086. [PMID: 37946160 PMCID: PMC10636894 DOI: 10.1186/s12885-023-11577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Upregulation of the mitogen-activated protein kinase (MAPK) cascade is common in hepatocellular carcinoma (HCC). Neuroblastoma RAS viral oncogene homolog (NRAS) is mutated in a small percentage of HCC and is hitherto considered insufficient for hepatocarcinogenesis. We aimed to characterize the process of N-Ras-dependent carcinogenesis in the liver and to identify potential therapeutic vulnerabilities. METHODS NRAS V12 plasmid was delivered into the mouse liver via hydrodynamic tail vein injection (HTVI). The resulting tumours, preneoplastic lesions, and normal tissue were characterized by NanoString® gene expression analysis, Western Blot, and Immunohistochemistry (IHC). The results were further confirmed by in vitro analyses of HCC cell lines. RESULTS HTVI with NRAS V12 plasmid resulted in the gradual formation of preneoplastic and neoplastic lesions in the liver three months post-injection. These lesions mostly showed characteristics of HCC, with some exceptions of spindle cell/ cholangiocellular differentiation. Progressive upregulation of the RAS/RAF/MEK/ERK signalling was detectable in the lesions by Western Blot and IHC. NanoString® gene expression analysis of preneoplastic and tumorous tissue revealed a gradual overexpression of the cancer stem cell marker CD133 and Dual Specificity Phosphatases 4 and 6 (DUSP4/6). In vitro, transfection of HCC cell lines with NRAS V12 plasmid resulted in a coherent upregulation of DUSP4 and DUSP6. Paradoxically, this upregulation in PLC/PRF/5 cells was accompanied by a downregulation of phosphorylated extracellular-signal-regulated kinase (pERK), suggesting an overshooting compensation. Silencing of DUSP4 and DUSP6 increased proliferation in HCC cell lines. CONCLUSIONS Contrary to prior assumptions, the G12V NRAS mutant form is sufficient to elicit hepatocarcinogenesis in the mouse. Furthermore, the upregulation of the MAPK cascade was paralleled by the overexpression of DUSP4, DUSP6, and CD133 in vivo and in vitro. Therefore, DUSP4 and DUSP6 might fine-tune the excessive MAPK activation, a mechanism that can potentially be harnessed therapeutically.
Collapse
Affiliation(s)
- Sophie Klemm
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Kirsten Utpatel
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Alexandra Muggli
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Maria M Simile
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, Sassari, Italy
| | - Xin Chen
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
13
|
Wang L, Yang T, Pan Y, Shi L, Jin Y, Huang X. The Metabolism of Reactive Oxygen Species and Their Effects on Lipid Biosynthesis of Microalgae. Int J Mol Sci 2023; 24:11041. [PMID: 37446218 DOI: 10.3390/ijms241311041] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Microalgae have outstanding abilities to transform carbon dioxide (CO2) into useful lipids, which makes them extremely promising as renewable sources for manufacturing beneficial compounds. However, during this process, reactive oxygen species (ROS) can be inevitably formed via electron transfers in basal metabolisms. While the excessive accumulation of ROS can have negative effects, it has been supported that proper accumulation of ROS is essential to these organisms. Recent studies have shown that ROS increases are closely related to total lipid in microalgae under stress conditions. However, the exact mechanism behind this phenomenon remains largely unknown. Therefore, this paper aims to introduce the production and elimination of ROS in microalgae. The roles of ROS in three different signaling pathways for lipid biosynthesis are then reviewed: receptor proteins and phosphatases, as well as redox-sensitive transcription factors. Moreover, the strategies and applications of ROS-induced lipid biosynthesis in microalgae are summarized. Finally, future perspectives in this emerging field are also mentioned, appealing to more researchers to further explore the relative mechanisms. This may contribute to improving lipid accumulation in microalgae.
Collapse
Affiliation(s)
- Liufu Wang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Tian Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingying Pan
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Liqiu Shi
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Yaqi Jin
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Xuxiong Huang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Building of China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology and Joint Research on Mariculture Technology, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
14
|
Cytoprotective remedies for ameliorating nephrotoxicity induced by renal oxidative stress. Life Sci 2023; 318:121466. [PMID: 36773693 DOI: 10.1016/j.lfs.2023.121466] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
AIMS Nephrotoxicity is the hallmark of anti-neoplastic drug metabolism that causes oxidative stress. External chemical agents and prescription drugs release copious amounts of free radicals originating from molecular oxidation and unless sustainably scavenged, they stimulate membrane lipid peroxidation and disruption of the host antioxidant mechanisms. This review aims to provide a comprehensive collection of potential cytoprotective remedies in surmounting the most difficult aspect of cancer therapy as well as preventing renal oxidative stress by other means. MATERIALS AND METHODS Over 400 published research and review articles spanning several decades were scrutinised to obtain the relevant data which is presented in 3 categories; sources, mechanisms, and mitigation of renal oxidative stress. KEY-FINDINGS Drug and chemical-induced nephrotoxicity commonly manifests as chronic or acute kidney disease, nephritis, nephrotic syndrome, and nephrosis. Renal replacement therapy requirements and mortalities from end-stage renal disease are set to rapidly increase in the next decade for which 43 different cytoprotective compounds which have the capability to suppress experimental nephrotoxicity are described. SIGNIFICANCE The renal system performs essential homeostatic functions that play a significant role in eliminating toxicants, and its accumulation and recurrence in nephric tissues results in tubular degeneration and subsequent renal impairment. Global statistics of the latest chronic kidney disease prevalence is 13.4 % while the end-stage kidney disease requiring renal replacement therapy is 4-7 million per annum. The remedial compounds discussed herein had proven efficacy against nephrotoxicity manifested consequent to impaired antioxidant mechanisms in preclinical models produced by renal oxidative stress activators.
Collapse
|
15
|
Takano K, Munehira Y, Hatanaka M, Murakami R, Shibata Y, Shida T, Takeuchi K, Takechi S, Tabata T, Shimada T, Kishikawa S, Matsui Y, Ubukata O, Seki T, Kaneta Y. Discovery of a Novel ATP-Competitive MEK Inhibitor DS03090629 that Overcomes Resistance Conferred by BRAF Overexpression in BRAF-Mutated Melanoma. Mol Cancer Ther 2023; 22:317-332. [PMID: 36622773 DOI: 10.1158/1535-7163.mct-22-0306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/05/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023]
Abstract
Patients with melanoma with activating BRAF mutations (BRAF V600E/K) initially respond to combination therapy of BRAF and MEK inhibitors. However, their clinical efficacy is limited by acquired resistance, in some cases driven by amplification of the mutant BRAF gene and subsequent reactivation of the MAPK pathway. DS03090629 is a novel and orally available MEK inhibitor that inhibits MEK in an ATP-competitive manner. In both in vitro and in vivo settings, potent inhibition of MEK by DS03090629 or its combination with the BRAF inhibitor dabrafenib was demonstrated in a mutant BRAF-overexpressing melanoma cell line model that exhibited a higher MEK phosphorylation level than the parental cell line and then became resistant to dabrafenib and the MEK inhibitor trametinib. DS03090629 also exhibited superior efficacy against a melanoma cell line-expressing mutant MEK1 protein compared with dabrafenib and trametinib. Biophysical analysis revealed that DS03090629 retained its affinity for the MEK protein regardless of its phosphorylation status, whereas the affinity of trametinib declined when the MEK protein was phosphorylated. These results suggest that DS03090629 may be a novel therapeutic option for patients who acquire resistance to the current BRAF- and MEK-targeting therapies.
Collapse
Affiliation(s)
- Kohei Takano
- Oncology Research Laboratories II, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Yoichi Munehira
- Oncology Research Laboratories II, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Mana Hatanaka
- Oncology Research Laboratories II, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Ryo Murakami
- Oncology Research Laboratories II, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Yoshihiro Shibata
- Medicinal Chemistry Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Takeshi Shida
- Medicinal Chemistry Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Kosuke Takeuchi
- Medicinal Chemistry Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Sho Takechi
- Medicinal Chemistry Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Toshiki Tabata
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Takashi Shimada
- Organic Synthesis Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo, Japan
| | - Shuhei Kishikawa
- Organic Synthesis Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo, Japan
| | - Yumi Matsui
- Biological Research Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo, Japan
| | - Osamu Ubukata
- Biological Research Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo, Japan
| | - Takahiko Seki
- Early Clinical Development Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Yasuyuki Kaneta
- Oncology Research Laboratories II, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
16
|
Sudi S, Thomas FM, Daud SK, Ag Daud DM, Sunggip C. The Pleiotropic Role of Extracellular ATP in Myocardial Remodelling. Molecules 2023; 28:molecules28052102. [PMID: 36903347 PMCID: PMC10004151 DOI: 10.3390/molecules28052102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 03/12/2023] Open
Abstract
Myocardial remodelling is a molecular, cellular, and interstitial adaptation of the heart in response to altered environmental demands. The heart undergoes reversible physiological remodelling in response to changes in mechanical loading or irreversible pathological remodelling induced by neurohumoral factors and chronic stress, leading to heart failure. Adenosine triphosphate (ATP) is one of the potent mediators in cardiovascular signalling that act on the ligand-gated (P2X) and G-protein-coupled (P2Y) purinoceptors via the autocrine or paracrine manners. These activations mediate numerous intracellular communications by modulating the production of other messengers, including calcium, growth factors, cytokines, and nitric oxide. ATP is known to play a pleiotropic role in cardiovascular pathophysiology, making it a reliable biomarker for cardiac protection. This review outlines the sources of ATP released under physiological and pathological stress and its cell-specific mechanism of action. We further highlight a series of cardiovascular cell-to-cell communications of extracellular ATP signalling cascades in cardiac remodelling, which can be seen in hypertension, ischemia/reperfusion injury, fibrosis, hypertrophy, and atrophy. Finally, we summarize current pharmacological intervention using the ATP network as a target for cardiac protection. A better understanding of ATP communication in myocardial remodelling could be worthwhile for future drug development and repurposing and the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Suhaini Sudi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Fiona Macniesia Thomas
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Siti Kadzirah Daud
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Dayang Maryama Ag Daud
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
- Health through Exercise and Active Living (HEAL) Research Unit, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Caroline Sunggip
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
- Correspondence:
| |
Collapse
|
17
|
Tingting Gan, Liu X, Chen X, Shi Y, Wang W. Okadaic Acid Inhibits Protein Phosphatases to Suppress Spermatogonial Cell Proliferation. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022140060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
18
|
A novel site on dual-specificity phosphatase MKP7/DUSP16 is required for catalysis and MAPK binding. J Biol Chem 2022; 298:102617. [PMID: 36272649 PMCID: PMC9676401 DOI: 10.1016/j.jbc.2022.102617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/18/2022] Open
Abstract
The dual-specificity phosphatases responsible for the inactivation of the mitogen-activated protein kinases (MAPKs) are designated as the MAPK phosphatases (MKPs). We demonstrated previously that MKP5 is regulated through a novel allosteric site suggesting additional regulatory mechanisms of catalysis exist amongst the MKPs. Here, we sought to determine whether the equivalent site within the phosphatase domain of a highly similar MKP family member, MKP7, is also important for phosphatase function. We found that mutation of tyrosine 271 (Y271) in MKP7, which represents the comparable Y435 within the MKP5 allosteric pocket, inhibited MKP7 catalytic activity. Consistent with this, when MKP7 Y271 mutants were overexpressed in cells, the substrates of MKP7, p38 MAPK or JNK, failed to undergo dephosphorylation. The binding efficiency of MKP7 to p38 MAPK and JNK1/2 was also reduced when MKP7 Y271 is mutated. Consistent with reduced MAPK binding, we observed a greater accumulation of nuclear p38 MAPK and JNK when the MKP7 Y271 mutants are expressed in cells as compared with WT MKP7, which sequesters p38 MAPK/JNK in the cytoplasm. Therefore, we propose that Y271 is critical for effective MAPK dephosphorylation through a mechanism whereby binding to this residue precedes engagement of the catalytic site and upon overexpression, MKP7 allosteric site mutants potentiate MAPK signaling. These results provide insight into the regulatory mechanisms of MKP7 catalysis and interactions with the MAPKs. Furthermore, these data support the generality of the MKP allosteric site and provide a basis for small molecule targeting of MKP7.
Collapse
|
19
|
Wang J, Sun Z, Chen C, Xu M. The MKK2a Gene Involved in the MAPK Signaling Cascades Enhances Populus Salt Tolerance. Int J Mol Sci 2022; 23:ijms231710185. [PMID: 36077589 PMCID: PMC9456161 DOI: 10.3390/ijms231710185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are highly conserved signal transduction modules, which transmit environmental signals in plant cells through stepwise phosphorylation and play indispensable roles in a wide range of physiological and biochemical processes. Here, we isolated and characterized a gene encoding MKK2 protein from poplar through the rapid amplification of cDNA ends (RACE). The full-length PeMKK2a gene was 1571 bp, including a 1068 bp open reading frame (ORF) encoding 355 amino acids, and the putative PeMKK2a protein belongs to the PKc_like (protein kinase domain) family (70–336 amino acids) in the PKc_MAPKK_plant subfamily and contains 62 sites of possible phosphorylation and two conserved domains, DLK and S/T-xxxxx-S/T. Detailed information about its gene structure, sequence similarities, subcellular localization, and transcript profiles under salt-stress conditions was revealed. Transgenic poplar lines overexpressing PeMKK2a exhibited higher activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) than non-transgenic poplar under salt stress conditions. These results will provide insight into the roles of MAPK signaling cascades in poplar response to salt stress.
Collapse
Affiliation(s)
| | | | | | - Meng Xu
- Correspondence: ; Tel.: +86-150-9430-7586
| |
Collapse
|
20
|
Zheng X, Fang A, Qiu S, Zhao G, Wang J, Wang S, Wei J, Gao H, Yang J, Mou B, Cui F, Zhang J, Liu J, Sun W. Ustilaginoidea virens secretes a family of phosphatases that stabilize the negative immune regulator OsMPK6 and suppress plant immunity. THE PLANT CELL 2022; 34:3088-3109. [PMID: 35639755 PMCID: PMC9338817 DOI: 10.1093/plcell/koac154] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/18/2022] [Indexed: 05/16/2023]
Abstract
Rice false smut caused by Ustilaginoidea virens is emerging as a devastating disease of rice (Oryza sativa) worldwide; however, the molecular mechanisms underlying U. virens virulence and pathogenicity remain largely unknown. Here we demonstrate that the small cysteine-rich secreted protein SCRE6 in U. virens is translocated into host cells during infection as a virulence factor. Knockout of SCRE6 leads to attenuated U. virens virulence to rice. SCRE6 and its homologs in U. virens function as a novel family of mitogen-activated protein kinase phosphatases harboring no canonical phosphatase motif. SCRE6 interacts with and dephosphorylates the negative immune regulator OsMPK6 in rice, thus enhancing its stability and suppressing plant immunity. Ectopic expression of SCRE6 in transgenic rice promotes pathogen infection by suppressing the host immune responses. Our results reveal a previously unidentified fungal infection strategy in which the pathogen deploys a family of tyrosine phosphatases to stabilize a negative immune regulator in the host plant to facilitate its infection.
Collapse
Affiliation(s)
- Xinhang Zheng
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Anfei Fang
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
- College of Plant Protection, Southwest University, Chongqing, China
| | - Shanshan Qiu
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Guosheng Zhao
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Jiyang Wang
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Shanzhi Wang
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Junjun Wei
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Han Gao
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Jiyun Yang
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Baohui Mou
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Fuhao Cui
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Jie Zhang
- Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Jun Liu
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | | |
Collapse
|
21
|
Gao H, Jiang L, Du B, Ning B, Ding X, Zhang C, Song B, Liu S, Zhao M, Zhao Y, Rong T, Liu D, Wu J, Xu P, Zhang S. GmMKK4-activated GmMPK6 stimulates GmERF113 to trigger resistance to Phytophthora sojae in soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:473-495. [PMID: 35562858 DOI: 10.1111/tpj.15809] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Phytophthora root and stem rot is a worldwide soybean (Glycine max) disease caused by the soil-borne pathogen Phytophthora sojae. This disease is devastating to soybean production, so improvement of resistance to P. sojae is a major target in soybean breeding. Mitogen-activated protein kinase (MAPK) cascades are important signaling modules that convert environmental stimuli into cellular responses. Compared with extensive studies in Arabidopsis, the molecular mechanism of MAPK cascades in soybean disease resistance is barely elucidated. In this work, we found that the gene expression of mitogen-activated protein kinase 6 (GmMPK6) was potently induced by P. sojae infection in the disease-resistant soybean cultivar 'Suinong 10'. Overexpression of GmMPK6 in soybean resulted in enhanced resistance to P. sojae and silencing of GmMPK6 led to the opposite phenotype. In our attempt to dissect the role of GmMPK6 in soybean resistance to phytophthora disease, we found that MAPK kinase 4 (GmMKK4) and the ERF transcription factor GmERF113 physically interact with GmMPK6, and we determined that GmMKK4 could phosphorylate and activate GmMPK6, which could subsequently phosphorylate GmERF113 upon P. sojae infection, suggesting that P. sojae can stimulate the GmMKK4-GmMPK6-GmERF113 signaling pathway in soybean. Moreover, phosphorylation of GmERF113 by the GmMKK4-GmMPK6 module promoted GmERF113 stability, nuclear localization and transcriptional activity, which significantly enhanced expression of the defense-related genes GmPR1 and GmPR10-1 and hence improved disease resistance of the transgenic soybean seedlings. In all, our data reveal that the GmMKK4-GmMPK6-GmERF113 cascade triggers resistance to P. sojae in soybean and shed light on functions of MAPK kinases in plant disease resistance.
Collapse
Affiliation(s)
- Hong Gao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Liangyu Jiang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
- Jilin Agricultural University, Changchun, 130118, China
| | - Banghan Du
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Bin Ning
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Xiaodong Ding
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Chuanzhong Zhang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Bo Song
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Shanshan Liu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Ming Zhao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Yuxin Zhao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Tianyu Rong
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Dongxue Liu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Soybean Cultivation of Ministry of Agriculture P. R. China, Harbin, 150086, China
| | - Pengfei Xu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Shuzhen Zhang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| |
Collapse
|
22
|
Differential mRNA Expression Profiling Reveals the Role of MiR-375 in Inflammation of Bovine Mammary Epithelial Cells. Animals (Basel) 2022; 12:ani12111431. [PMID: 35681895 PMCID: PMC9179474 DOI: 10.3390/ani12111431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Bovine mammary epithelial cells (bMECs) are often used as cell models for mammary gland research. They are the most important cells for mammary gland function and the first line of defense for pathogen identification. MicroRNAs (miRNAs) are important regulatory factors involved in many physiological and pathological processes. Here, we examined a transcriptome profile of bovine mammary epithelial cell lines transfected with miR-375 inhibitor or negative control (NC) inhibitor, and further reveal the potential role of miR-375 in bMECs by differentially expressed mRNA analysis. We found that miR-375 potentially promotes inflammation in the mammary gland through the MAPK signaling pathway. Abstract MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate post-transcriptional gene expression and several biological processes. Bovine mammary epithelial cells (bMECs) mediate critical immune responses in the mammary gland and the occurrence of mastitis. Current research focuses on miRNA regulation of bMECs, but the miR-375 regulatory mechanism in bMECs is unclear. This study explored the role of miR-375 by profiling the transcriptome of miR-375-silenced bMECs using RNA-seq and identifying differentially expressed mRNAs (DIE-mRNAs). There were 63 DIE-mRNAs, including 48 down-regulated and 15 up-regulated mRNAs between miR-375-silenced bMECs and the controls. The Kyoto encyclopedia of genes and genomes (KEGG) and Gene Ontology (GO) functional analysis showed that the DIE-mRNAs enriched nuclear receptor subfamily 4 group A member 1 (NR4A1) and protein tyrosine phosphatase non-receptor type 5 (PTPN5) anti-inflammatory genes of the mitogen-activated protein kinase (MAPK) signaling pathway. However, they showed an opposite trend to the expression of miR-375 silencing, suggesting that miR-375 promotes bMEC inflammation through the MAPK signaling pathway. The findings of this study provide a new reference for understanding the regulation of bMEC inflammation and cow mastitis.
Collapse
|
23
|
Barley TJ, Murphy PR, Wang X, Bowman BA, Mormol JM, Mager CE, Kirk SG, Cash CJ, Linn SC, Meng X, Nelin LD, Chen B, Hafner M, Zhang J, Liu Y. Mitogen-activated protein kinase phosphatase-1 controls PD-L1 expression by regulating type I interferon during systemic Escherichia coli infection. J Biol Chem 2022; 298:101938. [PMID: 35429501 PMCID: PMC9108994 DOI: 10.1016/j.jbc.2022.101938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022] Open
Abstract
Mitogen-activated protein kinase phosphatase 1 (Mkp-1) KO mice produce elevated cytokines and exhibit increased mortality and bacterial burden following systemic Escherichia coli infection. To understand how Mkp-1 affects immune defense, we analyzed the RNA-Seq datasets previously generated from control and E. coli-infected Mkp-1+/+ and Mkp-1-/- mice. We found that E. coli infection markedly induced programmed death-ligand 1 (PD-L1) expression and that Mkp-1 deficiency further amplified PD-L1 expression. Administration of a PD-L1-neutralizing monoclonal antibody (mAb) to Mkp-1-/- mice increased the mortality of the animals following E. coli infection, although bacterial burden was decreased. In addition, the PD-L1-neutralizing mAb increased serum interferon (IFN)-γ and tumor necrosis factor alpha, as well as lung- and liver-inducible nitric oxide synthase levels, suggesting an enhanced inflammatory response. Interestingly, neutralization of IFN-α/β receptor 1 blocked PD-L1 induction in Mkp-1-/- mice following E. coli infection. PD-L1 was potently induced in macrophages by E. coli and lipopolysaccharide in vitro, and Mkp-1 deficiency exacerbated PD-L1 induction with little effect on the half-life of PD-L1 mRNA. In contrast, inhibitors of Janus kinase 1/2 and tyrosine kinase 2, as well as the IFN-α/β receptor 1-neutralizing mAb, markedly attenuated PD-L1 induction. These results suggest that the beneficial effect of type I IFNs in E. coli-infected Mkp-1-/- mice is, at least in part, mediated by Janus kinase/signal transducer and activator of transcription-driven PD-L1 induction. Our studies also support the notion that enhanced PD-L1 expression contributes to the bactericidal defect of Mkp-1-/- mice.
Collapse
Affiliation(s)
- Timothy J Barley
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Parker R Murphy
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Xiantao Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Bridget A Bowman
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Justin M Mormol
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Carli E Mager
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sean G Kirk
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Charles J Cash
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sarah C Linn
- Combined Anatomic Pathology Residency/Graduate Program, Department of Veterinary Biosciences, The Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA; Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Xiaomei Meng
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Leif D Nelin
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Bernadette Chen
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Jian Zhang
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Yusen Liu
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.
| |
Collapse
|
24
|
BRD4 inhibitor MZ1 exerts anti-cancer effects by targeting MYCN and MAPK signaling in neuroblastoma. Biochem Biophys Res Commun 2022; 604:63-69. [PMID: 35299072 DOI: 10.1016/j.bbrc.2022.03.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/27/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
Neuroblastoma(NB) is a common childhood solid tumor, and most patients in the high-risk group with MYCN gene amplification have a poor prognosis. Inhibition of bromodomain and extra terminal (BET) proteins has shown considerable promise in the investigation of MYCN-driven malignancies in recent years. MZ1 is a novel BET inhibitor that employs proteolytic-targeting chimera (PROTAC) technology for proteasomal degradation of target proteins and has shown excellent effects in some tumors, but its role in neuroblastoma remains poorly understood. Herein, we observed that MZ1 suppressed MYC-amplified NB cell proliferation and normal cell cycle, while simultaneously boosting cell apoptosis. MZ1 also provides a significant therapeutic impact in vivo. Mechanistically, MZ1 exhibits anti-tumor effect in NB cells by suppressing the expression of N-Myc or C-Myc as well as the MAPK signaling pathway. Overall, our data imply that MZ1 might be exploited as a possible therapeutic method for NB therapy.
Collapse
|
25
|
STAMBPL1 promotes breast cancer cell resistance to cisplatin partially by stabilizing MKP-1 expression. Oncogene 2022; 41:2265-2274. [PMID: 35236965 DOI: 10.1038/s41388-022-02252-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 12/09/2022]
Abstract
Dual-specificity mitogen-activated protein kinase phosphatase-1 (MKP-1/DUSP1/CL-100) has been documented to promote breast cancer cell survival and chemoresistance. MKP-1 is an unstable protein that is ubiquitinated and degraded via the ubiquitin-proteasome system. However, it is not clear how MKP-1 protein stability is regulated in breast cancer. In this study, we performed a genome-wide siRNA library screen of deubiquitinases (DUBs) and identified STAMBPL1 as an MKP-1 DUB in breast cancer cells. STAMBPL1 interacts with MKP-1 and stabilizes MKP-1 via deubiquitination. Both STAMBPL1 and MKP-1 depletion sensitize breast cancer cells to cisplatin in vitro and in vivo, and ectopic overexpression of MKP-1 partially rescues STAMBPL1 depletion-induced cisplatin sensitivity. Furthermore, STAMBPL1 and MKP-1 depletion increased breast cancer sensitivity to cisplatin by increasing the phosphorylation and activation of c-Jun N-terminal protein kinase (JNK). Collectively, our findings not only identify STAMBPL1 as an MKP-1 DUB but also reveal a critical mechanism that regulates MKP-1 expression in breast cancer. Our findings indicate that the STAMBPL1/MKP-1 axis represents a potential therapeutic target in breast cancer.
Collapse
|
26
|
Regulation of bFGF-induced effects on rat aortic smooth muscle cells by β3-adrenergic receptors. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100094. [PMID: 35300074 PMCID: PMC8920869 DOI: 10.1016/j.crphar.2022.100094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 01/08/2023] Open
Abstract
Background Basic fibroblast growth factor (bFGF)-mediated vascular smooth muscle cell (VSMC) proliferation and migration play an important role in vascular injury-induced neointima formation and subsequent vascular restenosis, a major event that hinders the long-term success of angioplasty. The function of β3-adrenergic receptors (β3-ARs) in vascular injury-induced neointima formation has not yet been defined. Objectives Our current study explored the possible role of β3-ARs in vascular injury-induced neointima formation by testing its effects on bFGF-induced VSMC migration and proliferation. Methods β3-AR expression in rat carotid arteries was examined at 14 days following a balloon catheter-induced injury. The effects of β3-AR activation on bFGF-induced rat aortic smooth muscle cell proliferation, migration, and signaling transduction (including extracellular-signal-regulated kinase/mitogen activated protein kinase, ERK/MAPK and Protein kinase B, AKT) were tested. Results We found that vascular injury induced upregulation of β3-ARs in neointima. Pretreatment of VSMCs with a selective β3-AR agonist, CL316,243 significantly potentiated bFGF-induced cell migration and proliferation, and ERK and AKT phosphorylation. Our results also revealed that suppressing phosphorylation of ERK and AKT blocked bFGF-induced cell migration and that inhibiting AKT phosphorylation reduced bFGF-mediated cell proliferation. Conclusion Our results suggest that activation of β3-ARs potentiates bFGF-mediated effects on VSMCs by enhancing bFGF-mediated ERK and AKT phosphorylation and that β3-ARs may play a role in vascular injury-induced neointima formation. β3-adrenergic receptor (β3-AR) expression was upregulated in the newly formed intima following rat carotid artery injury. Activation of β3-ARs potentiated bFGF-induced VSMC migration and proliferation and phosphorylation of ERK and/or AKT. Inhibition of ERK or AKT pathways decreased bFGF-induced cell migration. Inhibition of AKT pathway decreased bFGF-induced cell proliferation.
Collapse
|
27
|
Zhong Z, Liu Z, Zheng R, Chai J, Jiang S. miR-132-3p Modulates DUSP9-Dependent p38/JNK Signaling Pathways to Enhance Inflammation in the Amnion Leading to Labor. Int J Mol Sci 2022; 23:ijms23031864. [PMID: 35163786 PMCID: PMC8836965 DOI: 10.3390/ijms23031864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022] Open
Abstract
Labor is a process of inflammation and hormonal changes involving both fetal and maternal compartments. MicroRNA-132-3p (miR-132-3p) has been reported to be involved in the development of inflammation-related diseases. However, little is known about its potential role in labor onset. This study aimed to explore the mechanism of miR-132-3p in amnion for labor initiation. In the mouse amnion membranes, the expression of miR-132-3p was found to increase gradually during late gestation. In human amniotic epithelial cell line (WISH), upregulation of miR-132-3p was found to increase proinflammatory cytokines and cyclooxygenase 2 (COX2) as well as prostaglandin E2 (PGE2), which was suppressed by miR-132-3p inhibitor. Dual-specificity phosphatase 9 (DUSP9) was identified as a novel target gene of miR-132-3p, which could be negatively regulated by miR-132-3p. DUSP9 was present in the mouse amnion epithelial cells, with a decrease in its abundance at 18.5 days post coitum (dpc) relative to 15.5 dpc. Silencing DUSP9 was found to facilitate the expression of proinflammatory cytokines and COX2 as well as PGE2 secretion in WISH cells, which could be attenuated by p38 inhibitor SB203580 or JNK inhibitor SP600125. Additionally, intraperitoneal injection of pregnant mice with miR-132-3p agomir not only caused preterm birth, but also promoted the abundance of COX2 as well as phosphorylated JNK and p38 levels, and decreased DUSP9 level in mouse amnion membranes. Collectively, miR-132-3p might participate in inflammation and PGE2 release via targeting DUSP9-dependent p38 and JNK signaling pathways to cause preterm birth.
Collapse
|
28
|
DUSP-1 Induced by PGE 2 and PGE 1 Attenuates IL-1β-Activated MAPK Signaling, Leading to Suppression of NGF Expression in Human Intervertebral Disc Cells. Int J Mol Sci 2021; 23:ijms23010371. [PMID: 35008797 PMCID: PMC8745672 DOI: 10.3390/ijms23010371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
The molecular mechanism of discogenic low back pain (LBP) involves nonphysiological nerve invasion into a degenerated intervertebral disc (IVD), induced by nerve growth factor (NGF). Selective cyclooxygenase (COX)-2 inhibitors are mainly used in the treatment of LBP, and act by suppressing the inflammatory mediator prostaglandin E2 (PGE2), which is induced by inflammatory stimuli, such as interleukin-1β (IL-1β). However, in our previous in vitro study using cultured human IVD cells, we demonstrated that the induction of NGF by IL-1β is augmented by a selective COX-2 inhibitor, and that PGE2 and PGE1 suppress NGF expression. Therefore, in this study, to elucidate the mechanism of NGF suppression by PGE2 and PGE1, we focused on mitogen-activated protein kinases (MAPKs) and its phosphatase, dual-specificity phosphatase (DUSP)-1. IL-1β-induced NGF expression was altered in human IVD cells by MAPK pathway inhibitors. PGE2 and PGE1 enhanced IL-1β-induced DUSP-1 expression, and suppressed the phosphorylation of MAPKs in human IVD cells. In DUSP-1 knockdown cells established using small interfering RNA, IL-1β-induced phosphorylation of MAPKs was enhanced and prolonged, and NGF expression was significantly enhanced. These results suggest that PGE2 and PGE1 suppress IL-1β-induced NGF expression by suppression of the MAPK signaling pathway, accompanied by increased DUSP-1 expression.
Collapse
|
29
|
Synthesis, functional proteomics and biological evaluation of new 5-pyrazolyl ureas as potential anti-angiogenic compounds. Eur J Med Chem 2021; 226:113872. [PMID: 34600191 DOI: 10.1016/j.ejmech.2021.113872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 11/21/2022]
Abstract
Based on biological results of previous synthesized pyrazolyl ureas able to interfere with angiogenesis process, we planned and synthesized the new benzyl-urea derivatives 2-4; some of them showed an interesting anti-proliferative profile and particularly 4e potently inhibited HUVEC proliferation. To shed light on the mechanism of action of 4e, its interactome has been deeply inspected to identify the most prominent protein partners, mainly taking into account kinome and phosphatome, through drug affinity responsive target stability experiments, followed by targeted limited proteolysis analysis. From these studies, PP1γ emerged as the most reliable 4e potential target in HUVEC. Molecular docking simulations on PP1γ were carried out to predict 4e binding mode. To assess its potential anti-angiogenic effect, 4e was tested in vitro to verify interference on kinase and phosphate activities. Overall, our results evidenced for 4e an interesting anti-angiogenic action, probably due to its action at intracellular level on PP1γ signalling pathways.
Collapse
|
30
|
Kim HS, Kang YH, Lee J, Han SR, Kim DB, Ko H, Park S, Lee MS. Biphasic Regulation of Mitogen-Activated Protein Kinase Phosphatase 3 in Hypoxic Colon Cancer Cells. Mol Cells 2021; 44:710-722. [PMID: 34711689 PMCID: PMC8560588 DOI: 10.14348/molcells.2021.0093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 01/07/2023] Open
Abstract
Hypoxia, or low oxygen tension, is a hallmark of the tumor microenvironment. The hypoxia-inducible factor-1α (HIF-1α) subunit plays a critical role in the adaptive cellular response of hypoxic tumor cells to low oxygen tension by activating gene-expression programs that control cancer cell metabolism, angiogenesis, and therapy resistance. Phosphorylation is involved in the stabilization and regulation of HIF-1α transcriptional activity. HIF-1α is activated by several factors, including the mitogen-activated protein kinase (MAPK) superfamily. MAPK phosphatase 3 (MKP-3) is a cytoplasmic dual-specificity phosphatase specific for extracellular signal-regulated kinase 1/2 (Erk1/2). Recent evidence indicates that hypoxia increases the endogenous levels of both MKP-3 mRNA and protein. However, its role in the response of cells to hypoxia is poorly understood. Herein, we demonstrated that small-interfering RNA (siRNA)-mediated knockdown of MKP-3 enhanced HIF-1α (not HIF-2α) levels. Conversely, MKP-3 overexpression suppressed HIF-1α (not HIF-2α) levels, as well as the expression levels of hypoxia-responsive genes (LDHA, CA9, GLUT-1, and VEGF), in hypoxic colon cancer cells. These findings indicated that MKP-3, induced by HIF-1α in hypoxia, negatively regulates HIF-1α protein levels and hypoxia-responsive genes. However, we also found that long-term hypoxia (>12 h) induced proteasomal degradation of MKP-3 in a lactic acid-dependent manner. Taken together, MKP-3 expression is modulated by the hypoxic conditions prevailing in colon cancer, and plays a role in cellular adaptation to tumor hypoxia and tumor progression. Thus, MKP-3 may serve as a potential therapeutic target for colon cancer treatment.
Collapse
Affiliation(s)
- Hong Seok Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
| | - Yun Hee Kang
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon 34824, Korea
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon 34824, Korea
| | - Jisu Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon 34824, Korea
| | - Seung Ro Han
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon 34824, Korea
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon 34824, Korea
| | - Da Bin Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon 22212, Korea
| | - Haeun Ko
- Medical Course, College of Medicine, Inha University, Incheon 22212, Korea
| | - Seyoun Park
- Medical Course, College of Medicine, Inha University, Incheon 22212, Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon 34824, Korea
| |
Collapse
|
31
|
Duan S, Moro L, Qu R, Simoneschi D, Cho H, Jiang S, Zhao H, Chang Q, de Stanchina E, Arbini AA, Pagano M. Loss of FBXO31-mediated degradation of DUSP6 dysregulates ERK and PI3K-AKT signaling and promotes prostate tumorigenesis. Cell Rep 2021; 37:109870. [PMID: 34686346 PMCID: PMC8577224 DOI: 10.1016/j.celrep.2021.109870] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/12/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023] Open
Abstract
FBXO31 is the substrate receptor of one of many CUL1-RING ubiquitin ligase (CRL1) complexes. Here, we show that low FBXO31 mRNA levels are associated with high pre-operative prostate-specific antigen (PSA) levels and Gleason grade in human prostate cancer. Mechanistically, the ubiquitin ligase CRL1FBXO31 promotes the ubiquitylation-mediated degradation of DUSP6, a dual specificity phosphatase that dephosphorylates and inactivates the extracellular-signal-regulated kinase-1 and -2 (ERK1/2). Depletion of FBXO31 stabilizes DUSP6, suppresses ERK signaling, and activates the PI3K-AKT signaling cascade. Moreover, deletion of FBXO31 promotes tumor development in a mouse orthotopic model of prostate cancer. Treatment with BCI, a small molecule inhibitor of DUSP6, suppresses AKT activation and prevents tumor formation, suggesting that the FBXO31 tumor suppressor activity is dependent on DUSP6. Taken together, our studies highlight the relevance of the FBXO31-DUSP6 axis in the regulation of ERK- and PI3K-AKT-mediated signaling pathways, as well as its therapeutic potential in prostate cancer.
Collapse
Affiliation(s)
- Shanshan Duan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Loredana Moro
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Rui Qu
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Hyunwoo Cho
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Shaowen Jiang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Huiyong Zhao
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Qing Chang
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Elisa de Stanchina
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Arnaldo A Arbini
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Department of Pathology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA.
| |
Collapse
|
32
|
Fan MK, Zhang GC, Chen W, Qi LL, Xie MF, Zhang YY, Wang L, Zhang Q. Siglec-15 Promotes Tumor Progression in Osteosarcoma via DUSP1/MAPK Pathway. Front Oncol 2021; 11:710689. [PMID: 34336699 PMCID: PMC8322944 DOI: 10.3389/fonc.2021.710689] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/01/2021] [Indexed: 12/30/2022] Open
Abstract
Recurrence and metastasis are important features of osteosarcoma (OS) that cause its poor prognosis. Aberrant expression of Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) has been reported in various kinds of cancers. However, the expression and function of Siglec-15 in OS remain unclear. In cultured OS cells (143B cells and MNNG/HOS cells) and their xenograft mouse models, we found that downregulation of Siglec-15 could inhibit the proliferation, migration and invasion of by inducing epithelial-mesenchymal transition (EMT) in vitro and in vivo. Conversely, Siglec-15 overexpression promoted the growth, migration and invasion of OS cells in a significant manner. Then, we screened a number of differentially expressed genes (DEGs) between Siglec-15-knockdown group and control group by RNA-Seq assay. Among these DEGs, we found that dual-specificity phosphatase 1 (DUSP1/MKP1) was significantly downregulated after Siglec-15 silencing. We investigated the DUSP1 functions in influencing OS cells’ biology, and found that the proliferation, migration and invasion of OS cells were promoted by overexpressing DUSP1 and crucially, the proliferation, migration and invasion of Siglec-15-knockdown OS cells were rescued by overexpressing DUSP1. Mechanically, we further showed that DUSP1-mediated inhibition of p38/MAPK and JNK/MAPK expression was attenuated when Siglec-15 expression was inhibited, suggesting that Siglec-15 promotes the malignant progression of OS cells by suppressing DUSP1-mediated suppression of the MAPK pathway. Moreover, we showed that both Siglec-15 and DUSP1 were highly expressed in human OS tissues by immunohistochemistry. High Siglec-15 expression was associated with OS lung metastasis, and high DUSP1 expression was associated with the high Enneking stage. Kaplan–Meier analysis indicated that high expression of Siglec-15 could predict poor prognosis of OS patients. Altogether, these results showed that Siglec-15 expression promoted OS development and progression by activating DUSP1 and might be a novel target in OS treatment.
Collapse
Affiliation(s)
- Meng-Ke Fan
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guo-Chuan Zhang
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li-Li Qi
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, China
| | - Ming-Fang Xie
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yue-Yao Zhang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ling Wang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qi Zhang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
33
|
Li Z, Zhang L, Liu FY, Li P, He J, Kirkwood CL, Sohn J, Chan JM, Magner WJ, Kirkwood KL. MKP-1 is required to limit myeloid-cell mediated oral squamous cell carcinoma progression and regional extension. Oral Oncol 2021; 120:105401. [PMID: 34182221 DOI: 10.1016/j.oraloncology.2021.105401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/07/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) require MAPK phosphatases (MKPs) for deactivation of MAPK intracellular signaling. MKP-1 (encoded by Dusp1) is a key negative regulator of MAPKs and prior reports have indicated that MKP-1 regulates oral cancer-associated inflammation and leukocyte infiltration. OBJECTIVE To determine the significance of myeloid-based expression of MKP-1 in oral cancer. METHODS The Cancer Genome Atlas (TCGA) was used to address DUSP1 expression in oral squamous cell carcinoma (OSCC). Syngeneic and carcinogen-induced mouse models using global and myeloid-specific Dusp-1 deficient mice with immunophenotypic, histologic, and transcriptomic analyses and in vitro migration assays. RESULTS Data from TCGA indicates the DUSP1 expression is inversely related to oral cancer burden and nodal involvement. Using murine models of OSCC, the role of MKP-1 signaling in tumor associated macrophages (TAMs) was assessed. Dusp1-deficient mice had increased tumor burden and TAM infiltrate with increased M2 macrophage polarization. Transcriptomic signatures of TAMs from Dusp1-deficent mice indicated a pro-metastatic phenotype as well as concomitant differences in myeloid-associated genes, cytokine/chemokine signaling, and Notch signaling consistent with tumor progression. In vitro and in vivo assays revealed mouse OSCC cells had a higher migration rate using TAM cell-free supernatant from Dusp1 deficiency mice compared to controls with enhanced regional cervical lymph node metastasis, respectively. To validate TAM studies using implantable mouse models, an OSCC progression model with conditional myeloid-specific Dusp-1 deficient mice demonstrated enhanced OSCC disease progression, characterized by advanced onset, histological stage, and tumor burden. CONCLUSION Myeloid-based Dusp1-deficiency increases OSCC burden and metastasis through alteration in TAM recruitment, gene profile, and polarity suggesting that MKP-1 could be a viable target to reprogram TAM to limit local/regional OSCC extension.
Collapse
Affiliation(s)
- Zhenning Li
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA; Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China; Department of Medical Genetics, China Medical University, Shenyang, China, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Lixia Zhang
- Department of Medical Genetics, China Medical University, Shenyang, China, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Fa-Yu Liu
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA; Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| | - Peng Li
- Department of Medical Genetics, China Medical University, Shenyang, China, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China,; Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - Jing He
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA; Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| | - Cameron L Kirkwood
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - Jiho Sohn
- Department of Medicine, University at Buffalo, Buffalo, NY, USA
| | - Jon M Chan
- Department of Head and Neck/Plastic and Reconstructive Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - William J Magner
- Department of Head and Neck/Plastic and Reconstructive Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Keith L Kirkwood
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA; Department of Head and Neck/Plastic and Reconstructive Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
34
|
Sevillano J, Sánchez-Alonso MG, Pizarro-Delgado J, Ramos-Álvarez MDP. Role of Receptor Protein Tyrosine Phosphatases (RPTPs) in Insulin Signaling and Secretion. Int J Mol Sci 2021; 22:ijms22115812. [PMID: 34071721 PMCID: PMC8198922 DOI: 10.3390/ijms22115812] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/12/2023] Open
Abstract
Changes in lifestyle in developed countries have triggered the prevalence of obesity and type 2 diabetes mellitus (T2DM) in the latest years. Consequently, these metabolic diseases associated to insulin resistance, and the morbidity associated with them, accounts for enormous costs for the health systems. The best way to face this problem is to identify potential therapeutic targets and/or early biomarkers to help in the treatment and in the early detection. In the insulin receptor signaling cascade, the activities of protein tyrosine kinases and phosphatases are coordinated, thus, protein tyrosine kinases amplify the insulin signaling response, whereas phosphatases are required for the regulation of the rate and duration of that response. The focus of this review is to summarize the impact of transmembrane receptor protein tyrosine phosphatase (RPTPs) in the insulin signaling cascade and secretion, and their implication in metabolic diseases such as obesity and T2DM.
Collapse
|
35
|
Kirk SG, Murphy PR, Wang X, Cash CJ, Barley TJ, Bowman BA, Batty AJ, Ackerman WE, Zhang J, Nelin LD, Hafner M, Liu Y. Knockout of MAPK Phosphatase-1 Exaggerates Type I IFN Response during Systemic Escherichia coli Infection. THE JOURNAL OF IMMUNOLOGY 2021; 206:2966-2979. [PMID: 34039638 DOI: 10.4049/jimmunol.2001468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/05/2021] [Indexed: 11/19/2022]
Abstract
We have previously shown that Mkp-1-deficient mice produce elevated TNF-α, IL-6, and IL-10 following systemic Escherichia coli infection, and they exhibited increased mortality, elevated bacterial burden, and profound metabolic alterations. To understand the function of Mkp-1 during bacterial infection, we performed RNA-sequencing analysis to compare the global gene expression between E. coli-infected wild-type and Mkp-1 -/- mice. A large number of IFN-stimulated genes were more robustly expressed in E. coli-infected Mkp-1 -/- mice than in wild-type mice. Multiplex analysis of the serum cytokine levels revealed profound increases in IFN-β, IFN-γ, TNF-α, IL-1α and β, IL-6, IL-10, IL-17A, IL-27, and GMSF levels in E. coli-infected Mkp-1 -/- mice relative to wild-type mice. Administration of a neutralizing Ab against the receptor for type I IFN to Mkp-1 -/- mice prior to E. coli infection augmented mortality and disease severity. Mkp-1 -/- bone marrow-derived macrophages (BMDM) produced higher levels of IFN-β mRNA and protein than did wild-type BMDM upon treatment with LPS, E. coli, polyinosinic:polycytidylic acid, and herring sperm DNA. Augmented IFN-β induction in Mkp-1 -/- BMDM was blocked by a p38 inhibitor but not by an JNK inhibitor. Enhanced Mkp-1 expression abolished IFN-β induction by both LPS and E. coli but had little effect on the IFN-β promoter activity in LPS-stimulated RAW264.7 cells. Mkp-1 deficiency did not have an overt effect on IRF3/7 phosphorylation or IKK activation but modestly enhanced IFN-β mRNA stability in LPS-stimulated BMDM. Our results suggest that Mkp-1 regulates IFN-β production primarily through a p38-mediated mechanism and that IFN-β plays a beneficial role in E. coli-induced sepsis.
Collapse
Affiliation(s)
- Sean G Kirk
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Parker R Murphy
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Xiantao Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Charles J Cash
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Timothy J Barley
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Bridget A Bowman
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Abel J Batty
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - William E Ackerman
- Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, IL
| | - Jian Zhang
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA; and
| | - Leif D Nelin
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Yusen Liu
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH; .,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
| |
Collapse
|
36
|
Xin J, Li C, Ning K, Qin Y, Shang JX, Sun Y. AtPFA-DSP3, an atypical dual-specificity protein tyrosine phosphatase, affects salt stress response by modulating MPK3 and MPK6 activity. PLANT, CELL & ENVIRONMENT 2021; 44:1534-1548. [PMID: 33464564 DOI: 10.1111/pce.14002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Protein phosphorylation, especially serine/threonine and tyrosine phosphorylation, plays significant roles in signalling during plant growth and development as well as plant responses to biotic or abiotic stresses. Dual-specificity protein tyrosine phosphatases dephosphorylate components of these signalling pathways. Here, we report that an atypical dual-specificity protein tyrosine phosphatase, AtPFA-DSP3 (DSP3), negatively affects the response of plants to high-salt conditions. A DSP3 loss-of-function mutant showed reduced sensitivity to salt treatment. DSP3 was primarily localized in nuclei and was degraded during salt treatment. Compared to wild type, the level of ROS was lower in the dsp3 mutant and higher in plants ectopically expressing DSP3, indicating that higher DSP3 level was associated with increased ROS production. DSP3 interacted with and dephosphorylated MPK3 and MPK6. Genetic analyses of a dsp3mpk3 double mutant revealed that DSP3's effect on salt stress depends on MPK3. Moreover, the phosphatase activity of DSP3 was required for its role in salt signalling. These results indicate that DSP3 is a negative regulator of salt responses in Arabidopsis by directly modulating the accumulation of phosphorylated MPK3 and MPK6.
Collapse
Affiliation(s)
- Jing Xin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Chuanling Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Kexin Ning
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yuan Qin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jian-Xiu Shang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yu Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
37
|
Lin CC, Wieteska L, Suen KM, Kalverda AP, Ahmed Z, Ladbury JE. Grb2 binding induces phosphorylation-independent activation of Shp2. Commun Biol 2021; 4:437. [PMID: 33795832 PMCID: PMC8016844 DOI: 10.1038/s42003-021-01969-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/25/2021] [Indexed: 11/12/2022] Open
Abstract
The regulation of phosphatase activity is fundamental to the control of intracellular signalling and in particular the tyrosine kinase-mediated mitogen-activated protein kinase (MAPK) pathway. Shp2 is a ubiquitously expressed protein tyrosine phosphatase and its kinase-induced hyperactivity is associated with many cancer types. In non-stimulated cells we find that binding of the adaptor protein Grb2, in its monomeric state, initiates Shp2 activity independent of phosphatase phosphorylation. Grb2 forms a bidentate interaction with both the N-terminal SH2 and the catalytic domains of Shp2, releasing the phosphatase from its auto-inhibited conformation. Grb2 typically exists as a dimer in the cytoplasm. However, its monomeric state prevails under basal conditions when it is expressed at low concentration, or when it is constitutively phosphorylated on a specific tyrosine residue (Y160). Thus, Grb2 can activate Shp2 and downstream signal transduction, in the absence of extracellular growth factor stimulation or kinase-activating mutations, in response to defined cellular conditions. Therefore, direct binding of Grb2 activates Shp2 phosphatase in the absence of receptor tyrosine kinase up-regulation.
Collapse
Affiliation(s)
- Chi-Chuan Lin
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| | - Lukasz Wieteska
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Kin Man Suen
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Arnout P Kalverda
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Zamal Ahmed
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John E Ladbury
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
38
|
Tadjalli A, Seven YB, Perim RR, Mitchell GS. Systemic inflammation suppresses spinal respiratory motor plasticity via mechanisms that require serine/threonine protein phosphatase activity. J Neuroinflammation 2021; 18:28. [PMID: 33468163 PMCID: PMC7816383 DOI: 10.1186/s12974-021-02074-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/05/2021] [Indexed: 01/05/2023] Open
Abstract
Background Inflammation undermines multiple forms of neuroplasticity. Although inflammation and its influence on plasticity in multiple neural systems has been extensively studied, its effects on plasticity of neural networks controlling vital life functions, such as breathing, are less understood. In this study, we investigated the signaling mechanisms whereby lipopolysaccharide (LPS)-induced systemic inflammation impairs plasticity within the phrenic motor system—a major spinal respiratory motor pool that drives contractions of the diaphragm muscle. Here, we tested the hypotheses that lipopolysaccharide-induced systemic inflammation (1) blocks phrenic motor plasticity by a mechanism that requires cervical spinal okadaic acid-sensitive serine/threonine protein phosphatase (PP) 1/2A activity and (2) prevents phosphorylation/activation of extracellular signal-regulated kinase 1/2 mitogen activated protein kinase (ERK1/2 MAPK)—a key enzyme necessary for the expression of phrenic motor plasticity. Methods To study phrenic motor plasticity, we utilized a well-characterized model for spinal respiratory plasticity called phrenic long-term facilitation (pLTF). pLTF is characterized by a long-lasting, progressive enhancement of inspiratory phrenic nerve motor drive following exposures to moderate acute intermittent hypoxia (mAIH). In anesthetized, vagotomized and mechanically ventilated adult Sprague Dawley rats, we examined the effect of inhibiting cervical spinal serine/threonine PP 1/2A activity on pLTF expression in sham-vehicle and LPS-treated rats. Using immunofluorescence optical density analysis, we compared mAIH-induced phosphorylation/activation of ERK 1/2 MAPK with and without LPS-induced inflammation in identified phrenic motor neurons. Results We confirmed that mAIH-induced pLTF is abolished 24 h following low-dose systemic LPS (100 μg/kg, i.p.). Cervical spinal delivery of the PP 1/2A inhibitor, okadaic acid, restored pLTF in LPS-treated rats. LPS also prevented mAIH-induced enhancement in phrenic motor neuron ERK1/2 MAPK phosphorylation. Thus, a likely target for the relevant okadaic acid-sensitive protein phosphatases is ERK1/2 MAPK or its upstream activators. Conclusions This study increases our understanding of fundamental mechanisms whereby inflammation disrupts neuroplasticity in a critical population of motor neurons necessary for breathing, and highlights key roles for serine/threonine protein phosphatases and ERK1/2 MAPK kinase in the plasticity of mammalian spinal respiratory motor circuits.
Collapse
Affiliation(s)
- Arash Tadjalli
- Breathing Research and Therapeutics Center, Department of Physical Therapy and The McKnight Brain Institute, College of Public Health & Health Professions, University of Florida, 1225 Center Drive, PO Box 100154, Gainesville, FL, 32610, USA
| | - Yasin B Seven
- Breathing Research and Therapeutics Center, Department of Physical Therapy and The McKnight Brain Institute, College of Public Health & Health Professions, University of Florida, 1225 Center Drive, PO Box 100154, Gainesville, FL, 32610, USA
| | - Raphael R Perim
- Breathing Research and Therapeutics Center, Department of Physical Therapy and The McKnight Brain Institute, College of Public Health & Health Professions, University of Florida, 1225 Center Drive, PO Box 100154, Gainesville, FL, 32610, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and The McKnight Brain Institute, College of Public Health & Health Professions, University of Florida, 1225 Center Drive, PO Box 100154, Gainesville, FL, 32610, USA.
| |
Collapse
|
39
|
Upregulation of DUSP6 impairs infectious bronchitis virus replication by negatively regulating ERK pathway and promoting apoptosis. Vet Res 2021; 52:7. [PMID: 33431056 PMCID: PMC7798014 DOI: 10.1186/s13567-020-00866-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/02/2020] [Indexed: 11/10/2022] Open
Abstract
Elucidating virus-cell interactions is fundamental to understanding viral replication and identifying targets for therapeutic control of viral infection. The extracellular signal-regulated kinase (ERK) pathway has been shown to regulate pathogenesis during many viral infections, but its role during coronavirus infection is undetermined. Infectious bronchitis virus is the representative strain of Gammacoronavirus, which causes acute and highly contagious diseases in the poultry farm. In this study, we investigated the role of ERK1/2 signaling pathway in IBV infection. We found that IBV infection activated ERK1/2 signaling and the up-regulation of phosphatase DUSP6 formed a negative regulation loop. Pharmacological inhibition of MEK1/2-ERK1/2 signaling suppressed the expression of DUSP6, promoted cell death, and restricted virus replication. In contrast, suppression of DUSP6 by chemical inhibitor or siRNA increased the phosphorylation of ERK1/2, protected cells from apoptosis, and facilitated IBV replication. Overexpression of DUSP6 decreased the level of phospho-ERK1/2, promoted apoptosis, while dominant negative mutant DUSP6-DN lost the regulation function on ERK1/2 signaling and apoptosis. In conclusion, these data suggest that MEK-ERK1/2 signaling pathway facilitates IBV infection, probably by promoting cell survival; meanwhile, induction of DUSP6 forms a negative regulation loop to restrict ERK1/2 signaling, correlated with increased apoptosis and reduced viral load. Consequently, components of the ERK pathway, such as MEK1/2 and DUSP6, represent excellent targets for the development of antiviral drugs.
Collapse
|
40
|
Das D, Baruah IK, Panda D, Paswan RR, Acharjee S, Sarmah BK. Bruchid beetle ovipositioning mediated defense responses in black gram pods. BMC PLANT BIOLOGY 2021; 21:38. [PMID: 33430784 PMCID: PMC7802178 DOI: 10.1186/s12870-020-02796-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/14/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Black gram [Vigna mungo (L)] seeds are a rich source of digestible protein and dietary fibre, both for human and animal consumption. However, the quality and quantity of the Vigna seeds are severely affected by bruchid beetles during storage. Therefore, analyses of the expression of the bruchid induced transcript dynamics in black gram pods would be helpful to understand the underlying defense mechanism against bruchid oviposition. RESULTS We used the RNAseq approach to survey the changes in transcript profile in the developing seeds of a moderately resistant cultivar IC-8219 against bruchid oviposition using a susceptible cultivar T-9 as a control. A total of 96,084,600 and 99,532,488 clean reads were generated from eight (4 each) samples of IC-8219 and T-9 cultivar, respectively. Based on the BLASTX search against the NR database, 32,584 CDSs were generated of which 31,817 CDSs were significantly similar to Vigna radiata, a close relative of Vigna mungo. The IC-8219 cultivar had 630 significantly differentially expressed genes (DEGs) of which 304 and 326 genes up and down-regulated, respectively. However, in the T-9 cultivar, only 168 DEGs were identified of which 142 and 26 genes up and down-regulated, respectively. The expression analyses of 10 DEGs by qPCR confirmed the accuracy of the RNA-Seq data. Gene Ontology and KEGG pathway analyses helped us to better understand the role of these DEGs in oviposition mediated defense response of black gram. In both the cultivars, the most significant transcriptomic changes in response to the oviposition were related to the induction of defense response genes, transcription factors, secondary metabolites, enzyme inhibitors, and signal transduction pathways. It appears that the bruchid ovipositioning mediated defense response in black gram is induced by SA signaling pathways and defense genes such as defensin, genes for secondary metabolites, and enzyme inhibitors could be potential candidates for resistance to bruchids. CONCLUSION We generated a transcript profile of immature black gram pods upon bruchid ovipositioning by de novo assembly and studied the underlying defense mechanism of a moderately resistant cultivar.
Collapse
Affiliation(s)
- Debajit Das
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Indrani K Baruah
- Office of the ICAR-National Professor (Norman Borlaug Chair) and DBT-AAU Centre, Assam Agricultural University, Jorhat, 785013, India
| | - Debashis Panda
- Distributed Information Centre, Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Ricky Raj Paswan
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Sumita Acharjee
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India.
- Office of the ICAR-National Professor (Norman Borlaug Chair) and DBT-AAU Centre, Assam Agricultural University, Jorhat, 785013, India.
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India.
- Office of the ICAR-National Professor (Norman Borlaug Chair) and DBT-AAU Centre, Assam Agricultural University, Jorhat, 785013, India.
| |
Collapse
|
41
|
Zobeiri M, Momtaz S, Parvizi F, Tewari D, Farzaei MH, Nabavi SM. Targeting Mitogen-Activated Protein Kinases by Natural Products: A Novel Therapeutic Approach for Inflammatory Bowel Diseases. Curr Pharm Biotechnol 2020; 21:1342-1353. [PMID: 31840607 DOI: 10.2174/1389201021666191216122555] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/01/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022]
Abstract
An increase in the prevalence of Inflammatory Bowel Diseases (IBD) as a multifactorial intestinal chronic inflammation as well as the absence of a certain cure, has created an innovative era in the management of IBD by molecule/pathway-based anti-inflammatory approaches. There are credible documentations that demonstrate Mitogen-Activated Protein Kinases (MAPK) acts as IBD regulator. Upon the activation of MAPK signalling pathway, the transcription and expression of various encoding inflammatory molecules implicated in IBD are altered, thereby exacerbating the inflammation development. The current pharmacological management of IBD, including drug and biological therapies are expensive, possess temporary relief and some adverse effects. In this context, a variety of dietary fruits or medicinal herbs have received worldwide attention versus the development of IBD. Infact, natural ingredients, such as Flavaglines, Fisetin, Myricitrin, Cardamonin, Curcumin, Octacosanol and Mangiferin possess protective and therapeutic effects against IBD via modulation of different segments of MAPK signaling pathway. This review paper calls attention to the role of MAPK signaling triggered by natural products in the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Mehdi Zobeiri
- Internal Medicine Department, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran,Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Parvizi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Devesh Tewari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144 411, India
| | - Mohammad H Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Esteban-Villarrubia J, Soto-Castillo JJ, Pozas J, San Román-Gil M, Orejana-Martín I, Torres-Jiménez J, Carrato A, Alonso-Gordoa T, Molina-Cerrillo J. Tyrosine Kinase Receptors in Oncology. Int J Mol Sci 2020; 21:E8529. [PMID: 33198314 PMCID: PMC7696731 DOI: 10.3390/ijms21228529] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Tyrosine kinase receptors (TKR) comprise more than 60 molecules that play an essential role in the molecular pathways, leading to cell survival and differentiation. Consequently, genetic alterations of TKRs may lead to tumorigenesis and, therefore, cancer development. The discovery and improvement of tyrosine kinase inhibitors (TKI) against TKRs have entailed an important step in the knowledge-expansion of tumor physiopathology as well as an improvement in the cancer treatment based on molecular alterations over many tumor types. The purpose of this review is to provide a comprehensive review of the different families of TKRs and their role in the expansion of tumor cells and how TKIs can stop these pathways to tumorigenesis, in combination or not with other therapies. The increasing growth of this landscape is driving us to strengthen the development of precision oncology with clinical trials based on molecular-based therapy over a histology-based one, with promising preliminary results.
Collapse
Affiliation(s)
- Jorge Esteban-Villarrubia
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Juan José Soto-Castillo
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Javier Pozas
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - María San Román-Gil
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Inmaculada Orejana-Martín
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Javier Torres-Jiménez
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Alfredo Carrato
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (A.C.); (J.M.-C.)
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (A.C.); (J.M.-C.)
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (A.C.); (J.M.-C.)
| |
Collapse
|
43
|
Qiu Z, Liang N, Huang Q, Sun T, Xue H, Xie T, Wang X, Wang Q. Downregulation of DUSP9 Promotes Tumor Progression and Contributes to Poor Prognosis in Human Colorectal Cancer. Front Oncol 2020; 10:547011. [PMID: 33072575 PMCID: PMC7538709 DOI: 10.3389/fonc.2020.547011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/28/2020] [Indexed: 12/29/2022] Open
Abstract
Background Dual-specificity phosphatase 9 (DUSP9) belongs to the dual-specificity protein phosphatase subfamily. Recently, increasing attention has been paid on the role of DUSP9 in a variety of cancers. However, its functional role in tumor development is still unclear, especially in colorectal cancer (CRC). Methods The functional role of DUSP9 in inhibiting the progression of CRC was verified using colony formation assay, wound healing assay, nude mice xenograft model, etc. RNA-seq was performed to assess the gene expression profiling in SW480 cells with DUSP9 stable knockdown and shControl cells. Bisulfite sequencing (BSE) was performed to reveal the methylation status of CpG island in the promoter of DUSP9. Results DUSP9 was significantly downregulated in tumor tissues compared with peritumor tissues. Mechanistically, the high methylation status of CpG island in the promoter of DUSP9 may lead to the downregulation of DUSP9 in CRC. Clinically, low DUSP9 expression in CRC was closely associated with depth of invasion, metastasis (TNM) stage, and poor survival, indicating that DUSP9 may be involved in the progression of CRC. Functional study revealed that DUSP9 inhibited proliferation, migration, invasion, and epithelial–mesenchymal transition of CRC cells both in vitro and in vivo. Transcriptome profiling studies revealed that Erk signaling was involved in the tumor progression mediated by DUSP9 silencing, which is confirmed by cell experiments and clinical tissue sample staining analysis. Conclusion Our findings demonstrate that DUSP9 plays a critical role in the progression of CRC, and therapeutic intervention to increase the expression or activity of DUSP9 may be a potential target for CRC treatment in the future.
Collapse
Affiliation(s)
- Zhaoyan Qiu
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Ning Liang
- Department of General Surgery, The 75th Group Army Hospital, Dali, China
| | - Qian Huang
- Department of Obstetrics and Gynecology, The 75th Group Army Hospital, Dali, China
| | - Tao Sun
- Departmentof Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Hongyuan Xue
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianyu Xie
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xinxin Wang
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Qian Wang
- Department of Anorectal Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
44
|
Krishna Y, Acha-Sagredo A, Sabat-Pośpiech D, Kipling N, Clarke K, Figueiredo CR, Kalirai H, Coupland SE. Transcriptome Profiling Reveals New Insights into the Immune Microenvironment and Upregulation of Novel Biomarkers in Metastatic Uveal Melanoma. Cancers (Basel) 2020; 12:cancers12102832. [PMID: 33008022 PMCID: PMC7650807 DOI: 10.3390/cancers12102832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/17/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Uveal melanoma (UM) is a rare aggressive eye cancer. Although treatment of the eye tumour is successful, about 50% of UM patients develop a relapse of their cancer in the liver. At present, such advanced disease is not curable. A better understanding of the metastatic UM (mUM) in the liver is essential to improve patient survival. This study examines both the response of immune cells within the liver to the UM secondaries (metastases), as well as the expression of various proteins by the UM cells. Our study demonstrates that there is a limited immune response to the mUM, but reveals that a certain type of reactive immune cell: a protumourigenic subset of macrophage is dominant within the mUM. Our research also reveals novel proteins within the mUM, which are specific to these cells and therefore may be targetable in future therapies. Abstract Metastatic uveal melanoma (mUM) to the liver is incurable. Transcriptome profiling of 40 formalin-fixed paraffin-embedded mUM liver resections and 6 control liver specimens was undertaken. mUMs were assessed for morphology, nuclear BAP1 (nBAP1) expression, and their tumour microenvironments (TME) using an “immunoscore” (absent/altered/high) for tumour-infiltrating lymphocytes (TILs) and macrophages (TAMs). Transcriptomes were compared between mUM and control liver; intersegmental and intratumoural analyses were also undertaken. Most mUM were epithelioid cell-type (75%), amelanotic (55%), and nBAP1-ve (70%). They had intermediate (68%) or absent (15%) immunoscores for TILs and intermediate (53%) or high (45%) immunoscores for TAMs. M2-TAMs were dominant in the mUM-TME, with upregulated expression of ANXA1, CD74, CXCR4, MIF, STAT3, PLA2G6, and TGFB1. Compared to control liver, mUM showed significant (p < 0.01) upregulation of 10 genes: DUSP4, PRAME, CD44, IRF4/MUM1, BCL2, CD146/MCAM/MUC18, IGF1R, PNMA1, MFGE8/lactadherin, and LGALS3/Galectin-3. Protein expression of DUSP4, CD44, IRF4, BCL-2, CD146, and IGF1R was validated in all mUMs, whereas protein expression of PRAME was validated in 10% cases; LGALS3 stained TAMs, and MFGEF8 highlighted bile ducts only. Intersegmental mUMs show differing transcriptomes, whereas those within a single mUM were similar. Our results show that M2-TAMs dominate mUM-TME with upregulation of genes contributing to immunosuppression. mUM significantly overexpress genes with targetable signalling pathways, and yet these may differ between intersegmental lesions.
Collapse
Affiliation(s)
- Yamini Krishna
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Duncan Building, Daulby Street, Liverpool L69 3GA, UK;
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
| | - Amelia Acha-Sagredo
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
| | - Dorota Sabat-Pośpiech
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
| | - Natalie Kipling
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
| | - Kim Clarke
- Computational Biology Facility, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - Carlos R. Figueiredo
- MediCity Research Laboratory and Institute of Biomedicine, University of Turku, Turun yliopisto, FI-20014 Turku, Finland;
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
| | - Sarah E. Coupland
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Duncan Building, Daulby Street, Liverpool L69 3GA, UK;
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
- Correspondence: ; Tel.: +44-151-794-9104
| |
Collapse
|
45
|
Sousa-Lopes A, de Freitas RA, Carneiro FS, Nunes KP, Allahdadi KJ, Webb RC, Tostes RDC, Giachini FR, Lima VV. Angiotensin (1-7) Inhibits Ang II-mediated ERK1/2 Activation by Stimulating MKP-1 Activation in Vascular Smooth Muscle Cells. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2020; 9:50-61. [PMID: 32832484 PMCID: PMC7422848 DOI: 10.22088/ijmcm.bums.9.1.50] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The renin–angiotensin system (RAS) exerts profound physiological effects on blood pressure regulation and fluid homeostasis, mainly by modulating renal, cardiovascular, and central nervous systems. Angiotensin (Ang)-(1-7), an end-product of RAS, is recognized by its cardiovascular protective properties through stimulation of the Mas receptor, including vasodilation, anti-inflammatory, and antihypertensive actions, and consequently, counter-regulating the well-known Ang II-elicited actions. The overall hypothesis of this study is that Ang-(1-7) inhibits Ang II-induced ERK1/2 activation in vascular smooth muscle cells (VSMCs), via regulation of mitogen-activated protein phosphatase-1 (MKP-1) activity. Aortas from male Wistar rats were incubated with Ang-(1-7) or vehicle. Concentration-response curves to Ang II were performed in endothelium-denuded aortas, in the presence or absence of ERK1/2 (PD98059) inhibitor or Mas receptor (A-779) antagonist. Expression of proteins was assessed by western blot, and immunohistochemistry was conducted in VSMCs. Ang-(1-7) incubation decreased Ang II-induced contractile response in aortas, and this effect was not observed in the presence of PD98059 or A-779. Stimulation of VSMCs with Ang-(1-7) prevented Ang II-induced ERK1/2 phosphorylation, but not C-Raf-activation. Furthermore, Ang II decreased MKP-1 phosphorylation in VSMCs. Interestingly, simultaneous incubation of Ang-(1-7) with Ang II favored MKP-1 phosphorylation, negatively modulating ERK1/2 activation in VSMCs. The results suggest that Ang-(1-7) counter-regulates actions evoked by Ang II overproduction, as observed in cardiovascular diseases, mainly by modulating MKP-1 activity. This evidence suggests that the role of Ang-(1-7) in MKP-1-regulation represents a target for new therapeutic development.
Collapse
Affiliation(s)
- Alejandra Sousa-Lopes
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Raiany Alves de Freitas
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Fernando Silva Carneiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Kenia Pedrosa Nunes
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, United States
| | | | | | - Rita de Cassia Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fernanda Regina Giachini
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Victor Vitorino Lima
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| |
Collapse
|
46
|
DUSP5 (dual-specificity protein phosphatase 5) suppresses BCG-induced autophagy via ERK 1/2 signaling pathway. Mol Immunol 2020; 126:101-109. [PMID: 32795663 DOI: 10.1016/j.molimm.2020.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022]
Abstract
Autophagy is considered as an effective strategy for host cells to eliminate intracellular Mycobacterium tuberculosis (Mtb). Dual-specificity phosphatase 5 (DUSP5) is an endogenous phosphatase of ERK1/2, and plays an important role in host innate immune responses, its function in autophagy regulation however remains unexplored. In the present study, the function of DUSP5 in autophagy in Mycobacterium bovis Bacillus Calmette-Guerin (BCG)-infected RAW264.7 cells, a murine macrophage-like cell line, was examined by assessing the alteration of the cell morphology, expression of autophagy markers, and ERK1/2 signaling activation. The results demonstrated that the BCG infection could induce DUSP5 expression and activate ERK1/2 signaling in RAW264.7 cells; an activation of ERK1/2 signaling contributed to autophagic process in RAW264.7 cells. Moreover, DUSP5 knockdown increased the expression of autophagy-related proteins (Atgs), including LC3-II, Beclin1, Atg5 and Atg7. However, an overexpression of DUSP5 exhibited an opposite effect. Mechanistically, DUSP5 could inhibit the formation of autophagosome by suppressing the phosphorylation of signaling molecules in ERK1/2 signaling cascade. This study thus demonstrated a novel role of DUSP5 in modulating autophagy inRAW264.7 cells in response to BCG infection in particular, and autophagy macrophage to Mtb in general.
Collapse
|
47
|
Bai Z, Zhang J, Ning X, Guo H, Xu X, Huang X, Wang Y, Hu Z, Lu C, Zhang L, Chi W. A Kinase-Phosphatase-Transcription Factor Module Regulates Adventitious Root Emergence in Arabidopsis Root-Hypocotyl Junctions. MOLECULAR PLANT 2020; 13:1162-1177. [PMID: 32534220 DOI: 10.1016/j.molp.2020.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/05/2019] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Adventitious roots form from non-root tissues as part of normal development or in response to stress or wounding. The root primordia form in the source tissue, and during emergence the adventitious roots penetrate the inner cell layers and the epidermis; however, the mechanisms underlying this emergence remain largely unexplored. Here, we report that a regulatory module composed of the AP2/ERF transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4), the MAP kinases MPK3 and MPK6, and the phosphatase PP2C12 plays an important role in the emergence of junction adventitious roots (J-ARs) from the root-hypocotyl junctions in Arabidopsis thaliana. ABI4 negatively regulates J-AR emergence, preventing the accumulation of reactive oxygen species and death of epidermal cells, which would otherwise facilitate J-AR emergence. Phosphorylation by MPK3/MPK6 activates ABI4 and dephosphorylation by PP2C12 inactivates ABI4. MPK3/MPK6 also directly phosphorylate and inactivate PP2C12 during J-AR emergence. We propose that this "double-check" mechanism increases the robustness of MAP kinase signaling and finely regulates the local programmed cell death required for J-AR emergence.
Collapse
Affiliation(s)
- Zechen Bai
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Ning
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailong Guo
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China
| | - Xiumei Xu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
48
|
Bheri M, Mahiwal S, Sanyal SK, Pandey GK. Plant protein phosphatases: What do we know about their mechanism of action? FEBS J 2020; 288:756-785. [PMID: 32542989 DOI: 10.1111/febs.15454] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022]
Abstract
Protein phosphorylation is a major reversible post-translational modification. Protein phosphatases function as 'critical regulators' in signaling networks through dephosphorylation of proteins, which have been phosphorylated by protein kinases. A large understanding of their working has been sourced from animal systems rather than the plant or the prokaryotic systems. The eukaryotic protein phosphatases include phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine(Ser)/threonine(Thr)-specific phosphatases (STPs), while PTP family is Tyr specific. Dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. PTPs lack sequence homology with STPs, indicating a difference in catalytic mechanisms, while the PPP and PPM families share a similar structural fold indicating a common catalytic mechanism. The catalytic cysteine (Cys) residue in the conserved HCX5 R active site motif of the PTPs acts as a nucleophile during hydrolysis. The PPP members require metal ions, which coordinate the phosphate group of the substrate, followed by a nucleophilic attack by a water molecule and hydrolysis. The variable holoenzyme assembly of protein phosphatase(s) and the overlap with other post-translational modifications like acetylation and ubiquitination add to their complexity. Though their functional characterization is extensively reported in plants, the mechanistic nature of their action is still being explored by researchers. In this review, we exclusively overview the plant protein phosphatases with an emphasis on their mechanistic action as well as structural characteristics.
Collapse
Affiliation(s)
- Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
49
|
Ramachandran A, Jaeschke H. A mitochondrial journey through acetaminophen hepatotoxicity. Food Chem Toxicol 2020; 140:111282. [PMID: 32209353 PMCID: PMC7254872 DOI: 10.1016/j.fct.2020.111282] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022]
Abstract
Acetaminophen (APAP) overdose is the leading cause of acute liver failure in the United States and APAP-induced hepatotoxicity is initiated by formation of a reactive metabolite which depletes hepatic glutathione and forms protein adducts. Studies over the years have established the critical role of c-Jun N terminal kinase (JNK) and its mitochondrial translocation, as well as mitochondrial oxidant stress and subsequent induction of the mitochondrial permeability transition in APAP pathophysiology. However, it is now evident that mitochondrial responses to APAP overdose are more nuanced than appreciated earlier, with multiple levels of control, for example, to dose of APAP. In addition, mitochondrial dynamics, as well as the organelle's importance in recovery and regeneration after APAP-induced liver injury is also being recognized, which are exciting new areas with significant therapeutic potential. Thus, this review examines the temporal course of hepatocyte mitochondrial responses to an APAP overdose with an emphasis on mechanistic response to various trigger checkpoints such as NAPQI-mitochondrial protein adduct formation and activated JNK translocation. Mitochondrial dynamics, the organelle's role in recovery after APAP and emerging areas of research which promise to provide further insight into modulation of APAP pathophysiology by these fascinating organelles will also be discussed.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology, and Therapeutic, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology, and Therapeutic, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
50
|
Zhang Y, Fu Y, Wang Q, Liu X, Li Q, Chen J. Transcriptome analysis reveals rapid defence responses in wheat induced by phytotoxic aphid Schizaphis graminum feeding. BMC Genomics 2020; 21:339. [PMID: 32366323 PMCID: PMC7199342 DOI: 10.1186/s12864-020-6743-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/20/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Schizaphis graminum is one of the most important and devastating cereal aphids worldwide, and its feeding can cause chlorosis and necrosis in wheat. However, little information is available on the wheat defence responses triggered by S. graminum feeding at the molecular level. RESULTS Here, we collected and analysed transcriptome sequencing data from leaf tissues of wheat infested with S. graminum at 2, 6, 12, 24 and 48 hpi (hours post infestation). A total of 44,835 genes were either up- or downregulated and differed significantly in response to aphid feeding. The expression levels of a number of genes (9761 genes) were significantly altered within 2 hpi and continued to change during the entire 48 h experiment. Gene Ontology analysis showed that the downregulated DEGs were mainly enriched in photosynthesis and light harvesting, and the total chlorophyll content in wheat leaves was also significantly reduced after S. graminum infestation at 24 and 48 hpi. However, a number of related genes of the salicylic acid (SA)-mediated defence signalling pathway and MAPK-WRKY pathway were significantly upregulated at early feeding time points (2 and 6 hpi). In addition, the gene expression and activity of antioxidant enzymes, such as peroxidase and superoxide dismutase, were rapidly increased at 2, 6 and 12 hpi. DAB staining results showed that S. graminum feeding induced hydrogen peroxide (H2O2) accumulation at the feeding sites at 2 hpi, and increased H2O2 production was detected with the increases in aphid feeding time. Pretreatment with diphenylene iodonium, an NADPH oxidase inhibitor, repressed the H2O2 accumulation and expression levels of SA-associated defence genes in wheat. CONCLUSIONS Our transcriptomic analysis revealed that defence-related pathways and oxidative stress in wheat were rapidly induced within hours after the initiation of aphid feeding. Additionally, NADPH oxidase plays an important role in aphid-induced defence responses and H2O2 accumulation in wheat. These results provide valuable insight into the dynamic transcriptomic responses of wheat leaves to phytotoxic aphid feeding and the molecular mechanisms of aphid-plant interactions.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Yu Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Xiaobei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Qian Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| |
Collapse
|