1
|
Moccia M, Antonacci A, Saviano M, Caratelli V, Arduini F, Scognamiglio V. Emerging technologies in the design of peptide nucleic acids (PNAs) based biosensors. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
2
|
|
3
|
Chou WC, Hu WP, Yang YS, Chan HWH, Chen WY. Neutralized chimeric DNA probe for the improvement of GC-rich RNA detection specificity on the nanowire field-effect transistor. Sci Rep 2019; 9:11056. [PMID: 31363139 PMCID: PMC6667443 DOI: 10.1038/s41598-019-47522-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022] Open
Abstract
Silicon nanowire (SiNW) field-effect transistors (FETs) is a powerful tool in genetic molecule analysis because of their high sensitivity, short detection time, and label-free detection. In nucleic acid detection, GC-rich nucleic acid sequences form self- and cross-dimers and stem-loop structures, which can easily obtain data containing signals from nonspecific DNA binding. The features of GC-rich nucleic acid sequences cause inaccuracies in nucleic acid detection and hinder the development of precision medicine. To improve the inaccurate detection results, we used phosphate-methylated (neutral) nucleotides to synthesize the neutralized chimeric DNA oligomer probe. The probe fragment originated from a primer for the detection of hepatitis C virus (HCV) genotype 3b, and single-mismatched and perfect-matched targets were designed for single nucleotide polymorphisms (SNP) detection on the SiNW FET device. Experimental results revealed that the HCV-3b chimeric neutralized DNA (nDNA) probe exhibited better performance for SNP discrimination in 10 mM bis-tris propane buffer at 25 °C than a regular DNA probe. The SNP discrimination of the nDNA probe could be further improved at 40 °C on the FET device. Consequently, the neutralized chimeric DNA probe could successfully distinguish SNP in the detection of GC-rich target sequences under optimal operating conditions on the SiNW FET device.
Collapse
Affiliation(s)
- Wei-Cheng Chou
- Department of Chemical and Materials Engineering, National Central University, Jhong-Li, 32001, Taiwan
| | - Wen-Pin Hu
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan
| | - Yuh-Shyong Yang
- Institute of Biological Science and Technology, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Hardy Wai-Hong Chan
- Helios Bioelectronics, Inc. 3F., No. 2, Sec. 2, Shengyi Rd., Zhubei City, Hsinchu County, 302, Taiwan
| | - Wen-Yih Chen
- Department of Chemical and Materials Engineering, National Central University, Jhong-Li, 32001, Taiwan.
| |
Collapse
|
4
|
Saadati A, Hassanpour S, Guardia MDL, Mosafer J, Hashemzaei M, Mokhtarzadeh A, Baradaran B. Recent advances on application of peptide nucleic acids as a bioreceptor in biosensors development. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Yu T, Wei Q. Plasmonic molecular assays: Recent advances and applications for mobile health. NANO RESEARCH 2018; 11:5439-5473. [PMID: 32218913 PMCID: PMC7091255 DOI: 10.1007/s12274-018-2094-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 05/15/2023]
Abstract
Plasmonics-based biosensing assays have been extensively employed for biomedical applications. Significant advancements in use of plasmonic assays for the construction of point-of-care (POC) diagnostic methods have been made to provide effective and urgent health care of patients, especially in resourcelimited settings. This rapidly progressive research area, centered on the unique surface plasmon resonance (SPR) properties of metallic nanostructures with exceptional absorption and scattering abilities, has greatly facilitated the development of cost-effective, sensitive, and rapid strategies for disease diagnostics and improving patient healthcare in both developed and developing worlds. This review highlights the recent advances and applications of plasmonic technologies for highly sensitive protein and nucleic acid biomarker detection. In particular, we focus on the implementation and penetration of various plasmonic technologies in conventional molecular diagnostic assays, and discuss how such modification has resulted in simpler, faster, and more sensitive alternatives that are suited for point-of-use. Finally, integration of plasmonic molecular assays with various portable POC platforms for mobile health applications are highlighted.
Collapse
Affiliation(s)
- Tao Yu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Campus Box 7905, Raleigh, NC 27695 USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Campus Box 7905, Raleigh, NC 27695 USA
| |
Collapse
|
6
|
Kamle M, Kumar P, Patra JK, Bajpai VK. Current perspectives on genetically modified crops and detection methods. 3 Biotech 2017; 7:219. [PMID: 28674844 PMCID: PMC5495694 DOI: 10.1007/s13205-017-0809-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/02/2017] [Indexed: 01/31/2023] Open
Abstract
Genetically modified (GM) crops are the fastest adopted commodities in the agribiotech industry. This market penetration should provide a sustainable basis for ensuring food supply for growing global populations. The successful completion of two decades of commercial GM crop production (1996-2015) is underscored by the increasing rate of adoption of genetic engineering technology by farmers worldwide. With the advent of introduction of multiple traits stacked together in GM crops for combined herbicide tolerance, insect resistance, drought tolerance or disease resistance, the requirement of reliable and sensitive detection methods for tracing and labeling genetically modified organisms in the food/feed chain has become increasingly important. In addition, several countries have established threshold levels for GM content which trigger legally binding labeling schemes. The labeling of GM crops is mandatory in many countries (such as China, EU, Russia, Australia, New Zealand, Brazil, Israel, Saudi Arabia, Korea, Chile, Philippines, Indonesia, Thailand), whereas in Canada, Hong Kong, USA, South Africa, and Argentina voluntary labeling schemes operate. The rapid adoption of GM crops has increased controversies, and mitigating these issues pertaining to the implementation of effective regulatory measures for the detection of GM crops is essential. DNA-based detection methods have been successfully employed, while the whole genome sequencing using next-generation sequencing (NGS) technologies provides an advanced means for detecting genetically modified organisms and foods/feeds in GM crops. This review article describes the current status of GM crop commercialization and discusses the benefits and shortcomings of common and advanced detection systems for GMs in foods and animal feeds.
Collapse
Affiliation(s)
- Madhu Kamle
- Department of Forestry, North Eastern Regional Institute of Science and Technology (Deemed University), Nirjuli, Arunachal Pradesh, 791109, India
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and Technology (Deemed University), Nirjuli, Arunachal Pradesh, 791109, India.
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Gyeonggido, 10326, Korea
| | - Vivek K Bajpai
- Department of Applied Microbiology and Biotechnology, Microbiome Laboratory, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Korea.
| |
Collapse
|
7
|
Bazin I, Tria SA, Hayat A, Marty JL. New biorecognition molecules in biosensors for the detection of toxins. Biosens Bioelectron 2016; 87:285-298. [PMID: 27568847 DOI: 10.1016/j.bios.2016.06.083] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/17/2016] [Accepted: 06/28/2016] [Indexed: 12/24/2022]
Abstract
Biological and synthetic recognition elements are at the heart of the majority of modern bioreceptor assays. Traditionally, enzymes and antibodies have been integrated in the biosensor designs as a popular choice for the detection of toxin molecules. But since 1970s, alternative biological and synthetic binders have been emerged as a promising alternative to conventional biorecognition elements in detection systems for laboratory and field-based applications. Recent research has witnessed immense interest in the use of recombinant enzymatic methodologies and nanozymes to circumvent the drawbacks associated with natural enzymes. In the area of antibody production, technologies based on the modification of in vivo synthesized materials and in vitro approaches with development of "display "systems have been introduced in the recent years. Subsequently, molecularly-imprinted polymers and Peptide nucleic acid (PNAs) were developed as an attractive receptor with applications in the area of sample preparation and detection systems. In this article, we discuss all alternatives to conventional biomolecules employed in the detection of various toxin molecules We review recent developments in modified enzymes, nanozymes, nanobodies, aptamers, peptides, protein scaffolds and DNazymes. With the advent of nanostructures and new interface materials, these recognition elements will be major players in future biosensor development.
Collapse
Affiliation(s)
- Ingrid Bazin
- École des Mines d'Alès, 6 Avenuede Clavières, 30100 Alès Cedex, France.
| | - Scherrine A Tria
- École des Mines d'Alès, 6 Avenuede Clavières, 30100 Alès Cedex, France
| | - Akhtar Hayat
- BAE (Biocapteurs-Analyses-Environnement), Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France; Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology (CIIT), Lahore, Pakistan
| | - Jean-Louis Marty
- BAE (Biocapteurs-Analyses-Environnement), Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France
| |
Collapse
|
8
|
Guo S, Du D, Tang L, Ning Y, Yao Q, Zhang GJ. PNA-assembled graphene oxide for sensitive and selective detection of DNA. Analyst 2013; 138:3216-20. [PMID: 23598429 DOI: 10.1039/c3an00266g] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA detection based on peptide nucleic acid (PNA)-DNA hybridization is emerging as an important method in the area of DNA microarrays and biosensors because PNA shows remarkable hybridization properties. In this work, we provide a novel, simple, sensitive, and selective strategy based on a PNA-graphene oxide (GO) assembled biosensor for fluorescence turn-on detection of DNA, in which the new nanomaterial GO was used as a scaffold for PNA and a quencher for the fluorophore. The PNA-GO assembled biosensor is capable of distinguishing sequence specificity including complementary, one-base mismatched and non-complementary targets. Moreover, the results show that the biosensor is able to detect target DNA down to hundreds of picomolar. This sensing platform has been demonstrated to be highly sensitive and specific, and we expect that it will find great applications in the field of biomedicine and disease diagnostics.
Collapse
Affiliation(s)
- Shuang Guo
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China
| | | | | | | | | | | |
Collapse
|
9
|
Voltammetric detection of uridin diphosphate glucuronosyl transferase 1A9 (UGT1A9) gene corresponding oligonucleotide covering promoter region from −268 to −280 including (A/T) polymorphism at position −275 and optimization of the detection factors. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2012. [DOI: 10.1007/s13738-012-0172-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Applications of peptide nucleic acids (PNAs) and locked nucleic acids (LNAs) in biosensor development. Anal Bioanal Chem 2012; 402:3071-89. [PMID: 22297860 DOI: 10.1007/s00216-012-5742-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/12/2012] [Indexed: 01/06/2023]
Abstract
Nucleic acid biosensors have a growing number of applications in genetics and biomedicine. This contribution is a critical review of the current state of the art concerning the use of nucleic acid analogues, in particular peptide nucleic acids (PNA) and locked nucleic acids (LNA), for the development of high-performance affinity biosensors. Both PNA and LNA have outstanding affinity for natural nucleic acids, and the destabilizing effect of base mismatches in PNA- or LNA-containing heterodimers is much higher than in double-stranded DNA or RNA. Therefore, PNA- and LNA-based biosensors have unprecedented sensitivity and specificity, with special applicability in DNA genotyping. Herein, the most relevant PNA- and LNA-based biosensors are presented, and their advantages and their current limitations are discussed. Some of the reviewed technology, while promising, still needs to bridge the gap between experimental status and the harder reality of biotechnological or biomedical applications.
Collapse
|
11
|
Abstract
The combined use of surface plasmon resonance (SPR) and modified or mimic oligonucleotides have expanded diagnostic capabilities of SPR-based biosensors and have allowed detailed studies of molecular recognition processes. This review summarizes the most significant advances made in this area over the past 15 years. Functional and conformationally restricted DNA analogs (e.g., aptamers and PNAs) when used as components of SPR biosensors contribute to enhance the biosensor sensitivity and selectivity. At the same time, the SPR technology brings advantages that allows forbetter exploration of underlying properties of non-natural nucleic acid structures such us DNAzymes, LNA and HNA.
Collapse
Affiliation(s)
- Roberta D'Agata
- Dipartimento di Scienze Chimiche, Università di Catania, Catania, Italy
| | | |
Collapse
|
12
|
Urkut Z, Kara P, Goksungur Y, Ozsoz M. Response Surface Methodology for Optimization of Food Borne Pathogen Detection in Real Samples Based on Label Free Electrochemical Nucleic Acid Biosensors. ELECTROANAL 2011. [DOI: 10.1002/elan.201100310] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Sahu B, Sacui I, Rapireddy S, Zanotti KJ, Bahal R, Armitage BA, Ly DH. Synthesis and characterization of conformationally preorganized, (R)-diethylene glycol-containing γ-peptide nucleic acids with superior hybridization properties and water solubility. J Org Chem 2011; 76:5614-27. [PMID: 21619025 PMCID: PMC3175361 DOI: 10.1021/jo200482d] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Developed in the early 1990s, peptide nucleic acid (PNA) has emerged as a promising class of nucleic acid mimic because of its strong binding affinity and sequence selectivity toward DNA and RNA and resistance to enzymatic degradation by proteases and nucleases; however, the main drawbacks, as compared to other classes of oligonucleotides, are water solubility and biocompatibility. Herein we show that installation of a relatively small, hydrophilic (R)-diethylene glycol ("miniPEG", R-MP) unit at the γ-backbone transforms a randomly folded PNA into a right-handed helix. Synthesis of optically pure (R-MP)γPNA monomers is described, which can be accomplished in a few simple steps from a commercially available and relatively cheap Boc-l-serine. Once synthesized, (R-MP)γPNA oligomers are preorganized into a right-handed helix, hybridize to DNA and RNA with greater affinity and sequence selectivity, and are more water soluble and less aggregating than the parental PNA oligomers. The results presented herein have important implications for the future design and application of PNA in biology, biotechnology, and medicine, as well as in other disciplines, including drug discovery and molecular engineering.
Collapse
Affiliation(s)
- Bichismita Sahu
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Iulia Sacui
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Srinivas Rapireddy
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Kimberly J. Zanotti
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Raman Bahal
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Bruce A. Armitage
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Danith H. Ly
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
14
|
Hejazi MS, Pournaghi-Azar MH, Alipour E, Abdolahinia ED, Arami S, Navvah H. Development of a Novel Electrochemical Biosensor for Detection and Discrimination of DNA Sequence and Single Base Mutation in dsDNA Samples Based on PNA-dsDNA Hybridization - a new Platform Technology. ELECTROANAL 2010. [DOI: 10.1002/elan.201000413] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Li C, Li X, Liu X, Kraatz HB. Exploiting the interaction of metal ions and peptide nucleic acids-DNA duplexes for the detection of a single nucleotide mismatch by electrochemical impedance spectroscopy. Anal Chem 2010; 82:1166-9. [PMID: 20055458 DOI: 10.1021/ac902813y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction of the metal ions Mg(2+), Zn(2+), Ni(2+), and Co(2+) with DNA-peptide nucleic acid (PNA) films on a gold surface is studied by electrochemical impedance spectroscopy in the presence of [Fe(CN)(6)](3-/4-) as the redox probe. Impedance data were analyzed with the help of a modified Randles' equivalent circuit. Changes in the charge-transfer resistance, R(CT), decreases in the order of Ni(2+) > Co(2+) > Zn(2+) > Mg(2+). We interpret these results in terms of stronger interactions for Ni(2+) with the DNA-PNA film compared to the other metal ions, potentially involving interactions with the nucleobases, presumably with the N7 of purines or the N3 of pyrimidines. On the basis of these observations, Ni(2+) was chosen to probe the detection of a C-T mismatch in 15-mer PNA-DNA films. Using Ni(2+), it is possible to detect a single C-T mismatch. The resulting DeltaR(CT) is larger for the PNA-DNA hybrid compared to that for the identical 15-mer DNA-DNA hybrid.
Collapse
Affiliation(s)
- Congjuan Li
- Department of Chemistry, School of Environment, Beijing Normal University, Beijing, 100875, China
| | | | | | | |
Collapse
|
16
|
Effect of ionic strength on PNA-DNA hybridization on surfaces and in solution. Biointerphases 2010; 2:80-8. [PMID: 20408640 DOI: 10.1116/1.2746871] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Peptide nucleic acids (PNAs) are mimics of oligonucleotides containing a neutral peptidelike backbone and are able to bind complementary DNA targets with high affinity and selectivity. In order to investigate the effect of the ionic strength of the buffer solution, hybridization experiments with PNAs as (catcher) probes and DNAs as target oligonucleotides were performed in different salt solutions. Surface plasmon field-enhanced fluorescence spectroscopy was employed for real-time monitoring of DNA hybridizations to surface bound PNA. Probes with three different strand lengths were immobilized by self-assembly on the sensor surface. By introducing Cy5-labeled DNA targets the affinity constants, K(A)=k(on) (association)/k(off) (dissociation), were determined for fully complementary (MM0) as well as for single base mismatched (MM1) duplexes. Furthermore, the thermal stability of each duplex was determined by measuring melting curves in solution which was then compared to the kinetic and affinity parameters determined for the surface hybridization reactions. The results indicate that ions do not play a significant role for the PNA/DNA hybridization kinetics at surfaces. However, changes in the configuration of the PNA/DNA duplex due to the ionic strength variations influence the fluorescence yield drastically.
Collapse
|
17
|
An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol Adv 2010; 28:232-54. [DOI: 10.1016/j.biotechadv.2009.12.004] [Citation(s) in RCA: 805] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 12/03/2009] [Accepted: 12/04/2009] [Indexed: 12/12/2022]
|
18
|
Nayak M, Kotian A, Marathe S, Chakravortty D. Detection of microorganisms using biosensors-a smarter way towards detection techniques. Biosens Bioelectron 2009; 25:661-667. [PMID: 19782558 DOI: 10.1016/j.bios.2009.08.037] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/22/2009] [Accepted: 08/25/2009] [Indexed: 12/17/2022]
Abstract
Along with useful microorganisms, there are some that cause potential damage to the animals and plants. Detection and identification of these harmful organisms in a cost and time effective way is a challenge for the researchers. The future of detection methods for microorganisms shall be guided by biosensor, which has already contributed enormously in sensing and detection technology. Here, we aim to review the use of various biosensors, developed by integrating the biological and physicochemical/mechanical properties (of tranducers), which can have enormous implication in healthcare, food, agriculture and biodefence. We have also highlighted the ways to improve the functioning of the biosensor.
Collapse
Affiliation(s)
- Madhura Nayak
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | | | | | | |
Collapse
|
19
|
Direct electrochemical genosensing for multiple point mutation detection of Mycobacterium tuberculosis during the development of rifampin resistance. Biosens Bioelectron 2009; 24:1796-800. [DOI: 10.1016/j.bios.2008.08.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/16/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
|
20
|
Zhong JH, Qin P, Sun W, Jiao K. Simultaneous electrochemical DNA hybridization assay for PAT and FMV 35S gene sequence using quantum dots as labels. CHINESE CHEM LETT 2008. [DOI: 10.1016/j.cclet.2008.06.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Solanki PR, Prabhakar N, Pandey MK, Malhotra BD. Self-assembled monolayer for toxicant detection using nucleic acid sensor based on surface plasmon resonance technique. Biomed Microdevices 2008; 10:757-67. [DOI: 10.1007/s10544-008-9188-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
García T, Casero E, Revenga-Parra M, Martín-Benito J, Pariente F, Vázquez L, Lorenzo E. Architectures based on the use of gold nanoparticles and ruthenium complexes as a new route to improve genosensor sensitivity. Biosens Bioelectron 2008; 24:184-90. [PMID: 18485689 DOI: 10.1016/j.bios.2008.03.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/12/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
Abstract
The preparation of DNA-sensing architectures based on gold nanoparticles (Au-NPs) in conjunction with an "in situ" prepared ruthenium complex as a new route to improve the analytical properties of genosensors is described. In the development of these architectures several strategies to obtain Au-NPs modified gold electrodes (Au-NP/Au) have been essayed, in particular covalent binding and electrochemical deposition from a solution containing Au-NPs previously synthesized. UV-vis absorption measurements in conjunction with transmission electron microscope (TEM) images reveal that the synthesized Au-NPs are stable for at least 4 weeks and have a narrow size distribution. Atomic force microscopy (AFM) was employed to characterize the morphology and to estimate the Au-NPs surface coverage of the modified gold electrodes obtained following the different modification strategies. In order to assess the utility of these architectures as DNA-sensing devices, a thiolated capture probe sequence from Helicobacter pylori was immobilized onto the as-prepared surface. This sequence was chosen as a case of study within the framework of developing approaches of wide applicability. The hybridization event is detected using a water-soluble pentaamin ruthenium [3-(2-phenanthren-9-yl-vinyl)-pyridine] complex (Ru(NH(3))(5)L) prepared "in situ". This complex, due to its intercalative character, is able to bind to double stranded DNA more efficiently than to single stranded DNA. In addition, the metal provides with a redox center that can be used as an electrochemical indicator. On the basis of this strategy, complementary target sequences of H. pylori have been detected over the range of 40-800 pmol with a detection limit of 25+/-2 pmol.
Collapse
Affiliation(s)
- T García
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Totsingan F, Rossi S, Corradini R, Tedeschi T, Sforza S, Juris A, Scaravelli E, Marchelli R. Label-free selective DNA detection with high mismatch recognition by PNA beacons and ion exchange HPLC. Org Biomol Chem 2008; 6:1232-7. [PMID: 18362963 DOI: 10.1039/b718772f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two 11mer peptide nucleic acid (PNA) beacons were synthesized and tested for the detection of full-matched or single mismatched DNA. Fluorescent measurements carried out in solution showed only partial discrimination of the mismatched sequence, while using anion-exchange HPLC, in combination with fluorimetric detection, allowed DNA analysis to be performed with high sensitivity and extremely high sequence selectivity. Up to >90 : 1 signal discrimination in the presence of one single mismatched base was observed. The analysis was tested on both short and long DNA oligomers. Detection of DNA obtained from PCR amplification was also performed allowing the selective detection of the target sequence in complex mixtures. Label free detection of the DNA with high sequence selectivity is therefore possible using the present approach.
Collapse
Affiliation(s)
- Filbert Totsingan
- Dipartimento di Chimica Organica e Industriale-Università di Parma, Viale G.P. Usberti 17/a-I43100, Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Prabhakar N, Arora K, Arya SK, Solanki PR, Iwamoto M, Singh H, Malhotra BD. Nucleic acid sensor for M. tuberculosis detection based on surface plasmon resonance. Analyst 2008; 133:1587-92. [DOI: 10.1039/b808225a] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
García T, Revenga-Parra M, Abruña HD, Pariente F, Lorenzo E. Single-mismatch position-sensitive detection of DNA based on a bifunctional ruthenium complex. Anal Chem 2007; 80:77-84. [PMID: 18031019 DOI: 10.1021/ac071095r] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A ruthenium complex, pentaamine ruthenium [3-(2-phenanthren-9-yl-vinyl)-pyridine] (which we refer to as RuL in the text) generated in situ has been used as a sensitive and selective electrochemical indicator in DNA sensing. The complex incorporates dual functionalities with the Ru center providing a redox probe and the ligand (L) providing a fluorescent tag. The presence of the aromatic groups in the ligand endows the complex with an intercalative character and makes it capable of binding to double-stranded DNA (dsDNA) more efficiently than to single-stranded DNA (ssDNA). Combining spectroscopic and electrochemical techniques, we have elucidated the nature of the interactions. From these data we conclude that the binding mode is fundamentally intercalative. The ligand-based fluorescence allows characterization of the complex formation as well as for melting experiments to be carried out. The metal-based redox center is employed as an electrochemical indicator to detect the hybridization event in a DNA biosensor. The biosensor has been developed by immobilization of a thiolated capture probe sequence from Helicobacter pylori onto gold electrodes. With the use of this approach, complementary target sequences of Helicobacter can be quantified over the range of 106 to 708 pmol with a detection limit of 92+/-0.4 pmol and a linear correlation coefficient of 0.995. In addition, this approach allows the detection, without the need for a hybridization suppressor in solution, such as formamide, of not only a single mismatch but also its position in a specific sequence of H. pylori, due to the selective interaction of this bifunctional ruthenium complex with dsDNA.
Collapse
Affiliation(s)
- T García
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | | | | | | | | |
Collapse
|
26
|
Kara P, Cavdar S, Meric B, Erensoy S, Ozsoz M. Electrochemical probe DNA design in PCR amplicon sequence for the optimum detection of microbiological diseases. Bioelectrochemistry 2007; 71:204-10. [PMID: 17604234 DOI: 10.1016/j.bioelechem.2007.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 04/03/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
Direct electrochemical genosensor was developed for the detection of a probe sequence relative position in a PCR amplicon for the optimum detection of bacterial and microbiological diseases, in this study. The genosensor relies on a label-free electrochemical detection. The amino-linked inosine modified (guanine-free) coequal capture probes which were chosen from different parts of a PCR amplicon, immobilized on to disposable pencil graphite electrodes (PGE) by electrostatically and covalently. As a model case Hepatitis B virus (HBV) genome amplicon was used for the detection and specification. Hybridization was occurred after surface coverage with denatured amplicons. After hybridization, optimum probe sequence position was identified by using the differences between the responses of guanine oxidation signals. The results of this study might have a great convenience for the microbiological diseases detection applications such as DNA micro arrays.
Collapse
Affiliation(s)
- Pinar Kara
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, 35100 Bornova, Izmir, Turkey
| | | | | | | | | |
Collapse
|
27
|
Kerman K, Vestergaard M, Nagatani N, Takamura Y, Tamiya E. Electrochemical genosensor based on peptide nucleic acid-mediated PCR and asymmetric PCR techniques: Electrostatic interactions with a metal cation. Anal Chem 2007; 78:2182-9. [PMID: 16579596 DOI: 10.1021/ac051526a] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The unique structure of peptide nucleic acids (PNAs), linking the N-(2-aminoethyl)glycine units that create a neutral backbone, and prevent it from acting as a primer for DNA polymerase, has been utilized in an electrochemical biosensor scheme for simple and sensitive detection of hybridization. When the PNA is targeted against a single-nucleotide polymorphism (SNP) or wild-type site on the gene, PNA-mediated polymerase chain reaction (PCR) clamping method effectively blocks the formation of a PCR product. In our report, PNA probe for PCR clamping was targeted against the wild-type site of alcohol dehydrogenase. The electrostatic interactions between the negatively charged DNA and neutral PNA molecules with redox-active metal cation cobalt(III)hexamine ([Co(NH3)6]3+) were monitored using differential pulse voltammetry. The electrostatic binding of [Co(NH3)6]3+ to DNA provided the basis for the discrimination against PNA/PNA, PNA/DNA, and DNA/DNA hybrid molecules. We have optimized the experimental conditions, such as probe concentration, [Co(NH3)6]3+ concentration, accumulation time for [Co(NH3)6]3+, and target concentration. A new pretreatment method has also been employed to allow fast and simple detection of hybridization reaction between the PCR amplicon and the probe on glassy carbon electrode (GCE) surface. This method was based on the application of a high-temperature treatment (95 degrees C, 5 min), followed by a 1-min incubation in the presence of DNA primers. The excess concentration of DNA primers prevented the rehybridization of the denatured strands, while enabling the target gene sequence to bind with the immobilized probe. Additionally, asymmetric PCR was employed to detect the presence of genetically modified organism in standard Roundup Ready soybean samples. The amplicons of asymmetric PCR, which were predominantly single-stranded DNA as a result of unequal primer concentration, hybridized with the DNA probe on the sensor surface efficiently. The attachment of long single-strands on GCE surface caused the accumulation of [Co(NH3)6]3+ and a high current response. Here, we report a versatile method that would allow for simple and rapid analysis of nucleic acids in combination with PNA-mediated PCR and asymmetric PCR techniques by using an electrochemical genosensor.
Collapse
Affiliation(s)
- Kagan Kerman
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi City, Ishikawa, 923-1292, Japan
| | | | | | | | | |
Collapse
|
28
|
Rossi S, Lesignoli F, Germini A, Faccini A, Sforza S, Corradini R, Marchelli R. Identification of PCR-amplified genetically modified organisms (GMOs) DNA by peptide nucleic acid (PNA) probes in anion-exchange chromatographic analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:2509-16. [PMID: 17326652 DOI: 10.1021/jf062063s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
PCR products obtained by selective amplification of transgenic DNA derived from food samples containing Roundup Ready soybean or Bt-176 maize have been analyzed by anion-exchange HPLC. Peptide nucleic acids (PNAs), oligonucleotide analogues known to bind to complementary single-stranded DNA with high affinity and specificity, have been used as specific probes in order to assess the identity of the peaks observed. Two different protocols were adopted in order to obtain single-stranded DNA: amplification with an excess of one primer or digestion of one DNA strand. The single-stranded DNA was mixed with the PNA probe, and the presence of a specific sequence was revealed through detection of the corresponding PNA:DNA peak with significantly different retention time. Advantages and limits of this approach are discussed. The method was tested with reference materials and subsequently applied to commercial samples.
Collapse
Affiliation(s)
- Stefano Rossi
- Dipartimento di Chimica Organica e Industriale Università di Parma, Viale G. P. Usberti 17/A, I-43100 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
del Pozo MV, Alonso C, Pariente F, Lorenzo E. DNA biosensor for detection of Helicobacter pylori using phen-dione as the electrochemically active ligand in osmium complexes. Anal Chem 2007; 77:2550-7. [PMID: 15828792 DOI: 10.1021/ac0489263] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A surface-based method for the study of the interactions of DNA with redox-active 1,10-phenantroline-5,6-dione (phen-dione) osmium complexes is described. The study was carried out using gold electrodes modified with DNA via adsorption and [Os(bpy)(2)(phe-dione)](3+/2+) (bpy = 2,2'-bipyridyl) or [Os(phen)(2)(phen-dione)](3+/2+) (phen = 1,10-phenantroline) as electrochemical reported molecules. The method, which is simple and reagent-saving, allows the accumulation of osmium complexes within the DNA layer. The amount of osmium complex bound by the adsorbed layer of DNA was determined from the voltammetric charge associated with the osmium redox process of the immobilized metal complex. The quinone moiety of the phen-dione ligand was useful as an indicator for electrochemical DNA sensing because of its redox response at low potentials. A thiol-linked single-stranded Helicobacter pylori DNA probe was immobilized, through S-Au bonds on to a gold electrode (density of modification 86 pmol/cm(2)). Following hybridization with the complementary DNA sequence, the osmium complex was electrochemically accumulated within the double-stranded DNA layer. Electrochemical detection was performed by differential pulse voltammetry over the potential range where the quinone moiety was redox active (i.e., at very low potentials, -0.020 V vs SSCE); with this approach, a sequence of the H. pylori could be quantified over the range from 5 to 20 pmol with a linear correlation of r = 0.9888 and a detection limit of approximately 6 pmol.
Collapse
Affiliation(s)
- M V del Pozo
- Departamento de Química Analítica y Análisis Instrumental and Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | | | | | | |
Collapse
|
30
|
Zhai P, Guo J, Xiang J, Zhou F. Electrochemical Surface Plasmon Resonance Spectroscopy at Bilayered Silver/Gold Films. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2007; 111:981-986. [PMID: 21949559 PMCID: PMC3177703 DOI: 10.1021/jp065525d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Bilayered silver/gold films (gold deposited on top of the silver film) were used as substrates for electrochemical surface plasmon resonance spectroscopy (EC-SPR). EC-SPR responses of electrochemical deposition/stripping of copper and redox-induced conformation changes of cytochrome c immobilized onto self-assembled monolayers preformed at these substrates were measured. Influence of the Ag layer thickness and the double-layer capacitance on the EC-SPR behavior was investigated. The results demonstrated that the bilayered Ag/Au metal films produce a sharper SPR dip profile than pure Au films and retain the high chemical stability of Au films. Contrary to the result by the Fresnel calculation that predicts a greater fraction of Ag in the bilayered film should result in a greater signal-to-noise ratio, the EC-SPR sensitivity is dependent on both the Ag/Au thickness ratio and the chemical modification of the surface. Factors affecting the overall SPR sensitivity at the bilayered films, such as the film morphology, potential-induced excess surface charges, and the adsorbate layer were investigated. Forming a compact adsorbate layer at the bilayered film diminishes the effect of potential-induce excess surface charges on the SPR signal and improves the overall EC-SPR sensitivity. For the case of redox-induced conformation changes of cytochrome c, the SPR signal obtained at the bilayered silver/gold film is 2.7 times as high as that at a pure gold film.
Collapse
Affiliation(s)
- Peimin Zhai
- Institute of Surface Analysis and Biosensing, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun Guo
- Institute of Surface Analysis and Biosensing, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Juan Xiang
- Institute of Surface Analysis and Biosensing, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Feimeng Zhou
- Institute of Surface Analysis and Biosensing, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, U. S. A
| |
Collapse
|
31
|
Kim H, Kane MD, Kim S, Dominguez W, Applegate BM, Savikhin S. A molecular beacon DNA microarray system for rapid detection of E. coli O157:H7 that eliminates the risk of a false negative signal. Biosens Bioelectron 2007; 22:1041-7. [PMID: 16815005 DOI: 10.1016/j.bios.2006.04.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 04/20/2006] [Accepted: 04/27/2006] [Indexed: 11/29/2022]
Abstract
A DNA hybridization based optical detection platform for the detection of foodborne pathogens has been developed with virtually zero probability of the false negative signal. This portable, low-cost and real-time assaying detection platform utilizes the color changing molecular beacon as a probe for the optical detection of the target sequence. The computer-controlled detection platform exploits the target hybridization induced change of fluorescence color due to the Förster (fluorescence) resonance energy transfer (FRET) between a pair of spectrally shifted fluorophores conjugated to the opposite ends of a beacon (oligonucleotide probe). Unlike the traditional fluorophore-quencher beacon design, the presence of two fluorescence molecules allows to actively visualize both hybridized and unhybridized states of the beacon. This eliminates false negative signal detection characteristic for the fluorophore-quencher beacon where bleaching of the fluorophore or washout of a beacon is indistinguishable from the absence of the target DNA sequence. In perspective, the two-color design allows also to quantify the concentration of the target DNA in a sample down to < =1 ng/microl. The new design is suitable for simultaneous reliable detection of hundreds of DNA target sequences in one test run using a series of beacons immobilized on a single substrate in a spatial format.
Collapse
Affiliation(s)
- Hanyoup Kim
- Department of Physics, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
32
|
Zezza F, Pascale M, Mulè G, Visconti A. Detection of Fusarium culmorum in wheat by a surface plasmon resonance-based DNA sensor. J Microbiol Methods 2006; 66:529-37. [PMID: 16563535 DOI: 10.1016/j.mimet.2006.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 02/03/2006] [Accepted: 02/07/2006] [Indexed: 11/15/2022]
Abstract
A surface plasmon resonance (SPR) sensor based on DNA hybridization has been developed for the detection of Fusarium culmorum, a fungal pathogen of cereals. A 0.57 kbp DNA fragment of F. culmorum was amplified by specific primers and a 25-mer oligonucleotide probe was selected within the sequence of the PCR amplicon. After biotinilation, the probe was immobilized on a streptavidin sensor chip and tested for biospecific interaction with PCR products of F. culmorum. The effect of denaturating agents (formamide and urea) and ionic strength (NaCl) on hybridization efficiency of double-stranded PCR products with the immobilized probe and the specificity of the probe were investigated. The SPR biosensor was successfully used for the detection of F. culmorum in culture material of different strains and in naturally infected wheat samples. Tested on fungal cultures, it showed a good selectivity for F. culmorum against other species of either Fusarium or other fungal genera. A background signal was observed in wheat samples strictly depending on the DNA amount of the testing matrix. Testing 30 ng of durum wheat DNA the detection limit was 0.06 pg of F. culmorum DNA. The developed PCR-SPR assay allowed to detect F. culmorum with sensitivity and specificity higher than gel-electrophoresis analysis.
Collapse
Affiliation(s)
- Francesco Zezza
- Institute of Sciences of Food Production (ISPA), National Research Council, Via G. Amendola 122/0, 70126 Bari, Italy.
| | | | | | | |
Collapse
|
33
|
Xiang J, Guo J, Zhou F. Scanning Electrochemical Microscopy Combined with Surface Plasmon Resonance: Studies of Localized Film Thickness Variations and Molecular Conformation Changes. Anal Chem 2006; 78:1418-24. [PMID: 16503589 DOI: 10.1021/ac051601h] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The combination of scanning electrochemical microscopy (SECM) with surface plasmon resonance (SPR) is described. By oxidizing ferrocenylalkanethiol self-assembled monolayer (SAM) with SECM-generated Ce4+, the coupled technique, SECM-SPR, is shown to be viable for determining local variations in thin film thickness. Factors (tip/substrate distance, tip potential scan rate, and solution composition change) affecting the SECM-SPR response and operation are also discussed. The approach was further extended to the determination of conformational changes of cytochrome c molecules attached electrostatically onto a negatively charged SAM during its reduction by the tip-generated methyl viologen monocation. The high sensitivity of the SPR equipped with a bicell detector facilitates the measurement of infinitesimal film thickness changes accompanying redox reactions, while the SECM provides a means to obviate the necessity of applying a potential to the SPR substrate, which tends to cause unwanted interferences and complications. The approach also affords an avenue for determining film thickness variations that are not subject to certain effects, such as the surface charge, the heterogeneity of the substrate, and the distance between the redox center of the immobilized molecule and the underlying substrate electrode.
Collapse
Affiliation(s)
- Juan Xiang
- Institute of Surface Analysis and Biosensing, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | | | | |
Collapse
|
34
|
Halder K, Mathur V, Chugh D, Verma A, Chowdhury S. Quadruplex-duplex competition in the nuclease hypersensitive element of human c-myc promoter: C to T mutation in C-rich strand enhances duplex association. Biochem Biophys Res Commun 2005; 327:49-56. [PMID: 15629428 DOI: 10.1016/j.bbrc.2004.11.137] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Indexed: 11/16/2022]
Abstract
The nuclease hypersensitive element NHE III(I) is an important anti-cancer target as the transcription of oncogene c-myc is largely regulated by it. It has been postulated that regulatory control is mediated by G-quadruplex formation in the NHE anti-sense strand through a competition between the duplex and the quadruplex states. A mutation in the NHE has been implicated in cancer. In this study, the reported mutation has been characterized vis-a-vis the kinetics of i-tetraplex formation (in the sense strand) and its effect on duplex formation. We found that i-tetraplex formation was destabilized by approximately 1.4 kcal/mol (DeltaDeltaG at 20 degrees C, pH 5.8). Observed hysteresis allowed us to analyze the kinetics of folding for the mutant (M3). Though we observed higher association (DeltaEon approximately -23.4 kcal/mol) and dissociation (DeltaEoff approximately 22.1 kcal/mol) activation energies (at pH 5.3) for the wild-type (P1) tetraplex folding, the kinetics of folding and unfolding for M3 was somewhat faster at pH 5.3 and 5.8. Interestingly, Surface plasmon resonance (BIAcore) analysis of hybridization at pH 6.6 indicated a higher association constant for M3 (approximately 22.5 x 10(4)M(-1)s(-1)) than P1 (approximately 3.2 x 10(4)M(-1)s(-1)). The equilibrium dissociation constants also indicated favorable duplex association for M3 (approximately 22.2 and approximately 190.6 nM for M3 and P1, respectively). We envisage that the increased affinity for the duplex state due to the mutation could play a functional role in the aberrant regulation of c-myc.
Collapse
Affiliation(s)
- Kangkan Halder
- Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110007, India
| | | | | | | | | |
Collapse
|
35
|
Del Pozo MV, Alonso C, Pariente F, Lorenzo E. Electrochemical DNA sensing using osmium complexes as hybridization indicators. Biosens Bioelectron 2005; 20:1549-58. [PMID: 15626608 DOI: 10.1016/j.bios.2004.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 07/19/2004] [Accepted: 08/04/2004] [Indexed: 11/21/2022]
Abstract
A surface-based method for the study of the interactions of DNA with redox-active osmium complexes is described. The study was carried out using gold electrodes modified with DNA by adsorption and [Os(bpy)3]3+/2+ (bpy=2,2'-bipyridyl) or [Os(phen)3]3+/2+ (phen=1,10-phenantroline) as electrochemical indicators. The method, which is simple and reagent saving, allows the accumulation of osmium complexes on the DNA layer. The amount of osmium complex bound by the layer of double-stranded (dsDNA) or single-stranded DNA (ssDNA) adsorbed at gold electrodes was estimated from the cyclic voltammetric (CV) peak charge of osmium complex reduction. The dissociation constants (K) for the oxidized and reduced forms of a bound species are also estimated. [Os(phen)3]3+/2+ was applied to a probe for electrochemical DNA sensing. A thiol-linked single-stranded DNA probe was immobilized through the S-Au bonding to 70 pmol/cm2 on a gold electrode. Following hybridization with the complementary DNA, the osmium complex was electrochemically accumulated on the double-stranded DNA layer and the differential pulse voltammogram for this electrode gave an electrochemical signal due to the redox reaction of [Os(phen)3]3+/2+ that was bound to the double-stranded DNA on the electrode.
Collapse
Affiliation(s)
- M V Del Pozo
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | | | | | | |
Collapse
|
36
|
Yao D, Kim J, Yu F, Nielsen PE, Sinner EK, Knoll W. Surface density dependence of PCR amplicon hybridization on PNA/DNA probe layers. Biophys J 2005; 88:2745-51. [PMID: 15665129 PMCID: PMC1305370 DOI: 10.1529/biophysj.104.051656] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Surface plasmon field-enhanced fluorescence spectroscopy was employed to extensively investigate the hybridization behaviors of polymerase chain reaction (PCR) amplicons on a peptide nucleic acid (PNA) or DNA probe layer that was previously attached on a streptavidin-modified gold surface via biotin/streptavidin interaction. Despite the neutral backbone of PNA, the hybridization reactions were strongly influenced by the variation of ionic strength. The association rates exhibited a monotonic decrease with ionic strength increase and the maximum hybridization signal was achieved at an intermediate sodium concentration (approximately 100 mM). These effects were mainly ascribed to the electrostatic cross talk among the hybridized DNA molecules and the secondary structure of PCR amplicons. For the negatively charged DNA probes, the hybridization reaction was subjected additionally to the DNA/DNA electrostatic barrier, particularly in lower ionic strength range (e.g., 10 approximately 150 mM Na(+)). The electrostatic cross talk was shown to be largely reduced if the PNA probe layer was sufficiently diluted by following a strategic templated immobilization method. As a consequence, a pseudo-first-order kinetic model was applicable to describe the hybridization kinetics, and affinity constants were derived for evaluating the influence of single nucleotide polymorphisms (SNPs).
Collapse
Affiliation(s)
- Danfeng Yao
- Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Yao D, Yu F, Kim J, Scholz J, Nielsen PE, Sinner EK, Knoll W. Surface plasmon field-enhanced fluorescence spectroscopy in PCR product analysis by peptide nucleic acid probes. Nucleic Acids Res 2004; 32:e177. [PMID: 15598819 PMCID: PMC545473 DOI: 10.1093/nar/gnh175] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Surface plasmon field-enhanced fluorescence spectroscopy (SPFS) was recently developed for PCR product analysis, which allowed for real-time monitoring of hybridization processes and for the detection of trace amounts of PCR products, with a detection limit of 100 fmol on the peptide nucleic acid (PNA) probe surface, and 500 fmol on the DNA probe surface. By selectively labeling the strands of PCR-amplified DNA, it was shown that the heat denaturation process in combination with the application of low-salt condition substantially reduced the interference from the antisense strands and thus simplified the surface hybridization. Furthermore, SPFS was demonstrated to be capable of quantitatively discriminating the difference induced by single nucleotide substitution, even within one minute of contact time.
Collapse
Affiliation(s)
- Danfeng Yao
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Wang R, Minunni M, Tombelli S, Mascini M. A new approach for the detection of DNA sequences in amplified nucleic acids by a surface plasmon resonance biosensor. Biosens Bioelectron 2004; 20:598-605. [PMID: 15494245 DOI: 10.1016/j.bios.2004.03.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 03/08/2004] [Accepted: 03/08/2004] [Indexed: 11/19/2022]
Abstract
In this paper, a simple and useful approach for DNA sensing based on surface plasmon resonance (SPR) transduction is reported. A new DNA sample pre-treatment has been optimised to allow fast and simple detection of hybridisation reaction between a target sequence in solution and a probe immobilised on the sensing surface. This pre-treatment consisted in a denaturation procedure of double stranded DNA containing the target sequence and was based on an high temperature treatment (95 degrees C, 5 min) followed by a 1 min incubation with small oligonucleotides. The oligonucleotides are designed to prevent the re-hybridising of the denatured strands, while enabling the target sequence to bind the immobilised probe. The important parameters of the procedure, i.e. incubation time, length and concentration of the oligonucleotides, have been studied in detail. The optimised DNA denaturation procedure has been successfully applied to the detection of amplified DNA with a commercially available SPR biosensor (Biacore X). DNA samples extracted from plant and human blood were tested after amplification by polymerase chain reaction (PCR).
Collapse
Affiliation(s)
- Ronghui Wang
- Dipartimento di Chimica, Università degli Studi di Firenze, Polo Scientifico-Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | | | | | | |
Collapse
|
39
|
Germini A, Mezzelani A, Lesignoli F, Corradini R, Marchelli R, Bordoni R, Consolandi C, De Bellis G. Detection of genetically modified soybean using peptide nucleic acids (PNAs) and microarray technology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:4535-40. [PMID: 15237963 DOI: 10.1021/jf035355r] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Peptide nucleic acid (PNA) microarrays for the detection of Roundup Ready soybeans in food have been prepared. PNA probes are known to be more efficient and selective in binding DNA sequences than the analogous oligonucleotides and are very suitable to be used for diagnostics in food. PNAs of different lengths were carefully designed and synthesized by solid-phase synthesis on an automatic synthesizer adopting the BOC strategy. PNAs were purified by HPLC and characterized by HPLC/MS. The probes were spotted on a functionalized surface to produce a microarray to be hybridized with PCR products. DNA extracted from reference material was amplified using Cy3- and Cy5-labeled primers, and the fluorescent PCR products obtained were hybridized on the microarray. Two protocols were adopted: the hybridization with dsDNA or with ssDNA obtained by digestion with the enzyme lambda exonuclease. The best results were obtained using a 15-mer PNA probe in combination with the ssPCR product derived from enzymatic digestion. The method was applied to the analysis of a sample of certified transgenic soybean flour.
Collapse
Affiliation(s)
- Andrea Germini
- Dipartimento di Chimica Organica e Industriale, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43100 Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Giakoumaki E, Minunni M, Tombelli S, Tothill IE, Mascini M, Bogani P, Buiatti M. Combination of amplification and post-amplification strategies to improve optical DNA sensing. Biosens Bioelectron 2003; 19:337-44. [PMID: 14615092 DOI: 10.1016/s0956-5663(03)00193-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The work evaluated a series of approaches to optimise detection of polymerase chain reaction (PCR) amplified DNA samples by an optical sensor based on surface plasmon resonance (SPR) (BiacoreX). The optimised procedure was based on an asymmetric PCR amplification system to amplify predominantly one DNA strand, containing the sequence complementary to a specific probe. The study moved into two directions, aiming to improve the analytical performance of SPR detection in PCR amplified products. One approach concerned the application of new strategies at the level of PCR, i.e. asymmetric PCR to obtain ssDNA amplified fragments containing the target capable of hybridisation with the immobilised complementary probe. The other strategy focused on the post-PCR amplification stage. Optimised denaturing conditions were applied to both symmetrically and asymmetrically amplified fragments. The effective combination of the two strategies allowed a rapid and specific hybridisation reaction. The developed method was successfully applied in the detection of genetically modified organisms.
Collapse
Affiliation(s)
- Elsa Giakoumaki
- Cranfield Biotechnology Centre, Cranfield University, Silsoe, Bedfordshire MK45 4DT, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Akimoto T, Ikebukuro K, Karube I. A surface plasmon resonance probe with a novel integrated reference sensor surface. Biosens Bioelectron 2003; 18:1447-53. [PMID: 12941559 DOI: 10.1016/s0956-5663(03)00064-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A surface plasmon resonance (SPR) sensor probe with integrated reference surface is described. In order to fabricate the integrated reference surface, two dielectric layers with different thickness were deposited on the single gold SPR sensor surface via plasma polymerization of hexamethyldisiloxane. The working sensor surface was a 34 nm dielectric layer with immobilized bovine serum albumin (BSA) antigen and an adjacent thin 1 nm dielectric layer without BSA provided reference surface. A specific immunoreaction of anti-BSA antibody was detected after immersion of the SPR probe into sample solution. Simultaneous observation of reference and working surface response enabled determination of the immunoreaction without the need for the baseline measurement. Moreover, compensation of nonspecific adsorption could be confirmed using anti-human serum albumin antibody.
Collapse
Affiliation(s)
- Takuo Akimoto
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-0031, Japan
| | | | | |
Collapse
|
42
|
Hofman-Bang J, Zheng D, Westermann P, Ahring BK, Raskin L. Molecular ecology of anaerobic reactor systems. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2003; 81:151-203. [PMID: 12747563 DOI: 10.1007/3-540-45839-5_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible for these processes. Only a few percent of Bacteria and Archaea have so far been isolated, and almost nothing is known about the dynamics and interactions between these and other microorganisms. This lack of knowledge is most clearly exemplified by the sometimes unpredictable and unexplainable failures and malfunctions of anaerobic digesters occasionally experienced, leading to sub-optimal methane production and wastewater treatment. Using a variety of molecular techniques, we are able to determine which microorganisms are active, where they are active, and when they are active, but we still need to determine why and what they are doing. As genetic manipulations of anaerobes have been shown in only a few species permitting in-situ gene expression studies, the only way to elucidate the function of different microbes is to correlate the metabolic capabilities of isolated microbes in pure culture to the abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various specific nucleic acid probes are discussed and exemplified by studies of anaerobic granular sludge, biofilm and digester systems.
Collapse
Affiliation(s)
- J Hofman-Bang
- Environmental Microbiology and Biotechnology, Biocentrum DTU, The Technical University of Denmark, Building 227, 2800 Lyngby, Denmark.
| | | | | | | | | |
Collapse
|
43
|
Asai R, Nakamura C, Ikebukuro K, Karube I, Miyake J. A Bioassay to Detect Contaminant-Induced Messenger RNA Using a Transcriptomic Approach: Detection of RT-PCR-Amplified Single-Stranded DNA Based on the SPR Sensor in Cyanobacteria. ANAL LETT 2003. [DOI: 10.1081/al-120021530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
44
|
Electrochemical detection of hybridization using peptide nucleic acids and methylene blue on self-assembled alkanethiol monolayer modified gold electrodes. Electrochem commun 2002. [DOI: 10.1016/s1388-2481(02)00448-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
45
|
|
46
|
Feriotto G, Ferlini A, Ravani A, Calzolari E, Mischiati C, Bianchi N, Gambari R. Biosensor technology for real-time detection of the cystic fibrosis W1282X mutation in CFTR. Hum Mutat 2002; 18:70-81. [PMID: 11438995 DOI: 10.1002/humu.1151] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the present paper, biospecific interaction analysis (BIA) was performed using surface plasmon resonance (SPR) and biosensor technologies to detect the Trp1282Ter mutation (W1282X) of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene. We first immobilized on a SA5 sensor chip a single-stranded biotinylated oligonucleotide containing the sequence involved in this mutation, and the efficiency of hybridization of oligonucleotide probes differing in length was determined. Second, we immobilized on different SA5 sensor chips biotinylated polymerase-chain reaction (PCR) products from a normal subject as well as from heterozygous and homozygous W1282X samples. The results obtained show that both allele-specific 10- and 12-mer oligonucleotides are suitable probes to detect W1282X mutations of the cystic fibrosis gene under standard BIA experimental conditions. During the association phase performed at 25 degrees C, discrimination between mismatched and full matched hybrids was readily and reproducibly observed by using the 10-mer W1282X probes. By contrast, when the 12-mer DNA probes were employed, discrimination between mismatched and full matched hybrids was observed during the dissociation phase. Taken together, the results presented suggest that BIA is an easy, speedy, and automatable approach to detect point mutations leading to cystic fibrosis. By this procedure, it is possible to perform real-time monitoring of hybridization between target single stranded PCR products obtained by using as substrates DNA isolated from normal or heterozygous subjects, and homozygous W1282X CF samples and oligonucleotide probes, therefore enabling a one-step, non-radioactive protocol to perform diagnosis.
Collapse
Affiliation(s)
- G Feriotto
- Biotechnology Center, Ferrara University, Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Feriotto G, Corradini R, Sforza S, Bianchi N, Mischiati C, Marchelli R, Gambari R. Peptide nucleic acids and biosensor technology for real-time detection of the cystic fibrosis W1282X mutation by surface plasmon resonance. J Transl Med 2001; 81:1415-27. [PMID: 11598154 DOI: 10.1038/labinvest.3780355] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In this paper we demonstrate that peptide nucleic acids (PNAs) are excellent probes able to detect the W1282X point mutation of the cystic fibrosis (CF) gene when biospecific interaction analysis (BIA) by surface plasmon resonance (SPR) and biosensor technologies is performed. The results reported here suggest that BIA is an easy, fast, and automatable approach for detecting mutations of CF, allowing real-time monitoring of hybridization between 9-mer CF PNA probes and target biotinylated PCR products generated from healthy, heterozygous subjects and homozygous W1282X samples and immobilized on streptavidin-coated sensor chips. This method is, to our knowledge, the first application of PNAs, BIA, and SPR to a human hereditary mutation, and demonstrates the feasibility of these approaches for discriminating between normal and mutated target DNA. We like to point out that the procedure described in this paper is rapid and informative; results are obtained within a few minutes. This could be of great interest for molecular pre-implantation diagnosis to discriminate homozygous CF embryos from heterozygous and healthy embryos. Other advantages of the methodology described in the present paper are (a) that it is a nonradioactive methodology and (b) that gel electrophoresis and/or dot-spot analysis are not required. More importantly, the demonstration that SPR-based BIA could be associated with microarray technology allows us to hypothesize that the method described in the present paper could be used for the development of a protocol employing multispotting on SPR biosensors of many CF-PCR products and a real-time simultaneous analysis of hybridization to PNA probes. These results are in line with the concept that SPR could be an integral part of a fully automated diagnostic system based on the use of laboratory workstations, biosensors, and arrayed biosensors for DNA isolation, preparation of PCR reactions, and identification of point mutations.
Collapse
Affiliation(s)
- G Feriotto
- Biotechnology Center, Ferrara University, Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Lesignoli E, Germini A, Corradini R, Sforza S, Galavema G, Dossena A, Marchelli R. Recognition and strand displacement of DNA oligonucleotides by peptide nucleic acids (PNAs). High-performance ion-exchange chromatographic analysis. J Chromatogr A 2001; 922:177-85. [PMID: 11486862 DOI: 10.1016/s0021-9673(01)00877-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peptide nucleic acids (PNAs) are oligonucleotide mimics containing a pseudopeptide chain, which are able to bind complementary DNA tracts with high affinity and selectivity. Two mixed-sequence PNA undecamers (1 and 2) were synthesized and their double-stranded adducts with the complementary oligonucleotides (3 and 4) were revealed by the appearance of the corresponding peak in anion-exchange HPLC. A DEAE column was used and elution was performed with aqueous Tris buffer (pH 8) and an ionic strength gradient (0-0.5 M NaCl). The same effect was not observed with non-complementary oligonucleotides. The stability of the PNA-DNA adducts under the conditions used in the chromatographic system was studied as a function of temperature. Furthermore, in competition experiments double-stranded oligonucleotides were challenged by a PNA complementary to one strand: the formation of the PNA-DNA hybrid and the displacement of the non-complementary strand were observed with high specificity. The results suggest a possible use of ion-exchange HPLC for studying PNA-DNA interactions, and indicate the efficiency of PNA probes in the chromatographic analysis of DNA.
Collapse
Affiliation(s)
- E Lesignoli
- Dipartimento di Chimica Organica e Industriale, Università di Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
49
|
Oyama M, Ikeda T, Lim T, Ikebukuro K, Masuda Y, Karube I. Detection of toxic chemicals with high sensitivity by measuring the quantity of induced P450 mRNAs based on surface plasmon resonance. Biotechnol Bioeng 2001; 71:217-22. [PMID: 11291031 DOI: 10.1002/1097-0290(2000)71:3<217::aid-bit1011>3.0.co;2-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study we describe a novel sensor system to detect toxic chemicals based on measurement of the quantity of Saccharomyces cerevisiae P450 mRNAs induced by them. Detection was conducted using a flow-injection-type sensor system based on surface plasmon resonance (SPR). The DNA and peptide nucleic acid (PNA) probes containing a complementary sequence to a part of P450 mRNA were immobilized on the sensor chip and the P450 mRNAs hybridized to the probes were quantified. We succeeded in detecting 10 ng/L (10 ppt) of atrazine using both DNA and PNA probes. Using this sensor system, we were able to detect bisphenol A in addition to atrazine. Furthermore, we achieved higher sensitivity by amplifying the target P450 mRNA based on nucleic acid sequence-based amplification (NASBA). This method allows for sensitive, rapid, and easy detection of some toxic chemicals.
Collapse
Affiliation(s)
- M Oyama
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Hall D. Use of optical biosensors for the study of mechanistically concerted surface adsorption processes. Anal Biochem 2001; 288:109-25. [PMID: 11152582 DOI: 10.1006/abio.2000.4851] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The advent of commercial optical biosensors, such as the BIAcore from Pharmacia and IAsys from Affinity Sensors, has made available to the biochemist a powerful means to examine and characterize the interaction of biological macromolecules with a binding surface. By analysis of the kinetic and equilibrium aspects of the observed experimental adsorption isotherms, rate and affinity constants can be determined. This Review focuses on pertinent aspects of the technology and its use for the performance and quantitative characterization of some various types of mechanistically concerted adsorption behavior.
Collapse
Affiliation(s)
- D Hall
- Section on Physical Biochemistry, National Institute of Diabetes, Digestive, and Kidney Disease, Bethesda, Maryland, 20892, USA.
| |
Collapse
|