1
|
Khalid F, Tahir R, Ellahi M, Amir N, Rizvi SFA, Hasnain A. Emerging trends of edible vaccine therapy for combating human diseases especially
COVID
‐19: Pros, cons, and future challenges. Phytother Res 2022; 36:2746-2766. [PMID: 35499291 PMCID: PMC9347755 DOI: 10.1002/ptr.7475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 11/07/2022]
Abstract
The researchers are still doing efforts to develop an effective, reliable, and easily accessible vaccine candidate to protect against COVID‐19. As of the August 2020, nearly 30 conventional vaccines have been emerged in clinical trials, and more than 200 vaccines are in various development stages. Nowadays, plants are also considered as a potential source for the production of monoclonal antibodies, vaccines, drugs, immunomodulatory proteins, as well as used as bioreactors or factories for their bulk production. The scientific evidences enlighten that plants are the rich source of oral vaccines, which can be given either by eating the edible parts of plants and/or by oral administration of highly refined proteins. The use of plant‐based edible vaccines is an emerging trend as it possesses minimum or no side effects compared with synthetic vaccines. This review article gives insights into different types of vaccines, the use of edible vaccines, advantages of edible vaccines over conventional vaccines, and mechanism of action of edible vaccines. This review article also focuses on the applications of edible vaccines in wide‐range of human diseases especially against COVID‐19 with emphasis on future perspectives of the use of edible vaccines.
Collapse
Affiliation(s)
- Fatima Khalid
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Reema Tahir
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Manahil Ellahi
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Nilofer Amir
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Syed Faheem Askari Rizvi
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
- College of Chemistry and Chemical EngineeringLanzhou UniversityLanzhouP.R. China
| | - Ammarah Hasnain
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| |
Collapse
|
2
|
Debnath N, Thakur M, Khushboo, Negi NP, Gautam V, Kumar Yadav A, Kumar D. Insight of oral vaccines as an alternative approach to health and disease management: An innovative intuition and challenges. Biotechnol Bioeng 2021; 119:327-346. [PMID: 34755343 DOI: 10.1002/bit.27987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
Vaccination is the most suitable and persuasive healthcare program for the prohibition of various deadly diseases. However, the higher production cost and purification strategies are out of reach for the developing nations. In this scenario, development of edible vaccine turns out to be the most promising alternative for remodeling the pharmaceutical industry with reduced production and purification costs. Generally, oral route of vaccination is mostly preferred due to its safety, compliance, low manufacturing cost and most importantly the ability to induce immunity in both systemic and mucosal sites. Genetically modified microorganisms and plants could efficiently be used as vehicles for edible vaccines. Edible vaccines are supposed to reduce the risk associated with traditional vaccines. Currently, oral vaccines are available in the market for several viral and bacterial diseases like cholera, hepatitis B, malaria, rabies etc. Herein, the review focuses on the breakthrough events in the area of edible vaccines associated with dietary microbes and plants for better control over diseases.
Collapse
Affiliation(s)
- Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir (UT), India
| | - Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Khushboo
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Neelam P Negi
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Vibhav Gautam
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir (UT), India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
3
|
Abstract
Molecular farming provides an unprecedented approach for the production of metabolites or proteins of medicinal value from plants used previously only in agricultural setting. These plants act as protein factories that can synthesize a variety of proteins free from pathogens such as plasma proteins, growth factors, and vaccines. This method provides a novel, tempting, inexpensive, easy, and safe alternative to other techniques of protein or antigen production. With the advent of transgenic plants, it is possible to produce unlimited amounts of subunit vaccines (for oral use/edible and of parenteral use), protein used for pharmaceutical/medicinal purpose, recombinant proteins, antibodies, and industrial enzymes. Plants have numerous advantages over the production systems on account of scalability, safety, and are economic; for example, less cost of production is involved for Hepatitis B nucleocapsid antigen using transgenic tobacco. Biopharming or molecular farming provides an important resource for cheaper drug production used in the treatment of cancer, heart diseases, and infectious diseases. The pharmaceutical products are manufactured by genetically engineered plants that are extracted and purified, also known as pharmaceuticals produced by plants. Edible vaccines are cheaper in cost, easy to administer mostly by oral route, fail-safe, and are acceptable by society especially in developing countries. These vaccines are targeted to provide systemic as well as mucosal types of immunity. It has been predicted that in future children may get their immunization by munching on foods instead of getting enduring shots. The production of edible vaccines consists of the process of introducing the selected genes of desired quality into plant to induce these altered or transgenic plants to produce the encoded proteins in a natural way. These vaccines provide safer alternatives and help in reduction of cost of production and shipping and also decrease the potential hazards associated with conventional vaccines. However, becoming a reality and readily availability of edible vaccine is challenged by many problems of technical, regulatory, and nonscientific issues, which should be ruled out and rectified. This chapter provides insight into the current scenario and future applications of this new preventive modality.
Collapse
|
4
|
Affiliation(s)
- Miguel Gueimonde
- Department of Biochemistry and Food Chemistry, and Functional Foods Forum, University of Turku, Turku, Finland
| | - Arthur C. Ouwehand
- Department of Biochemistry and Food Chemistry, and Functional Foods Forum, University of Turku, Turku, Finland
| | - Seppo Salminen
- Department of Biochemistry and Food Chemistry, and Functional Foods Forum, University of Turku, Turku, Finland
| |
Collapse
|
5
|
Dhama K, Chakraborty S, Wani MY, Verma AK, Deb R, Tiwari R, Kapoor S. Novel and emerging therapies safeguarding health of humans and their companion animals: a review. Pak J Biol Sci 2013; 16:101-111. [PMID: 24171271 DOI: 10.3923/pjbs.2013.101.111] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Modern medicine has helped to a great extent to eradicate and cure several diseases of mankind and animals. But the existence of incurable diseases like cancer, Acquired Immunodeficiency Syndrome (AIDS), diabetes or rheumatoid arthritis, side effects of allopathic medicine, increasing trend of antibiotic resistance and chemicals and biopesticides causing dietary risk have made the situation more critical than ever before. Thus, it has become a matter of concern for the scientists and researchers to develop novel therapies. Bacteriophage therapy to treat pathogenic bacterial infections, virophage therapy for conservation of global system and avian egg yolk antibody therapy for designing prophylactic strategies against Gastrointestinal (GI) diseases are interesting approaches. Others include the use of cytokines as adjunctive immunomodulators, gene therapy focusing on diseases caused by single gene defects, RNAi technology to suppress specific gene of interest and apoptins for cancer treatment. Stem cell therapy against several diseases and ailments has also been discussed. The use of nanoparticles for better drug delivery, even though costly, has been given equal importance. Nevertheless, immunomodulation, be it through physiological, chemical or microbial products, or through essential micronutrients, probiotics, herbs or cow therapy prove to be cost-effective, causing minimum adverse reactions when compared to allopathy. Development in the field of molecular biology has created an enormous impact on vaccine development. The present review deals with all these novel and emerging therapies essential to safeguard the health of humans and companion animals.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute, Iztnagar, Bareilly,. U.P., 243122, India
| | | | | | | | | | | | | |
Collapse
|
6
|
García-Cañas V, Simó C, Herrero M, Ibáñez E, Cifuentes A. Present and future challenges in food analysis: foodomics. Anal Chem 2012; 84:10150-9. [PMID: 22958185 DOI: 10.1021/ac301680q] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The state-of-the-art of food analysis at the beginning of the 21st century is presented in this work, together with its major applications, current limitations, and present and foreseen challenges.
Collapse
|
7
|
Affiliation(s)
- David W Pascual
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717-3610, USA.
| |
Collapse
|
8
|
Lee KY, Kim DH, Kang TJ, Kim J, Chung GH, Yoo HS, Arntzen CJ, Yang MS, Jang YS. Induction of protective immune responses against the challenge of Actinobacillus pleuropneumoniae by the oral administration of transgenic tobacco plant expressing ApxIIA toxin from the bacteria. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2006; 48:381-9. [PMID: 17054716 DOI: 10.1111/j.1574-695x.2006.00158.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia. Among the virulence factors, ApxIIA, a bacterial exotoxin, is reportedly expressed in many serotypes and is considered as a candidate for the development of a vaccine against the bacterial infection. Previously, we isolated a field strain of A. pleuropneumoniae serotype 2 in Korea and characterized its exotoxins to develop an oral vaccine. In this study, we initially confirmed the immunogenicity of ApxIIA expressed in Escherichia coli. We then developed transgenic tobacco expressing ApxIIA and tested its efficacy to induce a protective immune response against A. pleuropneumoniae infection after oral administration of the plant powder. We observed that protective immune responses were induced in mice after oral administration of the plant powder once a week for 4 weeks. Immunoassays revealed that the levels of antigen-specific immunoglobulin G against ApxIIA increased in mice that were fed a powder made from the transgenic plant, but not in mice fed a powder made from wild-type tobacco. Additionally, mice fed the transgenic plant powder were protected from an injection of a lethal dose of A. pleuropneumoniae. These results support that the transgenic plant may be a suitable candidate for an oral vaccine that could be used effectively against A. pleuropneumoniae infection.
Collapse
Affiliation(s)
- Kyung-Yeol Lee
- Department of Oral Microbiology, School of Dentistry, Chonbuk National University, Chonju, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gil F, Titarenko E, Terrada E, Arcalís E, Escribano JM. Successful oral prime-immunization with VP60 from rabbit haemorrhagic disease virus produced in transgenic plants using different fusion strategies. PLANT BIOTECHNOLOGY JOURNAL 2006; 4:135-43. [PMID: 17177792 DOI: 10.1111/j.1467-7652.2005.00172.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Expression levels of vaccine antigens in transgenic plants have important consequences in their use as edible vaccines. The major structural protein VP60 from the rabbit haemorrhagic disease virus (RHDV) has been produced in transgenic plants using different strategies to compare its accumulation in plant tissues. The highest expressing plants were those presenting stable, complex, high-density structures formed by VP60, suggesting the importance of multisubunit structures for the stability of this protein in plant cells. Mice fed with leaves of transgenic plants expressing VP60 were primed to a subimmunogenic baculovirus-derived vaccine single dose. This indicates that plants expressing VP60 antigen may be a new means for oral RHDV immunization.
Collapse
Affiliation(s)
- Félix Gil
- Departamento de Biotecnología, INIA, Carretera de la Coruña Km7, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
10
|
Celec P, Kukucková M, Renczésová V, Natarajan S, Pálffy R, Gardlík R, Hodosy J, Behuliak M, Vlková B, Minárik G, Szemes T, Stuchlík S, Turna J. Biological and biomedical aspects of genetically modified food. Biomed Pharmacother 2005; 59:531-40. [PMID: 16298508 DOI: 10.1016/j.biopha.2005.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 07/05/2005] [Indexed: 11/23/2022] Open
Abstract
Genetically modified (GM) foods are the product of one of the most progressive fields of science-biotechnology. There are major concerns about GM foods in the public; some of them are reasonable, some of them are not. Biomedical risks of GM foods include problems regarding the potential allergenicity, horizontal gene transfer, but environmental side effects on biodiversity must also be recognized. Numerous methods have been developed to assess the potential risk of every GM food type. Benefits of the first generation of GM foods were oriented towards the production process and companies, the second generation of GM foods offers, on contrary, various advantages and added value for the consumer. This includes improved nutritional composition or even therapeutic effects. Recombinant probiotics and the principle of alternative gene therapy represent the latest approach of using GM organisms for biomedical applications. This article tries to summarize and to explain the problematic topic of GM food.
Collapse
Affiliation(s)
- Peter Celec
- Biomed Research and Publishing Group, Bratislava, Slovakia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gu Q, Han N, Liu J, Zhu M. Cloning of Helicobacter pylori urease subunit B gene and its expression in tobacco (Nicotiana tabacum L.). PLANT CELL REPORTS 2005; 24:532-9. [PMID: 16133345 DOI: 10.1007/s00299-005-0962-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 01/27/2005] [Accepted: 03/07/2005] [Indexed: 05/04/2023]
Abstract
Vaccines produced by transgenic plants would have the potential to change the traditional means of production and inoculation of vaccines, and to reduce the cost of vaccine production. In the present study, an UreB antigen gene from a new Helicobacter pylori strain ZJC02 was cloned into the binary vector pBI121 which contains a CaMV35S promoter and a kanamycin resistance gene, and then transformed UreB into tobacco leaf-disc by Agrobacterium-mediated method. A total of 50 regenerated plants with kanamycin resistance were obtained in the selection media. The 35 putative transgenic individuals were tested and verified the presence and integration of the UreB into the nuclear genome of tobacco plants by PCR, PCR-southern, and Southern analyses. Expression of UreB gene in the tobacco plants was confirmed by RT-PCR and Western Blot analysis using polyclonal human antiserum. To our knowledge, this is the first report of the expression of Helicobacter pylori UreB antigen gene in a plant system, suggesting a major step in the production of plant-based vaccines for Helicobacter pylori.
Collapse
Affiliation(s)
- Qing Gu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310012, China
| | | | | | | |
Collapse
|
12
|
Takahashi-Ando N, Tokai T, Hamamoto H, Yamaguchi I, Kimura M. Efficient decontamination of zearalenone, the mycotoxin of cereal pathogen, by transgenic yeasts through the expression of a synthetic lactonohydrolase gene. Appl Microbiol Biotechnol 2005; 67:838-44. [PMID: 15630583 DOI: 10.1007/s00253-004-1816-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 09/23/2004] [Accepted: 10/08/2004] [Indexed: 10/26/2022]
Abstract
Zearalenone (ZEN), an estrogenic mycotoxin produced by several Fusarium species, is converted to a non-estrogenic product by a detoxifying enzyme of Clonostachys rosea. Previously, we investigated whether recombinant Saccharomyces cerevisiae carrying this detoxification gene, zhd101, can remove 2 microg ml(-1) of ZEN in a liquid culture. Although the transgenic yeasts eliminated most of the ZEN, they also converted a significant amount to a poor substrate, beta-zearalenol, which remained in the medium. In this study, we synthesized a codon-optimized zhd101 gene and investigated whether the transgenic yeast strain can overcome the problem of insufficient detoxification of ZEN. Importantly, within 48 h of incubation at 28 degrees C or 8 h of incubation at 37 degrees C, the transgenic yeasts completely eliminated 2 microg ml(-1) of ZEN in the medium without accumulating even a trace amount of beta-zearalenol. The result suggests that incomplete ZEN detoxification attributed to the action of an endogenous yeast beta-reductase can be overcome by simply increasing the expression of the detoxifying gene.
Collapse
Affiliation(s)
- Naoko Takahashi-Ando
- Laboratory for Remediation Research, Plant Science Center, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | | | | | | | | |
Collapse
|
13
|
Kesik M, Saczyńska V, Szewczyk B, Płucienniczak A. Inclusion bodies from recombinant bacteria as a novel system for delivery of vaccine antigen by the oral route. Immunol Lett 2004; 91:197-204. [PMID: 15019290 DOI: 10.1016/j.imlet.2003.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 12/03/2003] [Accepted: 12/07/2003] [Indexed: 11/30/2022]
Abstract
A fragment of non-glycosylated E2 antigen of classical swine fever virus (CSFV), lacking the trans-membrane anchor (TM-) of the native glycoprotein, was produced in recombinant Escherichia coli strain BL21(DE3) in the form of inclusion bodies. These inclusion bodies isolated from the bacteria cells were administrated orally to mice twice at either 10 or 50 microg per dose. Each mouse fed with inclusion bodies carrying the E2 antigen responded with plasma antibodies and/or fecal IgA at least once during the entire investigation. Our study showed the capacity of inclusion bodies to induce both systemic and mucosal responses as well as to evoke relatively-long mucosal memory when fed to mice at low-number vaccination schedule and without any adjuvant. We propose the use of inclusion bodies for oral vaccination as an alternative to artificial systems for delivery of recombinant antigens by the oral route. Very few steps are needed to obtain an antigen ready for use as a vaccine. The procedure is easy and inexpensive and can be used for development of vaccine against classical swine fever.
Collapse
Affiliation(s)
- Małgorzata Kesik
- Department of Bioengineering, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland.
| | | | | | | |
Collapse
|
14
|
Abstract
Scientists involved in vaccine research and development face the challenge of protecting the ever-increasing elderly population from a broad spectrum of infectious diseases. The optimal vaccine-induced immune response to confer protection is undefined for many pathogens, and the field of vaccine research is undergoing a gradual shift from the original focus on humoral immunity to a focus that incorporates cellular and innate immune components. The age-related changes in various aspects of immune function, including an increase in a population of T cells that shows signs of replicative senescence, underscore the need to enhance research aimed at designing vaccines to meet the unique requirements of the elderly population.
Collapse
Affiliation(s)
- Rita B Effros
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1732 USA.
| |
Collapse
|
15
|
Haas D, Keel C. Regulation of antibiotic production in root-colonizing Peudomonas spp. and relevance for biological control of plant disease. ANNUAL REVIEW OF PHYTOPATHOLOGY 2003; 41:117-53. [PMID: 12730389 DOI: 10.1146/annurev.phyto.41.052002.095656] [Citation(s) in RCA: 380] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Certain strains of fluorescent pseudomonads are important biological components of agricultural soils that are suppressive to diseases caused by pathogenic fungi on crop plants. The biocontrol abilities of such strains depend essentially on aggressive root colonization, induction of systemic resistance in the plant, and the production of diffusible or volatile antifungal antibiotics. Evidence that these compounds are produced in situ is based on their chemical extraction from the rhizosphere and on the expression of antibiotic biosynthetic genes in the producer strains colonizing plant roots. Well-characterized antibiotics with biocontrol properties include phenazines, 2,4-diacetylphloroglucinol, pyoluteorin, pyrrolnitrin, lipopeptides, and hydrogen cyanide. In vitro, optimal production of these compounds occurs at high cell densities and during conditions of restricted growth, involving (i) a number of transcriptional regulators, which are mostly pathway-specific, and (ii) the GacS/GacA two-component system, which globally exerts a positive effect on the production of extracellular metabolites at a posttranscriptional level. Small untranslated RNAs have important roles in the GacS/GacA signal transduction pathway. One challenge in future biocontrol research involves development of new strategies to overcome the broad toxicity and lack of antifungal specificity displayed by most biocontrol antibiotics studied so far.
Collapse
Affiliation(s)
- Dieter Haas
- Institut de Microbiologie Fondamentale, Universite de Lausanne, CH-1015 Lausanne, Switzerland;
| | | |
Collapse
|
16
|
Aziz MA, Singh S, Anand Kumar P, Bhatnagar R. Expression of protective antigen in transgenic plants: a step towards edible vaccine against anthrax. Biochem Biophys Res Commun 2002; 299:345-51. [PMID: 12445805 DOI: 10.1016/s0006-291x(02)02625-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Protective antigen (PA) is the most potent molecule for vaccination against anthrax. In the present study, we have successfully integrated protective antigen gene in nuclear genome of tobacco plants by Agrobacterium mediated leaf-disc transformation method. Expression of protective antigen gene was detected by immunoblot analysis using antisera raised against purified PA. A distinct band of approximately 83kDa lighted up in the protein extracted from transformed plants while there was no such band in untransformed plants. The plant expressed PA showed biological activity just like native PA, which was demonstrated by cytolytic assay on macrophage like cell lines with lethal factor. This study establishes for the first time expression of PA gene in a plant system and thus marks the first milestone towards developing edible vaccine against anthrax.
Collapse
Affiliation(s)
- Mohd Azhar Aziz
- Centre for Biotechnology, Jawaharlal Nehru University, 110067, New Delhi, India
| | | | | | | |
Collapse
|
17
|
Renault P. Genetically modified lactic acid bacteria: applications to food or health and risk assessment. Biochimie 2002; 84:1073-87. [PMID: 12595135 DOI: 10.1016/s0300-9084(02)00029-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lactic acid bacteria have a long history of use in fermented food products. Progress in gene technology allows their modification by introducing new genes or by modifying their metabolic functions. These modifications may lead to improvements in food technology (bacteria better fitted to technological processes, leading to improved organoleptic properties em leader ), or to new applications including bacteria producing therapeutic molecules that could be delivered by mouth. Examples in these two fields will be discussed, at the same time evaluating their potential benefit to society and the possible risks associated with their use. Risk assessment and expected benefits will determine the future use of modified bacteria in the domains of food technology and health.
Collapse
Affiliation(s)
- Pierre Renault
- Génétique microbienne, Inra, domaine de Vilvert, 78352 Jouy-en-Josas, France.
| |
Collapse
|