1
|
Xian ZN, Gong H, Xu Y, Zhu N. Recent advances in occurrence, biotreatment, and integrated insights into bacterial degradation of phthalic acid esters in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138248. [PMID: 40239513 DOI: 10.1016/j.jhazmat.2025.138248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/08/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
Phthalic acid esters (PAEs) are prevalent as emerging contaminants owing to their widespread use as plasticizers in industry. Despite their environmental and health risks, a limited understanding of PAE contamination in aquatic environments hinders the practical implementation of biotreatment strategies for their removal. This paper reviews the advances in occurrence, biotreatment, and relevant integrative analysis of bacterial PAE degradation over the past decade. In various aquatic environments, dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) are the predominant PAE pollutants across different regions, with alarming levels reported in Eastern China. PAEs in water usually inhibit the growth and metabolism of surrounding organisms. Meanwhile, various biotreatment techniques have proven effective in removing PAEs from leachate and wastewater. The treatment efficiency can be further enhanced by incorporating suitable physicochemical processes and optimizing key factors, such as the initial pollutant concentration, PAE type, and reaction time. Additionally, a K-means machine learning algorithm and 16S rRNA gene-based evolutionary analysis were employed to reveal that soil is a preferred source for isolating strains, with Gordonia and Pseudomonas being the dominant genera of PAE-degrading bacteria exhibiting high degradation efficiency. Moreover, most PAE hydrolase genes were discovered in these two genera. Different gene clusters facilitated the subsequent degradation pathways under aerobic or anaerobic conditions. This paper presents the latest updates on PAE biotreatment and offers an integrated analysis of the bacterial degradation involved. Future research should apply these insights to enhance the overall effectiveness of PAE removal in water.
Collapse
Affiliation(s)
- Zhuo-Ning Xian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Huabo Gong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 20040, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
2
|
Yang SNN, Kertesz MA, Coleman NV. Phylogenetic and Functional Diversity of Soluble Di-Iron Monooxygenases. Environ Microbiol 2025; 27:e70050. [PMID: 39947201 PMCID: PMC11825192 DOI: 10.1111/1462-2920.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/23/2024] [Accepted: 01/15/2025] [Indexed: 02/17/2025]
Abstract
Monooxygenase (MO) enzymes are responsible for the oxidation of hydrocarbons and other compounds in the carbon and nitrogen cycles, are important for the biodegradation of pollutants and can act as biocatalysts for chemical manufacture. The soluble di-iron monooxygenases (SDIMOs) are of interest due to their broad substrate range, high enantioselectivity and ability to oxidise inert substrates such as methane. Here, we re-examine the phylogeny and functions of these enzymes, using recent advances in the field and expansions in sequence diversity in databases to highlight relationships between SDIMOs and revisit their classification. We discuss the impact of horizontal gene transfer on SDIMO phylogeny, the potential of SDIMOs for the biodegradation of pollutants and the importance of heterologous expression as a tool for understanding SDIMO functions and enabling their use as biocatalysts. Our analysis highlights current knowledge gaps, most notably, the unknown substrate ranges and physiological roles of enzymes that have so far only been detected via genome or metagenome sequencing. Enhanced understanding of the diversity and functions of the SDIMO enzymes will enable better prediction and management of biogeochemical processes and also enable new applications of these enzymes for biocatalysis and bioremediation.
Collapse
Affiliation(s)
- Sui Nin Nicholas Yang
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Michael A. Kertesz
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Nicholas V. Coleman
- Australian Genome Foundry and ARC Centre of Excellence in Synthetic BiologyMacquarie UniversitySydneyNew South WalesAustralia
| |
Collapse
|
3
|
Wang X, Fu C, Chen M, Wu Y, Chen Y, Chen Y, Li L. Fitness and adaptive evolution of a Rhodococcus sp. harboring dioxin-catabolic plasmids. World J Microbiol Biotechnol 2025; 41:51. [PMID: 39865154 DOI: 10.1007/s11274-025-04270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
Catabolic plasmids are critical factors in the degradation of recalcitrant xenobiotics, such as dioxins. Understanding the persistence and evolution of native catabolic plasmids is pivotal for controlling their function in microbial remediation. Here, we track the fitness and evolution of Rhodococcus sp. strain p52 harboring dioxin-catabolic plasmids under nonselective conditions without contaminant. Growth curve analysis and competition experiments demonstrated that pDF01 imposed fitness costs, whereas pDF02 conferred fitness benefits. During stability tests, pDF01 tended to be lost from the population, while pDF02 maintained at least one copy in the cell until proliferation of the 400th generation. Genome-wide gene expression profiling combined with codon usage bias analysis revealed that the high expression of pDF01 genes involved in dibenzofuran catabolism and regulation caused metabolic burdens. In contrast, potential cooperation between the pDF02-encoded short-chain dehydrogenase/reductase family oxidoreductase and the redox cofactor mycofactocin, which synthetic genes are located on the chromosome, may explain the benefit of pDF02. The fitness cost imposed by pDF01 was alleviated during adaptive evolution and was associated with the transcriptional downregulation of the dibenzofuran degradation genes on pDF01, and the global regulation of genome-wide gene expression involving basic metabolism, transport, and signal transduction. This study broadens our understandings on the persistence and evolution of dioxin-catabolic mega-plasmids, thus paving the way for the bioremediation of recalcitrant xenobiotic pollution in the environment.
Collapse
Affiliation(s)
- Xu Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China
| | - Changai Fu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China
| | - Meng Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China
- Marine Genomics and Biotechnology Program, Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China
| | - Yanan Wu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China
| | - Yu Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China
| | - Yan Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China
| | - Li Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China.
| |
Collapse
|
4
|
Hossain MS, Iken B, Iyer R. Whole genome analysis of 26 bacterial strains reveals aromatic and hydrocarbon degrading enzymes from diverse environmental soil samples. Sci Rep 2024; 14:30685. [PMID: 39730399 DOI: 10.1038/s41598-024-78564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/31/2024] [Indexed: 12/29/2024] Open
Abstract
Polycyclic aromatic compounds and petroleum hydrocarbons (PHs) are hazardous pollutants and seriously threaten the environment and human health. However, native microbial communities can adapt to these toxic pollutants, utilize these compounds as a carbon source, and eventually evolve to degrade these toxic contaminants. With this in mind, we isolated 26 bacterial strains from various environmental soil samples. Utilizing whole genome shotgun sequencing and analyses of these genomes revealed that they all belong to a single phylum with seven genera and sixteen species, and displayed variable genome sizes with CDS features, % GC contents, and GC skews. The analysis of genome annotation predicted genes/enzymes related to aromatic compound degradation, including the metabolism of homogentisate, salicylate and gentisate catabolism, benzoate, biphenyl, and phenylpropanoid compound degradation, and protocatechuate branch of beta-ketoadipate pathways. The majority of enzymes were found to belong to species Achromobacter pulmonis A (16%) & Achromobacter mucicolens (15%), Pseudomonas citronellolis (10%), and Comamonas thiooxydans (8%). Conversely, the highest number of hydrocarbon-degrading enzymes were found to be annotated in the species Pseudomonas citronellolis (13%), Comamonas thiooxydans (9%), Acinetobacter variabilis (7%), Pseudomonas aeruginosa, and Pseudomonas E sp002113165 (6%). These enzymes were categorized as dioxygenase, monooxygenase, hydroxylase, dehydrogenase, hydrolase, decarboxylase, aldolase, etc., and were predicted to function for benzoate, benzene, toluene, naphthalene, xylene, phthalate & terephthalate, anthranilate, protocatechuate & homoprotocatechuate, salicylate, aerobic & anaerobic gallate, and lignin subunit degradation, and catechol meta & ortho-cleavage pathways. In the future, molecular and biochemical characterization of these enzymes, together with strain assays for their capacity to degrade various pollutants, will help to improve the bioremediation process for environmental contaminations.
Collapse
Affiliation(s)
- Md Shakhawat Hossain
- Institute for Biotechnology Research and Innovation, Tarleton State University, Stephenville, TX, 76402, USA.
- Division of Research, Innovation, and Economic Development (RIED), Tarleton State University, Stephenville, TX, 76402, USA.
| | - Brian Iken
- Division of Research, Innovation, and Economic Development (RIED), Tarleton State University, Stephenville, TX, 76402, USA
| | - Rupa Iyer
- Division of Research, Innovation, and Economic Development (RIED), Tarleton State University, Stephenville, TX, 76402, USA
| |
Collapse
|
5
|
Ketehouli T, Goss EM, Ascunce MS, Martins SJ. Metabolic and physiological effects of antibiotic-induced dysbiosis in citrus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117325. [PMID: 39541699 DOI: 10.1016/j.ecoenv.2024.117325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/21/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Streptomycin (Str) and oxytetracycline (Otc) are widely used antibiotics to manage bacterial diseases in citrus and other crops. However, their impacts on the rhizosphere bacterial assembly and plant physiology are poorly understood. The aim of this study was to examine the effects of Str and Otc on the physiology (assimilation, transpiration rate, intracellular CO2, and stomatal conductance to water vapor), rhizosphere bacterial assemblages (16S rRNA gene high-throughput amplicon sequencing), and rhizosphere metabolite profiles in healthy Citrus reticulata trees. The results indicated a reduction in photosynthesis after Str and Otc treatments, whereas CO2 outflow stayed constant. Both antibiotics decreased the culturable numbers of bacteria. Analysis of the microbiome showed changes in relative abundance of bacterial groups, specifically Pseudomonas, Agrobacterium, and Streptomyces, in response to the antibiotics. Metabolite profiles changed in streptomycin- and oxytetracycline-treated citrus plants suggesting response to microbe targets or induction of stress responses. This study advances knowledge of antibiotic-driven effects on the rhizosphere microbiome, rhizosphere metabolome, and plant physiology, which is essential for managing plant diseases while safeguarding rhizosphere ecology and long-term plant health.
Collapse
Affiliation(s)
- Toi Ketehouli
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Marina S Ascunce
- USDA-ARS Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL 32608, USA
| | - Samuel J Martins
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
6
|
Zhu M, Xu D, Liao C, Zhang T, Zhou B, Wang K, Li P, Cheng Z, Chen C. Microbial Dynamics and Pathogen Control During Fermentation of Distiller Grains: Effects of Fermentation Time on Feed Safety. Int J Mol Sci 2024; 25:11463. [PMID: 39519016 PMCID: PMC11546228 DOI: 10.3390/ijms252111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Determining the effects of fermentation duration on the microbial ecosystem, potential pathogenic risks, and metabolite generation during the fermentation of distilled grains is essential for safeguarding the safety and enhancing the nutritional profile of animal feed. This study investigates the effect of varying fermentation times (9, 30, and 60 days) on microbial diversity, pathogenic risk, and metabolite profiles in distiller grains using 16S rDNA sequencing and LC-MS-based metabolomics. The results showed that early fermentation (9-30 days) enhanced the abundance of beneficial bacteria, such as Lactobacillus reuteri and Lactobacillus pontis (p < 0.05), while pathogenic bacteria, like Serratia marcescens and Citrobacter freundii, were significantly reduced (p < 0.05). Metabolomic analysis revealed an increase in unsaturated fatty acids and the degradation of biogenic amines during early fermentation. However, prolonged fermentation (60 days) led to a resurgence of pathogenic bacteria and reduced the synthesis of essential metabolites. These findings suggest that fermentation duration must be optimized to balance microbial safety and nutrient quality, with 30 days being the optimal period to reduce pathogenic risks and enhance feed quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China; (M.Z.); (D.X.); (C.L.); (T.Z.); (B.Z.); (K.W.); (P.L.); (Z.C.)
| |
Collapse
|
7
|
Ta Y, Fu S, Liu H, Zhang C, He M, Yu H, Ren Y, Han Y, Hu W, Yan Z, Wang Y. Evaluation of Bacillus velezensis F9 for Cucumber Growth Promotion and Suppression of Fusarium wilt Disease. Microorganisms 2024; 12:1882. [PMID: 39338556 PMCID: PMC11434287 DOI: 10.3390/microorganisms12091882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Cucumber wilt, caused by Fusarium oxysporum f. sp. cucumerinum (FOC), is a soilborne disease that poses a significant threat to cucumber production, resulting in substantial yield losses. This study aimed to evaluate the biocontrol and growth-promoting effects of Bacillus velezensis, a highly active bacterial strain. In vitro assays revealed that B. velezensis F9 exhibited broad-spectrum antifungal activity against eight plant pathogenic fungi, with inhibition ratio ranging from 62.66% to 88.18%. Additionally, the strain displayed the ability to produce IAA (5.97 ± 1.75 µg/mL), fix nitrogen, produce siderophores, and form biofilms. In vitro growth promotion assays demonstrated that different concentrations of B. velezensis F9 significantly promoted cucumber seedling growth. Furthermore, two pot experiments revealed that the strain exhibited biocontrol efficacy against cucumber wilt, with disease control rates ranging from 42.86% to 67.78%. Notably, the strain significantly increased the plant height, fresh weight, and dry weight, with increases ranging from 20.67% to 60.04%, 40.27% to 75.51%, and 22.07% to 52.54%, respectively. Two field trials confirmed the efficacy of B. velezensis F9 in controlling cucumber wilt, with disease control rates of 44.95% and 33.99%, respectively. The strain effectively alleviated the dwarfing and wilting symptoms caused by the pathogen. Compared with the FOC treatment, the F9 + FOC treatment significantly increased the plant height, fresh weight, and dry weight, with increases of 43.85% and 56.28%, 49.49% and 23.70%, and 36.25% and 73.63%, respectively. Enzyme activity assays indicated that inoculation significantly increased SOD activity in cucumber leaves and neutral phosphatase, sucrase, and urease activity in rhizosphere soil. Correlation analysis revealed a negative correlation between the disease index and plant height, fresh weight, dry weight, and peroxidase activity, with correlation coefficients of -0.53, -0.60, -0.38, and -0.45, respectively. These findings suggest that plant height, fresh weight, and dry weight are significantly negatively correlated with the cucumber disease index, highlighting their importance as indicators for evaluating the biocontrol efficacy of B. velezensis F9. In conclusion, B. velezensis F9 is a highly effective plant growth-promoting rhizobacterium with excellent biocontrol potential, showcasing promising applications in agricultural production.
Collapse
Affiliation(s)
- Yongquan Ta
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.T.); (S.F.); (H.L.); (C.Z.); (M.H.); (H.Y.); (Y.R.); (Y.H.); (W.H.); (Z.Y.)
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling 712100, China
| | - Shaowei Fu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.T.); (S.F.); (H.L.); (C.Z.); (M.H.); (H.Y.); (Y.R.); (Y.H.); (W.H.); (Z.Y.)
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling 712100, China
| | - Hui Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.T.); (S.F.); (H.L.); (C.Z.); (M.H.); (H.Y.); (Y.R.); (Y.H.); (W.H.); (Z.Y.)
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling 712100, China
| | - Caiyun Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.T.); (S.F.); (H.L.); (C.Z.); (M.H.); (H.Y.); (Y.R.); (Y.H.); (W.H.); (Z.Y.)
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling 712100, China
| | - Mengru He
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.T.); (S.F.); (H.L.); (C.Z.); (M.H.); (H.Y.); (Y.R.); (Y.H.); (W.H.); (Z.Y.)
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling 712100, China
| | - Hang Yu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.T.); (S.F.); (H.L.); (C.Z.); (M.H.); (H.Y.); (Y.R.); (Y.H.); (W.H.); (Z.Y.)
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling 712100, China
| | - Yihua Ren
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.T.); (S.F.); (H.L.); (C.Z.); (M.H.); (H.Y.); (Y.R.); (Y.H.); (W.H.); (Z.Y.)
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling 712100, China
| | - Yunfei Han
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.T.); (S.F.); (H.L.); (C.Z.); (M.H.); (H.Y.); (Y.R.); (Y.H.); (W.H.); (Z.Y.)
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling 712100, China
| | - Wenqiong Hu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.T.); (S.F.); (H.L.); (C.Z.); (M.H.); (H.Y.); (Y.R.); (Y.H.); (W.H.); (Z.Y.)
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling 712100, China
| | - Zhiqiang Yan
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.T.); (S.F.); (H.L.); (C.Z.); (M.H.); (H.Y.); (Y.R.); (Y.H.); (W.H.); (Z.Y.)
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling 712100, China
| | - Yonghong Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.T.); (S.F.); (H.L.); (C.Z.); (M.H.); (H.Y.); (Y.R.); (Y.H.); (W.H.); (Z.Y.)
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
8
|
Tuan TQ, Mawarda PC, Ali N, Curias A, Nguyen TPO, Khoa ND, Springael D. Niche-specification of aerobic 2,4-dichlorophenoxyacetic acid biodegradation by tfd-carrying bacteria in the rice paddy ecosystem. Front Microbiol 2024; 15:1425193. [PMID: 39247702 PMCID: PMC11377324 DOI: 10.3389/fmicb.2024.1425193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
This study aimed for a better understanding of the niche specification of bacteria carrying the tfd-genes for aerobic 2,4-dichlorphenoxyacetic acid (2,4-D) degradation in the rice paddy ecosystem. To achieve this, a dedicated microcosm experiment was set up to mimic the rice paddy system, with and without 2,4-D addition, allowing spatial sampling of the different rice paddy compartments and niches, i.e., the main anaerobic bulk soil and the aerobic surface water, surface soil, root surface and rhizosphere compartments. No effect of 2,4-D on the growth and morphology of the rice plant was noted. 2,4-D removal was faster in the upper soil layers compared to the deeper layers and was more rapid after the second 2,4-D addition compared to the first. Moreover, higher relative abundances of the 2,4-D catabolic gene tfdA and of the mobile genetic elements IncP-1 and IS1071 reported to carry the tfd-genes, were observed in surface water and surface soil when 2,4-D was added. tfdA was also detected in the root surface and rhizosphere compartment but without response to 2,4-D addition. While analysis of the bacterial community composition using high-throughput 16S rRNA gene amplicon sequencing did not reveal expected tfd-carrying taxa, subtle community changes linked with 2,4-D treatment and the presence of the plant were observed. These findings suggest (i) that the surface soil and surface water are the primary and most favorable compartements/niches for tfd-mediated aerobic 2,4-D biodegradation and (ii) that the community structure in the 2,4-D treated rice paddy ecosystem is determined by a niche-dependent complex interplay between the effects of the plant and of 2,4-D.
Collapse
Affiliation(s)
- Tran Quoc Tuan
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho, Vietnam
| | - Panji Cahya Mawarda
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
- Research Center for Applied Microbiology, National Research and Innovation Agency Republic of Indonesia (BRIN), KST Samaun Sadikun, Bogor, Indonesia
| | - Norhan Ali
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | - Arne Curias
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | - Thi Phi Oanh Nguyen
- Department of Biology, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| | - Nguyen Dac Khoa
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho, Vietnam
| | - Dirk Springael
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Boukouvala S, Kontomina E, Olbasalis I, Patriarcheas D, Tzimotoudis D, Arvaniti K, Manolias A, Tsatiri MA, Basdani D, Zekkas S. Insights into the genomic and functional divergence of NAT gene family to serve microbial secondary metabolism. Sci Rep 2024; 14:14905. [PMID: 38942826 PMCID: PMC11213898 DOI: 10.1038/s41598-024-65342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024] Open
Abstract
Microbial NAT enzymes, which employ acyl-CoA to acylate aromatic amines and hydrazines, have been well-studied for their role in xenobiotic metabolism. Some homologues have also been linked to secondary metabolism, but this function of NAT enzymes is not as well-known. For this comparative study, we surveyed sequenced microbial genomes to update the list of formally annotated NAT genes, adding over 4000 new sequences (mainly bacterial, but also archaeal, fungal and protist) and portraying a broad but not universal distribution of NATs in the microbiocosmos. Localization of NAT sequences within microbial gene clusters was not a rare finding, and this association was evident across all main types of biosynthetic gene clusters (BGCs) implicated in secondary metabolism. Interrogation of the MIBiG database for experimentally characterized clusters with NAT genes further supports that secondary metabolism must be a major function for microbial NAT enzymes and should not be overlooked by researchers in the field. We also show that NAT sequences can be associated with bacterial plasmids potentially involved in horizontal gene transfer. Combined, our computational predictions and MIBiG literature findings reveal the extraordinary functional diversification of microbial NAT genes, prompting further research into their role in predicted BGCs with as yet uncharacterized function.
Collapse
Affiliation(s)
- Sotiria Boukouvala
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece.
| | - Evanthia Kontomina
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Ioannis Olbasalis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dionysios Patriarcheas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dimosthenis Tzimotoudis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Konstantina Arvaniti
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Aggelos Manolias
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Maria-Aggeliki Tsatiri
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dimitra Basdani
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Sokratis Zekkas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| |
Collapse
|
10
|
Gluck-Thaler E, Vogan A. Systematic identification of cargo-mobilizing genetic elements reveals new dimensions of eukaryotic diversity. Nucleic Acids Res 2024; 52:5496-5513. [PMID: 38686785 PMCID: PMC11162782 DOI: 10.1093/nar/gkae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Cargo-mobilizing mobile elements (CMEs) are genetic entities that faithfully transpose diverse protein coding sequences. Although common in bacteria, we know little about eukaryotic CMEs because no appropriate tools exist for their annotation. For example, Starships are giant fungal CMEs whose functions are largely unknown because they require time-intensive manual curation. To address this knowledge gap, we developed starfish, a computational workflow for high-throughput eukaryotic CME annotation. We applied starfish to 2 899 genomes of 1 649 fungal species and found that starfish recovers known Starships with 95% combined precision and recall while expanding the number of annotated elements ten-fold. Extant Starship diversity is partitioned into 11 families that differ in their enrichment patterns across fungal classes. Starship cargo changes rapidly such that elements from the same family differ substantially in their functional repertoires, which are predicted to contribute to diverse biological processes such as metabolism. Many elements have convergently evolved to insert into 5S rDNA and AT-rich sequence while others integrate into random locations, revealing both specialist and generalist strategies for persistence. Our work establishes a framework for advancing mobile element biology and provides the means to investigate an emerging dimension of eukaryotic genetic diversity, that of genomes within genomes.
Collapse
Affiliation(s)
- Emile Gluck-Thaler
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Neuchâtel 2000, Switzerland
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Wisconsin Institute for Discovery, Madison, WI 53706, USA
| | - Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, 752 36, Sweden
| |
Collapse
|
11
|
Ilyas M, Purkait D, Atmakuri K. Genomic islands and their role in fitness traits of two key sepsis-causing bacterial pathogens. Brief Funct Genomics 2024; 23:55-68. [PMID: 36528816 DOI: 10.1093/bfgp/elac051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 01/21/2024] Open
Abstract
To survive and establish a niche for themselves, bacteria constantly evolve. Toward that, they not only insert point mutations and promote illegitimate recombinations within their genomes but also insert pieces of 'foreign' deoxyribonucleic acid, which are commonly referred to as 'genomic islands' (GEIs). The GEIs come in several forms, structures and types, often providing a fitness advantage to the harboring bacterium. In pathogenic bacteria, some GEIs may enhance virulence, thus altering disease burden, morbidity and mortality. Hence, delineating (i) the GEIs framework, (ii) their encoded functions, (iii) the triggers that help them move, (iv) the mechanisms they exploit to move among bacteria and (v) identification of their natural reservoirs will aid in superior tackling of several bacterial diseases, including sepsis. Given the vast array of comparative genomics data, in this short review, we provide an overview of the GEIs, their types and the compositions therein, especially highlighting GEIs harbored by two important pathogens, viz. Acinetobacter baumannii and Klebsiella pneumoniae, which prominently trigger sepsis in low- and middle-income countries. Our efforts help shed some light on the challenges these pathogens pose when equipped with GEIs. We hope that this review will provoke intense research into understanding GEIs, the cues that drive their mobility across bacteria and the ways and means to prevent their transfer, especially across pathogenic bacteria.
Collapse
Affiliation(s)
- Mohd Ilyas
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Dyuti Purkait
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Krishnamohan Atmakuri
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| |
Collapse
|
12
|
Singh P, Dilnashin H, Kumar KD, Singh SP, Kumar R. Biodegradation of furfuryl alcohol by indigenous Bacillus species of industrial effluent-contaminated sites: estimation, biokinetics and toxicity assessment of bio-transformed metabolites. World J Microbiol Biotechnol 2023; 40:28. [PMID: 38057683 DOI: 10.1007/s11274-023-03824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/30/2023] [Indexed: 12/08/2023]
Abstract
Furfuryl alcohol (FA) and other furanic compounds have garnered considerable attention in the quest for sustainable alternatives. FA-based resins have been used in various sectors that entail the release of FA into the environment. Hence, to ensure sustainability in this scenario, devising a dependable approach to its degradation is imperative. Given the crucial role of bacterial strains in the biodegradation of various organic pollutants, this study investigates the microbial degradation of FA, using bacterial strains isolated from sites that are constantly exposed to industrial waste. Three potential isolates were identified as B. paramycoides, B. cereus, and B. tequilensis by 16S rRNA gene sequencing. At a concentration of 300 µg/ml, these isolates demonstrated efficient FA degradation; 60-70% (at 300 µg/ml FA) and 50-60%, (at 500 µg/ml FA). Fourier-transform infrared (FTIR) spectroscopy and High-Performance Liquid Chromatography (HPLC) analysis further supported the result that the bacterial isolates consumed FA as the carbon source. Liquid chromatography-mass spectrometry (LC-MS) facilitates the detection of the major metabolic intermediate product in which FA gets transformed. The prominent peaks at 113 and 119 m/z obtained in the MS spectra of the degraded FA samples indicated the possibility of the conversion of FA into furoic acid or levulinic acid. The phytotoxicity bioassay findings revealed the non-toxic nature of the bio-transformed products as compared to pure FA. This investigation presents the initial documentation of the FA degradative potential of Bacillus strains, thereby augmenting the understanding of the prospective implementation of Bacillus species in industrial waste treatment projects.
Collapse
Affiliation(s)
- Priyaragini Singh
- Department of Biotechnology, Central University of South Bihar, Gaya, 824236, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Kotnees Dinesh Kumar
- Department of Materials Science & Engineering, Indian Institute of Technology, Patna, 801106, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rakesh Kumar
- Department of Biotechnology, Central University of South Bihar, Gaya, 824236, India.
| |
Collapse
|
13
|
Martinez-Varela A, Casas G, Berrojalbiz N, Lundin D, Piña B, Dachs J, Vila-Costa M. Metatranscriptomic responses and microbial degradation of background polycyclic aromatic hydrocarbons in the coastal Mediterranean and Antarctica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119988-119999. [PMID: 37934408 DOI: 10.1007/s11356-023-30650-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Although microbial degradation is a key sink of polycyclic aromatic hydrocarbons (PAH) in surface seawaters, there is a dearth of field-based evidences of regional divergences in biodegradation and the effects of PAHs on site-specific microbial communities. We compared the magnitude of PAH degradation and its impacts in short-term incubations of coastal Mediterranean and the Maritime Antarctica microbiomes with environmentally relevant concentrations of PAHs. Mediterranean bacteria readily degraded the less hydrophobic PAHs, with rates averaging 4.72 ± 0.5 ng L h-1. Metatranscriptomic responses showed significant enrichments of genes associated to horizontal gene transfer, stress response, and PAH degradation, mainly harbored by Alphaproteobacteria. Community composition changed and increased relative abundances of Bacteroidota and Flavobacteriales. In Antarctic waters, there was no degradation of PAH, and minimal metatranscriptome responses were observed. These results provide evidence for factors such as geographic region, community composition, and pre-exposure history to predict PAH biodegradation in seawater.
Collapse
Affiliation(s)
- Alicia Martinez-Varela
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, c/ Jordi Girona 18-26, 08034, Barcelona, Catalunya, Spain
| | - Gemma Casas
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, c/ Jordi Girona 18-26, 08034, Barcelona, Catalunya, Spain
| | - Naiara Berrojalbiz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, c/ Jordi Girona 18-26, 08034, Barcelona, Catalunya, Spain
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus University, 35195, Kalmar, Sweden
| | - Benjamin Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, c/ Jordi Girona 18-26, 08034, Barcelona, Catalunya, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, c/ Jordi Girona 18-26, 08034, Barcelona, Catalunya, Spain
| | - Maria Vila-Costa
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, c/ Jordi Girona 18-26, 08034, Barcelona, Catalunya, Spain.
| |
Collapse
|
14
|
Farmer M, Rajasabhai R, Tarpeh W, Tyo K, Wells G. Meta-omic profiling reveals ubiquity of genes encoding for the nitrogen-rich biopolymer cyanophycin in activated sludge microbiomes. Front Microbiol 2023; 14:1287491. [PMID: 38033562 PMCID: PMC10687191 DOI: 10.3389/fmicb.2023.1287491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Recovering nitrogen (N) from municipal wastewater is a promising approach to prevent nutrient pollution, reduce energy use, and transition toward a circular N bioeconomy, but remains a technologically challenging endeavor. Existing N recovery techniques are optimized for high-strength, low-volume wastewater. Therefore, developing methods to concentrate dilute N from mainstream wastewater will bridge the gap between existing technologies and practical implementation. The N-rich biopolymer cyanophycin is a promising candidate for N bioconcentration due to its pH-tunable solubility characteristics and potential for high levels of accumulation. However, the cyanophycin synthesis pathway is poorly explored in engineered microbiomes. In this study, we analyzed over 3,700 publicly available metagenome assembled genomes (MAGs) and found that the cyanophycin synthesis gene cphA was ubiquitous across common activated sludge bacteria. We found that cphA was present in common phosphorus accumulating organisms (PAO) Ca. 'Accumulibacter' and Tetrasphaera, suggesting potential for simultaneous N and P bioconcentration in the same organisms. Using metatranscriptomic data, we confirmed the expression of cphA in lab-scale bioreactors enriched with PAO. Our findings suggest that cyanophycin synthesis is a ubiquitous metabolic activity in activated sludge microbiomes. The possibility of combined N and P bioconcentration could lower barriers to entry for N recovery, since P concentration by PAO is already a widespread biotechnology in municipal wastewater treatment. We anticipate this work to be a starting point for future evaluations of combined N and P bioaccumulation, with the ultimate goal of advancing widespread adoption of N recovery from municipal wastewater.
Collapse
Affiliation(s)
- McKenna Farmer
- Civil and Environmental Engineering, Northwestern University, Evanston, IL, United States
| | - Rashmi Rajasabhai
- Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - William Tarpeh
- Chemical Engineering, Stanford University, Stanford, CA, United States
| | - Keith Tyo
- Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - George Wells
- Civil and Environmental Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
15
|
Huang C, Pham HQ, Zhu L, Wang R, Law OK, Lin SL, Nie QC, Zhang L, Wang X, Lau TCK. Comparative Analysis of Transcriptome and Proteome Revealed the Common Metabolic Pathways Induced by Prevalent ESBL Plasmids in Escherichia coli. Int J Mol Sci 2023; 24:14009. [PMID: 37762311 PMCID: PMC10531281 DOI: 10.3390/ijms241814009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic resistance has emerged as one of the most significant threats to global public health. Plasmids, which are highly efficient self-replicating genetic vehicles, play a critical role in the dissemination of drug-resistant genes. Previous studies have mainly focused on drug-resistant genes only, often neglecting the complete functional role of multidrug-resistant (MDR) plasmids in bacteria. In this study, we conducted a comprehensive investigation of the transcriptomes and proteomes of Escherichia coli J53 transconjugants harboring six major MDR plasmids of different incompatibility (Inc) groups, which were clinically isolated from patients. The RNA-seq analysis revealed that MDR plasmids influenced the gene expression in the bacterial host, in particular, the genes related to metabolic pathways. A proteomic analysis demonstrated the plasmid-induced regulation of several metabolic pathways including anaerobic respiration and the utilization of various carbon sources such as serine, threonine, sialic acid, and galactarate. These findings suggested that MDR plasmids confer a growth advantage to bacterial hosts in the gut, leading to the expansion of plasmid-carrying bacteria over competitors without plasmids. Moreover, this study provided insights into the versatility of prevalent MDR plasmids in moderating the cellular gene network of bacteria, which could potentially be utilized in therapeutics development for bacteria carrying MDR plasmids.
Collapse
Affiliation(s)
- Chuan Huang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Hoa-Quynh Pham
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Lina Zhu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Rui Wang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Oi-Kwan Law
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Shu-Ling Lin
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Qi-Chang Nie
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Liang Zhang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Xin Wang
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Terrence Chi-Kong Lau
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Kelbrick M, Hesse E, O' Brien S. Cultivating antimicrobial resistance: how intensive agriculture ploughs the way for antibiotic resistance. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001384. [PMID: 37606636 PMCID: PMC10482381 DOI: 10.1099/mic.0.001384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Antimicrobial resistance (AMR) is a growing threat to public health, global food security and animal welfare. Despite efforts in antibiotic stewardship, AMR continues to rise worldwide. Anthropogenic activities, particularly intensive agriculture, play an integral role in the dissemination of AMR genes within natural microbial communities - which current antibiotic stewardship typically overlooks. In this review, we examine the impact of anthropogenically induced temperature fluctuations, increased soil salinity, soil fertility loss, and contaminants such as metals and pesticides on the de novo evolution and dissemination of AMR in the environment. These stressors can select for AMR - even in the absence of antibiotics - via mechanisms such as cross-resistance, co-resistance and co-regulation. Moreover, anthropogenic stressors can prime bacterial physiology against stress, potentially widening the window of opportunity for the de novo evolution of AMR. However, research to date is typically limited to the study of single isolated bacterial species - we lack data on how intensive agricultural practices drive AMR over evolutionary timescales in more complex microbial communities. Furthermore, a multidisciplinary approach to fighting AMR is urgently needed, as it is clear that the drivers of AMR extend far beyond the clinical environment.
Collapse
Affiliation(s)
- Matthew Kelbrick
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Elze Hesse
- College of Life and Environmental Science, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Siobhán O' Brien
- Department of Microbiology, Moyne Institute for Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Republic of Ireland
| |
Collapse
|
17
|
Fujihara H, Hirose J, Suenaga H. Evolution of genetic architecture and gene regulation in biphenyl/PCB-degrading bacteria. Front Microbiol 2023; 14:1168246. [PMID: 37350784 PMCID: PMC10282184 DOI: 10.3389/fmicb.2023.1168246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
A variety of bacteria in the environment can utilize xenobiotic compounds as a source of carbon and energy. The bacterial strains degrading xenobiotics are suitable models to investigate the adaptation and evolutionary processes of bacteria because they appear to have emerged relatively soon after the release of these compounds into the natural environment. Analyses of bacterial genome sequences indicate that horizontal gene transfer (HGT) is the most important contributor to the bacterial evolution of genetic architecture. Further, host bacteria that can use energy effectively by controlling the expression of organized gene clusters involved in xenobiotic degradation will have a survival advantage in harsh xenobiotic-rich environments. In this review, we summarize the current understanding of evolutionary mechanisms operative in bacteria, with a focus on biphenyl/PCB-degrading bacteria. We then discuss metagenomic approaches that are useful for such investigation.
Collapse
Affiliation(s)
- Hidehiko Fujihara
- Department of Food and Fermentation Sciences, Faculty of Food and Nutrition Sciences, Beppu University, Beppu, Japan
| | - Jun Hirose
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Hikaru Suenaga
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| |
Collapse
|
18
|
Wu C, Zhang G, Zhang K, Sun J, Cui Z, Guo Y, Liu H, Xu W. Strong variation in sedimental antibiotic resistomes among urban rivers, estuaries and coastal oceans: Evidence from a river-connected coastal water ecosystem in northern China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118132. [PMID: 37263036 DOI: 10.1016/j.jenvman.2023.118132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 06/03/2023]
Abstract
Sediment is thought to be a vital reservoir to spread antibiotic resistance genes (ARGs) among various natural environments. However, the spatial distribution patterns of the sedimental antibiotic resistomes around the Bohai Bay region, a river-connected coastal water ecosystem, are still poorly understood. The present study conducted a comprehensive investigation of ARGs among urban rivers (UR), estuaries (ES) and Bohai Bay (BHB) by metagenomic sequencing. Overall, a total of 169 unique ARGs conferring resistance to 15 antimicrobial classes were detected across all sediment samples. The Kruskal-Wallis test showed that the diversity and abundance of ARGs in the UR were all significantly higher than those in the ES and BHB (p < 0.05 and p < 0.01), revealing the distance dilution of the sedimental resistomes from the river to the ocean. Multidrug resistance genes contained most of the ARG subtypes, whereas rifamycin resistance genes were the most abundant ARGs in this region. Our study demonstrated that most antimicrobial resistomes were highly accumulated in urban river sediments, whereas beta-lactamase resistance genes (mainly PNGM-1) dramatically increased away from the estuary to the open ocean. The relative abundance of mobile genetic elements (MGEs) also gradually decreased from rivers to the coastal ocean, whereas the difference in pathogenic bacteria was not significant in the three classifications. Among MGEs, plasmids were recognized as the most important carriers to support the horizontal gene transfer of ARGs within and between species. According to co-occurrence networks, pathogenic Proteobacteria, Actinobacteria, and Bacteroidetes were recognized as potential and important hosts of ARGs. Heavy metals, pH and moisture content were all recognized as the vital environmental factors influencing the distribution of ARGs in sediment samples. Overall, the present study may help to understand the distribution patterns of ARGs at a watershed scale, and help to make effective policies to control the emergence, spread and evolution of different ARG subtypes in different habitats.
Collapse
Affiliation(s)
- Chao Wu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Guicheng Zhang
- Research Centre for Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Kai Zhang
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Macao, 999078, China
| | - Jun Sun
- Research Centre for Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China; Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, 510635, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, 430074, China.
| | - Zhengguo Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
| | - Yiyan Guo
- Research Centre for Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Haijiao Liu
- Research Centre for Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wenzhe Xu
- Research Centre for Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| |
Collapse
|
19
|
Bokade P, Gaur VK, Tripathi V, Bobate S, Manickam N, Bajaj A. Bacterial remediation of pesticide polluted soils: Exploring the feasibility of site restoration. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129906. [PMID: 36088882 DOI: 10.1016/j.jhazmat.2022.129906] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
For decades, reclamation of pesticide contaminated sites has been a challenging avenue. Due to increasing agricultural demand, the application of synthetic pesticides could not be controlled in its usage, and it has now adversely impacted the soil, water, and associated ecosystems posing adverse effects on human health. Agricultural soil and pesticide manufacturing sites, in particular, are one of the most contaminated due to direct exposure. Among various strategies for soil reclamation, ecofriendly microbial bioremediation suffers inherent challenges for large scale field application as interaction of microbes with the polluted soil varies greatly under climatic conditions. Methodically, starting from functional or genomic screening, enrichment isolation; functional pathway mapping, production of tensioactive metabolites for increasing the bioavailability and bio-accessibility, employing genetic engineering strategies for modifications in existing catabolic genes to enhance the degradation activity; each step-in degradation study has challenges and prospects which can be addressed for successful application. The present review critically examines the methodical challenges addressing the feasibility for restoring and reclaiming pesticide contaminated sites along with the ecotoxicological risk assessments. Overall, it highlights the need to fine-tune the available processes and employ interdisciplinary approaches to make microbe assisted bioremediation as the method of choice for reclamation of pesticide contaminated sites.
Collapse
Affiliation(s)
- Priyanka Bokade
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Vivek Kumar Gaur
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| | - Varsha Tripathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Shishir Bobate
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Natesan Manickam
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Abhay Bajaj
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
20
|
Lo HY, Martínez-Lavanchy PM, Goris T, Heider J, Boll M, Kaster AK, Müller JA. IncP-type plasmids carrying genes for antibiotic resistance or for aromatic compound degradation are prevalent in sequenced Aromatoleum and Thauera strains. Environ Microbiol 2022; 24:6411-6425. [PMID: 36306376 DOI: 10.1111/1462-2920.16262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/25/2022] [Indexed: 01/12/2023]
Abstract
Self-transferable plasmids of the incompatibility group P-1 (IncP-1) are considered important carriers of genes for antibiotic resistance and other adaptive functions. In the laboratory, these plasmids have a broad host range; however, little is known about their in situ host profile. In this study, we discovered that Thauera aromatica K172T , a facultative denitrifying microorganism capable of degrading various aromatic compounds, contains a plasmid highly similar to the IncP-1 ε archetype pKJK5. The plasmid harbours multiple antibiotic resistance genes and is maintained in strain K172T for at least 1000 generations without selection pressure from antibiotics. In a subsequent search, we found additional nine IncP-type plasmids in a total of 40 sequenced genomes of the closely related genera Aromatoleum and Thauera. Six of these plasmids form a novel IncP-1 subgroup designated θ, four of which carry genes for anaerobic or aerobic degradation of aromatic compounds. Pentanucleotide sequence analyses (k-mer profiling) indicated that Aromatoleum spp. and Thauera spp. are among the most suitable hosts for the θ plasmids. Our results highlight the importance of IncP-1 plasmids for the genetic adaptation of these common facultative denitrifying bacteria and provide novel insights into the in situ host profile of these plasmids.
Collapse
Affiliation(s)
- Hao-Yu Lo
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Paula M Martínez-Lavanchy
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Tobias Goris
- Department of Molecular Toxicology, Intestinal Microbiology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| | - Johann Heider
- Department of Biology, Philipps-Universität Marburg, Germany
| | - Matthias Boll
- Institute of Biology II, Albert-Ludwigs-Universität Freiburg, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Jochen A Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
21
|
Comparative Genomic Analysis of Carbofuran-Degrading Sphingomonads Reveals the Carbofuran Catabolism Mechanism in
Sphingobium
sp. Strain CFD-1. Appl Environ Microbiol 2022; 88:e0102422. [PMID: 36314801 PMCID: PMC9680625 DOI: 10.1128/aem.01024-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Owing to the extensive use of carbofuran over the past 50 years, bacteria have evolved catabolic pathways to mineralize this insecticide, which plays an important role in eliminating carbofuran residue in the environment. In this study, the
cfd
gene cluster, responsible for the catabolism of carbofuran phenol, was predicted by comparing sphingomonad genomes.
Collapse
|
22
|
Complete Genome Report of a Hydrocarbon-Degrading Sphingobium yanoikuyae S72. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sphingobium yanoikuyae S72 was isolated from the rhizosphere of sorghum plant in Mexico and we evaluated its survival and role in the degradation of some selected monoaromatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) using minimal medium (Bushnell Hass medium (BH)) in which each of the hydrocarbons (naphthalene, phenanthrene, xylene, toluene, and biphenyl) served as sole carbon source. Gas column chromatography–mass spectrometry analysis was used to evaluate the effect of S72’s growth in the medium with the hydrocarbons. The genome of the S72 was sequenced to determine the genetic basis for the degradation of the selected hydrocarbon in S72. The genome was assembled de novo with Spades assembler and Velvet assembler and the obtained contigs were reduced to 1 manually using Consed software. Genome annotation was carried out Prokka version 1.12, and gene calling and further annotation was carried out with NCBI PGAAP. Pangenome analysis and COG annotation were done with bacteria pangenome analysis tool (BPGA) and with PATRIC online server, respectively. S72 grew effectively in the culture medium with the hydrocarbon with concentration ranging from 20–100 mg/mL for each hydrocarbon tested. S72 degraded biphenyl by 85%, phenanthrene by 93%, naphthalene by 81%, xylene by 19%, and toluene by 30%. The sequenced S72 genome was reduced to 1 contig and genome analysis revealed the presence of genes essential for the degradation of hydrocarbons in S72. A total of 126 unique genes in S72 are associated with the degradation of hydrocarbons and xenobiotics. S72 grew effectively in the tested hydrocarbon and shows good degradation efficiency. S72 will therefore be a good candidate for bioremediation of hydrocarbon contaminated soil.
Collapse
|
23
|
Genomic Analysis of Carbapenem-Resistant Comamonas in Water Matrices: Implications for Public Health and Wastewater Treatments. Appl Environ Microbiol 2022; 88:e0064622. [PMID: 35708324 DOI: 10.1128/aem.00646-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Comamonas spp. are Gram-negative bacteria that catabolize a wide range of organic and inorganic substrates. Comamonas spp. are abundant in aquatic and soil environments, including wastewater, and can cause opportunistic infections in humans. Because of their potential in wastewater bioaugmentation and bioremediation strategies, the identification of Comamonas species harboring genes encoding carbapenemases and other clinically important antibiotic resistance genes warrant further investigation. Here, we present an analysis of 39 whole-genome sequences comprising three Comamonas species from aquatic environments in South Australia that were recovered on media supplemented with carbapenems. The analysis includes a detailed description of 33 Comamonas denitrificans isolates, some of which carried chromosomally acquired blaGES-5, blaOXA, and aminoglycoside resistance (aadA) genes located on putative genomic islands (GIs). All blaGES-5- and blaOXA-containing GIs appear to be unique to this Australian collection of C. denitrificans. Notably, most open reading frames (ORFs) within the GIs, including all antimicrobial resistance (AMR) genes, had adjacent attC sites, indicating that these ORFs are mobile gene cassettes. One C. denitrificans isolate carried an IncP-1 plasmid with genes involved in xenobiotic degradation and response to oxidative stress. Our assessment of the sequences highlights the very distant nature of C. denitrificans to the other Comamonas species and its apparent disposition to acquire antimicrobial resistance genes on putative genomic islands. IMPORTANCE Antimicrobial resistance (AMR) poses a global public health threat, and the increase in resistance to "last-resort drugs," such as carbapenems, is alarming. Wastewater has been flagged as a hot spot for AMR evolution. Comamonas spp. are among the most common bacteria in wastewater and play a role in its bioaugmentation. While the ability of Comamonas species to catabolize a wide range of organic and inorganic substrates is well documented, some species are also opportunistic pathogens. However, data regarding AMR in Comamonas spp. are limited. Here, through the genomic analyses of 39 carbapenem-resistant Comamonas isolates, we make several key observations, including the identification of a subset of C. denitrificans isolates that harbored genomic islands encoding carbapenemase blaGES-5 or extended-spectrum β-lactamase blaOXA alleles. Given the importance of Comamonas species in potential wastewater bioaugmentation and bioremediation strategies, as well as their status as emerging pathogens, the acquisition of critically important antibiotic resistance genes on genomic islands warrants future monitoring.
Collapse
|
24
|
Redman AD, Bietz J, Davis JW, Lyon D, Maloney E, Ott A, Otte JC, Palais F, Parsons JR, Wang N. Moving persistence assessments into the 21st century: A role for weight-of-evidence and overall persistence. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:868-887. [PMID: 34730270 PMCID: PMC9299815 DOI: 10.1002/ieam.4548] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 10/06/2021] [Accepted: 10/21/2021] [Indexed: 05/29/2023]
Abstract
Assessing the persistence of chemicals in the environment is a key element in existing regulatory frameworks to protect human health and ecosystems. Persistence in the environment depends on many fate processes, including abiotic and biotic transformations and physical partitioning, which depend on substances' physicochemical properties and environmental conditions. A main challenge in persistence assessment is that existing frameworks rely on simplistic and reductionist evaluation schemes that may lead substances to be falsely assessed as persistent or the other way around-to be falsely assessed as nonpersistent. Those evaluation schemes typically assess persistence against degradation half-lives determined in single-compartment simulation tests or against degradation levels measured in stringent screening tests. Most of the available test methods, however, do not apply to all types of substances, especially substances that are poorly soluble, complex in composition, highly sorptive, or volatile. In addition, the currently applied half-life criteria are derived mainly from a few legacy persistent organic pollutants, which do not represent the large diversity of substances entering the environment. Persistence assessment would undoubtedly benefit from the development of more flexible and holistic evaluation schemes including new concepts and methods. A weight-of-evidence (WoE) approach incorporating multiple influencing factors is needed to account for chemical fate and transformation in the whole environment so as to assess overall persistence. The present paper's aim is to begin to develop an integrated assessment framework that combines multimedia approaches to organize and interpret data using a clear WoE approach to allow for a more consistent, transparent, and thorough assessment of persistence. Integr Environ Assess Manag 2022;18:868-887. © 2021 ExxonMobil Biomedical Sciences, Inc. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Jens Bietz
- Clariant Produkte (Deutschland) GmbHSulzbachGermany
| | - John W. Davis
- Dow, Inc.MidlandMichiganUSA
- John Davis Consulting, LLCMidlandMichiganUSA
| | | | | | - Amelie Ott
- Newcastle University, School of EngineeringNewcastle upon TyneUK
- European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC)BrusselsBelgium
| | | | - Frédéric Palais
- SOLVAY, HSE PRA‐PS, RICL—Antenne de GenasSaint‐FonsCedexFrance
| | - John R. Parsons
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Neil Wang
- TotalEnergies Marketing & ServicesParis la DéfenseFrance
| |
Collapse
|
25
|
Li S, Yao Q, Liu J, Yu Z, Li Y, Jin J, Liu X, Wang G. Liming mitigates the spread of antibiotic resistance genes in an acid black soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152971. [PMID: 35016930 DOI: 10.1016/j.scitotenv.2022.152971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The threat of antibiotic resistance genes (ARGs) caused by animal manure application to human health has been the focus of attention in agriculture. Applying lime to acid soil for the amelioration of soil acidity is a prevailing agricultural practice. However, the role of lime on the spread of antibiotic resistome from soil to plant is unknown. In this study, a pot experiment of lettuce was established in the acid black soil with lime addition at the rate (w/w) of 0%, 0.08%, 0.16%, and 0.32% of the total soil mass to explore the transmission of ARGs introduced by the fresh poultry manure in the soil-plant system. The bulk and rhizosphere soils as well as the leaf samples were collected after lettuce was cultivated for 60 days, the bacterial community and antibiotic resistome in these samples were determined by using Illumina sequencing and high-throughput quantitative PCR (HT-qPCR) methods, respectively. Results showed that lime application decreased the number and abundance of ARGs and slowed down the spread of manure-derived ARGs in the soil-plant system. The ARGs and bacterial community composition were significantly varied among bulk soils, rhizosphere soils and leaf endophyte, and also influenced by lime within the same sampling types. The structural equation model further demonstrated that the lime addition had a negative effect on ARG diversity, which was also indirectly regulated by bacterial community diversity. These findings suggest that lime addition can alleviate the level and dissemination of ARGs in soils and provide a potential measure to control the spread of ARGs derived from animal manure.
Collapse
Affiliation(s)
- Sen Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qin Yao
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Junjie Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Zhenhua Yu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Yansheng Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Jian Jin
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Xiaobing Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Guanghua Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
| |
Collapse
|
26
|
Dong Y, Wu S, Fan H, Li X, Li Y, Xu S, Bai Z, Zhuang X. Ecological selection of bacterial taxa with larger genome sizes in response to polycyclic aromatic hydrocarbons stress. J Environ Sci (China) 2022; 112:82-93. [PMID: 34955225 DOI: 10.1016/j.jes.2021.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 05/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous priority pollutants that cause great damage to the natural environment and health. Average genome size in a community is critical for shedding light on microbiome's functional response to pollution stress within an environment. Here, microcosms under different concentrations were performed to evaluate the selection of PAHs stress on the average genome size in a community. We found the distinct communities of significantly larger genome size with the increase of PAHs concentration gradients in soils, and consistent trends were discovered in soils at different latitudes. The abundance of Proteobacteria and Deinococcus-Thermus with relatively larger genomes increased along with PAHs stress and well adapted to polluted environments. In contrast, the abundance of Patescibacteria with a highly streamlined and smaller genome decreased, implying complex interactions between environmental selection and functional fitness resulted in bacteria with larger genomes becoming more abundant. Moreover, we confirmed the increased capacity for horizontal transfer of degrading genes between communities by showing an increased connection number per node positively related to the nidA gene along the concentration gradients in the co-occurrence network. Our findings suggest PAHs tend to select bacterial taxa with larger genome sizes, with significant consequences for community stability and potential biodegradation strategies.
Collapse
Affiliation(s)
- Yuzhu Dong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haonan Fan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianglong Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yijing Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Sino-Danish Center, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengjun Xu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
27
|
Zhao G, Wu Y, Wang X, Chen M, Li L. The impact of pollutant as selection pressure on conjugative transfer of dioxin-catabolic plasmids harbored by Rhodococcus sp. strain p52. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1470-1481. [PMID: 34355316 DOI: 10.1007/s11356-021-15682-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Plasmid-mediated bioaugmentation has potential application in the cleanup of recalcitrant environmental pollutants. In this study, we examined the influence of various contaminants (in different categories or different amounts) as a selection pressure on the spread of catabolic plasmids within an activated sludge bacteria community bioaugmented with Rhodococcus sp. strain p52 harboring pDF01 and pDF02. The distinguishable genera of transconjugants were isolated under the stresses of phenanthrene, dibenzothiophene, and dibenzo-p-dioxin. The three contaminants exerted different degrees of influence on the activated sludge bacteria bearing the catabolic plasmids. The relatively high ratios of transconjugant-bearing catabolic plasmids were detected in the reactor fed with dibenzo-p-dioxin. As dibenzo-p-dioxin from 10 to 80 mg/L was fed into the reactors, the ratios of transconjugant-bearing catabolic plasmids increased. Additionally, levels of ROS and extracellular LDH of activated sludge bacteria in the contaminants-fed reactors increased, comparing with that in the control reactor, indicating that the contaminants exerted toxicity which promoted the cell membrane permeability of the activated sludge bacteria. Our study provides a characterization of the recalcitrant contaminants as a selection pressure that can modulate catabolic plasmid transfer during genetic bioaugmentation for the removal of contaminants.
Collapse
Affiliation(s)
- Gang Zhao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 72 Binhai Road, Jimo, 266237, China
| | - Yanan Wu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 72 Binhai Road, Jimo, 266237, China
| | - Xu Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 72 Binhai Road, Jimo, 266237, China
| | - Meng Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 72 Binhai Road, Jimo, 266237, China
| | - Li Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 72 Binhai Road, Jimo, 266237, China.
| |
Collapse
|
28
|
Atashgahi S, Oosterkamp MJ, Peng P, Frank J, Kraft B, Hornung B, Schleheck D, Lücker S, Jetten MSM, Stams AJM, Smidt H. Proteogenomic analysis of Georgfuchsia toluolica revealed unexpected concurrent aerobic and anaerobic toluene degradation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:841-851. [PMID: 34374217 PMCID: PMC9290046 DOI: 10.1111/1758-2229.12996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Denitrifying Betaproteobacteria play a key role in the anaerobic degradation of monoaromatic hydrocarbons. We performed a multi-omics study to better understand the metabolism of the representative organism Georgfuchsia toluolica strain G5G6 known as a strict anaerobe coupling toluene oxidation with dissimilatory nitrate and Fe(III) reduction. Despite the genomic potential for degradation of different carbon sources, we did not find sugar or organic acid transporters, in line with the inability of strain G5G6 to use these substrates. Using a proteomics analysis, we detected proteins of fumarate-dependent toluene activation, membrane-bound nitrate reductase, and key components of the metal-reducing (Mtr) pathway under both nitrate- and Fe(III)-reducing conditions. High abundance of the multiheme cytochrome MtrC implied that a porin-cytochrome complex was used for respiratory Fe(III) reduction. Remarkably, strain G5G6 contains a full set of genes for aerobic toluene degradation, and we detected enzymes of aerobic toluene degradation under both nitrate- and Fe(III)-reducing conditions. We further detected an ATP-dependent benzoyl-CoA reductase, reactive oxygen species detoxification proteins, and cytochrome c oxidase indicating a facultative anaerobic lifestyle of strain G5G6. Correspondingly, we found diffusion through the septa a substantial source of oxygen in the cultures enabling concurrent aerobic and anaerobic toluene degradation by strain G5G6.
Collapse
Affiliation(s)
- Siavash Atashgahi
- Laboratory of MicrobiologyWageningen University & ResearchWageningen6708 WEThe Netherlands
- Department of Microbiology, IWWRRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
- Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Margreet J. Oosterkamp
- Laboratory of MicrobiologyWageningen University & ResearchWageningen6708 WEThe Netherlands
- Sub‐department of Environmental TechnologyWageningen University & Research, Bornse weilanden 9Wageningen6708 DWThe Netherlands
| | - Peng Peng
- Laboratory of MicrobiologyWageningen University & ResearchWageningen6708 WEThe Netherlands
- Department of Civil and Environmental EngineeringUniversity of Michigan, 1351 Beal AvenueAnn ArborMI48109‐2125USA
| | - Jeroen Frank
- Department of Microbiology, IWWRRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
- Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Beate Kraft
- Nordic Center for Earth EvolutionUniversity of Southern DenmarkOdenseDK‐5230Denmark
| | - Bastian Hornung
- Laboratory of MicrobiologyWageningen University & ResearchWageningen6708 WEThe Netherlands
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, 163 avenue de Luminy13288 Aix Marseille UniversitéMarseilleFrance
| | - David Schleheck
- Department of BiologyUniversity of KonstanzKonstanz78457Germany
| | - Sebastian Lücker
- Department of Microbiology, IWWRRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Mike S. M. Jetten
- Department of Microbiology, IWWRRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
- Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Alfons J. M. Stams
- Laboratory of MicrobiologyWageningen University & ResearchWageningen6708 WEThe Netherlands
- Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135Nijmegen6525 AJThe Netherlands
- Centre of Biological EngineeringUniversity of Minho, Campus de GualtarBraga4710‐057Portugal
| | - Hauke Smidt
- Laboratory of MicrobiologyWageningen University & ResearchWageningen6708 WEThe Netherlands
| |
Collapse
|
29
|
Frye KA, Piamthai V, Hsiao A, Degnan PH. Mobilization of vitamin B12 transporters alters competitive dynamics in a human gut microbe. Cell Rep 2021; 37:110164. [PMID: 34965410 PMCID: PMC8759732 DOI: 10.1016/j.celrep.2021.110164] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/29/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
|
30
|
Bhatt P, Bhandari G, Bhatt K, Maithani D, Mishra S, Gangola S, Bhatt R, Huang Y, Chen S. Plasmid-mediated catabolism for the removal of xenobiotics from the environment. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126618. [PMID: 34329102 DOI: 10.1016/j.jhazmat.2021.126618] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/27/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The large-scale application of xenobiotics adversely affects the environment. The genes that are present in the chromosome of the bacteria are considered nonmobile, whereas the genes present on the plasmids are considered mobile genetic elements. Plasmids are considered indispensable for xenobiotic degradation into the contaminated environment. In the contaminated sites, bacteria with plasmids can transfer the mobile genetic element into another strain. This mechanism helps in spreading the catabolic genes into the bacterial population at the contaminated sites. The indigenous microbial strains with such degradative plasmids are important for the bioremediation of xenobiotics. Environmental factors play a critical role in the conjugation efficiency, which is involved in the bioremediation of the xenobiotics at the contaminated sites. However, there is still a need for more research to fill in the gaps regarding plasmids and their impact on bioremediation. This review explores the role of bacterial plasmids in the bioremediation of xenobiotics from contaminated environments.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Geeta Bhandari
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun 248161, Uttarakhand, India
| | - Kalpana Bhatt
- Department of Botany and Microbiology, Gurukul Kangri University, Haridwar 249404, Uttarakhand, India
| | - Damini Maithani
- Department of Microbiology, G.B Pant University of Agriculture and Technology Pantnagar, U.S Nagar, Uttarakhand, India
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal Campus, 263136, Uttarakhand, India
| | - Rakesh Bhatt
- Department of Civil Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
31
|
Abstract
Soil contamination with petroleum hydrocarbons (PHCs) has become a global concern and has resulted from the intensification of industrial activities. This has created a serious environmental issue; therefore, there is a need to find solutions, including application of efficient remediation technologies or improvement of current techniques. Rhizoremediation is a green technology that has received global attention as a cost-effective and possibly efficient remediation technique for PHC-polluted soil. Rhizoremediation refers to the use of plants and their associated microbiota to clean up contaminated soils, where plant roots stimulate soil microbes to mineralize organic contaminants to H2O and CO2. However, this multipartite interaction is complicated because many biotic and abiotic factors can influence microbial processes in the soil, making the efficiency of rhizoremediation unpredictable. This review reports the current knowledge of rhizoremediation approaches that can accelerate the remediation of PHC-contaminated soil. Recent approaches discussed in this review include (1) selecting plants with desired characteristics suitable for rhizoremediation; (2) exploiting and manipulating the plant microbiome by using inoculants containing plant growth-promoting rhizobacteria (PGPR) or hydrocarbon-degrading microbes, or a combination of both types of organisms; (3) enhancing the understanding of how the host–plant assembles a beneficial microbiome, and how it functions, under pollutant stress. A better understanding of plant–microbiome interactions could lead to successful use of rhizoremediation for PHC-contaminated soil in the future.
Collapse
|
32
|
Cerro-Gálvez E, Dachs J, Lundin D, Fernández-Pinos MC, Sebastián M, Vila-Costa M. Responses of Coastal Marine Microbiomes Exposed to Anthropogenic Dissolved Organic Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9609-9621. [PMID: 33606522 PMCID: PMC8491159 DOI: 10.1021/acs.est.0c07262] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 05/23/2023]
Abstract
Coastal seawaters receive thousands of organic pollutants. However, we have little understanding of the response of microbiomes to this pool of anthropogenic dissolved organic carbon (ADOC). In this study, coastal microbial communities were challenged with ADOC at environmentally relevant concentrations. Experiments were performed at two Mediterranean sites with different impact by pollutants and nutrients: off the Barcelona harbor ("BCN"), and at the Blanes Bay ("BL"). ADOC additions stimulated prokaryotic leucine incorporation rates at both sites, indicating the use of ADOC as growth substrate. The percentage of "membrane-compromised" cells increased with increasing ADOC, indicating concurrent toxic effects of ADOC. Metagenomic analysis of the BCN community challenged with ADOC showed a significant growth of Methylophaga and other gammaproteobacterial taxa belonging to the rare biosphere. Gene expression profiles showed a taxon-dependent response, with significantly enrichments of transcripts from SAR11 and Glaciecola spp. in BCN and BL, respectively. Further, the relative abundance of transposon-related genes (in BCN) and transcripts (in BL) correlated with the number of differentially abundant genes (in BCN) and transcripts (in BLA), suggesting that microbial responses to pollution may be related to pre-exposure to pollutants, with transposons playing a role in adaptation to ADOC. Our results point to a taxon-specific response to low concentrations of ADOC that impact the functionality, structure and plasticity of the communities in coastal seawaters. This work contributes to address the influence of pollutants on microbiomes and their perturbation to ecosystem services and ocean health.
Collapse
Affiliation(s)
- Elena Cerro-Gálvez
- Department
of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
| | - Jordi Dachs
- Department
of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
| | - Daniel Lundin
- Centre
for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus University, Kalmar 35195, Sweden
| | | | - Marta Sebastián
- Department
of Marine Biology and Oceanography, ICM-CSIC, Barcelona, Catalunya 08003, Spain
| | - Maria Vila-Costa
- Department
of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
| |
Collapse
|
33
|
Rios‐Miguel AB, Jetten MSM, Welte CU. Effect of concentration and hydraulic reaction time on the removal of pharmaceutical compounds in a membrane bioreactor inoculated with activated sludge. Microb Biotechnol 2021; 14:1707-1721. [PMID: 34132479 PMCID: PMC8313272 DOI: 10.1111/1751-7915.13837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 01/04/2023] Open
Abstract
Pharmaceuticals are often not fully removed in wastewater treatment plants (WWTPs) and are thus being detected at trace levels in water bodies all over the world posing a risk to numerous organisms. These organic micropollutants (OMPs) reach WWTPs at concentrations sometimes too low to serve as growth substrate for microorganisms; thus, co-metabolism is thought to be the main conversion mechanism. In this study, the microbial removal of six pharmaceuticals was investigated in a membrane bioreactor at increasing concentrations (4-800 nM) of the compounds and using three different hydraulic retention times (HRT; 1, 3.5 and 5 days). The bioreactor was inoculated with activated sludge from a municipal WWTP and fed with ammonium, acetate and methanol as main growth substrates to mimic co-metabolism. Each pharmaceutical had a different average removal efficiency: acetaminophen (100%) > fluoxetine (50%) > metoprolol (25%) > diclofenac (20%) > metformin (15%) > carbamazepine (10%). Higher pharmaceutical influent concentrations proportionally increased the removal rate of each compound, but surprisingly not the removal percentage. Furthermore, only metformin removal improved to 80-100% when HRT or biomass concentration was increased. Microbial community changes were followed with 16S rRNA gene amplicon sequencing in response to the increment of pharmaceutical concentration: Nitrospirae and Planctomycetes 16S rRNA relative gene abundance decreased, whereas Acidobacteria and Bacteroidetes increased. Remarkably, the Dokdonella genus, previously implicated in acetaminophen metabolism, showed a 30-fold increase in abundance at the highest concentration of pharmaceuticals applied. Taken together, these results suggest that the incomplete removal of most pharmaceutical compounds in WWTPs is dependent on neither concentration nor reaction time. Accordingly, we propose a chemical equilibrium or a growth substrate limitation as the responsible mechanisms of the incomplete removal. Finally, Dokdonella could be the main acetaminophen degrader under activated sludge conditions, and non-antibiotic pharmaceuticals might still be toxic to relevant WWTP bacteria.
Collapse
Affiliation(s)
- Ana B. Rios‐Miguel
- Department of MicrobiologyInstitute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Mike S. M. Jetten
- Department of MicrobiologyInstitute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
- Soehngen Institute of Anaerobic MicrobiologyRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Cornelia U. Welte
- Department of MicrobiologyInstitute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
- Soehngen Institute of Anaerobic MicrobiologyRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| |
Collapse
|
34
|
Skóra B, Krajewska U, Nowak A, Dziedzic A, Barylyak A, Kus-Liśkiewicz M. Noncytotoxic silver nanoparticles as a new antimicrobial strategy. Sci Rep 2021; 11:13451. [PMID: 34188097 PMCID: PMC8242066 DOI: 10.1038/s41598-021-92812-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/16/2021] [Indexed: 02/05/2023] Open
Abstract
Drug-resistance of bacteria is an ongoing problem in hospital treatment. The main mechanism of bacterial virulency in human infections is based on their adhesion ability and biofilm formation. Many approaches have been invented to overcome this problem, i.e. treatment with antibacterial biomolecules, which have some limitations e.g. enzymatic degradation and short shelf stability. Silver nanoparticles (AgNPs) may be alternative to these strategies due to their unique and high antibacterial properties. Herein, we report on yeast Saccharomyces cerevisiae extracellular-based synthesis of AgNPs. Transmission electron microscopy (TEM) revealed the morphology and structure of the metallic nanoparticles, which showed a uniform distribution and good colloid stability, measured by hydrodynamic light scattering (DLS). The energy dispersive X-ray spectroscopy (EDS) of NPs confirms the presence of silver and showed that sulfur-rich compounds act as a capping agent being adsorbed on the surface of AgNPs. Antimicrobial tests showed that AgNPs inhibit the bacteria growth, while have no impact on fungi growth. Moreover, tested NPs was characterized by high inhibitory potential of bacteria biofilm formation but also eradication of established biofilms. The cytotoxic effect of the NPs on four mammalian normal and cancer cell lines was tested through the metabolic activity, cell viability and wound-healing assays. Last, but not least, ability to deep penetration of the silver colloid to the root canal was imaged by scanning electron microscopy (SEM) to show its potential as the material for root-end filling.
Collapse
Affiliation(s)
- Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management, St. Sucharskiego 2, 35-225, Rzeszów, Poland
| | - Urszula Krajewska
- Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, St. Pigonia 1, 35-310, Rzeszów, Poland
| | - Anna Nowak
- Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, St. Pigonia 1, 35-310, Rzeszów, Poland
| | - Andrzej Dziedzic
- College of Natural Sciences, University of Rzeszow, St. Pigonia 1, 35-310, Rzeszow, Poland
| | - Adriana Barylyak
- Laser Department Center of Imlantation and Prosthetic Dentistry "MM", Department of Therapeutical Dentistry, Lviv National Medical University Ukraine, Lviv, Poland
| | - Małgorzata Kus-Liśkiewicz
- Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, St. Pigonia 1, 35-310, Rzeszów, Poland.
| |
Collapse
|
35
|
Chen SC, Budhraja R, Adrian L, Calabrese F, Stryhanyuk H, Musat N, Richnow HH, Duan GL, Zhu YG, Musat F. Novel clades of soil biphenyl degraders revealed by integrating isotope probing, multi-omics, and single-cell analyses. ISME JOURNAL 2021; 15:3508-3521. [PMID: 34117322 PMCID: PMC8630052 DOI: 10.1038/s41396-021-01022-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 11/23/2022]
Abstract
Most microorganisms in the biosphere remain uncultured and poorly characterized. Although the surge in genome sequences has enabled insights into the genetic and metabolic properties of uncultured microorganisms, their physiology and ecological roles cannot be determined without direct probing of their activities in natural habitats. Here we employed an experimental framework coupling genome reconstruction and activity assays to characterize the largely uncultured microorganisms responsible for aerobic biodegradation of biphenyl as a proxy for a large class of environmental pollutants, polychlorinated biphenyls. We used 13C-labeled biphenyl in contaminated soils and traced the flow of pollutant-derived carbon into active cells using single-cell analyses and protein–stable isotope probing. The detection of 13C-enriched proteins linked biphenyl biodegradation to the uncultured Alphaproteobacteria clade UBA11222, which we found to host a distinctive biphenyl dioxygenase gene widely retrieved from contaminated environments. The same approach indicated the capacity of Azoarcus species to oxidize biphenyl and suggested similar metabolic abilities for species of Rugosibacter. Biphenyl oxidation would thus represent formerly unrecognized ecological functions of both genera. The quantitative role of these microorganisms in pollutant degradation was resolved using single-cell-based uptake measurements. Our strategy advances our understanding of microbially mediated biodegradation processes and has general application potential for elucidating the ecological roles of uncultured microorganisms in their natural habitats.
Collapse
Affiliation(s)
- Song-Can Chen
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Rohit Budhraja
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Lorenz Adrian
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Chair of Geobiotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - Federica Calabrese
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Gui-Lan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China. .,Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 361021, Xiamen, China.
| | - Florin Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany.
| |
Collapse
|
36
|
Syed Ishak KS, Paneerselvam A, Ambikapathy V, Sathya R, Vinothkanna A. An Investigation of Sewage Water Treatment Plant and Its Physico-Chemical Analysis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Properties affecting transfer and expression of degradative plasmids for the purpose of bioremediation. Biodegradation 2021; 32:361-375. [PMID: 34046775 DOI: 10.1007/s10532-021-09950-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
Plasmids, circular DNA that exist and replicate outside of the host chromosome, have been important in the spread of non-essential genes as well as the rapid evolution of prokaryotes. Recent advances in environmental engineering have aimed to utilize the mobility of plasmids carrying degradative genes to disseminate them into the environment for cost-effective and environmentally friendly remediation of harmful contaminants. Here, we review the knowledge surrounding plasmid transfer and the conditions needed for successful transfer and expression of degradative plasmids. Both abiotic and biotic factors have a great impact on the success of degradative plasmid transfer and expression of the degradative genes of interest. Properties such as ecological growth strategies of bacteria may also contribute to plasmid transfer and may be an important consideration for bioremediation applications. Finally, the methods for detection of conjugation events have greatly improved and the application of these tools can help improve our understanding of conjugation in complex communities. However, it remains clear that more methods for in situ detection of plasmid transfer are needed to help detangle the complexities of conjugation in natural environments to better promote a framework for precision bioremediation.
Collapse
|
38
|
Galitskaya P, Biktasheva L, Kuryntseva P, Selivanovskaya S. Response of soil bacterial communities to high petroleum content in the absence of remediation procedures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9610-9627. [PMID: 33155112 DOI: 10.1007/s11356-020-11290-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Oil spills are events that frequently lead to petroleum pollution. This pollution may cause stress to microbial communities, which require long adaption periods. Soil petroleum pollution is currently considered one of the most serious environmental problems. In the present work, processes occurring in the bacterial communities of three soil samples with different physicochemical characteristics, artificially polluted with 12% of crude oil, were investigated in 120-day laboratory experiment. It was found that the total petroleum hydrocarbon content did not decrease during this time; however, the proportion of petroleum fractions was altered. Petroleum pollution led to a short-term decrease in the bacterial 16S rRNA gene copy number. On the basis of amplicon sequencing analysis, it was concluded that bacterial community successions were similar in the three soils investigated. Thus, the phyla Actinobacteria and Proteobacteria and candidate TM7 phylum (Saccaribacteria) were predominant with relative abundances ranging from 35 to 58%, 25 to 30%, and 15 to 35% in different samples, respectively. The predominant operational taxonomic units (OTUs) after pollution belonged to the genera Rhodococcus and Mycobacterium, families Nocardioidaceae and Sinobacteraceae, and candidate class ТМ7-3. Genes from the alkIII group encoding monoxygenases were the most abundant compared with other catabolic genes from the alkI, alkII, GN-PAH, and GP-PAH groups, and their copy number significantly increased after pollution. The copy numbers of expressed genes involved in the horizontal transfer of catabolic genes, FlgC, TraG, and OmpF, also increased after pollution by 11-33, 16-63, and 11-71 times, respectively. The bacterial community structure after a high level of petroleum pollution changed because of proliferation of the cells that initially were able to decompose hydrocarbons, and in the second place, because proliferation of the cells that received these catabolic genes through horizontal transfer.
Collapse
Affiliation(s)
- Polina Galitskaya
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia, 420008
| | - Liliya Biktasheva
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia, 420008.
| | - Polina Kuryntseva
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia, 420008
| | | |
Collapse
|
39
|
Rios Miguel AB, Jetten MS, Welte CU. The role of mobile genetic elements in organic micropollutant degradation during biological wastewater treatment. WATER RESEARCH X 2020; 9:100065. [PMID: 32984801 PMCID: PMC7494797 DOI: 10.1016/j.wroa.2020.100065] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 05/24/2023]
Abstract
Wastewater treatment plants (WWTPs) are crucial for producing clean effluents from polluting sources such as hospitals, industries, and municipalities. In recent decades, many new organic compounds have ended up in surface waters in concentrations that, while very low, cause (chronic) toxicity to countless organisms. These organic micropollutants (OMPs) are usually quite recalcitrant and not sufficiently removed during wastewater treatment. Microbial degradation plays a pivotal role in OMP conversion. Microorganisms can adapt their metabolism to the use of novel molecules via mutations and rearrangements of existing genes in new clusters. Many catabolic genes have been found adjacent to mobile genetic elements (MGEs), which provide a stable scaffold to host new catabolic pathways and spread these genes in the microbial community. These mobile systems could be engineered to enhance OMP degradation in WWTPs, and this review aims to summarize and better understand the role that MGEs might play in the degradation and wastewater treatment process. Available data about the presence of catabolic MGEs in WWTPs are reviewed, and current methods used to identify and measure MGEs in environmental samples are critically evaluated. Finally, examples of how these MGEs could be used to improve micropollutant degradation in WWTPs are outlined. In the near future, advances in the use of MGEs will hopefully enable us to apply selective augmentation strategies to improve OMP conversion in WWTPs.
Collapse
Affiliation(s)
- Ana B. Rios Miguel
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| | - Mike S.M. Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| | - Cornelia U. Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| |
Collapse
|
40
|
Shintani M, Nour E, Elsayed T, Blau K, Wall I, Jechalke S, Spröer C, Bunk B, Overmann J, Smalla K. Plant Species-Dependent Increased Abundance and Diversity of IncP-1 Plasmids in the Rhizosphere: New Insights Into Their Role and Ecology. Front Microbiol 2020; 11:590776. [PMID: 33329469 PMCID: PMC7728920 DOI: 10.3389/fmicb.2020.590776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/15/2020] [Indexed: 11/21/2022] Open
Abstract
IncP-1 plasmids, first isolated from clinical specimens (R751, RP4), are recognized as important vectors spreading antibiotic resistance genes. The abundance of IncP-1 plasmids in the environment, previously reported, suggested a correlation with anthropogenic pollution. Unexpectedly, qPCR-based detection of IncP-1 plasmids revealed also an increased relative abundance of IncP-1 plasmids in total community DNA from the rhizosphere of lettuce and tomato plants grown in non-polluted soil along with plant age. Here we report the successful isolation of IncP-1 plasmids by exploiting their ability to mobilize plasmid pSM1890. IncP-1 plasmids were captured from the rhizosphere but not from bulk soil, and a high diversity was revealed by sequencing 14 different plasmids that were assigned to IncP-1β, δ, and ε subgroups. Although backbone genes were highly conserved and mobile elements or remnants as Tn501, IS1071, Tn402, or class 1 integron were carried by 13 of the sequenced IncP-1 plasmids, no antibiotic resistance genes were found. Instead, seven plasmids had a mer operon with Tn501-like transposon and five plasmids contained putative metabolic gene clusters linked to these mobile elements. In-depth sequence comparisons with previously known plasmids indicate that the IncP-1 plasmids captured from the rhizosphere are archetypes of those found in clinical isolates. Our findings that IncP-1 plasmids do not always carry accessory genes in unpolluted rhizospheres are important to understand the ecology and role of the IncP-1 plasmids in the natural environment.
Collapse
Affiliation(s)
- Masaki Shintani
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan.,Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan.,Green Energy Research Division, Research Institute of Green Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Eman Nour
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Tarek Elsayed
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Khald Blau
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Inessa Wall
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Sven Jechalke
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Cathrin Spröer
- Department Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Department Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jörg Overmann
- Department Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| |
Collapse
|
41
|
Su Z, Huang B, Mu Q, Wen D. Evaluating the Potential Antibiotic Resistance Status in Environment Based on the Trait of Microbial Community. Front Microbiol 2020; 11:575707. [PMID: 33123107 PMCID: PMC7573184 DOI: 10.3389/fmicb.2020.575707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/07/2020] [Indexed: 01/03/2023] Open
Abstract
The overuse of antibiotics has promoted the propagation and dissemination of antibiotic resistance genes (ARGs) in environment. Due to the dense human population and intensive activities in coastal areas, the health risk of ARGs in coastal environment is becoming a severe problem. To date, there still lacks of a quantitative method to assess properly the gross antibiotic resistance at microbial community level. Here, we collected sediment samples from Hangzhou Bay (HB), Taizhou Bay (TB), and Xiangshan Bay (XB) of the East China Sea for community-level ARGs analysis. Based on the 16S rRNA genes and predictive metagenomics, we predicted the composition of intrinsic ARGs (piARGs) and some related functional groups. Firstly, a total of 40 piARG subtypes, belonging to nine drug classes and five resistance mechanisms, were obtained, among which the piARGs encoding multidrug efflux pumps were the most dominant in the three bays. Secondly, XB had higher relative abundances of piARGs and pathogens than the other two bays, which posed higher potential health risk and implied the heavier impact of long-term maricultural activities in this bay. Thirdly, the co-occurrence network analysis identified that there were more connections between piARGs and some potential pathogenic bacteria. Several piARG subtypes (e.g., tetA, aacA, aacC, and aadK) distributed widely in the microbial communities. And finally, the microbial diversity correlated negatively with the relative abundance of piARGs. Oil, salinity, and arsenic had significant effects on the variations of piARGs and potential pathogenic bacteria. The abundance-weighted average ribosomal RNA operon (rrn) copy number of microbial communities could be regarded as an indicator to evaluate the antibiotic resistance status. In conclusion, this study provides a new insight on how to evaluate antibiotic resistance status and their potential risk in environment based on a quantitative analysis of microbial communities.
Collapse
Affiliation(s)
- Zhiguo Su
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Bei Huang
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan, China
| | - Qinglin Mu
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| |
Collapse
|
42
|
Huang C, Liu LZ, Kong HK, Law COK, Hoa PQ, Ho PL, Lau TCK. A novel incompatibility group X3 plasmid carrying bla NDM-1 encodes a small RNA that regulates host fucose metabolism and biofilm formation. RNA Biol 2020; 17:1767-1776. [PMID: 32594845 DOI: 10.1080/15476286.2020.1780040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The emergence of New Delhi metallo-beta-lactamase (NDM-1) has become a major health threat to clinical managements of gram-negative bacteria infections. A novel incompatibility group X3 plasmid (IncX3) pNDM-HN380 carrying bla NDM-1 has recently been found to epidemiologically link with multiple geographical areas in China. In this paper, we studied the metabolic responses of host bacteria E. coli J53 upon introduction of pNDM-HN380. A reduction of bacterial motility was observed in J53/pNDM-HN380. We profiled the RNA repertoires of the transconjugants and found a downregulation of genes involved in flagella and chemotaxis metabolic pathways at logarithmic (log) phase. We also identified a novel intragenic region (IGR) small RNA plas2. The plasmid-transcribed sRNA IGR plas2 was further characterized as a regulator of fucRwhich controls the fucose metabolism. By knockdown of IGR plas2 using an antisense decoy, we managed to inhibit the formation of bacterial biofilm of the host. Our study demonstrated a potential way of utilizing plasmid-transcribed sRNA against infectious bacteria.
Collapse
Affiliation(s)
- Chuan Huang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong , Hong Kong, Hong Kong Special Administrative Region
| | - Liang-Zhe Liu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong , Hong Kong, Hong Kong Special Administrative Region
| | - Hoi-Kuan Kong
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong , Hong Kong, Hong Kong Special Administrative Region
| | - Carmen O K Law
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong , Hong Kong, Hong Kong Special Administrative Region
| | - Pham Quynh Hoa
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong , Hong Kong, Hong Kong Special Administrative Region
| | - Pak-Leung Ho
- Department of Microbiology, The University of Hong Kong , Hong Kong, Hong Kong Special Administrative Region
| | - Terrence C K Lau
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong , Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
43
|
Kawano H, Suzuki-Minakuchi C, Sugiyama D, Watanabe N, Takahashi Y, Okada K, Nojiri H. A Novel Small RNA on the Pseudomonas putida KT2440 Chromosome Is Involved in the Fitness Cost Imposed by IncP-1 Plasmid RP4. Front Microbiol 2020; 11:1328. [PMID: 32655527 PMCID: PMC7324555 DOI: 10.3389/fmicb.2020.01328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Plasmids can provide advantageous traits to host bacteria, although they may impose a fitness cost. Chromosome-encoded factors are important for regulating the expression of genes on plasmids, and host chromosomes may differ in terms of their interactions with a given plasmid. Accordingly, differences in fitness cost loading and compensatory co-evolution may occur for various host chromosome/plasmid combinations. However, the mechanisms of compensatory evolution are highly divergent and require further insights. Here, we reveal novel evolutionally mechanisms of Pseudomonas putida KT2440 to improve the fitness cost imposed by the incompatibility P-1 (IncP-1) multidrug resistance plasmid RP4. A mixed culture of RP4-harboring and -free KT2440 cells was serially transferred every 24 h under non-selective conditions. Initially, the proportion of RP4-harboring cells decreased rapidly, but it immediately recovered, suggesting that the fitness of RP4-harboring strains improved during cultivation. Larger-sized colonies appeared during 144-h mixed culture, and evolved strains isolated from larger-sized colonies showed higher growth rates and fitness than those of the ancestral strain. Whole-genome sequencing revealed that evolved strains had one of two mutations in the same intergenic region of the chromosome. Based on the research of another group, this region is predicted to contain a stress-inducible small RNA (sRNA). Identification of the transcriptional start site in this sRNA indicated that one mutation occurred within the sRNA region, whereas the other was in its promoter region. Quantitative reverse-transcription PCR showed that the expression of this sRNA was strongly induced by RP4 carriage in the ancestral strain but repressed in the evolved strains. When the sRNA region was overexpressed in the RP4-free strain, the fitness decreased, and the colony size became smaller. Using transcriptome analysis, we also showed that the genes involved in amino acid metabolism and stress responses were differentially transcribed by overexpression of the sRNA region. These results indicate that the RP4-inducible chromosomal sRNA was responsible for the fitness cost of RP4 on KT2440 cells, where this sRNA is of key importance in host evolution toward rapid amelioration of the cost.
Collapse
Affiliation(s)
- Hibiki Kawano
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Chiho Suzuki-Minakuchi
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Daisuke Sugiyama
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Natsuki Watanabe
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Yurika Takahashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
44
|
Elken E, Heinaru E, Jõesaar M, Heinaru A. Formation of new PHE plasmids in pseudomonads in a phenol-polluted environment. Plasmid 2020; 110:102504. [PMID: 32289323 DOI: 10.1016/j.plasmid.2020.102504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 12/01/2022]
Abstract
Several years ago, a laboratory-constructed plasmid with a single-component phenol monooxygenase gene (pheBA operon) flanked by two IS elements was released to a phenol-polluted area. During the following years, we found in the test area widely distributed pheBA operon-containing bacteria. The new pheBA+ strains belong predominantly to the Pseudomonas fluorescens group, and they did not arise via selection of the released PHE plasmid. On the contrary, the formation of several different types of PHE plasmids occurred, namely pPHE101 (60,958 bp) from the IncP-9 group, non-transferable plasmid pPHE69 (44,717 bp), mobilizable plasmid pPHE20 (39,609 bp) and the IncP-7 type plasmid pPHE24ΔpheBA (120,754 bp), in which the pheBA operon was translocated from the plasmid to the chromosome. In two cases, PHE plasmid-bearing strains exist in a multi-plasmid state, also containing the non-catabolic plasmids pG20 (133,709 bp) and pG69 (144,433 bp) with backbones sharing 97% DNA identity and with redundant genes for the initiation of replication, repA1and repA2, of which only one was active. Seemingly, several other plasmids and bacterial features besides the pheBA operon were involved in selective distribution of catabolic operons in the natural environment. The comparison of the genetic structure of plasmids and IS elements' functions, as well as resistance to heavy metals of seven completely sequenced plasmids, are discussed.
Collapse
Affiliation(s)
- Eve Elken
- Department of Genetics, Institute of Molecular and Cell Biology, Faculty of Science and Technology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| | - Eeva Heinaru
- Department of Genetics, Institute of Molecular and Cell Biology, Faculty of Science and Technology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia.
| | - Merike Jõesaar
- Department of Genetics, Institute of Molecular and Cell Biology, Faculty of Science and Technology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| | - Ain Heinaru
- Department of Genetics, Institute of Molecular and Cell Biology, Faculty of Science and Technology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| |
Collapse
|
45
|
Li Q, Zhao P, Li L, Zhao H, Shi L, Tian P. Engineering a CRISPR Interference System To Repress a Class 1 Integron in Escherichia coli. Antimicrob Agents Chemother 2020; 64:e01789-19. [PMID: 31871091 PMCID: PMC7038292 DOI: 10.1128/aac.01789-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
Microbial multidrug resistance (MDR) poses a huge threat to human health. Bacterial acquisition of MDR relies primarily on class 1 integron-involved horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). To date, no strategies other than the use of antibiotics can efficiently cope with MDR. Here, we report that an engineered CRISPR interference (CRISPRi) system can markedly reduce MDR by blocking a class 1 integron in Escherichia coli Using CRISPRi to block plasmid R388 class 1 integron, E. coli recombinants showed halted growth upon exposure to relevant antibiotics. A microplate alamarBlue assay showed that both subgenomic RNAs (sgRNAs) R3 and R6 led to 8- and 32-fold decreases in half-maximal inhibitory concentrations (IC50) for trimethoprim and sulfamethoxazole, respectively. Reverse transcription and quantitative PCR (RT-qPCR) revealed that the strain employing sgRNA R6 exhibited 97% and 84% decreases in the transcriptional levels of the dfrB2 cassette and sul1, two typical ARGs, respectively. RT-qPCR analysis also demonstrated that the strain recruiting sgRNA R3 showed a 96% decrease in the transcriptional level of intI1, and a conjugation assay revealed a 1,000-fold decrease in HGT rates of ARGs. Overall, the sgRNA R3 targeting the 31 bp downstream of the Pc promoter on the intI1 nontemplate strand outperformed other sgRNAs in reducing integron activity. Furthermore, this CRISPRi system is reversible, genetically stable, and titratable by varying the concentration of the inducer. To our knowledge, this is the first report on exploiting a CRISPRi system to reduce the class 1 integron in E. coli This study provides valuable insights for future development of CRISPRi-based antimicrobial agents and cellular therapy to suppress MDR.
Collapse
Affiliation(s)
- Qingyang Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Peng Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lili Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Pingfang Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
46
|
Esquirol L, Peat TS, Sugrue E, Balotra S, Rottet S, Warden AC, Wilding M, Hartley CJ, Jackson CJ, Newman J, Scott C. Bacterial catabolism of s-triazine herbicides: biochemistry, evolution and application. Adv Microb Physiol 2020; 76:129-186. [PMID: 32408946 DOI: 10.1016/bs.ampbs.2020.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The synthetic s-triazines are abundant, nitrogen-rich, heteroaromatic compounds used in a multitude of applications including, herbicides, plastics and polymers, and explosives. Their presence in the environment has led to the evolution of bacterial catabolic pathways in bacteria that allow use of these anthropogenic chemicals as a nitrogen source that supports growth. Herbicidal s-triazines have been used since the mid-twentieth century and are among the most heavily used herbicides in the world, despite being withdrawn from use in some areas due to concern about their safety and environmental impact. Bacterial catabolism of the herbicidal s-triazines has been studied extensively. Pseudomonas sp. strain ADP, which was isolated more than thirty years after the introduction of the s-triazine herbicides, has been the model system for most of these studies; however, several alternative catabolic pathways have also been identified. Over the last five years, considerable detail about the molecular mode of action of the s-triazine catabolic enzymes has been uncovered through acquisition of their atomic structures. These structural studies have also revealed insights into the evolutionary origins of this newly acquired metabolic capability. In addition, s-triazine-catabolizing bacteria and enzymes have been used in a range of applications, including bioremediation of herbicides and cyanuric acid, introducing metabolic resistance to plants, and as a novel selectable marker in fermentation organisms. In this review, we cover the discovery and characterization of bacterial strains, metabolic pathways and enzymes that catabolize the s-triazines. We also consider the evolution of these new enzymes and pathways and discuss the practical applications that have been considered for these bacteria and enzymes. One Sentence Summary: A detailed understanding of bacterial herbicide catabolic enzymes and pathways offer new evolutionary insights and novel applied tools.
Collapse
Affiliation(s)
- Lygie Esquirol
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Thomas S Peat
- CSIRO Biomedical Manufacturing, Parkville, VIC, Australia
| | - Elena Sugrue
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Sahil Balotra
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Sarah Rottet
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Andrew C Warden
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Matthew Wilding
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia; CSIRO Biomedical Manufacturing, Parkville, VIC, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Carol J Hartley
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Janet Newman
- CSIRO Biomedical Manufacturing, Parkville, VIC, Australia
| | - Colin Scott
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
47
|
Mobile Genetic Elements in Pseudomonas stutzeri. Curr Microbiol 2019; 77:179-184. [PMID: 31754823 DOI: 10.1007/s00284-019-01812-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
Mobile genetic elements (MGE) play a large role in the plasticity of genomes, participating in several phenomena which involve genes acquisition. Pseudomonas stutzeri is an environmental widely distributed bacteria. This bacteria has a very large genomic plasticity, which would explain its occurrence in several different environments. NCBI data bank and online programs were used to build an inventory to investigate diversity and structure of MGE in Pseudomonas stutzeri, searching for insertion sequences (IS), integrases/transposases, plasmids and prophages. Five hundred and forty-eight ISs, 62 integrases, 166 transposases, five plasmids and eight complete prophages were found. MGE location and adjacent genes were investigated. Possible implications of the presence of these mobile elements explaining phenotypic diversity of Pseudomonas stutzeri were discussed. The study showed that MGEs might be good clues to understand the dynamics of genomes and their phenotypic plasticity, although they are not the only elements responsible for these characteristics.
Collapse
|
48
|
Khatoon K, Malik A. Screening of polycyclic aromatic hydrocarbon degrading bacterial isolates from oil refinery wastewater and detection of conjugative plasmids in polycyclic aromatic hydrocarbon tolerant and multi-metal resistant bacteria. Heliyon 2019; 5:e02742. [PMID: 31720477 PMCID: PMC6838955 DOI: 10.1016/j.heliyon.2019.e02742] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/24/2019] [Accepted: 10/24/2019] [Indexed: 01/26/2023] Open
Abstract
Wastewater were collected from the effluent channel in the vicinity of Mathura oil refinery, U.P. (India) and analysed for physicochemical characteristics, heavy metals as well as organic compounds including PAHs. The interaction of PAHs and heavy metals with various group of microorganisms revealed the viable count of aerobic heterotrophs, asymbiotic nitrogen fixers, actinomycetes and fungi were found to be 2.38 × 106, 1.89 × 104, 2.20 × 104 CFU/mL and 8.76 × 103 CFU/mL respectively. We have selected and screened 50 bacterial isolates for their resistance/tolerance to heavy metal and PAHs. Out of 25 multi-metal resistant isolates, 6 were able to tolerate PAHs at the concentration of 5000 μg/mL (50μg/disc) to naphthalene, anthracene, phenanthrene and pyrene. The PAH degradation efficiency of the isolates was assessed using spectrophotometer with 100 μg/mL of phenanthrene and observed different degree of degradation ranging from 34-66% after 96 h of incubation. One of the bacterial isolates KWB3 (identified as Enterobacter ludwigii by 16S rDNA sequencing) exhibited maximum degradation efficiency (66%) was further tested for phenanthrene degrading ability in the presence and absence of a co-substrate (glucose) in a mineral salt medium; and a number of metabolites were produced and detected by GC-MS which revealed the presence of benzocoumarin, phthalic acid, catechol and several low molecular weight compounds. The DNA derived from multi-metal and PAHs tolerant bacteria were PCR amplified using Inc specific primers and positive PCR products were obtained with oriT and trfA2 of the IncP group; indicates that these bacteria have gene-mobilizing capacity.
Collapse
Affiliation(s)
- Khalida Khatoon
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Abdul Malik
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
49
|
Nagata Y, Kato H, Ohtsubo Y, Tsuda M. Lessons from the genomes of lindane-degrading sphingomonads. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:630-644. [PMID: 31063253 DOI: 10.1111/1758-2229.12762] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 05/27/2023]
Abstract
Bacterial strains capable of degrading man-made xenobiotic compounds are good materials to study bacterial evolution towards new metabolic functions. Lindane (γ-hexachlorocyclohexane, γ-HCH, or γ-BHC) is an especially good target compound for the purpose, because it is relatively recalcitrant but can be degraded by a limited range of bacterial strains. A comparison of the complete genome sequences of lindane-degrading sphingomonad strains clearly demonstrated that (i) lindane-degrading strains emerged from a number of different ancestral hosts that have recruited lin genes encoding enzymes that are able to channel lindane to central metabolites, (ii) in sphingomonads lin genes have been acquired by horizontal gene transfer mediated by different plasmids and in which IS6100 plays a role in recruitment and distribution of genes, and (iii) IS6100 plays a role in dynamic genome rearrangements providing genetic diversity to different strains and ability to evolve to other states. Lindane-degrading bacteria whose genomes change so easily and quickly are also fascinating starting materials for tracing the bacterial evolution process experimentally in a relatively short time period. As the origin of the specific lin genes remains a mystery, such genes will be useful probes for exploring the cryptic 'gene pool' available to bacteria.
Collapse
Affiliation(s)
- Yuji Nagata
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan
| | - Hiromi Kato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan
| | - Yoshiyuki Ohtsubo
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan
| | - Masataka Tsuda
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan
| |
Collapse
|
50
|
Wang D, Xu Z, Zhang G, Xia L, Dong X, Li Q, Liles MR, Shao J, Shen Q, Zhang R. A genomic island in a plant beneficial rhizobacterium encodes novel antimicrobial fatty acids and a self-protection shield to enhance its competition. Environ Microbiol 2019; 21:3455-3471. [PMID: 31106958 DOI: 10.1111/1462-2920.14683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 11/30/2022]
Abstract
Rhizobacteria devote a relatively large percentage of their genomes to encode bioactive natural products that are important for competition in the rhizosphere. In this study, a plant beneficial rhizobacterium Bacillus velezensis SQR9 was discovered to produce novel antibacterial fatty acids, Bacillunoic acids, which are encoded on a genomic island (GI). This GI contains a hybrid type I fatty acid synthase (FAS)-polyketide synthase (PKS) system and an ABC transporter. The FAS was predicted to synthesize a primer that was transferred to the PKS to synthesize Bacillunoic acids. The synthesized Bacillunoic acids inhibit the growth of diverse bacteria, with the strongest activity against closely related Bacillus strains, the ABC transporter exported the toxic Bacillunoic acids upon their induction for protecting the producing strain. The inhibition of other Bacillus strains by Bacillunoic acids extended the antimicrobial spectrum of SQR9 and enhanced its competition with closely related root-associated bacteria. So, through the obtaining of this GI by horizontal gene transfer, strain SQR9 not only acquired a competitive weapon but also acquired a self-protecting shield, which increased its competition with other rhizobacteria.
Collapse
Affiliation(s)
- Dandan Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, P.R. China.,Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Guishan Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Liming Xia
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Xiaoyan Dong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, P.R. China.,Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Qing Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Mark R Liles
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jiahui Shao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, P.R. China.,Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| |
Collapse
|