1
|
Yu IS, Choi YR, Choi J, Kim MK, Jung CH, Um MY, Kim MJ. Discovery of Novel Stimulators of Pax7 and/or MyoD: Enhancing the Efficacy of Cultured Meat Production through Culture Media Enrichment. BIOSENSORS 2023; 14:24. [PMID: 38248401 PMCID: PMC10813534 DOI: 10.3390/bios14010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024]
Abstract
The principles of myogenesis play crucial roles in the production of cultured meat, and identifying protein stimulators associated with myogenesis holds great potential to enhance the efficiency of this process. In this study, we used surface plasmon resonance (SPR)-based screening of a natural product library to discover ligands for Pax7 and MyoD, key regulators of satellite cells (SCs), and performed cell-based assays on Hanwoo SCs (HWSCs) to identify substances that promote cell proliferation and/or differentiation. Through an SPR analysis, we found that six chemicals, including one Pax7+/MyoD- chemical, four Pax7+/MyoD+ chemicals, and one Pax7-/MyoD+ chemical, bound to Pax7 and/or MyoD proteins. Among four Pax7+/MyoD+ chemicals, parthenolide (0.5 and 1 µM) and rutin (100 and 200 µM) stimulated cell proliferation in the medium with 10% FBS similar to the medium with 20% FBS, without affecting differentiation. Adenosine, a Pax7-/MyoD+ chemical, accelerated differentiation. These chemicals could be potential additives to reduce the reliance of FBS required for HWSC proliferation and differentiation in cultured meat production.
Collapse
Affiliation(s)
- In-Sun Yu
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (I.-S.Y.); (Y.R.C.); (C.H.J.); (M.Y.U.)
- Department of Food Science and Human Nutrition and K-Food Research Center, Jeonbuk National University, Jeonju-si 54896, Republic of Korea;
| | - Yae Rim Choi
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (I.-S.Y.); (Y.R.C.); (C.H.J.); (M.Y.U.)
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jungseok Choi
- Department of Animal Science, Chungbuk National University, Cheongju-si 28644, Republic of Korea;
| | - Mina K. Kim
- Department of Food Science and Human Nutrition and K-Food Research Center, Jeonbuk National University, Jeonju-si 54896, Republic of Korea;
| | - Chang Hwa Jung
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (I.-S.Y.); (Y.R.C.); (C.H.J.); (M.Y.U.)
| | - Min Young Um
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (I.-S.Y.); (Y.R.C.); (C.H.J.); (M.Y.U.)
| | - Min Jung Kim
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (I.-S.Y.); (Y.R.C.); (C.H.J.); (M.Y.U.)
| |
Collapse
|
2
|
|
3
|
Zhu X, Li J, He H, Huang M, Zhang X, Wang S. Application of nanomaterials in the bioanalytical detection of disease-related genes. Biosens Bioelectron 2015; 74:113-33. [PMID: 26134290 DOI: 10.1016/j.bios.2015.04.069] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/09/2015] [Accepted: 04/21/2015] [Indexed: 12/15/2022]
Abstract
In the diagnosis of genetic diseases and disorders, nanomaterials-based gene detection systems have significant advantages over conventional diagnostic systems in terms of simplicity, sensitivity, specificity, and portability. In this review, we describe the application of nanomaterials for disease-related genes detection in different methods excluding PCR-related method, such as colorimetry, fluorescence-based methods, electrochemistry, microarray methods, surface-enhanced Raman spectroscopy (SERS), quartz crystal microbalance (QCM) methods, and dynamic light scattering (DLS). The most commonly used nanomaterials are gold, silver, carbon and semiconducting nanoparticles. Various nanomaterials-based gene detection methods are introduced, their respective advantages are discussed, and selected examples are provided to illustrate the properties of these nanomaterials and their emerging applications for the detection of specific nucleic acid sequences.
Collapse
Affiliation(s)
- Xiaoqian Zhu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China
| | - Jiao Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China
| | - Hanping He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China.
| | - Min Huang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China
| |
Collapse
|
4
|
|
5
|
Nice EC, Rothacker J, Weinstock J, Lim L, Catimel B. Use of multidimensional separation protocols for the purification of trace components in complex biological samples for proteomics analysis. J Chromatogr A 2007; 1168:190-210; discussion 189. [PMID: 17597136 DOI: 10.1016/j.chroma.2007.06.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 06/06/2007] [Accepted: 06/07/2007] [Indexed: 01/09/2023]
Abstract
The routine detection of low abundance components in complex samples for detailed proteomics analysis continues to be a challenge. Whilst the potential of multidimensional chromatographic fractionation for this purpose has been proposed for some years, and was used effectively for the purification to homogeneity of trace components in bulk biological samples for N-terminal sequence analysis, its practical application in the proteomics arena is still limited. This article reviews some of the recent data using these approaches, including the use of microaffinity purification as part of multidimensional protocols for downstream proteomics analysis.
Collapse
Affiliation(s)
- E C Nice
- Protein Biosensing and Epithelial Laboratories, Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, P.O. Royal Melbourne Hospital, Parkville, Vic. 3050, Australia.
| | | | | | | | | |
Collapse
|
6
|
Catimel B, Rothacker J, Catimel J, Faux M, Ross J, Connolly L, Clippingdale A, Burgess AW, Nice E. Biosensor-Based Micro-Affinity Purification for the Proteomic Analysis of Protein Complexes. J Proteome Res 2005; 4:1646-56. [PMID: 16212417 DOI: 10.1021/pr050132x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A biosensor-based micro-affinity purification method to recover protein binding partners and their complexes for down stream proteomics analysis has been developed using the BIAcore 3000 fitted with a prototype Surface Prep Unit (SPU). The recombinant GST-intracellular domain of E-cadherin or the recombinant GST-beta-catenin binding domain of Adenomatous Polyposis Coli (APC) were immobilized onto the SPU and used to affinity purify binding partners from chromatographically enriched SW480 colon cancer cell lysates. A GST- immobilized surface was used as a control. Samples recovered from the SPU were subjected to SDS-PAGE with sensitive Coomassie staining followed by automated in-gel digestion and LC-MS/MS. The results obtained using the SPU were compared with similar experiments performed using Sepharose beads.
Collapse
Affiliation(s)
- B Catimel
- The Ludwig Institute for Cancer Research, Melbourne Tumor Biology Branch, PO Box 2008, Royal Melbourne Hospital, Victoria 3050, Melbourne, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The existence of surface guided electromagnetic waves has been theoretically predicted from Maxwell's equations and investigated during the first decades of the 20th century. However, it is only since the late 1960's that they have attracted the interest of surface physicists and earned the moniker of "surface plasmon". With the advent of commercially available instruments and well established theories, the technique has been used to study a wide variety of biochemical and biotechnological phenomena. Spectral response of the resonance condition serves as a sensitive indicator of the optical properties of thin films immobilized within a wavelength of the surface. This enhanced surface sensitivity has provided a boon to the surface sciences, and fosters collaboration between surface chemistry, physics and the ongoing biological and biotechnological revolution. Since then, techniques based on surface plasmons such as Surface Plasmon Resonance (SPR), SPR Imaging, Plasmon Waveguide Resonance (PWR) and others, have been increasingly used to determine the affinity and kinetics of a wide variety of real time molecular interactions such as protein-protein, lipid-protein and ligand-protein, without the need for a molecular tag or label. The physical-chemical methodologies used to immobilize membranes at the surface of these optical devices are reviewed, pointing out advantages and limitations of each method. The paper serves to summarize both historical and more recent developments of these technologies for investigating structure-function aspects of these molecular interactions, and regulation of specific events in signal transduction by G-protein coupled receptors (GPCRs).
Collapse
Affiliation(s)
| | | | - V.J. Hruby
- Department of Chemistry
- Department of Biochemistry and Molecular Biophysics, University of Arizona, 85721 Tucson, Arizona, USA
| |
Collapse
|
8
|
Abstract
Most, if not all, drugs interact with multiple proteins. One or more of these interactions are responsible for carrying out the primary therapeutic effects of the drug. Others are involved in the transport or metabolic processing of the drug or in the mediation of side effects. Still others may be responsible for activities that correspond to alternate therapeutic applications. The potential clinical impact of a drug and its cost of development are affected by the sum of all these interactions. The drug development process includes the identification and characterisation of a drug's clinically relevant interactions. This characterisation is presently accomplished by a combination of experimental laboratory techniques and clinical trials, with increasing numbers of patient participants. Efficient methods for the identification of all the molecular targets of a drug prior to clinical trials could greatly expedite the drug development process. Combinatorial peptide and cDNA phage display have the potential for achieving a complete characterisation of the binding repertoire of a small molecule. This paper will discuss the current state of phage display technology, as applied to the identification of novel receptors for small molecules, using a successful application with the drug Taxol™ as an example of the technical and theoretical benefits and pitfalls of this method.
Collapse
Affiliation(s)
- Lee Makowski
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
| | | |
Collapse
|
9
|
Carver TE, Bordeau B, Cummings MD, Petrella EC, Pucci MJ, Zawadzke LE, Dougherty BA, Tredup JA, Bryson JW, Yanchunas J, Doyle ML, Witmer MR, Nelen MI, DesJarlais RL, Jaeger EP, Devine H, Asel ED, Springer BA, Bone R, Salemme FR, Todd MJ. Decrypting the biochemical function of an essential gene from Streptococcus pneumoniae using ThermoFluor technology. J Biol Chem 2005; 280:11704-12. [PMID: 15634672 DOI: 10.1074/jbc.m413278200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein product of an essential gene of unknown function from Streptococcus pneumoniae was expressed and purified for screening in the ThermoFluor affinity screening assay. This assay can detect ligand binding to proteins of unknown function. The recombinant protein was found to be in a dimeric, native-like folded state and to unfold cooperatively. ThermoFluor was used to screen the protein against a library of 3000 compounds that were specifically selected to provide information about possible biological functions. The results of this screen identified pyridoxal phosphate and pyridoxamine phosphate as equilibrium binding ligands (K(d) approximately 50 pM, K(d) approximately 2.5 microM, respectively), consistent with an enzymatic cofactor function. Several nucleotides and nucleotide sugars were also identified as ligands of this protein. Sequence comparison with two enzymes of known structure but relatively low overall sequence homology established that several key residues directly involved in pyridoxal phosphate binding were strictly conserved. Screening a collection of generic drugs and natural products identified the antifungal compound canescin A as an irreversible covalent modifier of the enzyme. Our investigation of this protein indicates that its probable biological role is that of a nucleoside diphospho-keto-sugar aminotransferase, although the preferred keto-sugar substrate remains unknown. These experiments demonstrate the utility of a generic affinity-based ligand binding technology in decrypting possible biological functions of a protein, an approach that is both independent of and complementary to existing genomic and proteomic technologies.
Collapse
Affiliation(s)
- Theodore E Carver
- Johnson & Johnson Pharmaceutical Research & Development, L.L.C., Exton, Pennsylvania 19341, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Suchting S, Heal P, Tahtis K, Stewart LM, Bicknell R. Soluble Robo4 receptor inhibits in vivo angiogenesis and endothelial cell migration. FASEB J 2005; 19:121-3. [PMID: 15486058 DOI: 10.1096/fj.04-1991fje] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Roundabout receptors are molecular guidance molecules that function by interaction with Slit proteins to regulate axon guidance, neuronal migration, and leukocyte chemotaxis. We recently isolated a novel roundabout gene, called Robo4, which is restricted in expression to the endothelium, notably in areas of angiogenesis. The aim of this study was to use the soluble extracellular domain of Robo4 as a probe of function in angiogenesis and endothelial biology. Thus, the soluble extracellular domain of the receptor (Robo4Fc) showed diverse in vivo and in vitro activities including 1) inhibition of angiogenesis in vivo in the rodent subcutaneous sponge model, 2) inhibition of tube formation in the rat aortic ring assay, 3) inhibition of VEGF- and bFGF-stimulated endothelial cell migration, and 4) inhibition of endothelial proliferation. To assess whether Robo4Fc was inhibiting Slit-mediated effects, we determined whether Robo4 and Slit interact. Recombinant Slits-1, -2, and -3 were shown by immunoprecipitation and BiaCore analysis to bind to Robo1 but not Robo4. Further study of the role of Robo4 in angiogenesis appears justified.
Collapse
MESH Headings
- Animals
- Cell Movement/physiology
- Endothelial Cells/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Humans
- Immunoglobulin Fragments/genetics
- Intercellular Signaling Peptides and Proteins
- Mice
- Mice, Inbred C57BL
- Neoplasms/blood supply
- Neoplasms/metabolism
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/prevention & control
- Neovascularization, Physiologic/physiology
- Nerve Tissue Proteins/metabolism
- Peptides/metabolism
- Protein Structure, Tertiary
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Solubility
- Umbilical Veins/cytology
- Roundabout Proteins
Collapse
Affiliation(s)
- Steven Suchting
- Molecular Angiogenesis Laboratory, Cancer Research UK, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | | | | | | |
Collapse
|
11
|
Xu S, Pan C, Hu L, Zhang Y, Guo Z, Li X, Zou H. Enzymatic reaction of the immobilized enzyme on porous silicon studied by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 2004; 25:3669-76. [PMID: 15565703 DOI: 10.1002/elps.200406063] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Desorption/ionization on silicon mass spectrometry (DIOS-MS) is a matrix-free technique that allows for the direct desorption/ionization of low-molecular-weight compounds with little or no fragmentation of analytes. This technique has a relatively high tolerance for contaminants commonly found in biological samples. DIOS-MS has been applied to determine the activity of immobilized enzymes on the porous silicon surface. Enzyme activities were also monitored with the addition of a competitive inhibitor in the substrate solution. It is demonstrated that this method can be applied to the screening of enzyme inhibitors. Furthermore, a method for peptide mapping analysis by in situ digestion of proteins on the porous silicon surface modified by trypsin, combined with matrix-assisted laser desorption/ionization-time of flight-MS has been developed.
Collapse
Affiliation(s)
- Songyun Xu
- National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Kobori A, Horie S, Suda H, Saito I, Nakatani K. The SPR sensor detecting cytosine[bond]cytosine mismatches. J Am Chem Soc 2004; 126:557-62. [PMID: 14719953 DOI: 10.1021/ja037947w] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have synthesized the first surface plasmon resonance (SPR) sensor that detects cytosine-cytosine (C[bond]C) mismatches in duplex DNA by immobilizing aminonaphthyridine dimer on the gold surface. The ligand consisting of two 2-aminonaphthyridine chromophores and an alkyl linker connecting them strongly stabilized the C[bond]C mismatches regardless of the flanking sequences. The fully matched duplexes were not stabilized at all under the same conditions. The C[bond]T, C[bond]A, and T[bond]T mismatches were also stabilized with a reduced efficiency. SPR analyses of mismatch-containing 27-mer duplexes were performed with the sensor surface on which the aminonaphthyridine dimer was immobilized. The response for the C[bond]C mismatch in 5'-GCC-3'/3'-CCG-5' was about 83 times stronger than that obtained for the fully matched duplex. The sensor successfully detects the C[bond]C mismatch at the concentration of 10 nM. SPR responses are proportional to the concentration of the C[bond]C mismatch in a range up to 200 nM. Aminonaphthyridine dimer could bind strongly to the C[bond]C mismatches having 10 possible flanking sequences with association constants in the order of 10(6) M(-1). The facile protonation of 2-aminonaphthyridine chromophore at pH 7 producing the hydrogen-bonding surface complementary to that of cytosine was most likely due to the remarkably high selectivity of 1 to the C[bond]C mismatch.
Collapse
Affiliation(s)
- Akio Kobori
- PRESTO, Japan Science and Technology Agency (JST), Kyoto 615-8510, Japan
| | | | | | | | | |
Collapse
|
13
|
Naylor S, Kumar R. Emerging role of mass spectrometry in structural and functional proteomics. ADVANCES IN PROTEIN CHEMISTRY 2004; 65:217-48. [PMID: 12964371 DOI: 10.1016/s0065-3233(03)01021-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Stephen Naylor
- Beyond Genomics, Inc., Waltham, Massachusetts 02451, USA
| | | |
Collapse
|
14
|
Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 2003; 55:403-19. [PMID: 12628324 DOI: 10.1016/s0169-409x(02)00226-0] [Citation(s) in RCA: 1016] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The utility of polymeric micelles formed through the multimolecular assembly of block copolymer was comprehensively described as novel core-shell typed colloidal carriers for drug and gene targeting. Particularly, novel approaches for the formation of functionalized poly(ethylene glycol) (PEG) layers as hydrophilic outer shell were focused to attain receptor-mediated drug and gene delivery through PEG-conjugated ligands with a minimal non-specific interaction with other proteins. Surface organization of block copolymer micelles with cross-linking core was also described from a standpoint of the preparation of a new functional surface-coating with a unique macromolecular architecture. The micelle-attached surface and the thin hydrogel layer made by layered micelles exhibited nonfouling properties and worked as the reservoir for hydrophobic reagents. Furthermore, the potential utility of multimolecular assembly derived from heterobifunctional PEGs and block copolymers were explored to systematically modify the properties of metal and semiconductor nanostructures by controlling their structure and their surface properties, making them extremely attractive for use in biological and biomedical applications.
Collapse
Affiliation(s)
- Hidenori Otsuka
- Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | | | | |
Collapse
|
15
|
Glick M, Grant GH, Richards WG. Docking of flexible molecules using multiscale ligand representations. J Med Chem 2002; 45:4639-46. [PMID: 12361390 DOI: 10.1021/jm020830i] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structural genomics will yield an immense number of protein three-dimensional structures in the near future. Automated theoretical methodologies are needed to exploit this information and are likely to play a pivotal role in drug discovery. Here, we present a fully automated, efficient docking methodology that does not require any a priori knowledge about the location of the binding site or function of the protein. The method relies on a multiscale concept where we deal with a hierarchy of models generated for the potential ligand. The models are created using the k-means clustering algorithm. The method was tested on seven protein-ligand complexes. In the largest complex, human immunodeficiency virus reverse transcriptase/nevirapin, the root mean square deviation value when comparing our results to the crystal structure was 0.29 A. We demonstrate on an additional 25 protein-ligand complexes that the methodology may be applicable to high throughput docking. This work reveals three striking results. First, a ligand can be docked using a very small number of feature points. Second, when using a multiscale concept, the number of conformers that require to be generated can be significantly reduced. Third, fully flexible ligands can be treated as a small set of rigid k-means clusters.
Collapse
Affiliation(s)
- Meir Glick
- Department of Chemistry, Central Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QH, United Kingdom
| | | | | |
Collapse
|
16
|
Subrahmanyam S, Piletsky SA, Turner APF. Application of natural receptors in sensors and assays. Anal Chem 2002; 74:3942-51. [PMID: 12199559 DOI: 10.1021/ac025673+] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biosensors are analytical devices that use a biological or biologically derived material immobilized at a physicochemical transducer to measure one or more analytes. Although there are a large number of reviews on biosensors in general, there has been little systematic information presented on the application of natural receptors in sensor technology. This perspective discusses broadly the fundamental properties of natural receptors, which make them an attractive option for use as biorecognition elements in sensor technology. It analyses the current situation by reference to typical examples, such as the application of nicotinic acetylcholine receptor and G protein-linked receptors in affinity sensors and analyses the problems that need to be resolved prior to any commercialization of such devices.
Collapse
Affiliation(s)
- Sreenath Subrahmanyam
- Institute of BioScience and Technology, Cranfield University at Silsoe, Bedfordshire, UK
| | | | | |
Collapse
|
17
|
Abstract
Optical biosensors that exploit surface plasmon resonance, waveguides and resonant mirrors have been used widely over the past decade to analyse biomolecular interactions. These sensors allow the determination of the affinity and kinetics of a wide variety of molecular interactions in real time, without the need for a molecular tag or label. Advances in instrumentation and experimental design have led to the increasing application of optical biosensors in many areas of drug discovery, including target identification, ligand fishing, assay development, lead selection, early ADME and manufacturing quality control. This article reviews important advances in optical-biosensor instrumentation and applications, and also highlights some exciting developments, such as highly multiplexed optical-biosensor arrays.
Collapse
Affiliation(s)
- Matthew A Cooper
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
18
|
Zou H, Zhang Q, Guo Z, Guo B, Zhang Q, Chen X. A Mass Spectrometry Based Direct-Binding Assay for Screening Binding Partners of Proteins. Angew Chem Int Ed Engl 2002. [DOI: 10.1002/1521-3773(20020215)41:4<646::aid-anie646>3.0.co;2-i] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Zou H, Zhang Q, Guo Z, Guo B, Zhang Q, Chen X. A Mass Spectrometry Based Direct-Binding Assay for Screening Binding Partners of Proteins. Angew Chem Int Ed Engl 2002. [DOI: 10.1002/1521-3757(20020215)114:4<668::aid-ange668>3.0.co;2-n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Hartley O. The use of phage display in the study of receptors and their ligands. J Recept Signal Transduct Res 2002; 22:373-92. [PMID: 12503628 DOI: 10.1081/rrs-120014608] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phage display technology presents a rapid means by which proteins and peptides that bind specifically to predefined molecular targets can be isolated from extremely complex combinatorial libraries. There are several important ways by which phage display can provide impetus to receptor-based research. Firstly, phage display can be applied, alongside transcriptome and proteome expression profiling techniques, to the identification and characterisation of receptors whose expression is specific to either a cell lineage, a tissue or a disease state. Secondly, specific monoclonal antibodies that enable researchers to identify, localize and quantify receptors can be produced very rapidly (weeks). Thirdly, it should be possible to apply phage display to the matching of orphan ligands and receptors. Finally, phage display can be used to identify proteins and peptides that modulate receptor activity. As well as being useful in the study of receptor function, biologically active proteins and peptides could also be used therapeutically, or as leads for drug design. Hence phage display is ready to play a central role in the study of receptors in the post-genome era. This review outlines the ways in which phage display has been applied to the study of receptor-ligand systems, and discusses how new developments in the technology may be of even greater utility to the field in the next decade.
Collapse
Affiliation(s)
- Oliver Hartley
- Département de Biochimie Medicale, Centre Médicale Universitaire, 1 rue Michel Servet, CH-1211 Genève 4, Switzerland.
| |
Collapse
|
21
|
Abstract
Recent advances in massively parallel experimental and computational technologies are leading to radically new approaches to the early phases of the drug production pipeline. The revolution in DNA microarray technologies and the imminent emergence of its analogue for proteins, along with machine learning algorithms, promise rapid acceleration in the identification of potential drug targets, and in high-throughput screens for subpopulation-specific toxicity. Similarly, advances in structural genomics in conjunction with in vitro and in silico evolutionary methods will rapidly accelerate the number of lead drug candidates and substantially augment their target specificity. Taken collectively, these advances will usher in an era of predictive medicine, which will move medical practice from reactive therapy after disease onset, to proactive prevention.
Collapse
Affiliation(s)
- Zhiping Weng
- Biomedical Engineering Department and Bioinformatics Program, Boston University, Boston MA 02215, USA.
| | | |
Collapse
|
22
|
|
23
|
|
24
|
Niemeyer CM. Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science. Angew Chem Int Ed Engl 2001; 40:4128-4158. [DOI: 10.1002/1521-3773(20011119)40:22<4128::aid-anie4128>3.0.co;2-s] [Citation(s) in RCA: 1417] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2001] [Indexed: 01/04/2023]
|
25
|
Catimel B, Rothacker J, Nice E. The use of biosensors for microaffinity purification: an integrated approach to proteomics. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2001; 49:289-312. [PMID: 11694286 DOI: 10.1016/s0165-022x(01)00205-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- B Catimel
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, The Royal Melbourne Hospital, Post Office Box 2008, Victoria 3050, Australia
| | | | | |
Collapse
|
26
|
Natsume T, Nakayama H, Isobe T. BIA-MS-MS: biomolecular interaction analysis for functional proteomics. Trends Biotechnol 2001; 19:S28-33. [PMID: 11780967 DOI: 10.1016/s0167-7799(01)01797-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
One of the experimental processes of functional proteomics is the analysis of protein interaction. Here, we review a new analytical platform, BIA-MS, for protein interaction analysis. BIA-MS is an integration of a surface plasmon resonance biosensor for real-time interaction analysis and mass spectrometry for the subsequent identification of interacting molecules.
Collapse
Affiliation(s)
- T Natsume
- National Institute of Advanced Science and Technology, Biological Information Research Center (JBIRC), Tokyo, Japan.
| | | | | |
Collapse
|
27
|
|
28
|
Abstract
We have compiled a comprehensive list of the articles published in the year 2000 that describe work employing commercial optical biosensors. Selected reviews of interest for the general biosensor user are highlighted. Emerging applications in areas of drug discovery, clinical support, food and environment monitoring, and cell membrane biology are emphasized. In addition, the experimental design and data processing steps necessary to achieve high-quality biosensor data are described and examples of well-performed kinetic analysis are provided.
Collapse
Affiliation(s)
- R L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
29
|
Abstract
Semisynthetic DNA-protein conjugates are versatile molecular tools useful, for instance, in the self-assembly of high-affinity reagents for immunological detection assays, the fabrication of highly functionalized laterally microstructured biochips, and the biomimetic "bottom-up" synthesis of nanostructured supramolecular devices. This concept paper summarizes the current state-of-the-art concerning the synthesis, characterization, and applications of such hybrid molecules, and also draws perspectives on future developments.
Collapse
Affiliation(s)
- C M Niemeyer
- Universität Bremen, Biotechnologie und Molekulare Genetik, Germany.
| |
Collapse
|
30
|
Affiliation(s)
- N Hussain
- Centre for Drug Delivery, Research, The School of Pharmacy, University of London, 29-39 Brunswick Square, WC1N 1AX, London, UK
| |
Collapse
|
31
|
Hernaiz M, Liu J, Rosenberg RD, Linhardt RJ. Enzymatic modification of heparan sulfate on a biochip promotes its interaction with antithrombin III. Biochem Biophys Res Commun 2000; 276:292-7. [PMID: 11006120 DOI: 10.1006/bbrc.2000.3453] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A heparan sulfate glycosaminoglycan chain, biotinylated at its reducing-end, was bound to a streptavidin-coated biochip. Surface plasmon resonance spectroscopy showed a low affinity interaction with antithrombin III (ATIII) when it was flowed over a surface containing heparan sulfate. ATIII bound tightly with high affinity when the same surface was enzymatically modified to using 3-O-sulfotransferase isoform 1 (3-OST-1) in the presence of 3'-phosphoadenosine 5'-phosphosulfate (PAPS). The 3-OST-1 enzyme is involved in heparan sulfate biosynthesis and introduces a critical 3-O-sulfo group into this glycosaminoglycan affording the appropriate pentasaccharide sequence capable of high affinity binding to ATIII. This experiment demonstrates the specific structural modification of a glycosaminoglycan bound to a biochip using a biosynthetic enzyme, suggesting a new approach to rapid screening glycosaminoglycan-protein interactions.
Collapse
Affiliation(s)
- M Hernaiz
- Division of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, Iowa, 52242, USA
| | | | | | | |
Collapse
|
32
|
Implementing surface plasmon resonance biosensors in drug discovery. PHARMACEUTICAL SCIENCE & TECHNOLOGY TODAY 2000; 3:310-317. [PMID: 10996572 DOI: 10.1016/s1461-5347(00)00288-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recent improvements in instrument hardware, experimental design and data processing have made it possible to use surface plasmon resonance (SPR) biosensor technology in the discovery and development of small-molecule drugs. The key features of SPR biosensors (i.e. real-time binding analysis and lack of labeling requirements) make this technology suitable for a wide range of applications. Current instruments have a throughput of approximately 100-400 assays per day, providing a complement to secondary screening. The ability to collect kinetic data on compounds binding to therapeutic targets yields new information for lead optimization. Small-molecule analysis and emerging applications in the areas of ADME (adsorption, distribution, metabolism and excretion) and proteomics have SPR biosensors poised to play a significant role in the pharmaceutical industry.
Collapse
|