1
|
Redondo MJ, Gignoux CR, Dabelea D, Hagopian WA, Onengut-Gumuscu S, Oram RA, Rich SS. Type 1 diabetes in diverse ancestries and the use of genetic risk scores. Lancet Diabetes Endocrinol 2022; 10:597-608. [PMID: 35724677 PMCID: PMC10024251 DOI: 10.1016/s2213-8587(22)00159-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/16/2022] [Accepted: 05/06/2022] [Indexed: 02/06/2023]
Abstract
Over 75 genetic loci within and outside of the HLA region influence type 1 diabetes risk. Genetic risk scores (GRS), which facilitate the integration of complex genetic information, have been developed in type 1 diabetes and incorporated into models and algorithms for classification, prognosis, and prediction of disease and response to preventive and therapeutic interventions. However, the development and validation of GRS across different ancestries is still emerging, as is knowledge on type 1 diabetes genetics in populations of diverse genetic ancestries. In this Review, we provide a summary of the current evidence on the evolutionary genetic variation in type 1 diabetes and the racial and ethnic differences in type 1 diabetes epidemiology, clinical characteristics, and preclinical course. We also discuss the influence of genetics on type 1 diabetes with differences across ancestries and the development and validation of GRS in various populations.
Collapse
Affiliation(s)
- Maria J Redondo
- Division of Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
| | - Christopher R Gignoux
- Department of Medicine and Colorado Center for Personalized Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - William A Hagopian
- Division of Diabetes Programs, Pacific Northwest Research Institute, Seattle, WA, USA
| | - Suna Onengut-Gumuscu
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Exeter, UK; The Academic Kidney Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Stephen S Rich
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
2
|
Lathen DR, Merrill CB, Rothenfluh A. Flying Together: Drosophila as a Tool to Understand the Genetics of Human Alcoholism. Int J Mol Sci 2020; 21:E6649. [PMID: 32932795 PMCID: PMC7555299 DOI: 10.3390/ijms21186649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Alcohol use disorder (AUD) exacts an immense toll on individuals, families, and society. Genetic factors determine up to 60% of an individual's risk of developing problematic alcohol habits. Effective AUD prevention and treatment requires knowledge of the genes that predispose people to alcoholism, play a role in alcohol responses, and/or contribute to the development of addiction. As a highly tractable and translatable genetic and behavioral model organism, Drosophila melanogaster has proven valuable to uncover important genes and mechanistic pathways that have obvious orthologs in humans and that help explain the complexities of addiction. Vinegar flies exhibit remarkably strong face and mechanistic validity as a model for AUDs, permitting many advancements in the quest to understand human genetic involvement in this disease. These advancements occur via approaches that essentially fall into one of two categories: (1) discovering candidate genes via human genome-wide association studies (GWAS), transcriptomics on post-mortem tissue from AUD patients, or relevant physiological connections, then using reverse genetics in flies to validate candidate genes' roles and investigate their molecular function in the context of alcohol. (2) Utilizing flies to discover candidate genes through unbiased screens, GWAS, quantitative trait locus analyses, transcriptomics, or single-gene studies, then validating their translational role in human genetic surveys. In this review, we highlight the utility of Drosophila as a model for alcoholism by surveying recent advances in our understanding of human AUDs that resulted from these various approaches. We summarize the genes that are conserved in alcohol-related function between humans and flies. We also provide insight into some advantages and limitations of these approaches. Overall, this review demonstrates how Drosophila have and can be used to answer important genetic questions about alcohol addiction.
Collapse
Affiliation(s)
- Daniel R. Lathen
- Department of Psychiatry and Neuroscience Ph.D. Program, University of Utah, Salt Lake City, UT 84108, USA;
| | - Collin B. Merrill
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA;
| | - Adrian Rothenfluh
- Department of Psychiatry and Neuroscience Ph.D. Program, University of Utah, Salt Lake City, UT 84108, USA;
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Howie JM, Mazzucco R, Taus T, Nolte V, Schlötterer C. DNA Motifs Are Not General Predictors of Recombination in Two Drosophila Sister Species. Genome Biol Evol 2019; 11:1345-1357. [PMID: 30980655 PMCID: PMC6490297 DOI: 10.1093/gbe/evz082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2019] [Indexed: 12/11/2022] Open
Abstract
Meiotic recombination is crucial for chromosomal segregation and facilitates the spread of beneficial and removal of deleterious mutations. Recombination rates frequently vary along chromosomes and Drosophila melanogaster exhibits a remarkable pattern. Recombination rates gradually decrease toward centromeres and telomeres, with a dramatic impact on levels of variation in natural populations. Two close sister species, Drosophila simulans and Drosophila mauritiana do not only have higher recombination rates but also exhibit a much more homogeneous recombination rate that only drops sharply very close to centromeres and telomeres. Because certain sequence motifs are associated with recombination rate variation in D. melanogaster, we tested whether the difference in recombination landscape between D. melanogaster and D. simulans can be explained by the genomic distribution of recombination rate–associated sequence motifs. We constructed the first high-resolution recombination map for D. simulans based on 189 haplotypes from a natural D. simulans population and searched for short sequence motifs linked with higher than average recombination in both sister species. We identified five consensus motifs significantly associated with higher than average chromosome-wide recombination rates in at least one species and present in both. Testing fine resolution associations between motif density and recombination, we found strong and positive associations genome-wide over a range of scales in D. melanogaster, while the results were equivocal in D. simulans. Despite the strong association in D. melanogaster, we did not find a decreasing density of these short-repeat motifs toward centromeres and telomeres. We conclude that the density of recombination-associated repeat motifs cannot explain the large-scale recombination landscape in D. melanogaster, nor the differences to D. simulans. The strong association seen for the sequence motifs in D. melanogaster likely reflects their impact influencing local differences in recombination rates along the genome.
Collapse
Affiliation(s)
- James M Howie
- Institut für Populationsgenetik, Vetmeduni Vienna, Austria
| | | | - Thomas Taus
- Institut für Populationsgenetik, Vetmeduni Vienna, Austria.,Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Austria
| | | |
Collapse
|
4
|
Schoville SD, Chen YH, Andersson MN, Benoit JB, Bhandari A, Bowsher JH, Brevik K, Cappelle K, Chen MJM, Childers AK, Childers C, Christiaens O, Clements J, Didion EM, Elpidina EN, Engsontia P, Friedrich M, García-Robles I, Gibbs RA, Goswami C, Grapputo A, Gruden K, Grynberg M, Henrissat B, Jennings EC, Jones JW, Kalsi M, Khan SA, Kumar A, Li F, Lombard V, Ma X, Martynov A, Miller NJ, Mitchell RF, Munoz-Torres M, Muszewska A, Oppert B, Palli SR, Panfilio KA, Pauchet Y, Perkin LC, Petek M, Poelchau MF, Record É, Rinehart JP, Robertson HM, Rosendale AJ, Ruiz-Arroyo VM, Smagghe G, Szendrei Z, Thomas GWC, Torson AS, Vargas Jentzsch IM, Weirauch MT, Yates AD, Yocum GD, Yoon JS, Richards S. A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Sci Rep 2018; 8:1931. [PMID: 29386578 PMCID: PMC5792627 DOI: 10.1038/s41598-018-20154-1] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/13/2018] [Indexed: 01/04/2023] Open
Abstract
The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. The L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest.
Collapse
Affiliation(s)
- Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, USA.
| | - Yolanda H Chen
- Department of Plant and Soil Sciences, University of Vermont, Burlington, USA
| | | | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, USA
| | - Anita Bhandari
- Department of Molecular Physiology, Christian-Albrechts-University at Kiel, Kiel, Germany
| | - Julia H Bowsher
- Department of Biological Sciences, North Dakota State University, Fargo, USA
| | - Kristian Brevik
- Department of Plant and Soil Sciences, University of Vermont, Burlington, USA
| | - Kaat Cappelle
- Department of Crop Protection, Ghent University, Ghent, Belgium
| | - Mei-Ju M Chen
- USDA-ARS National Agricultural Library, Beltsville, MD, USA
| | - Anna K Childers
- USDA-ARS Bee Research Lab, Beltsville, MD, USA
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA
| | | | | | - Justin Clements
- Department of Entomology, University of Wisconsin-Madison, Madison, USA
| | - Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, USA
| | - Elena N Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moskva, Russia
| | - Patamarerk Engsontia
- Department of Biology, Faculty of Science, Prince of Songkla University, Amphoe Hat Yai, Thailand
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, USA
| | | | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Chandan Goswami
- National Institute of Science Education and Research, Bhubaneswar, India
| | | | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13288, Marseille, France
- INRA, USC 1408 AFMB, F-13288, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, King Abdulaziz, Saudi Arabia
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Wayne State University, Detroit, USA
| | - Megha Kalsi
- Department of Entomology, University of Kentucky, Lexington, USA
| | - Sher A Khan
- Department of Entomology, Texas A&M University, College Station, USA
| | - Abhishek Kumar
- Department of Genetics & Molecular Biology in Botany, Christian-Albrechts-University at Kiel, Kiel, Germany
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Fei Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13288, Marseille, France
- INRA, USC 1408 AFMB, F-13288, Marseille, France
| | - Xingzhou Ma
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Alexander Martynov
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Nicholas J Miller
- Department of Biology, Illinois Institute of Technology, Chicago, USA
| | - Robert F Mitchell
- Department of Biology, University of Wisconsin-Oshkosh, Oshkosh, USA
| | - Monica Munoz-Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Brenda Oppert
- USDA-ARS Center for Grain and Animal Health Research, New York, USA
| | | | - Kristen A Panfilio
- Institute for Developmental Biology, University of Cologne, Köln, Germany
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, England, UK
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lindsey C Perkin
- USDA-ARS Center for Grain and Animal Health Research, New York, USA
| | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | - Éric Record
- INRA, Aix-Marseille Université, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Joseph P Rinehart
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, USA
| | | | - Guy Smagghe
- Department of Crop Protection, Ghent University, Ghent, Belgium
| | - Zsofia Szendrei
- Department of Entomology, Michigan State University, East Lansing, USA
| | - Gregg W C Thomas
- Department of Biology and School of Informatics and Computing, Indiana University, Bloomington, USA
| | - Alex S Torson
- Department of Biological Sciences, North Dakota State University, Fargo, USA
| | | | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Division of Biomedical Informatics and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Ashley D Yates
- Department of Entomology, The Ohio State University, Columbus, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, USA
| | - George D Yocum
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA
| | - June-Sun Yoon
- Department of Entomology, University of Kentucky, Lexington, USA
| | - Stephen Richards
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
5
|
Wang L, Zhang Y, Qin C, Tian D, Yang S, Hurst LD. Mutation rate analysis via parent-progeny sequencing of the perennial peach. II. No evidence for recombination-associated mutation. Proc Biol Sci 2017; 283:rspb.2016.1785. [PMID: 27798307 PMCID: PMC5095386 DOI: 10.1098/rspb.2016.1785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/29/2016] [Indexed: 12/30/2022] Open
Abstract
Mutation rates and recombination rates vary between species and between regions within a genome. What are the determinants of these forms of variation? Prior evidence has suggested that the recombination might be mutagenic with an excess of new mutations in the vicinity of recombination break points. As it is conjectured that domesticated taxa have higher recombination rates than wild ones, we expect domesticated taxa to have raised mutation rates. Here, we use parent–offspring sequencing in domesticated and wild peach to ask (i) whether recombination is mutagenic, and (ii) whether domesticated peach has a higher recombination rate than wild peach. We find no evidence that domesticated peach has an increased recombination rate, nor an increased mutation rate near recombination events. If recombination is mutagenic in this taxa, the effect is too weak to be detected by our analysis. While an absence of recombination-associated mutation might explain an absence of a recombination–heterozygozity correlation in peach, we caution against such an interpretation.
Collapse
Affiliation(s)
- Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yanchun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Chao Qin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Dacheng Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Laurence D Hurst
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
6
|
Dragh MA, Xu Z, Al-Allak ZS, Hong L. Vitamin K2 Prevents Lymphoma in Drosophila. Sci Rep 2017; 7:17047. [PMID: 29213118 PMCID: PMC5719063 DOI: 10.1038/s41598-017-17270-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023] Open
Abstract
Previous studies have established the anticancer effect of vitamin K2 (VK2). However, its effect on lymphoma induced by UBIAD1/heix mutation in Drosophila remains unknown. Therefore, we aimed to develop an in vivo model of lymphoma for the precise characterization of lymphoma phenotypes. We also aimed to improve the understanding of the mechanisms that underlie the preventative effects of VK2 on lymphoma. Our results demonstrated that VK2 prevents lymphoma by acting as an electron carrier and by correcting the function and structure of mitochondria by inhibiting mitochondrial reactive oxygen species production mtROS. Our work identifies mitochondria as a key player in cancer therapy strategies.
Collapse
Affiliation(s)
- Maytham A Dragh
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.,Department of Biology College of Life Science, Misan University, Amarah, Iraq
| | - Zhiliang Xu
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Zainab S Al-Allak
- Department of Biology College of Life Science, Misan University, Amarah, Iraq
| | - Ling Hong
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| |
Collapse
|
7
|
Liu H, Jia Y, Sun X, Tian D, Hurst LD, Yang S. Direct Determination of the Mutation Rate in the Bumblebee Reveals Evidence for Weak Recombination-Associated Mutation and an Approximate Rate Constancy in Insects. Mol Biol Evol 2017; 34:119-130. [PMID: 28007973 PMCID: PMC5854123 DOI: 10.1093/molbev/msw226] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Accurate knowledge of the mutation rate provides a base line for inferring expected rates of evolution, for testing evolutionary hypotheses and for estimation of key parameters. Advances in sequencing technology now permit direct estimates of the mutation rate from sequencing of close relatives. Within insects there have been three prior such estimates, two in nonsocial insects (Drosophila: 2.8 × 10-9 per bp per haploid genome per generation; Heliconius: 2.9 × 10-9) and one in a social species, the honeybee (3.4 × 10-9). Might the honeybee's rate be ∼20% higher because it has an exceptionally high recombination rate and recombination may be directly or indirectly mutagenic? To address this possibility, we provide a direct estimate of the mutation rate in the bumblebee (Bombus terrestris), this being a close relative of the honeybee but with a much lower recombination rate. We confirm that the crossover rate of the bumblebee is indeed much lower than honeybees (8.7 cM/Mb vs. 37 cM/Mb). Importantly, we find no significant difference in the mutation rates: we estimate for bumblebees a rate of 3.6 × 10-9 per haploid genome per generation (95% confidence intervals 2.38 × 10-9 and 5.37 × 10-9) which is just 5% higher than the estimate that of honeybees. Both genomes have approximately one new mutation per haploid genome per generation. While we find evidence for a direct coupling between recombination and mutation (also seen in honeybees), the effect is so weak as to leave almost no footprint on any between-species differences. The similarity in mutation rates suggests an approximate constancy of the mutation rate in insects.
Collapse
Affiliation(s)
- Haoxuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yanxiao Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaoguang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Dacheng Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Laurence D Hurst
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Demographic inference under the coalescent in a spatial continuum. Theor Popul Biol 2016; 111:43-50. [PMID: 27184386 DOI: 10.1016/j.tpb.2016.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 11/22/2022]
Abstract
Understanding population dynamics from the analysis of molecular and spatial data requires sound statistical modeling. Current approaches assume that populations are naturally partitioned into discrete demes, thereby failing to be relevant in cases where individuals are scattered on a spatial continuum. Other models predict the formation of increasingly tight clusters of individuals in space, which, again, conflicts with biological evidence. Building on recent theoretical work, we introduce a new genealogy-based inference framework that alleviates these issues. This approach effectively implements a stochastic model in which the distribution of individuals is homogeneous and stationary, thereby providing a relevant null model for the fluctuation of genetic diversity in time and space. Importantly, the spatial density of individuals in a population and their range of dispersal during the course of evolution are two parameters that can be inferred separately with this method. The validity of the new inference framework is confirmed with extensive simulations and the analysis of influenza sequences collected over five seasons in the USA.
Collapse
|
9
|
Sun ZX, Zhai YF, Zhang JQ, Kang K, Cai JH, Fu Y, Qiu JQ, Shen JW, Zhang WQ. The genetic basis of population fecundity prediction across multiple field populations of Nilaparvata lugens. Mol Ecol 2015; 24:771-84. [PMID: 25581109 DOI: 10.1111/mec.13069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/30/2014] [Accepted: 01/06/2015] [Indexed: 12/16/2022]
Abstract
Identifying the molecular markers for complex quantitative traits in natural populations promises to provide novel insight into genetic mechanisms of adaptation and to aid in forecasting population dynamics. In this study, we investigated single nucleotide polymorphisms (SNPs) using candidate gene approach from high- and low-fecundity populations of the brown planthopper (BPH) Nilaparvata lugens Stål (Hemiptera: Delphacidae) divergently selected for fecundity. We also tested whether the population fecundity can be predicted by a few SNPs. Seven genes (ACE, fizzy, HMGCR, LpR, Sxl, Vg and VgR) were inspected for SNPs in N. lugens, which is a serious insect pest of rice. By direct sequencing of the complementary DNA and promoter sequences of these candidate genes, 1033 SNPs were discovered within high- and low-fecundity BPH populations. A panel of 121 candidate SNPs were selected and genotyped in 215 individuals from 2 laboratory populations (HFP and LFP) and 3 field populations (GZP, SGP and ZSP). Prior to association tests, population structure and linkage disequilibrium (LD) among the 3 field populations were analysed. The association results showed that 7 SNPs were significantly associated with population fecundity in BPH. These significant SNPs were used for constructing general liner models with stepwise regression. The best predictive model was composed of 2 SNPs (ACE-862 and VgR-816 ) with very good fitting degree. We found that 29% of the phenotypic variation in fecundity could be accounted for by only two markers. Using two laboratory populations and a complete independent field population, the predictive accuracy was 84.35-92.39%. The predictive model provides an efficient molecular method to predict BPH fecundity of field populations and provides novel insights for insect population management.
Collapse
Affiliation(s)
- Zhong Xiang Sun
- Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
López ME, Neira R, Yáñez JM. Applications in the search for genomic selection signatures in fish. Front Genet 2015; 5:458. [PMID: 25642239 PMCID: PMC4294200 DOI: 10.3389/fgene.2014.00458] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/15/2014] [Indexed: 11/25/2022] Open
Abstract
Selection signatures are genomic regions harboring DNA sequences functionally involved in the genetic variation of traits subject to selection. Selection signatures have been intensively studied in recent years because of their relevance to evolutionary biology and their potential association with genes that control phenotypes of interest in wild and domestic populations. Selection signature research in fish has been confined to a smaller scale, due in part to the relatively recent domestication of fish species and limited genomic resources such as molecular markers, genetic mapping, DNA sequences, and reference genomes. However, recent genomic technology advances are paving the way for more studies that may contribute to the knowledge of genomic regions underlying phenotypes of biological and productive interest in fish.
Collapse
Affiliation(s)
- María E López
- Faculty of Agricultural Sciences, University of Chile Santiago, Chile ; Aquainnovo, Puerto Montt Chile
| | - Roberto Neira
- Faculty of Agricultural Sciences, University of Chile Santiago, Chile
| | - José M Yáñez
- Aquainnovo, Puerto Montt Chile ; Faculty of Veterinary and Animal Sciences, University of Chile Santiago, Chile
| |
Collapse
|
11
|
Gomez F, Hirbo J, Tishkoff SA. Genetic variation and adaptation in Africa: implications for human evolution and disease. Cold Spring Harb Perspect Biol 2014; 6:a008524. [PMID: 24984772 DOI: 10.1101/cshperspect.a008524] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Because modern humans originated in Africa and have adapted to diverse environments, African populations have high levels of genetic and phenotypic diversity. Thus, genomic studies of diverse African ethnic groups are essential for understanding human evolutionary history and how this leads to differential disease risk in all humans. Comparative studies of genetic diversity within and between African ethnic groups creates an opportunity to reconstruct some of the earliest events in human population history and are useful for identifying patterns of genetic variation that have been influenced by recent natural selection. Here we describe what is currently known about genetic variation and evolutionary history of diverse African ethnic groups. We also describe examples of recent natural selection in African genomes and how these data are informative for understanding the frequency of many genetic traits, including those that cause disease susceptibility in African populations and populations of recent African descent.
Collapse
Affiliation(s)
- Felicia Gomez
- Department of Genetics and Biology, School of Medicine and School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104 Hominid Paleobiology Doctoral Program and The Center for the Advanced Study of Hominid Paleobiology, Department of Anthropology, The George Washington University, Washington, D.C. 20052
| | - Jibril Hirbo
- Department of Genetics and Biology, School of Medicine and School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Sarah A Tishkoff
- Department of Genetics and Biology, School of Medicine and School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
12
|
Manzano-Winkler B, McGaugh SE, Noor MAF. How hot are drosophila hotspots? examining recombination rate variation and associations with nucleotide diversity, divergence, and maternal age in Drosophila pseudoobscura. PLoS One 2013; 8:e71582. [PMID: 23967224 PMCID: PMC3742509 DOI: 10.1371/journal.pone.0071582] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/08/2013] [Indexed: 11/24/2022] Open
Abstract
Fine scale meiotic recombination maps have uncovered a large amount of variation in crossover rate across the genomes of many species, and such variation in mammalian and yeast genomes is concentrated to <5kb regions of highly elevated recombination rates (10-100x the background rate) called "hotspots." Drosophila exhibit substantial recombination rate heterogeneity across their genome, but evidence for these highly-localized hotspots is lacking. We assayed recombination across a 40Kb region of Drosophila pseudoobscura chromosome 2, with one 20kb interval assayed every 5Kb and the adjacent 20kb interval bisected into 10kb pieces. We found that recombination events across the 40kb stretch were relatively evenly distributed across each of the 5kb and 10kb intervals, rather than concentrated in a single 5kb region. This, in combination with other recent work, indicates that the recombination landscape of Drosophila may differ from the punctate recombination pattern observed in many mammals and yeast. Additionally, we found no correlation of average pairwise nucleotide diversity and divergence with recombination rate across the 20kb intervals, nor any effect of maternal age in weeks on recombination rate in our sample.
Collapse
Affiliation(s)
| | - Suzanne E. McGaugh
- Biology Department, Duke University, Durham, North Carolina, United States of America
- The Genome Institute, Washington University, St. Louis, Missouri, United States of America
| | - Mohamed A. F. Noor
- Biology Department, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
13
|
Heil CSS, Noor MAF. Zinc finger binding motifs do not explain recombination rate variation within or between species of Drosophila. PLoS One 2012; 7:e45055. [PMID: 23028758 PMCID: PMC3445564 DOI: 10.1371/journal.pone.0045055] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/15/2012] [Indexed: 01/15/2023] Open
Abstract
In humans and mice, the Cys(2)His(2) zinc finger protein PRDM9 binds to a DNA sequence motif enriched in hotspots of recombination, possibly modifying nucleosomes, and recruiting recombination machinery to initiate Double Strand Breaks (DSBs). However, since its discovery, some researchers have suggested that the recombinational effect of PRDM9 is lineage or species specific. To test for a conserved role of PRDM9-like proteins across taxa, we use the Drosophila pseudoobscura species group in an attempt to identify recombination associated zinc finger proteins and motifs. We leveraged the conserved amino acid motifs in Cys(2)His(2) zinc fingers to predict nucleotide binding motifs for all Cys(2)His(2) zinc finger proteins in Drosophila pseudoobscura and identified associations with empirical measures of recombination rate. Additionally, we utilized recombination maps from D. pseudoobscura and D. miranda to explore whether changes in the binding motifs between species can account for changes in the recombination landscape, analogous to the effect observed in PRDM9 among human populations. We identified a handful of potential recombination-associated sequence motifs, but the associations are generally tenuous and their biological relevance remains uncertain. Furthermore, we found no evidence that changes in zinc finger DNA binding explains variation in recombination rate between species. We therefore conclude that there is no protein with a DNA sequence specific human-PRDM9-like function in Drosophila. We suggest these findings could be explained by the existence of a different recombination initiation system in Drosophila.
Collapse
Affiliation(s)
- Caiti S S Heil
- Department of Biology, Duke University, Durham, North Carolina, USA.
| | | |
Collapse
|
14
|
Carneiro M, Albert FW, Melo-Ferreira J, Galtier N, Gayral P, Blanco-Aguiar JA, Villafuerte R, Nachman MW, Ferrand N. Evidence for widespread positive and purifying selection across the European rabbit (Oryctolagus cuniculus) genome. Mol Biol Evol 2012; 29:1837-49. [PMID: 22319161 DOI: 10.1093/molbev/mss025] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nearly neutral theory of molecular evolution predicts that the efficacy of both positive and purifying selection is a function of the long-term effective population size (N(e)) of a species. Under this theory, the efficacy of natural selection should increase with N(e). Here, we tested this simple prediction by surveying ~1.5 to 1.8 Mb of protein coding sequence in the two subspecies of the European rabbit (Oryctolagus cuniculus algirus and O. c. cuniculus), a mammal species characterized by high levels of nucleotide diversity and N(e) estimates for each subspecies on the order of 1 × 10(6). When the segregation of slightly deleterious mutations and demographic effects were taken into account, we inferred that >60% of amino acid substitutions on the autosomes were driven to fixation by positive selection. Moreover, we inferred that a small fraction of new amino acid mutations (<4%) are effectively neutral (defined as 0 < N(e)s < 1) and that this fraction was negatively correlated with a gene's expression level. Consistent with models of recurrent adaptive evolution, we detected a negative correlation between levels of synonymous site polymorphism and the rate of protein evolution, although the correlation was weak and nonsignificant. No systematic X chromosome-autosome difference was found in the efficacy of selection. For example, the proportion of adaptive substitutions was significantly higher on the X chromosome compared with the autosomes in O. c. algirus but not in O. c. cuniculus. Our findings support widespread positive and purifying selection in rabbits and add to a growing list of examples suggesting that differences in N(e) among taxa play a substantial role in determining rates and patterns of protein evolution.
Collapse
Affiliation(s)
- Miguel Carneiro
- Centro de Investigação em Biodiversidade e Recursos Genéticos, Vairão, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Weber CC, Pink CJ, Hurst LD. Late-replicating domains have higher divergence and diversity in Drosophila melanogaster. Mol Biol Evol 2011; 29:873-82. [PMID: 22046001 DOI: 10.1093/molbev/msr265] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Several reports from mammals indicate that an increase in the mutation rate in late-replicating regions may, in part, be responsible for the observed genomic heterogeneity in neutral substitution rates and levels of diversity, although the mechanisms for this remain poorly understood. Recent evidence also suggests that late replication is associated with high mutability in yeast. This then raises the question as to whether a similar effect is operating across all eukaryotes. Limited evidence from one chromosome arm in Drosophila melanogaster suggests the opposite pattern, with regions overlapping early-firing origins showing increased levels of diversity and divergence. Given the availability of genome-wide replication timing profiles for D. melanogaster, we now return to this issue. Consistent with what is seen in other taxa, we find that divergence at synonymous sites in exon cores, as well as divergence at putatively unconstrained intronic sites, is elevated in late-replicating regions. Analysis of genes with low codon usage bias suggests a ∼30% difference in mutation rate between the earliest and the latest replicating sequence. Intronic sequence suggests a more modest difference. We additionally show that an increase in diversity in late-replicating sequences is not owing to replication timing covarying with the local recombination rate. If anything, the effects of recombination mask the impact of replication timing. We conclude that, contrary to prior reports and consistent with what is seen in mammals and yeast, there is indeed a relationship between rates of nucleotide divergence and diversity and replication timing that is consistent with an increase in the mutation rate during late S-phase in D. melanogaster. It is therefore plausible that such an effect might be common among eukaryotes. The result may have implications for the inference of positive selection.
Collapse
Affiliation(s)
- Claudia C Weber
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | | |
Collapse
|
16
|
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 2011; 6:e19379. [PMID: 21573248 PMCID: PMC3087801 DOI: 10.1371/journal.pone.0019379] [Citation(s) in RCA: 3617] [Impact Index Per Article: 258.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 04/04/2011] [Indexed: 12/30/2022] Open
Abstract
Advances in next generation technologies have driven the costs of DNA sequencing down to the point that genotyping-by-sequencing (GBS) is now feasible for high diversity, large genome species. Here, we report a procedure for constructing GBS libraries based on reducing genome complexity with restriction enzymes (REs). This approach is simple, quick, extremely specific, highly reproducible, and may reach important regions of the genome that are inaccessible to sequence capture approaches. By using methylation-sensitive REs, repetitive regions of genomes can be avoided and lower copy regions targeted with two to three fold higher efficiency. This tremendously simplifies computationally challenging alignment problems in species with high levels of genetic diversity. The GBS procedure is demonstrated with maize (IBM) and barley (Oregon Wolfe Barley) recombinant inbred populations where roughly 200,000 and 25,000 sequence tags were mapped, respectively. An advantage in species like barley that lack a complete genome sequence is that a reference map need only be developed around the restriction sites, and this can be done in the process of sample genotyping. In such cases, the consensus of the read clusters across the sequence tagged sites becomes the reference. Alternatively, for kinship analyses in the absence of a reference genome, the sequence tags can simply be treated as dominant markers. Future application of GBS to breeding, conservation, and global species and population surveys may allow plant breeders to conduct genomic selection on a novel germplasm or species without first having to develop any prior molecular tools, or conservation biologists to determine population structure without prior knowledge of the genome or diversity in the species.
Collapse
Affiliation(s)
- Robert J. Elshire
- Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America
| | - Jeffrey C. Glaubitz
- Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York, United States of America
| | - Jesse A. Poland
- Hard Winter Wheat Genetics Research Unit, United States Department of Agriculture/Agricultural Research Service, Manhattan, Kansas, United States of America
| | - Ken Kawamoto
- Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America
| | - Edward S. Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America
- Plant, Soil and Nutrition Research Unit, United States Department of Agriculture/Agricultural Research Service, Ithaca, New York, United States of America
| | - Sharon E. Mitchell
- Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
OBJECTIVE The evolutionary history of human malaria parasites (genus Plasmodium) has long been a subject of speculation and controversy. The complete genome sequences of the two most widespread human malaria parasites, P. falciparum and P. vivax, and of the monkey parasite P. knowlesi are now available, together with the draft genomes of the chimpanzee parasite P. reichenowi, three rodent parasites, P. yoelii yoelli, P. berghei and P. chabaudi chabaudi, and one avian parasite, P. gallinaceum. METHODS We present here an analysis of 45 orthologous gene sequences across the eight species that resolves the relationships of major Plasmodium lineages, and provides the first comprehensive dating of the age of those groups. RESULTS Our analyses support the hypothesis that the last common ancestor of P. falciparum and the chimpanzee parasite P. reichenowi occurred around the time of the human-chimpanzee divergence. P. falciparum infections of African apes are most likely derived from humans and not the other way around. On the other hand, P. vivax, split from the monkey parasite P. knowlesi in the much more distant past, during the time that encompasses the separation of the Great Apes and Old World Monkeys. CONCLUSION The results support an ancient association between malaria parasites and their primate hosts, including humans.
Collapse
|
18
|
Ponomarenko PM, Suslov VV, Savinkova LK, Ponomarenko MP, Kolchanov NA. A precise equation of equilibrium of four steps of TBP binding with the TATA box for prognosis of phenotypic manifestation of mutations. Biophysics (Nagoya-shi) 2010. [DOI: 10.1134/s0006350910030036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Suslov VV, Ponomarenko PM, Ponomarenko MP, Drachkova IA, Arshinova TV, Savinkova LK, Kolchanov NA. TATA box polymorphisms in genes of commercial and laboratory animals and plants associated with selectively valuable traits. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410040022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Counterman BA, Araujo-Perez F, Hines HM, Baxter SW, Morrison CM, Lindstrom DP, Papa R, Ferguson L, Joron M, Ffrench-Constant RH, Smith CP, Nielsen DM, Chen R, Jiggins CD, Reed RD, Halder G, Mallet J, McMillan WO. Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in Heliconius erato. PLoS Genet 2010; 6:e1000796. [PMID: 20140239 PMCID: PMC2816678 DOI: 10.1371/journal.pgen.1000796] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 12/02/2009] [Indexed: 11/19/2022] Open
Abstract
Wing pattern evolution in Heliconius butterflies provides some of the most striking examples of adaptation by natural selection. The genes controlling pattern variation are classic examples of Mendelian loci of large effect, where allelic variation causes large and discrete phenotypic changes and is responsible for both convergent and highly divergent wing pattern evolution across the genus. We characterize nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium (LD), and candidate gene expression patterns across two unlinked genomic intervals that control yellow and red wing pattern variation among mimetic forms of Heliconius erato. Despite very strong natural selection on color pattern, we see neither a strong reduction in genetic diversity nor evidence for extended LD across either patterning interval. This observation highlights the extent that recombination can erase the signature of selection in natural populations and is consistent with the hypothesis that either the adaptive radiation or the alleles controlling it are quite old. However, across both patterning intervals we identified SNPs clustered in several coding regions that were strongly associated with color pattern phenotype. Interestingly, coding regions with associated SNPs were widely separated, suggesting that color pattern alleles may be composed of multiple functional sites, conforming to previous descriptions of these loci as "supergenes." Examination of gene expression levels of genes flanking these regions in both H. erato and its co-mimic, H. melpomene, implicate a gene with high sequence similarity to a kinesin as playing a key role in modulating pattern and provides convincing evidence for parallel changes in gene regulation across co-mimetic lineages. The complex genetic architecture at these color pattern loci stands in marked contrast to the single casual mutations often identified in genetic studies of adaptation, but may be more indicative of the type of genetic changes responsible for much of the adaptive variation found in natural populations.
Collapse
Affiliation(s)
- Brian A Counterman
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, Beukeboom LW, Desplan C, Elsik CG, Grimmelikhuijzen CJP, Kitts P, Lynch JA, Murphy T, Oliveira DCSG, Smith CD, van de Zande L, Worley KC, Zdobnov EM, Aerts M, Albert S, Anaya VH, Anzola JM, Barchuk AR, Behura SK, Bera AN, Berenbaum MR, Bertossa RC, Bitondi MMG, Bordenstein SR, Bork P, Bornberg-Bauer E, Brunain M, Cazzamali G, Chaboub L, Chacko J, Chavez D, Childers CP, Choi JH, Clark ME, Claudianos C, Clinton RA, Cree AG, Cristino AS, Dang PM, Darby AC, de Graaf DC, Devreese B, Dinh HH, Edwards R, Elango N, Elhaik E, Ermolaeva O, Evans JD, Foret S, Fowler GR, Gerlach D, Gibson JD, Gilbert DG, Graur D, Gründer S, Hagen DE, Han Y, Hauser F, Hultmark D, Hunter HC, Hurst GDD, Jhangian SN, Jiang H, Johnson RM, Jones AK, Junier T, Kadowaki T, Kamping A, Kapustin Y, Kechavarzi B, Kim J, Kim J, Kiryutin B, Koevoets T, Kovar CL, Kriventseva EV, Kucharski R, Lee H, Lee SL, Lees K, Lewis LR, Loehlin DW, Logsdon JM, Lopez JA, Lozado RJ, Maglott D, Maleszka R, Mayampurath A, Mazur DJ, et alWerren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, Beukeboom LW, Desplan C, Elsik CG, Grimmelikhuijzen CJP, Kitts P, Lynch JA, Murphy T, Oliveira DCSG, Smith CD, van de Zande L, Worley KC, Zdobnov EM, Aerts M, Albert S, Anaya VH, Anzola JM, Barchuk AR, Behura SK, Bera AN, Berenbaum MR, Bertossa RC, Bitondi MMG, Bordenstein SR, Bork P, Bornberg-Bauer E, Brunain M, Cazzamali G, Chaboub L, Chacko J, Chavez D, Childers CP, Choi JH, Clark ME, Claudianos C, Clinton RA, Cree AG, Cristino AS, Dang PM, Darby AC, de Graaf DC, Devreese B, Dinh HH, Edwards R, Elango N, Elhaik E, Ermolaeva O, Evans JD, Foret S, Fowler GR, Gerlach D, Gibson JD, Gilbert DG, Graur D, Gründer S, Hagen DE, Han Y, Hauser F, Hultmark D, Hunter HC, Hurst GDD, Jhangian SN, Jiang H, Johnson RM, Jones AK, Junier T, Kadowaki T, Kamping A, Kapustin Y, Kechavarzi B, Kim J, Kim J, Kiryutin B, Koevoets T, Kovar CL, Kriventseva EV, Kucharski R, Lee H, Lee SL, Lees K, Lewis LR, Loehlin DW, Logsdon JM, Lopez JA, Lozado RJ, Maglott D, Maleszka R, Mayampurath A, Mazur DJ, McClure MA, Moore AD, Morgan MB, Muller J, Munoz-Torres MC, Muzny DM, Nazareth LV, Neupert S, Nguyen NB, Nunes FMF, Oakeshott JG, Okwuonu GO, Pannebakker BA, Pejaver VR, Peng Z, Pratt SC, Predel R, Pu LL, Ranson H, Raychoudhury R, Rechtsteiner A, Reese JT, Reid JG, Riddle M, Robertson HM, Romero-Severson J, Rosenberg M, Sackton TB, Sattelle DB, Schlüns H, Schmitt T, Schneider M, Schüler A, Schurko AM, Shuker DM, Simões ZLP, Sinha S, Smith Z, Solovyev V, Souvorov A, Springauf A, Stafflinger E, Stage DE, Stanke M, Tanaka Y, Telschow A, Trent C, Vattathil S, Verhulst EC, Viljakainen L, Wanner KW, Waterhouse RM, Whitfield JB, Wilkes TE, Williamson M, Willis JH, Wolschin F, Wyder S, Yamada T, Yi SV, Zecher CN, Zhang L, Gibbs RA. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 2010; 327:343-8. [PMID: 20075255 PMCID: PMC2849982 DOI: 10.1126/science.1178028] [Show More Authors] [Citation(s) in RCA: 638] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report here genome sequences and comparative analyses of three closely related parasitoid wasps: Nasonia vitripennis, N. giraulti, and N. longicornis. Parasitoids are important regulators of arthropod populations, including major agricultural pests and disease vectors, and Nasonia is an emerging genetic model, particularly for evolutionary and developmental genetics. Key findings include the identification of a functional DNA methylation tool kit; hymenopteran-specific genes including diverse venoms; lateral gene transfers among Pox viruses, Wolbachia, and Nasonia; and the rapid evolution of genes involved in nuclear-mitochondrial interactions that are implicated in speciation. Newly developed genome resources advance Nasonia for genetic research, accelerate mapping and cloning of quantitative trait loci, and will ultimately provide tools and knowledge for further increasing the utility of parasitoids as pest insect-control agents.
Collapse
|
22
|
Crickmore MA, Ranade V, Mann RS. Regulation of Ubx expression by epigenetic enhancer silencing in response to Ubx levels and genetic variation. PLoS Genet 2009; 5:e1000633. [PMID: 19730678 PMCID: PMC2726431 DOI: 10.1371/journal.pgen.1000633] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 08/05/2009] [Indexed: 11/18/2022] Open
Abstract
For gene products that must be present in cells at defined concentrations, expression levels must be tightly controlled to ensure robustness against environmental, genetic, and developmental noise. By studying the regulation of the concentration-sensitive Drosophila melanogaster Hox gene Ultrabithorax (Ubx), we found that Ubx enhancer activities respond to both increases in Ubx levels and genetic background. Large, transient increases in Ubx levels are capable of silencing all enhancer input into Ubx transcription, resulting in the complete silencing of this gene. Small increases in Ubx levels, brought about by duplications of the Ubx locus, cause sporadic silencing of subsets of Ubx enhancers. Ubx enhancer silencing can also be induced by outcrossing laboratory stocks to D. melanogaster strains established from wild flies from around the world. These results suggest that enhancer activities are not rigidly determined, but instead are sensitive to genetic background. Together, these findings suggest that enhancer silencing may be used to maintain gene product levels within the correct range in response to natural genetic variation. Gene expression is generally governed by cis-regulatory elements, also called enhancers. For genes whose expression levels must be tightly controlled, enhancer activities must be tightly regulated. In this work, we show that enhancers that control the expression of the Hox gene Ultrabithorax (Ubx) in Drosophila are regulated by a negative autoregulatory feedback mechanism. Negative autoregulation can be triggered by less than a two-fold increase in Ubx levels or by varying the genetic background. Together, these data reveal that enhancer activities are not always hardwired, but instead may be sensitive to genetic and environmental variation and, in some cases, to the amount of gene product they regulate. The finding that enhancers are sensitive to genetic background suggests that the regulation of gene expression is more plastic than previously thought and has important implications for how transcription is controlled in vivo.
Collapse
Affiliation(s)
- Michael A. Crickmore
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Vikram Ranade
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Richard S. Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
Dannemann M, Lorenc A, Hellmann I, Khaitovich P, Lachmann M. The effects of probe binding affinity differences on gene expression measurements and how to deal with them. ACTA ACUST UNITED AC 2009; 25:2772-9. [PMID: 19689957 DOI: 10.1093/bioinformatics/btp492] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION When comparing gene expression levels between species or strains using microarrays, sequence differences between the groups can cause false identification of expression differences. Our simulated dataset shows that a sequence divergence of only 1% between species can lead to falsely reported expression differences for >50% of the transcripts-similar levels of effect have been reported previously in comparisons of human and chimpanzee expression. We propose a method for identifying probes that cause such false readings, using only the microarray data, so that problematic probes can be excluded from analysis. We then test the power of the method to detect sequence differences and to correct for falsely reported expression differences. Our method can detect 70% of the probes with sequence differences using human and chimpanzee data, while removing only 18% of probes with no sequence differences. Although only 70% of the probes with sequence differences are detected, the effect of removing probes on falsely reported expression differences is more dramatic: the method can remove 98% of the falsely reported expression differences from a simulated dataset. We argue that the method should be used even when sequence data are available. CONTACT lachmann@eva.mpg.de SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Michael Dannemann
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | | | | | | |
Collapse
|
24
|
Abstract
Over the past four decades, the predominant view of molecular evolution saw little connection between natural selection and genome evolution, assuming that the functionally constrained fraction of the genome is relatively small and that adaptation is sufficiently infrequent to play little role in shaping patterns of variation within and even between species. Recent evidence from Drosophila, reviewed here, suggests that this view may be invalid. Analyses of genetic variation within and between species reveal that much of the Drosophila genome is under purifying selection, and thus of functional importance, and that a large fraction of coding and noncoding differences between species are adaptive. The findings further indicate that, in Drosophila, adaptations may be both common and strong enough that the fate of neutral mutations depends on their chance linkage to adaptive mutations as much as on the vagaries of genetic drift. The emerging evidence has implications for a wide variety of fields, from conservation genetics to bioinformatics, and presents challenges to modelers and experimentalists alike.
Collapse
|
25
|
Terwilliger JD, Hiekkalinna T. An utter refutation of the "fundamental theorem of the HapMap". Eur J Hum Genet 2009; 14:426-37. [PMID: 16479260 DOI: 10.1038/sj.ejhg.5201583] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The International HapMap Project was proposed in order to quantify linkage disequilibrium (LD) relationships among human DNA polymorphisms in an assortment of populations, in order to facilitate the process of selecting a minimal set of markers that could capture most of the signal from the untyped markers in a genome-wide association study. The central dogma can be summarized by the argument that if a marker is in tight LD with a polymorphism that directly impacts disease risk, as measured by the metric r(2), then one would be able to detect an association between the marker and disease with sample size that was increased by a factor of 1/r(2) over that needed to detect the effect of the functional variant directly. This "fundamental theorem" holds, however, only if one assumes that the LD between loci and the etiological effect of the functional variant are independent of each other, that they are statistically independent of all other etiological factors (in exposure and action), that sampling is prospective, and that the estimates of r(2) are accurate. None of these are standard operating assumptions, however. We describe the ramifications of these implicit assumptions, and provide simple examples in which the effects of a functional variant could be unequivocally detected if it were directly genotyped, even as markers in high LD with the functional variant would never show association with disease, even in infinite sample sizes. Both theoretical and empirical refutation of the central dogma of genome-wide association studies is thus presented.
Collapse
|
26
|
Perry GH. The evolutionary significance of copy number variation in the human genome. Cytogenet Genome Res 2009; 123:283-7. [PMID: 19287166 DOI: 10.1159/000184719] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2008] [Indexed: 12/27/2022] Open
Abstract
Copy number variation provides the raw material for gene family expansion and diversification, which is an important evolutionary force. Moreover, copy number variants (CNVs) can influence gene transcriptional and translational levels and have been associated with complex disease susceptibility. Therefore, natural selection may have affected at least some of the greater than one thousand CNVs thus far discovered among the genomes of phenotypically normal humans. While identifying and understanding particular instances of natural selection may shed light on important aspects of human evolutionary history, our ability to analyze CNVs in traditional population genetic frameworks has been limited. However, progress has been made by adapting some of these frameworks for use with copy number data. Moving forward, these efforts will be aided by non-human organism studies of the population genetics of copy number variation, and by more direct comparisons of within-species copy number variation and between-species copy number fixation.
Collapse
Affiliation(s)
- G H Perry
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
27
|
Jeibmann A, Paulus W. Drosophila melanogaster as a model organism of brain diseases. Int J Mol Sci 2009; 10:407-440. [PMID: 19333415 PMCID: PMC2660653 DOI: 10.3390/ijms10020407] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 01/16/2009] [Accepted: 01/20/2009] [Indexed: 01/29/2023] Open
Abstract
Drosophila melanogaster has been utilized to model human brain diseases. In most of these invertebrate transgenic models, some aspects of human disease are reproduced. Although investigation of rodent models has been of significant impact, invertebrate models offer a wide variety of experimental tools that can potentially address some of the outstanding questions underlying neurological disease. This review considers what has been gleaned from invertebrate models of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, metabolic diseases such as Leigh disease, Niemann-Pick disease and ceroid lipofuscinoses, tumor syndromes such as neurofibromatosis and tuberous sclerosis, epilepsy as well as CNS injury. It is to be expected that genetic tools in Drosophila will reveal new pathways and interactions, which hopefully will result in molecular based therapy approaches.
Collapse
Affiliation(s)
- Astrid Jeibmann
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +49-251 83 57549; Fax: +49-251 83 56971
| | | |
Collapse
|
28
|
Carneiro M, Ferrand N, Nachman MW. Recombination and speciation: loci near centromeres are more differentiated than loci near telomeres between subspecies of the European rabbit (Oryctolagus cuniculus). Genetics 2009; 181:593-606. [PMID: 19015539 PMCID: PMC2644949 DOI: 10.1534/genetics.108.096826] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Accepted: 11/10/2008] [Indexed: 11/18/2022] Open
Abstract
Recent empirical and theoretical studies suggest that regions of restricted recombination play an important role in the formation of new species. To test this idea, we studied nucleotide variation in two parapatric subspecies of the European rabbit (Oryctolagus cuniculus). We surveyed five loci near centromeres, where recombination is expected to be suppressed, and five loci near telomeres, where recombination is expected to be higher. We analyzed this multilocus data set using a divergence-with-gene flow framework and we report three main findings. First, we estimated that these subspecies diverged approximately 1.8 MYA and maintained large effective population sizes (O. c. algirus N(e) approximately 1,600,000 and O. c. cuniculus N(e) approximately 780,000). Second, we rejected a strict allopatric model of divergence without gene flow; instead, high rates of gene flow were inferred in both directions. Third, we found different patterns between loci near centromeres and loci near telomeres. Loci near centromeres exhibited higher levels of linkage disequilibrium than loci near telomeres. In addition, while all loci near telomeres showed little differentiation between subspecies, three of five loci near centromeres showed strong differentiation. These results support a view of speciation in which regions of low recombination can facilitate species divergence in the presence of gene flow.
Collapse
Affiliation(s)
- Miguel Carneiro
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
29
|
Nadachowska K, Babik W. Divergence in the face of gene flow: the case of two newts (amphibia: salamandridae). Mol Biol Evol 2009; 26:829-41. [PMID: 19136451 DOI: 10.1093/molbev/msp004] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding the process of divergence requires the quantitative characterization of patterns of gene flow between diverging taxa. New and powerful coalescent-based methods give insight into these processes in unprecedented details by enabling the reconstruction of the temporal distribution of past gene flow. Here, we use sequence variation at eight nuclear markers and mitochondrial DNA (mtDNA) in multiple populations to study diversity, divergence, and gene flow between two subspecies of a salamander, the smooth newt (Lissotriton vulgaris kosswigi and Lissotriton vulgaris vulgaris) in Turkey. The ranges of both subspecies encompass mainly the areas of this important glacial refugial area. Populations in refugia where species have been present for a long time and differentiated in situ should better preserve the record of past gene flow than young populations in postglacial expansion areas. Sequence diversity in both subspecies was substantial (nuclear pi(sil) = 0.69% and 1.31%). We detected long-term demographic stability in these refugial populations with large effective population sizes (N(e)) of the order of 1.5-3 x 10(5) individuals. Gene trees and the isolation with migration (IM) analysis complemented by tests of nested IM models showed that despite deep, pre-Pleistocene divergence of the studied newts, asymmetric introgression from vulgaris to kosswigi has occurred, with signatures of recent gene flow in mtDNA and an anonymous nuclear marker, and evidence for more ancient introgression in nuclear introns. The distribution of migration times raises the intriguing possibility that even the initial divergence may have occurred in the face of gene flow.
Collapse
|
30
|
Slatkin M, Pollack JL. Subdivision in an ancestral species creates asymmetry in gene trees. Mol Biol Evol 2008; 25:2241-6. [PMID: 18689871 DOI: 10.1093/molbev/msn172] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We consider gene trees in three species for which the species tree is known. We show that population subdivision in ancestral species can lead to asymmetry in the frequencies of the two gene trees not concordant with the species tree and, if subdivision is extreme, cause the one of the nonconcordant gene trees to be more probable than the concordant gene tree. Although published data for the human-chimp-gorilla clade and for three species of Drosophila show asymmetry consistent with our model, sequencing error could also account for observed patterns. We show that substantial levels of persistent ancestral subdivision are needed to account for the observed levels of asymmetry found in these two studies.
Collapse
Affiliation(s)
- Montgomery Slatkin
- Department of Integrative Biology, University of California at Berkeley, USA.
| | | |
Collapse
|
31
|
Bullaughey K, Przeworski M, Coop G. No effect of recombination on the efficacy of natural selection in primates. Genome Res 2008; 18:544-54. [PMID: 18199888 PMCID: PMC2279242 DOI: 10.1101/gr.071548.107] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 01/15/2008] [Indexed: 11/24/2022]
Abstract
Population genetic theory suggests that natural selection should be less effective in regions of low recombination, potentially leading to differences in rates of adaptation among recombination environments. To date, this prediction has mainly been tested in Drosophila, with somewhat conflicting results. We investigated the association between human recombination rates and adaptation in primates, by considering rates of protein evolution (measured by d(N)/d(S)) between human, chimpanzee, and rhesus macaque. We found no correlation between either broad- or fine-scale rates of recombination and rates of protein evolution, once GC content is taken into account. Moreover, genes in regions of very low recombination, which are expected to show the most pronounced reduction in the efficacy of selection, do not evolve at a different rate than other genes. Thus, there is no evidence for differences in the efficacy of selection across recombinational environments. An interesting implication is that indirect selection for recombination modifiers has probably been a weak force in primate evolution.
Collapse
Affiliation(s)
- Kevin Bullaughey
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
32
|
Abstract
The house mouse is a well-established model organism, particularly for studying the genetics of complex traits. However, most studies of mice use classical inbred strains, whose genomes derive from multiple species. Relatively little is known about the distribution of genetic variation among these species or how variation among strains relates to variation in the wild. We sequenced intronic regions of five X-linked loci in large samples of wild Mus domesticus and M. musculus, and we found low levels of nucleotide diversity in both species. We compared these data to published data from short portions of six X-linked and 18 autosomal loci in wild mice. We estimate that M. domesticus and M. musculus diverged <500,000 years ago. Consistent with this recent divergence, some gene genealogies were reciprocally monophyletic between these species, while others were paraphyletic or polyphyletic. In general, the X chromosome was more differentiated than the autosomes. We resequenced classical inbred strains for all 29 loci and found that inbred strains contain only a small amount of the genetic variation seen in wild mice. Notably, the X chromosome contains proportionately less variation among inbred strains than do the autosomes. Moreover, variation among inbred strains derives from differences between species as well as from differences within species, and these proportions differ in different genomic regions. Wild mice thus provide a reservoir of additional genetic variation that may be useful for mapping studies. Together these results suggest that wild mice will be a valuable complement to laboratory strains for studying the genetics of complex traits.
Collapse
|
33
|
Hsieh WP, Passador-Gurgel G, Stone EA, Gibson G. Mixture modeling of transcript abundance classes in natural populations. Genome Biol 2008; 8:R98. [PMID: 17547747 PMCID: PMC2394757 DOI: 10.1186/gb-2007-8-6-r98] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 04/16/2007] [Accepted: 06/04/2007] [Indexed: 01/05/2023] Open
Abstract
Expression profiling of Drosophila melanogaster adult female heads for 108 nearly isogenic lines from two different populations, and of CEPH lymphoblastoid lines, shows that differential expression of transcripts among individuals is due to a complex interplay of cis- and trans-acting factors. Background Populations diverge in genotype and phenotype under the influence of such evolutionary processes as genetic drift, mutation accumulation, and natural selection. Because genotype maps onto phenotype by way of transcription, it is of interest to evaluate how these evolutionary factors influence the structure of variation at the level of transcription. Here, we explore the distributions of cis-acting and trans-acting factors and their relative contributions to expression of transcripts that exhibit two or more classes of abundance among individuals within populations. Results Expression profiling using cDNA microarrays was conducted in Drosophila melanogaster adult female heads for 58 nearly isogenic lines from a North Carolina population and 50 from a California population. Using a mixture modeling approach, transcripts were identified that exhibit more than one mode of transcript abundance across the samples. Power studies indicate that sample sizes of 50 individuals will generally be sufficient to detect divergent transcript abundance classes. The distribution of transcript abundance classes is skewed toward low frequency minor classes, which is reminiscent of the typical skew in genotype frequencies. Similar results are observed in reported data on gene expression in human lymphoblast cell lines, in which analysis of association with linked polymorphisms implies that cis-acting single nucleotide polymorphisms make only a modest contribution to bimodal distributions of transcript abundance. Conclusion Population surveys of gene expression may complement genetical genomics as a general approach to quantifying sources of transcriptional variation. Differential expression of transcripts among individuals is due to a complex interplay of cis-acting and trans-acting factors.
Collapse
Affiliation(s)
- Wen-Ping Hsieh
- Department of Genetics, Gardner Hall, North Carolina State University, Raleigh, North Carolina 27695-7614, USA
- Department of Statistics, 825 General Building III, National Tsing Hua University, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Gisele Passador-Gurgel
- Department of Genetics, Gardner Hall, North Carolina State University, Raleigh, North Carolina 27695-7614, USA
| | - Eric A Stone
- Department of Statistics, and Bioinformatics Research Center, 1500 Partners II Building, 840 Main Campus Drive, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Greg Gibson
- Department of Genetics, Gardner Hall, North Carolina State University, Raleigh, North Carolina 27695-7614, USA
| |
Collapse
|
34
|
Tenaillon MI, Austerlitz F, Tenaillon O. Apparent mutational hotspots and long distance linkage disequilibrium resulting from a bottleneck. J Evol Biol 2008; 21:541-50. [PMID: 18205779 DOI: 10.1111/j.1420-9101.2007.01490.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genome wide patterns of nucleotide diversity and recombination reveal considerable variation including hotspots. Some studies suggest that these patterns are primarily dictated by individual locus history related at a broader scale to the population demographic history. Because bottlenecks have occurred in the history of numerous species, we undertook a simulation approach to investigate their impact on the patterns of aggregation of polymorphic sites and linkage disequilibrium (LD). We developed a new index (Polymorphism Aggregation Index) to characterize this aggregation and showed that variation in the density of polymorphic sites results from an interplay between the bottleneck scenario and the recombination rate. Under particular conditions, aggregation is maximized and apparent mutation hotspots resulting in a 50-fold increase in polymorphic sites density can occur. In similar conditions, long distance LD can be detected.
Collapse
Affiliation(s)
- M I Tenaillon
- UMR8120 de Génétique Végétale, INRA/Univ. Paris-Sud/CNRS/AgroParisTech, Ferme du Moulon, Gif-sur-Yvette, France.
| | | | | |
Collapse
|
35
|
Nucleotide variation at the dopa decarboxylase (Ddc) gene in natural populations of Drosophila melanogaster. J Genet 2007; 86:125-37. [PMID: 17968140 DOI: 10.1007/s12041-007-0017-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We studied nucleotide sequence variation at the gene coding for dopa decarboxylase (Ddc) in seven populations of Drosophila melanogaster. Strength and pattern of linkage disequilibrium are somewhat distinct in the extensively sampled Spanish and Raleigh populations. In the Spanish population, a few sites are in strong positive association, whereas a large number of sites in the Raleigh population are associated nonrandomly but the association is not strong. Linkage disequilibrium analysis shows presence of two groups of haplotypes in the populations, each of which is fairly diverged, suggesting epistasis or inversion polymorphism. There is evidence of two forms of natural selection acting on Ddc. The McDonald-Kreitman test indicates a deficit of fixed amino acid differences between D. melanogaster and D. simulans, which may be due to negative selection. An excess of derived alleles at high frequency, significant according to the H-test, is consistent with the effect of hitchhiking. The hitchhiking may have been caused by directional selection downstream of the locus studied, as suggested by a gradual decrease of the polymorphism-to-divergence ratio. Altogether, the Ddc locus exhibits a complicated pattern of variation apparently due to several evolutionary forces. Such a complex pattern may be a result of an unusually high density of functionally important genes.
Collapse
|
36
|
Mitchell-Olds T, Willis JH, Goldstein DB. Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat Rev Genet 2007; 8:845-56. [DOI: 10.1038/nrg2207] [Citation(s) in RCA: 334] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Hamvas A, Wegner DJ, Carlson CS, Bergmann KR, Trusgnich MA, Fulton L, Kasai Y, An P, Mardis ER, Wilson RK, Cole FS. Comprehensive genetic variant discovery in the surfactant protein B gene. Pediatr Res 2007; 62:170-5. [PMID: 17597650 PMCID: PMC2765713 DOI: 10.1203/pdr.0b013e3180a03232] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Completely penetrant mutations in the surfactant protein B gene (SFTPB) and >75% reduction of SFTPB expression disrupt pulmonary surfactant function and cause neonatal respiratory distress syndrome. To inform studies of genetic regulation of SFTPB expression, we created a catalogue of SFTPB variants by comprehensive resequencing from an unselected, population-based cohort (n = 1,116). We found an excess of low-frequency variation [81 SNPs and five small insertion/deletions (in/dels)]. Despite its small genomic size (9.7 kb), SFTPB was characterized by weak linkage disequilibrium (LD) and high haplotype diversity. Using the HapMap Yoruban and European populations, we identified a recombination hot spot that spans SFTPB, was not detectable in our focused resequencing data, and accounts for weak LD. Using homology-based software tools, we discovered no definitively damaging exonic variants. We conclude that excess low-frequency variation, intragenic recombination and lack of common disruptive exonic variants favor complete resequencing as the optimal approach for genetic association studies to identify regulatory SFTPB variants that cause neonatal respiratory distress syndrome in genetically diverse populations.
Collapse
Affiliation(s)
- Aaron Hamvas
- Division of Newborn Medicine, the Edward Mallinckrodt Department of Pediatrics, the Genome Sequencing Center, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA, 63110
| | - Daniel J. Wegner
- Division of Newborn Medicine, the Edward Mallinckrodt Department of Pediatrics, the Genome Sequencing Center, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA, 63110
| | - Christopher S. Carlson
- Division of Public Health Sciences, the Fred Hutchinson Cancer Research Center, Seattle, Washington, USA, 98109
| | - Kelly R. Bergmann
- Division of Newborn Medicine, the Edward Mallinckrodt Department of Pediatrics, the Genome Sequencing Center, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA, 63110
| | - Michelle A. Trusgnich
- Division of Newborn Medicine, the Edward Mallinckrodt Department of Pediatrics, the Genome Sequencing Center, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA, 63110
| | - Lucinda Fulton
- Division of Newborn Medicine, the Edward Mallinckrodt Department of Pediatrics, the Genome Sequencing Center, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA, 63110
| | - Yumi Kasai
- Division of Newborn Medicine, the Edward Mallinckrodt Department of Pediatrics, the Genome Sequencing Center, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA, 63110
| | - Ping An
- Division of Newborn Medicine, the Edward Mallinckrodt Department of Pediatrics, the Genome Sequencing Center, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA, 63110
| | - Elaine R. Mardis
- Division of Newborn Medicine, the Edward Mallinckrodt Department of Pediatrics, the Genome Sequencing Center, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA, 63110
| | - Richard K. Wilson
- Division of Newborn Medicine, the Edward Mallinckrodt Department of Pediatrics, the Genome Sequencing Center, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA, 63110
| | - F. Sessions Cole
- Division of Newborn Medicine, the Edward Mallinckrodt Department of Pediatrics, the Genome Sequencing Center, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA, 63110
| |
Collapse
|
38
|
Kolkman JM, Berry ST, Leon AJ, Slabaugh MB, Tang S, Gao W, Shintani DK, Burke JM, Knapp SJ. Single nucleotide polymorphisms and linkage disequilibrium in sunflower. Genetics 2007; 177:457-68. [PMID: 17660563 PMCID: PMC2013689 DOI: 10.1534/genetics.107.074054] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Genetic diversity in modern sunflower (Helianthus annuus L.) cultivars (elite oilseed inbred lines) has been shaped by domestication and breeding bottlenecks and wild and exotic allele introgression(-)the former narrowing and the latter broadening genetic diversity. To assess single nucleotide polymorphism (SNP) frequencies, nucleotide diversity, and linkage disequilibrium (LD) in modern cultivars, alleles were resequenced from 81 genic loci distributed throughout the sunflower genome. DNA polymorphisms were abundant; 1078 SNPs (1/45.7 bp) and 178 insertions-deletions (INDELs) (1/277.0 bp) were identified in 49.4 kbp of DNA/genotype. SNPs were twofold more frequent in noncoding (1/32.1 bp) than coding (1/62.8 bp) sequences. Nucleotide diversity was only slightly lower in inbred lines ( = 0.0094) than wild populations ( = 0.0128). Mean haplotype diversity was 0.74. When extraploted across the genome ( approximately 3500 Mbp), sunflower was predicted to harbor at least 76.4 million common SNPs among modern cultivar alleles. LD decayed more slowly in inbred lines than wild populations (mean LD declined to 0.32 by 5.5 kbp in the former, the maximum physical distance surveyed), a difference attributed to domestication and breeding bottlenecks. SNP frequencies and LD decay are sufficient in modern sunflower cultivars for very high-density genetic mapping and high-resolution association mapping.
Collapse
Affiliation(s)
- Judith M Kolkman
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
SUMMARYA key aim of anthelmintic resistance research is to identify molecular markers that could form the basis of sensitive and accurate diagnostic tests. These would provide powerful tools to study the origin and spread of anthelmintic resistance in the field and to monitor strategies aimed at preventing and managing resistance. Molecular markers could also form the basis of routine diagnostic tests for use in surveillance and clinical veterinary practice. Much of the research conducted to date has focused on the investigation of possible associations of particular candidate genes with the resistance phenotype. In the future, as full parasite genome sequences become available, there will be an opportunity to apply genome-wide approaches to identify the genetic loci that underlie anthelmintic resistance. Both the interpretation of candidate gene studies and the application of genome-wide approaches require a good understanding of the genetics and population biology of the relevant parasites as well as knowledge of how resistance mutations arise and are selected in populations. Unfortunately, much of this information is lacking for parasitic nematodes. This review deals with a number of aspects of genetics and population biology that are pertinent to these issues. We discuss the possible origins of resistance mutations and the likely effects of subsequent selection on the genetic variation at the resistance-conferring locus. We also review some of the experimental approaches that have been used to test associations between candidate genes and anthelmintic resistance phenotypes and highlight implications for future genome-wide studies.
Collapse
Affiliation(s)
- J S Gilleard
- Division of Infection and Immunity, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow, UK G61 1QH.
| | | |
Collapse
|
40
|
Wondji CS, Hemingway J, Ranson H. Identification and analysis of single nucleotide polymorphisms (SNPs) in the mosquito Anopheles funestus, malaria vector. BMC Genomics 2007; 8:5. [PMID: 17204152 PMCID: PMC1781065 DOI: 10.1186/1471-2164-8-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 01/04/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) are the most common source of genetic variation in eukaryotic species and have become an important marker for genetic studies. The mosquito Anopheles funestus is one of the major malaria vectors in Africa and yet, prior to this study, no SNPs have been described for this species. Here we report a genome-wide set of SNP markers for use in genetic studies on this important human disease vector. RESULTS DNA fragments from 50 genes were amplified and sequenced from 21 specimens of An. funestus. A third of specimens were field collected in Malawi, a third from a colony of Mozambican origin and a third form a colony of Angolan origin. A total of 494 SNPs including 303 within the coding regions of genes and 5 indels were identified. The physical positions of these SNPs in the genome are known. There were on average 7 SNPs per kilobase similar to that observed in An. gambiae and Drosophila melanogaster. Transitions outnumbered transversions, at a ratio of 2:1. The increased frequency of transition substitutions in coding regions is likely due to the structure of the genetic code and selective constraints. Synonymous sites within coding regions showed a higher polymorphism rate than non-coding introns or 3' and 5'flanking DNA with most of the substitutions in coding regions being observed at the 3rd codon position. A positive correlation in the level of polymorphism was observed between coding and non-coding regions within a gene. By genotyping a subset of 30 SNPs, we confirmed the validity of the SNPs identified during this study. CONCLUSION This set of SNP markers represents a useful tool for genetic studies in An. funestus, and will be useful in identifying candidate genes that affect diverse ranges of phenotypes that impact on vector control, such as resistance insecticide, mosquito behavior and vector competence.
Collapse
Affiliation(s)
- Charles S Wondji
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Janet Hemingway
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Hilary Ranson
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| |
Collapse
|
41
|
Reed FA, Tishkoff SA. African human diversity, origins and migrations. Curr Opin Genet Dev 2006; 16:597-605. [PMID: 17056248 DOI: 10.1016/j.gde.2006.10.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 10/06/2006] [Indexed: 01/09/2023]
Abstract
The continent of Africa is thought to be the site of origin of all modern humans and is the more recent origin of millions of African Americans. Although Africa has the highest levels of human genetic diversity both within and between populations, it is under-represented in studies of human genetics. Recent advances have been made in understanding the origins of modern humans within Africa, the rate of adaptations due to positive selection, the routes taken in the first migrations of modern humans out of Africa, and the degree of admixture with archaic populations. Africa is also in dire need of effective medical interventions, and studies of genetic variation in Africans will shed light on the genetic basis of diseases and resistance to infectious diseases. Thus, we have tremendous potential to learn about human variation and evolutionary history and to positively impact human health care from studies of genetic diversity in Africa.
Collapse
Affiliation(s)
- Floyd A Reed
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
42
|
Zurovcová M, Tatarenkov A, Berec L. Differences in the pattern of evolution in six physically linked genes of Drosophila melanogaster. Gene 2006; 381:24-33. [PMID: 16914271 DOI: 10.1016/j.gene.2006.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 05/02/2006] [Accepted: 06/01/2006] [Indexed: 11/21/2022]
Abstract
We describe DNA sequence polymorphisms at six loci (Acp26Aa, Acp26Ab, Acp29AB, Idgf1, Idgf3 and Ddc), all on the second chromosome of Drosophila melanogaster in one natural European population. Previous studies considering these loci separately showed that some of them were affected by natural selection. However, demographic processes or population admixture can produce footprints similar to natural selection. Simultaneous consideration of several genes may help to discern between selective and demography/admixture scenarios because the latter are expected to affect a majority of loci in a similar manner. Such an effect is not necessarily uniform among genes, but can be modified by rates of recombination and substitution. Since different evolutionary forces shaped the variation of the studied genes, our aim is to examine if their physical linkage could have affected the observed pattern. Fisher's conservative test of linkage disequilibrium is not significant. Lewontin's sign test pointed to linkage disequilibrium both within and between loci levels, though, none of the loci exhibits haplotype structure. Coupled with other results, the possibility of demography being the exclusive explanation for the observed variability is ruled out.
Collapse
Affiliation(s)
- Martina Zurovcová
- Institute of Entomology, Czech Academy of Sciences and Faculty of Biological Sciences, University of South Bohemia, Branisovská 31, 370 05 Ceské Budejovice, Czech Republic.
| | | | | |
Collapse
|
43
|
Ohno M, Miura T, Furuichi M, Tominaga Y, Tsuchimoto D, Sakumi K, Nakabeppu Y. A genome-wide distribution of 8-oxoguanine correlates with the preferred regions for recombination and single nucleotide polymorphism in the human genome. Genome Res 2006; 16:567-75. [PMID: 16651663 PMCID: PMC1457041 DOI: 10.1101/gr.4769606] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
8-Oxoguanine (8-oxoG), a major spontaneous form of oxidative DNA damage, is considered to be a natural cause of genomic diversity in organisms because of its mutagenic potential. The steady-state level of 8-oxoG in the nuclear genome of a human cell has been estimated to be several residues per 10(6) guanines. In the present study, to clarify the genome-wide distribution of 8-oxoG in the steady state, we performed fluorescence in situ detection of 8-oxoG on human metaphase chromosomes using a monoclonal antibody. Multiple dot-like signals were observed on each metaphase chromosome. We then mapped the position of the signal at megabase resolution referring to the cytogenetically identified chromosomal band, and demonstrated that 8-oxoG is unevenly distributed in the normal human genome and that the distribution pattern is conserved among different individuals. Moreover, we found that regions with a high frequency of recombination and single nucleotide polymorphisms (SNPs) are preferentially located within chromosomal regions with a high density of 8-oxoG. Our findings suggest that 8-oxoG is one of the main causes of frequent recombinations and SNPs in the human genome, which largely contribute to the genomic diversity in human beings.
Collapse
Affiliation(s)
- Mizuki Ohno
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
| | - Tomofumi Miura
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
- Department of Neuropsychiatry, Graduate School of Medical Sciences
| | - Masato Furuichi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
- Radioisotope Center, Kyushu University, Fukuoka 812-8582, Japan
| | - Yohei Tominaga
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
| | - Daisuke Tsuchimoto
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
| | - Kunihiko Sakumi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
- Corresponding author.E-mail ; fax +81-92-642-6791
| |
Collapse
|
44
|
Abstract
The beneficial substitution of an allele shapes patterns of genetic variation at linked sites. Thus, in principle, adaptations can be mapped by looking for the signature of directional selection in polymorphism data. In practice, such efforts are hampered by the need for an accurate characterization of the demographic history of the species and of the effects of positive selection. In an attempt to circumvent these difficulties, researchers are increasingly taking a purely empirical approach, in which a large number of genomic regions are ordered by summaries of the polymorphism data, and loci with extreme values are considered to be likely targets of positive selection. We evaluated the reliability of the "empirical" approach, focusing on applications to human data and to maize. To do so, we considered a coalescent model of directional selection in a sensible demographic setting, allowing for selection on standing variation as well as on a new mutation. Our simulations suggest that while empirical approaches will identify several interesting candidates, they will also miss many--in some cases, most--loci of interest. The extent of the trade-off depends on the mode of positive selection and the demographic history of the population. Specifically, the false-discovery rate is higher when directional selection involves a recessive rather than a co-dominant allele, when it acts on a previously neutral rather than a new allele, and when the population has experienced a population bottleneck rather than maintained a constant size. One implication of these results is that, insofar as attributes of the beneficial mutation (e.g., the dominance coefficient) affect the power to detect targets of selection, genomic scans will yield an unrepresentative subset of loci that contribute to adaptations.
Collapse
Affiliation(s)
- Kosuke M. Teshima
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
- Corresponding authors.E-mail ; fax (773) 834-0505.E-mail ; fax (773) 834-0505
| | - Graham Coop
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Molly Przeworski
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
- Corresponding authors.E-mail ; fax (773) 834-0505.E-mail ; fax (773) 834-0505
| |
Collapse
|
45
|
Maitland ML, DiRienzo A, Ratain MJ. Interpreting Disparate Responses to Cancer Therapy: The Role of Human Population Genetics. J Clin Oncol 2006; 24:2151-7. [PMID: 16682733 DOI: 10.1200/jco.2005.05.2282] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increasingly, investigators are recognizing differences in tumor biology, drug metabolism, toxicity, and therapeutic response among different patient populations receiving anticancer agents. These observations provide exciting opportunities to identify the factors most important for predicting individual variability in pharmacologically relevant phenotypes and consequently for personalizing the delivery of cancer therapy. Although pharmacogenomic differences may explain some of these disparities, rigorous investigation of both genetic and nongenetic differences is important to identify the variables most important for optimal selection and dosing of treatment for an individual patient. For example, pharmacogenetic tests currently used in cancer therapy, such as genotyping UGT1A1 to reduce the incidence of severe toxicity of irinotecan and sequencing epidermal growth factor receptor from tumors to identify somatic mutations conferring sensitivity to tyrosine kinase inhibitors, were developed without initial identification of interpopulation differences. Although interpopulation variability in toxicity and efficacy of these agents has been observed, the basis for these population differences remains only partially explained. Here, we review concepts of human population genetics to inform interpretations of disparate drug effects of cancer therapy across patient populations. Understanding these principles will help investigators better design clinical trials to identify the variables most relevant to subsequent individualization of a cancer therapy.
Collapse
Affiliation(s)
- Michael L Maitland
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
46
|
Wheat CW, Watt WB, Pollock DD, Schulte PM. From DNA to fitness differences: sequences and structures of adaptive variants of Colias phosphoglucose isomerase (PGI). Mol Biol Evol 2006; 23:499-512. [PMID: 16292000 PMCID: PMC2943955 DOI: 10.1093/molbev/msj062] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Colias eurytheme butterflies display extensive allozyme polymorphism in the enzyme phosphoglucose isomerase (PGI). Earlier studies on biochemical and fitness effects of these genotypes found evidence of strong natural selection maintaining this polymorphism in the wild. Here we analyze the molecular features of this polymorphism by sequencing multiple alleles and modeling their structures. PGI is a dimer with rotational symmetry. Each monomer provides a critical residue to the other monomer's catalytic center. Sequenced alleles differ at multiple amino acid positions, including cryptic charge-neutral variation, but most consistent differences among the electromorph alleles are at the charge-changing amino acid sites. Principal candidate sites of selection, identified by structural and functional analyses and by their variants' population frequencies, occur in interpenetrating loops across the interface between monomers, where they may alter subunit interactions and catalytic center geometry. Comparison to a second (and basal) species, Colias meadii, also polymorphic for PGI under natural selection, reveals one fixed amino acid difference between their PGIs, which is located in the interpenetrating loop and accompanies functional differences among their variants. We also study nucleotide variability among the PGI alleles, comparing these data to similar data from another glycolytic enzyme gene, glyceraldehyde-3-phosphate dehydrogenase. Despite extensive nonsynonymous and synonymous polymorphism at PGI in each species, the only base changes fixed between species are the two causing the amino acid replacement; this absence of synonymous fixation yields a significant McDonald-Kreitman test. Analyses of these data suggest historical population expansion. Positive peaks of Tajima's D statistic, representing regions of neutral "hitchhiking," are found around the principal candidate sites of selection. This study provides novel views of molecular-structural mechanisms, and beginnings of historical evidence, for a long-persistent balanced enzyme polymorphism at PGI in these and perhaps other species.
Collapse
|
47
|
Reed FA, Tishkoff SA. Positive selection can create false hotspots of recombination. Genetics 2006; 172:2011-4. [PMID: 16387873 PMCID: PMC1456281 DOI: 10.1534/genetics.105.052183] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2005] [Accepted: 12/23/2005] [Indexed: 11/18/2022] Open
Abstract
Simulations of positive directional selection, under parameter values appropriate for approximating human genetic diversity and rates of recombination, reveal that the effects of strong selective sweeps on patterns of linkage disequilibrium (LD) mimic the pattern expected with recombinant hotspots.
Collapse
Affiliation(s)
- Floyd A Reed
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|
48
|
Ashburner M, Bergman CM. Drosophila melanogaster: a case study of a model genomic sequence and its consequences. Genome Res 2006; 15:1661-7. [PMID: 16339363 DOI: 10.1101/gr.3726705] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The sequencing and annotation of the Drosophila melanogaster genome, first published in 2000 through collaboration between Celera Genomics and the Drosophila Genome Projects, has provided a number of important contributions to genome research. By demonstrating the utility of methods such as whole-genome shotgun sequencing and genome annotation by a community "jamboree," the Drosophila genome established the precedents for the current paradigm used by most genome projects. Subsequent releases of the initial genome sequence have been improved by the Berkeley Drosophila Genome Project and annotated by FlyBase, the Drosophila community database, providing one of the highest-quality genome sequences and annotations for any organism. We discuss the impact of the growing number of genome sequences now available in the genus on current Drosophila research, and some of the biological questions that these resources will enable to be solved in the future.
Collapse
Affiliation(s)
- Michael Ashburner
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom.
| | | |
Collapse
|
49
|
|
50
|
Reed FA, Akey JM, Aquadro CF. Fitting background-selection predictions to levels of nucleotide variation and divergence along the human autosomes. Genome Res 2005; 15:1211-21. [PMID: 16140989 PMCID: PMC1199535 DOI: 10.1101/gr.3413205] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The roles of positive directional selection (selective sweeps) and negative selection (background selection) in shaping the genome-wide distribution of genetic variation in humans remain largely unknown. Here, we optimize the parameter values of a model of the removal of deleterious mutations (background selection) to observed levels of human polymorphism, controlling for mutation rate heterogeneity by using interspecific divergence. A point of "best fit" was found between background-selection predictions and estimates of human effective population sizes, with reasonable parameter estimates whose uncertainty was assessed by bootstrapping. The results suggest that the purging of deleterious alleles has had some influence on shaping levels of human variation, although the effects may be subtle over the majority of the human genome. A significant relationship was found between background-selection predictions and measures of skew in the allele frequency distribution. The genome-wide action of selection (positive and/or negative) is required to explain this observation.
Collapse
Affiliation(s)
- Floyd A Reed
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|