1
|
Wu H, Hamilton C, Porritt H, Winbo A, Zeltner N. Modelling neurocardiac physiology and diseases using human pluripotent stem cells: current progress and future prospects. J Physiol 2025; 603:1865-1885. [PMID: 39235952 PMCID: PMC11955871 DOI: 10.1113/jp286416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Throughout our lifetime the heart executes cycles of contraction and relaxation to meet the body's ever-changing metabolic needs. This vital function is continuously regulated by the autonomic nervous system. Cardiovascular dysfunction and autonomic dysregulation are also closely associated; however, the degrees of cause and effect are not always readily discernible. Thus, to better understand cardiovascular disorders, it is crucial to develop model systems that can be used to study the neurocardiac interaction in healthy and diseased states. Human pluripotent stem cell (hiPSC) technology offers a unique human-based modelling system that allows for studies of disease effects on the cells of the heart and autonomic neurons as well as of their interaction. In this review, we summarize current understanding of the embryonic development of the autonomic, cardiac and neurocardiac systems, their regulation, as well as recent progress of in vitro modelling systems based on hiPSCs. We further discuss the advantages and limitations of hiPSC-based models in neurocardiac research.
Collapse
Affiliation(s)
- Hsueh‐Fu Wu
- Center for Molecular MedicineUniversity of GeorgiaAthensGeorgiaUSA
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGeorgiaUSA
| | | | - Harrison Porritt
- Department of PhysiologyThe University of AucklandAucklandNew Zealand
- Department of Chemical and Materials Engineering, Faculty of EngineeringThe University of AucklandAucklandNew Zealand
- The MacDiarmid Institute for Advanced Materials and NanotechnologyWellingtonNew Zealand
| | - Annika Winbo
- Department of PhysiologyThe University of AucklandAucklandNew Zealand
- Manaaki Manawa Centre for Heart ResearchUniversity of AucklandAucklandNew Zealand
| | - Nadja Zeltner
- Center for Molecular MedicineUniversity of GeorgiaAthensGeorgiaUSA
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGeorgiaUSA
- Department of Cellular BiologyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
2
|
Harripaul R, Morini E, Salani M, Logan E, Kirchner E, Bolduc J, Chekuri A, Currall B, Yadav R, Erdin S, Talkowski ME, Gao D, Slaugenhaupt S. Transcriptome analysis in a humanized mouse model of familial dysautonomia reveals tissue-specific gene expression disruption in the peripheral nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559870. [PMID: 37808686 PMCID: PMC10557663 DOI: 10.1101/2023.09.28.559870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Familial dysautonomia (FD) is a rare recessive neurodevelopmental disease caused by a splice mutation in the Elongator acetyltransferase complex subunit 1 ( ELP1 ) gene. This mutation results in a tissue-specific reduction of ELP1 protein, with the lowest levels in the central and peripheral nervous systems (CNS and PNS, respectively). FD patients exhibit complex neurological phenotypes due to the loss of sensory and autonomic neurons. Disease symptoms include decreased pain and temperature perception, impaired or absent myotatic reflexes, proprioceptive ataxia, and progressive retinal degeneration. While the involvement of the PNS in FD pathogenesis has been clearly recognized, the underlying mechanisms responsible for the preferential neuronal loss remain unknown. In this study, we aimed to elucidate the molecular mechanisms underlying FD by conducting a comprehensive transcriptome analysis of neuronal tissues from the phenotypic mouse model TgFD9 ; Elp1 Δ 20/flox . This mouse recapitulates the same tissue-specific ELP1 mis-splicing observed in patients while modeling many of the disease manifestations. Comparison of FD and control transcriptomes from dorsal root ganglion (DRG), trigeminal ganglion (TG), medulla (MED), cortex, and spinal cord (SC) showed significantly more differentially expressed genes (DEGs) in the PNS than the CNS. We then identified genes that were tightly co-expressed and functionally dependent on the level of full-length ELP1 transcript. These genes, defined as ELP1 dose-responsive genes, were combined with the DEGs to generate tissue-specific dysregulated FD signature genes and networks. Within the PNS networks, we observed direct connections between Elp1 and genes involved in tRNA synthesis and genes related to amine metabolism and synaptic signaling. Importantly, transcriptomic dysregulation in PNS tissues exhibited enrichment for neuronal subtype markers associated with peptidergic nociceptors and myelinated sensory neurons, which are known to be affected in FD. In summary, this study has identified critical tissue-specific gene networks underlying the etiology of FD and provides new insights into the molecular basis of the disease.
Collapse
|
3
|
Amanat M, Nemeth CL, Fine AS, Leung DG, Fatemi A. Antisense Oligonucleotide Therapy for the Nervous System: From Bench to Bedside with Emphasis on Pediatric Neurology. Pharmaceutics 2022; 14:2389. [PMID: 36365206 PMCID: PMC9695718 DOI: 10.3390/pharmaceutics14112389] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 09/05/2023] Open
Abstract
Antisense oligonucleotides (ASOs) are disease-modifying agents affecting protein-coding and noncoding ribonucleic acids. Depending on the chemical modification and the location of hybridization, ASOs are able to reduce the level of toxic proteins, increase the level of functional protein, or modify the structure of impaired protein to improve function. There are multiple challenges in delivering ASOs to their site of action. Chemical modifications in the phosphodiester bond, nucleotide sugar, and nucleobase can increase structural thermodynamic stability and prevent ASO degradation. Furthermore, different particles, including viral vectors, conjugated peptides, conjugated antibodies, and nanocarriers, may improve ASO delivery. To date, six ASOs have been approved by the US Food and Drug Administration (FDA) in three neurological disorders: spinal muscular atrophy, Duchenne muscular dystrophy, and polyneuropathy caused by hereditary transthyretin amyloidosis. Ongoing preclinical and clinical studies are assessing the safety and efficacy of ASOs in multiple genetic and acquired neurological conditions. The current review provides an update on underlying mechanisms, design, chemical modifications, and delivery of ASOs. The administration of FDA-approved ASOs in neurological disorders is described, and current evidence on the safety and efficacy of ASOs in other neurological conditions, including pediatric neurological disorders, is reviewed.
Collapse
Affiliation(s)
- Man Amanat
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christina L. Nemeth
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amena Smith Fine
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Doris G. Leung
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Ali Fatemi
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Li D, McIntosh CS, Mastaglia FL, Wilton SD, Aung-Htut MT. Neurodegenerative diseases: a hotbed for splicing defects and the potential therapies. Transl Neurodegener 2021; 10:16. [PMID: 34016162 PMCID: PMC8136212 DOI: 10.1186/s40035-021-00240-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Precursor messenger RNA (pre-mRNA) splicing is a fundamental step in eukaryotic gene expression that systematically removes non-coding regions (introns) and ligates coding regions (exons) into a continuous message (mature mRNA). This process is highly regulated and can be highly flexible through a process known as alternative splicing, which allows for several transcripts to arise from a single gene, thereby greatly increasing genetic plasticity and the diversity of proteome. Alternative splicing is particularly prevalent in neuronal cells, where the splicing patterns are continuously changing to maintain cellular homeostasis and promote neurogenesis, migration and synaptic function. The continuous changes in splicing patterns and a high demand on many cis- and trans-splicing factors contribute to the susceptibility of neuronal tissues to splicing defects. The resultant neurodegenerative diseases are a large group of disorders defined by a gradual loss of neurons and a progressive impairment in neuronal function. Several of the most common neurodegenerative diseases involve some form of splicing defect(s), such as Alzheimer's disease, Parkinson's disease and spinal muscular atrophy. Our growing understanding of RNA splicing has led to the explosion of research in the field of splice-switching antisense oligonucleotide therapeutics. Here we review our current understanding of the effects alternative splicing has on neuronal differentiation, neuronal migration, synaptic maturation and regulation, as well as the impact on neurodegenerative diseases. We will also review the current landscape of splice-switching antisense oligonucleotides as a therapeutic strategy for a number of common neurodegenerative disorders.
Collapse
Affiliation(s)
- Dunhui Li
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Craig Stewart McIntosh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Frank Louis Mastaglia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Steve Donald Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - May Thandar Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia. .,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
5
|
Grifone R, Shao M, Saquet A, Shi DL. RNA-Binding Protein Rbm24 as a Multifaceted Post-Transcriptional Regulator of Embryonic Lineage Differentiation and Cellular Homeostasis. Cells 2020; 9:E1891. [PMID: 32806768 PMCID: PMC7463526 DOI: 10.3390/cells9081891] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
RNA-binding proteins control the metabolism of RNAs at all stages of their lifetime. They are critically required for the post-transcriptional regulation of gene expression in a wide variety of physiological and pathological processes. Rbm24 is a highly conserved RNA-binding protein that displays strongly regionalized expression patterns and exhibits dynamic changes in subcellular localization during early development. There is increasing evidence that it acts as a multifunctional regulator to switch cell fate determination and to maintain tissue homeostasis. Dysfunction of Rbm24 disrupts cell differentiation in nearly every tissue where it is expressed, such as skeletal and cardiac muscles, and different head sensory organs, but the molecular events that are affected may vary in a tissue-specific, or even a stage-specific manner. Recent works using different animal models have uncovered multiple post-transcriptional regulatory mechanisms by which Rbm24 functions in key developmental processes. In particular, it represents a major splicing factor in muscle cell development, and plays an essential role in cytoplasmic polyadenylation during lens fiber cell terminal differentiation. Here we review the advances in understanding the implication of Rbm24 during development and disease, by focusing on its regulatory roles in physiological and pathological conditions.
Collapse
Affiliation(s)
- Raphaëlle Grifone
- Developmental Biology Laboratory, CNRS-UMR7622, IBPS, Sorbonne University, 75005 Paris, France; (R.G.); (A.S.)
| | - Ming Shao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China;
| | - Audrey Saquet
- Developmental Biology Laboratory, CNRS-UMR7622, IBPS, Sorbonne University, 75005 Paris, France; (R.G.); (A.S.)
| | - De-Li Shi
- Developmental Biology Laboratory, CNRS-UMR7622, IBPS, Sorbonne University, 75005 Paris, France; (R.G.); (A.S.)
| |
Collapse
|
6
|
Selective Induction of Human Autonomic Neurons Enables Precise Control of Cardiomyocyte Beating. Sci Rep 2020; 10:9464. [PMID: 32528170 PMCID: PMC7289887 DOI: 10.1038/s41598-020-66303-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
The autonomic nervous system (ANS) regulates tissue homeostasis and remodelling through antagonistic effects of noradrenergic sympathetic and cholinergic parasympathetic signalling. Despite numerous reports on the induction of sympathetic neurons from human pluripotent stem cells (hPSCs), no induction methods have effectively derived cholinergic parasympathetic neurons from hPSCs. Considering the antagonistic effects of noradrenergic and cholinergic inputs on target organs, both sympathetic and parasympathetic neurons are expected to be induced. This study aimed to develop a stepwise chemical induction method to induce sympathetic-like and parasympathetic-like ANS neurons. Autonomic specification was achieved through restricting signals inducing sensory or enteric neurogenesis and activating bone morphogenetic protein (BMP) signals. Global mRNA expression analyses after stepwise induction, including single-cell RNA-seq analysis of induced neurons and functional assays revealed that each induced sympathetic-like or parasympathetic-like neuron acquired pharmacological and electrophysiological functional properties with distinct marker expression. Further, we identified selective induction methods using appropriate seeding cell densities and neurotrophic factor concentrations. Neurons were individually induced, facilitating the regulation of the beating rates of hiPSC-derived cardiomyocytes in an antagonistic manner. The induction methods yield specific neuron types, and their influence on various tissues can be studied by co-cultured assays.
Collapse
|
7
|
Sinha R, Kim YJ, Nomakuchi T, Sahashi K, Hua Y, Rigo F, Bennett CF, Krainer AR. Antisense oligonucleotides correct the familial dysautonomia splicing defect in IKBKAP transgenic mice. Nucleic Acids Res 2019; 46:4833-4844. [PMID: 29672717 PMCID: PMC6007753 DOI: 10.1093/nar/gky249] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/28/2018] [Indexed: 12/19/2022] Open
Abstract
Familial dysautonomia (FD) is a rare inherited neurodegenerative disorder caused by a point mutation in the IKBKAP gene that results in defective splicing of its pre-mRNA. The mutation weakens the 5′ splice site of exon 20, causing this exon to be skipped, thereby introducing a premature termination codon. Though detailed FD pathogenesis mechanisms are not yet clear, correcting the splicing defect in the relevant tissue(s), thus restoring normal expression levels of the full-length IKAP protein, could be therapeutic. Splice-switching antisense oligonucleotides (ASOs) can be effective targeted therapeutics for neurodegenerative diseases, such as nusinersen (Spinraza), an approved drug for spinal muscular atrophy. Using a two-step screen with ASOs targeting IKBKAP exon 20 or the adjoining intronic regions, we identified a lead ASO that fully restored exon 20 splicing in FD patient fibroblasts. We also characterized the corresponding cis-acting regulatory sequences that control exon 20 splicing. When administered into a transgenic FD mouse model, the lead ASO promoted expression of full-length human IKBKAP mRNA and IKAP protein levels in several tissues tested, including the central nervous system. These findings provide insights into the mechanisms of IKBKAP exon 20 recognition, and pre-clinical proof of concept for an ASO-based targeted therapy for FD.
Collapse
Affiliation(s)
- Rahul Sinha
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Young Jin Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Stony Brook University School of Medicine, Stony Brook, NY 11790, USA
| | - Tomoki Nomakuchi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Stony Brook University School of Medicine, Stony Brook, NY 11790, USA
| | - Kentaro Sahashi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yimin Hua
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92008, USA
| | | | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
8
|
ELP1 Splicing Correction Reverses Proprioceptive Sensory Loss in Familial Dysautonomia. Am J Hum Genet 2019; 104:638-650. [PMID: 30905397 DOI: 10.1016/j.ajhg.2019.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/08/2019] [Indexed: 12/14/2022] Open
Abstract
Familial dysautonomia (FD) is a recessive neurodegenerative disease caused by a splice mutation in Elongator complex protein 1 (ELP1, also known as IKBKAP); this mutation leads to variable skipping of exon 20 and to a drastic reduction of ELP1 in the nervous system. Clinically, many of the debilitating aspects of the disease are related to a progressive loss of proprioception; this loss leads to severe gait ataxia, spinal deformities, and respiratory insufficiency due to neuromuscular incoordination. There is currently no effective treatment for FD, and the disease is ultimately fatal. The development of a drug that targets the underlying molecular defect provides hope that the drastic peripheral neurodegeneration characteristic of FD can be halted. We demonstrate herein that the FD mouse TgFD9;IkbkapΔ20/flox recapitulates the proprioceptive impairment observed in individuals with FD, and we provide the in vivo evidence that postnatal correction, promoted by the small molecule kinetin, of the mutant ELP1 splicing can rescue neurological phenotypes in FD. Daily administration of kinetin starting at birth improves sensory-motor coordination and prevents the onset of spinal abnormalities by stopping the loss of proprioceptive neurons. These phenotypic improvements correlate with increased amounts of full-length ELP1 mRNA and protein in multiple tissues, including in the peripheral nervous system (PNS). Our results show that postnatal correction of the underlying ELP1 splicing defect can rescue devastating disease phenotypes and is therefore a viable therapeutic approach for persons with FD.
Collapse
|
9
|
Yannai S, Zonszain J, Donyo M, Ast G. Combinatorial treatment increases IKAP levels in human cells generated from Familial Dysautonomia patients. PLoS One 2019; 14:e0211602. [PMID: 30889183 PMCID: PMC6424424 DOI: 10.1371/journal.pone.0211602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023] Open
Abstract
Familial Dysautonomia (FD) is an autosomal recessive congenital neuropathy that results from a point mutation at the 5' splice site of intron 20 in the IKBKAP gene. This mutation decreases production of the IKAP protein, and treatments that increase the level of the full-length IKBKAP transcript are likely to be of therapeutic value. We previously found that phosphatidylserine (PS), an FDA-approved food supplement, elevates IKAP levels in cells generated from FD patients. Here we demonstrate that combined treatment of cells generated from FD patients with PS and kinetin or PS and the histone deacetylase inhibitor trichostatin A (TSA) resulted in an additive elevation of IKAP compared to each drug alone. This indicates that the compounds influence different pathways. We also found that pridopidine enhances production of IKAP in cells generated from FD patients. Pridopidine has an additive effect on IKAP levels when used in combination with kinetin or TSA, but not with PS; suggesting that PS and pridopidine influence IKBKAP levels through the same mechanism. Indeed, we demonstrate that the effect of PS and pridopidine is through sigma-1 receptor-mediated activation of the BDNF signaling pathway. A combination treatment with any of these drugs with different mechanisms has potential to benefit FD patients.
Collapse
Affiliation(s)
- Sivan Yannai
- Department of Human Molecular Genetics and Biochemestry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Jonathan Zonszain
- Department of Human Molecular Genetics and Biochemestry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Maya Donyo
- Department of Human Molecular Genetics and Biochemestry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemestry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
- * E-mail:
| |
Collapse
|
10
|
Takayama Y, Wakabayashi T, Kushige H, Saito Y, Shibuya Y, Shibata S, Akamatsu W, Okano H, Kida YS. Brief exposure to small molecules allows induction of mouse embryonic fibroblasts into neural crest-like precursors. FEBS Lett 2017; 591:590-602. [PMID: 28129669 PMCID: PMC5347899 DOI: 10.1002/1873-3468.12572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 12/11/2022]
Abstract
In this study, we propose a novel method for inducing neuronal cells by briefly exposing them to small‐molecule cocktails in a step‐by‐step manner. Global gene expression analysis with immunohistochemical staining and calcium flux assays reveal the generation of neurons from mouse embryonic fibroblasts. In addition, time‐lapse imaging of neural precursor‐specific enhancer expression and global gene expression analyses show that the neurons are generated by passing through a neural crest‐like precursor stage. Consistent with these results, the neural crest‐like cells are able to differentiate into neural crest lineage cells, such as sympathetic neurons, adipocytes, osteocytes, and smooth muscle cells. Therefore, these results indicate that brief exposure to chemical compounds could expand and induce a substantial multipotent cell population without viral transduction.
Collapse
Affiliation(s)
- Yuzo Takayama
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Tamami Wakabayashi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Hiroko Kushige
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Yutaka Saito
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Shinjuku-ku, Tokyo, Japan
| | - Yoichiro Shibuya
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.,Department of Plastic and Reconstructive Surgery, University of Tsukuba, Ibaraki, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yasuyuki S Kida
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
11
|
Takayama Y, Kida YS. In Vitro Reconstruction of Neuronal Networks Derived from Human iPS Cells Using Microfabricated Devices. PLoS One 2016; 11:e0148559. [PMID: 26848955 PMCID: PMC4744060 DOI: 10.1371/journal.pone.0148559] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/19/2016] [Indexed: 12/19/2022] Open
Abstract
Morphology and function of the nervous system is maintained via well-coordinated processes both in central and peripheral nervous tissues, which govern the homeostasis of organs/tissues. Impairments of the nervous system induce neuronal disorders such as peripheral neuropathy or cardiac arrhythmia. Although further investigation is warranted to reveal the molecular mechanisms of progression in such diseases, appropriate model systems mimicking the patient-specific communication between neurons and organs are not established yet. In this study, we reconstructed the neuronal network in vitro either between neurons of the human induced pluripotent stem (iPS) cell derived peripheral nervous system (PNS) and central nervous system (CNS), or between PNS neurons and cardiac cells in a morphologically and functionally compartmentalized manner. Networks were constructed in photolithographically microfabricated devices with two culture compartments connected by 20 microtunnels. We confirmed that PNS and CNS neurons connected via synapses and formed a network. Additionally, calcium-imaging experiments showed that the bundles originating from the PNS neurons were functionally active and responded reproducibly to external stimuli. Next, we confirmed that CNS neurons showed an increase in calcium activity during electrical stimulation of networked bundles from PNS neurons in order to demonstrate the formation of functional cell-cell interactions. We also confirmed the formation of synapses between PNS neurons and mature cardiac cells. These results indicate that compartmentalized culture devices are promising tools for reconstructing network-wide connections between PNS neurons and various organs, and might help to understand patient-specific molecular and functional mechanisms under normal and pathological conditions.
Collapse
Affiliation(s)
- Yuzo Takayama
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- * E-mail: (YT); (YSK)
| | - Yasuyuki S. Kida
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- * E-mail: (YT); (YSK)
| |
Collapse
|
12
|
Donyo M, Hollander D, Abramovitch Z, Naftelberg S, Ast G. Phosphatidylserine enhances IKBKAP transcription by activating the MAPK/ERK signaling pathway. Hum Mol Genet 2016; 25:1307-17. [PMID: 26769675 DOI: 10.1093/hmg/ddw011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/11/2016] [Indexed: 01/04/2023] Open
Abstract
Familial dysautonomia (FD) is a genetic disorder manifested due to abnormal development and progressive degeneration of the sensory and autonomic nervous system. FD is caused by a point mutation in the IKBKAP gene encoding the IKAP protein, resulting in decreased protein levels. A promising potential treatment for FD is phosphatidylserine (PS); however, the manner by which PS elevates IKAP levels has yet to be identified. Analysis of ChIP-seq results of the IKBKAP promoter region revealed binding of the transcription factors CREB and ELK1, which are regulated by the mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) signaling pathway. We show that PS treatment enhanced ERK phosphorylation in cells derived from FD patients. ERK activation resulted in elevated IKBKAP transcription and IKAP protein levels, whereas pretreatment with the MAPK inhibitor U0126 blocked elevation of the IKAP protein level. Overexpression of either ELK1 or CREB activated the IKBKAP promoter, whereas downregulation of these transcription factors resulted in a decrease of the IKAP protein. Additionally, we show that PS improves cell migration, known to be enhanced by MAPK/ERK activation and abrogated in FD cells. In conclusion, our results demonstrate that PS activates the MAPK/ERK signaling pathway, resulting in activation of transcription factors that bind the promoter region of IKBKAP and thus enhancing its transcription. Therefore, compounds that activate the MAPK/ERK signaling pathway could constitute potential treatments for FD.
Collapse
Affiliation(s)
- Maya Donyo
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Dror Hollander
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Ziv Abramovitch
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Shiran Naftelberg
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
13
|
Zeltner N, Studer L. Pluripotent stem cell-based disease modeling: current hurdles and future promise. Curr Opin Cell Biol 2015; 37:102-10. [PMID: 26629748 DOI: 10.1016/j.ceb.2015.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/18/2015] [Indexed: 12/14/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) can yield unlimited numbers of patient-specific cells of any type and may be an important tool in efforts to overcome current shortcomings in biomedical research. In vitro disease models based on the use of hiPSCs have been proposed for various applications. Those include drug discovery and validation, efficacy, safety and toxicity assays, the elucidation of previously unknown disease mechanisms, the enhancement of animal based assays, the promise of conducting clinical trials in the dish and the identification of cell types and stages suitable for cell replacement therapies. Here, we provide an overview of the current state of hiPSC-based disease modeling and discuss recent progress and remaining challenges on the road to realizing the full potential of this novel technology.
Collapse
Affiliation(s)
- Nadja Zeltner
- Developmental Biology, Sloan Kettering Institute, New York, USA; Center for Stem Cell Biology, Sloan Kettering Institute, New York, USA
| | - Lorenz Studer
- Developmental Biology, Sloan Kettering Institute, New York, USA; Center for Stem Cell Biology, Sloan Kettering Institute, New York, USA.
| |
Collapse
|
14
|
Daniel SJ, Cardona I. Onabotulinum toxin A for the treatment of sialorrhea in familial dysautonomia. Int J Pediatr Otorhinolaryngol 2014; 78:879-81. [PMID: 24725647 DOI: 10.1016/j.ijporl.2014.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 11/30/2022]
Abstract
Familial dysautonomia is a rare disease affecting the nervous system. Symptoms include speech and movement problems, anterior sialorrhea (drooling) due to hypersalivation as a consequence of poor oropharyngeal coordination; dysphagia and aspiration pneumonia secondary to recurrent posterior sialorrhea. The treatment for sialorrhea in this population is very challenging. Traditional drugs carry a number of side-effects that are difficult to control in this disease. We report the first documented case series of 3 patients with this condition that successfully responded to Onabotulinum toxin A injection into their salivary glands. This is an innovative, safe method for drooling control in this population.
Collapse
Affiliation(s)
- Sam J Daniel
- Department of Otolaryngology Head & Neck Surgery, Montreal Children's Hospital, McGill University Health Center, Montreal, Quebec, Canada.
| | - Isabel Cardona
- Department of Otolaryngology Head & Neck Surgery, Montreal Children's Hospital, McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Torres AG, Batlle E, Ribas de Pouplana L. Role of tRNA modifications in human diseases. Trends Mol Med 2014; 20:306-14. [PMID: 24581449 DOI: 10.1016/j.molmed.2014.01.008] [Citation(s) in RCA: 311] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/17/2014] [Accepted: 01/23/2014] [Indexed: 12/22/2022]
Abstract
Transfer RNAs (tRNAs) are key for efficient and accurate protein translation. To be fully active, tRNAs need to be heavily modified post-transcriptionally. Growing evidence indicates that tRNA modifications and the enzymes catalyzing such modifications may play important roles in complex human pathologies. Here, we have compiled current knowledge that directly link tRNA modifications to human diseases such as cancer, type 2 diabetes (T2D), neurological disorders, and mitochondrial-linked disorders. The molecular mechanisms behind these connections remain, for the most part, unknown. As we progress towards the understanding of the roles played by hypomodified tRNAs in human disease, novel areas of therapeutic intervention may be discovered.
Collapse
Affiliation(s)
- Adrian Gabriel Torres
- Institute for Research in Biomedicine (IRB), Parc Cientific de Barcelona, 08028 Catalunya, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB), Parc Cientific de Barcelona, 08028 Catalunya, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08010 Catalunya, Spain
| | - Lluis Ribas de Pouplana
- Institute for Research in Biomedicine (IRB), Parc Cientific de Barcelona, 08028 Catalunya, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08010 Catalunya, Spain.
| |
Collapse
|
16
|
Abstract
Elongator is required for the synthesis of the mcm(5)s(2) modification found on tRNAs recognizing AA-ending codons. In order to obtain a global picture of the role of Elongator in translation, we used reverse protein arrays to screen the fission yeast proteome for translation defects. Unexpectedly, this revealed that Elongator inactivation mainly affected three specific functional groups including proteins implicated in cell division. The absence of Elongator results in a delay in mitosis onset and cytokinesis defects. We demonstrate that the kinase Cdr2, which is a central regulator of mitosis and cytokinesis, is under translational control by Elongator due to the Lysine codon usage bias of the cdr2 coding sequence. These findings uncover a mechanism by which the codon usage, coupled to tRNA modifications, fundamentally contributes to gene expression and cellular functions.
Collapse
|
17
|
Bochner R, Ziv Y, Zeevi D, Donyo M, Abraham L, Ashery-Padan R, Ast G. Phosphatidylserine increases IKBKAP levels in a humanized knock-in IKBKAP mouse model. Hum Mol Genet 2013; 22:2785-94. [PMID: 23515154 DOI: 10.1093/hmg/ddt126] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Familial dysautonomia (FD) is a severe neurodegenerative genetic disorder restricted to the Ashkenazi Jewish population. The most common mutation in FD patients is a T-to-C transition at position 6 of intron 20 of the IKBKAP gene. This mutation causes aberrant skipping of exon 20 in a tissue-specific manner, leading to reduction of the IκB kinase complex-associated protein (IKAP) protein in the nervous system. We established a homozygous humanized mouse strain carrying human exon 20 and its two flanking introns; the 3' intron has the transition observed in the IKBKAP gene of FD patients. Although our FD humanized mouse does not display FD symptoms, the unique, tissue-specific splicing pattern of the IKBKAP in these mice allowed us to evaluate the effect of therapies on gene expression and exon 20 splicing. The FD mice were supplemented with phosphatidylserine (PS), a safe food supplement that increases mRNA and protein levels of IKBKAP in cell lines generated from FD patients. Here we demonstrated that PS treatment increases IKBAKP mRNA and IKAP protein levels in various tissues of FD mice without affecting exon 20 inclusion levels. We also observed that genes associated with transcription regulation and developmental processes were up-regulated in the cerebrum of PS-treated mice. Thus, PS holds promise for the treatment of FD.
Collapse
Affiliation(s)
- Ron Bochner
- Department of Human Molecular Genetics and Biochemistry
| | | | | | | | | | | | | |
Collapse
|
18
|
Gürel G, Gustafson MA, Pepper JS, Horvitz HR, Koelle MR. Receptors and other signaling proteins required for serotonin control of locomotion in Caenorhabditis elegans. Genetics 2012; 192:1359-71. [PMID: 23023001 PMCID: PMC3512144 DOI: 10.1534/genetics.112.142125] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/15/2012] [Indexed: 01/05/2023] Open
Abstract
A better understanding of the molecular mechanisms of signaling by the neurotransmitter serotonin is required to assess the hypothesis that defects in serotonin signaling underlie depression in humans. Caenorhabditis elegans uses serotonin as a neurotransmitter to regulate locomotion, providing a genetic system to analyze serotonin signaling. From large-scale genetic screens we identified 36 mutants of C. elegans in which serotonin fails to have its normal effect of slowing locomotion, and we molecularly identified eight genes affected by 19 of the mutations. Two of the genes encode the serotonin-gated ion channel MOD-1 and the G-protein-coupled serotonin receptor SER-4. mod-1 is expressed in the neurons and muscles that directly control locomotion, while ser-4 is expressed in an almost entirely non-overlapping set of sensory and interneurons. The cells expressing the two receptors are largely not direct postsynaptic targets of serotonergic neurons. We analyzed animals lacking or overexpressing the receptors in various combinations using several assays for serotonin response. We found that the two receptors act in parallel to affect locomotion. Our results show that serotonin functions as an extrasynaptic signal that independently activates multiple receptors at a distance from its release sites and identify at least six additional proteins that appear to act with serotonin receptors to mediate serotonin response.
Collapse
Affiliation(s)
- Güliz Gürel
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Megan A. Gustafson
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Judy S. Pepper
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| | - H. Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Michael R. Koelle
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
19
|
Abstract
Lysine acetylation refers to transfer of the acetyl moiety from acetyl-CoA to the ε-amino group of a lysine residue on a protein. This has recently emerged as a major covalent modification and interplays with other modifications, such as phosphorylation, methylation, ubiquitination (addition of a small protein called ubiquitin) and SUMOylation [addition of a ubiquitin-like protein known as SUMO (small ubiquitin-related modifier)], to form multisite modification programmes for cellular regulation in diverse organisms. This modification is post-translational (i.e. after synthesis of a protein) and reversible, with its level being dynamically balanced by two groups of enzymes known as lysine acetyltransferases and deacetylases. The acetyltransferases belong to three major families, whereas deacetylases have been divided into the classical and sirtuin [Sir-tu-in, for Sir2 (silent information regulator 2)-like protein; named after the yeast protein Sir2] families. In addition to these enzymes, proteins containing the bromodomain, a protein module named after the fly protein Brahma (God of creation in Hindu), are relevant to lysine acetylation biology due to their ability to recognize acetyl-lysine-containing peptides. Importantly, recent studies have made intimate links between these three different groups of proteins to different pathological conditions. In this chapter, we provide a brief overview of these proteins and emphasize their direct links to related human diseases.
Collapse
|
20
|
Close P, Gillard M, Ladang A, Jiang Z, Papuga J, Hawkes N, Nguyen L, Chapelle JP, Bouillenne F, Svejstrup J, Fillet M, Chariot A. DERP6 (ELP5) and C3ORF75 (ELP6) regulate tumorigenicity and migration of melanoma cells as subunits of Elongator. J Biol Chem 2012; 287:32535-45. [PMID: 22854966 PMCID: PMC3463322 DOI: 10.1074/jbc.m112.402727] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Indexed: 12/17/2022] Open
Abstract
The Elongator complex is composed of 6 subunits (Elp1-Elp6) and promotes RNAPII transcript elongation through histone acetylation in the nucleus as well as tRNA modification in the cytoplasm. This acetyltransferase complex directly or indirectly regulates numerous biological processes ranging from exocytosis and resistance to heat shock in yeast to cell migration and neuronal differentiation in higher eukaryotes. The identity of human ELP1 through ELP4 has been reported but human ELP5 and ELP6 have remained uncharacterized. Here, we report that DERP6 (ELP5) and C3ORF75 (ELP6) encode these subunits of human Elongator. We further investigated the importance and function of these two subunits by a combination of biochemical analysis and cellular assays. Our results show that DERP6/ELP5 is required for the integrity of Elongator and directly connects ELP3 to ELP4. Importantly, the migration and tumorigenicity of melanoma-derived cells are significantly decreased upon Elongator depletion through ELP1 or ELP3. Strikingly, DERP6/ELP5 and C3ORF75/ELP6-depleted melanoma cells have similar defects, further supporting the idea that DERP6/ELP5 and C3ORF75/ELP6 are essential for Elongator function. Together, our data identify DERP6/ELP5 and C3ORF75/ELP6 as key players for migration, invasion and tumorigenicity of melanoma cells, as integral subunits of Elongator.
Collapse
Affiliation(s)
- Pierre Close
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- GIGA Signal Transduction and Laboratory of Medical Chemistry
| | - Magali Gillard
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- GIGA Signal Transduction and Laboratory of Medical Chemistry
| | - Aurélie Ladang
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- GIGA Signal Transduction and Laboratory of Medical Chemistry
| | - Zheshen Jiang
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- GIGA Signal Transduction and Laboratory of Medical Chemistry
| | - Jessica Papuga
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- GIGA Signal Transduction and Laboratory of Medical Chemistry
| | - Nicola Hawkes
- the Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, United Kingdom
| | - Laurent Nguyen
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- Developmental Neurobiology Unit and GIGA Neurosciences
| | - Jean-Paul Chapelle
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- GIGA Signal Transduction and Laboratory of Medical Chemistry
| | | | - Jesper Svejstrup
- the Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, United Kingdom
| | - Marianne Fillet
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- GIGA Signal Transduction and Laboratory of Medical Chemistry
- Laboratory of Analytical Pharmaceutical Chemistry, Department of Pharmacy, CIRM, and
| | - Alain Chariot
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- GIGA Signal Transduction and Laboratory of Medical Chemistry
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), GIGA-R, University of Liège, CHU, Sart-Tilman, B-4000 Liège, Belgium and
| |
Collapse
|
21
|
ELP3 controls active zone morphology by acetylating the ELKS family member Bruchpilot. Neuron 2012; 72:776-88. [PMID: 22153374 DOI: 10.1016/j.neuron.2011.10.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2011] [Indexed: 01/09/2023]
Abstract
Elongator protein 3 (ELP3) acetylates histones in the nucleus but also plays a role in the cytoplasm. Here, we report that in Drosophila neurons, ELP3 is necessary and sufficient to acetylate the ELKS family member Bruchpilot, an integral component of the presynaptic density where neurotransmitters are released. We find that in elp3 mutants, presynaptic densities assemble normally, but they show morphological defects such that their cytoplasmic extensions cover a larger area, resulting in increased vesicle tethering as well as a more proficient neurotransmitter release. We propose a model where ELP3-dependent acetylation of Bruchpilot at synapses regulates the structure of individual presynaptic densities and neurotransmitter release efficiency.
Collapse
|
22
|
Suaud L, Miller K, Panichelli AE, Randell RL, Marando CM, Rubenstein RC. 4-Phenylbutyrate stimulates Hsp70 expression through the Elp2 component of elongator and STAT-3 in cystic fibrosis epithelial cells. J Biol Chem 2011; 286:45083-92. [PMID: 22069317 DOI: 10.1074/jbc.m111.293282] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sodium 4-phenylbutyrate (4PBA) corrects trafficking of ΔF508-CFTR in Cystic Fibrosis (CF) epithelia, which is hypothesized to, at least in part, result from increased expression of Hsp70 (stress-induced 70 kDa heat shock protein). To identify other 4PBA-regulated proteins that may promote correction of ΔF508 trafficking, we performed differential display RT-PCR on mRNA from IB3-1 CF bronchiolar epithelial cells treated for 0-24 h with 1 mM 4PBA. In this screen, a STAT-3 (signal transducer and activator of transcription-3)-interacting protein, StIP-1 that regulates STAT-3 activation had transiently increased expression. StIP-1 is identical to Elongator protein 2 (Elp2), a component of the Elongator complex that regulates RNA polymerase II. Previous studies have suggested that Elongator regulates Hsp70 mRNA transcription, and that the Hsp70 promoter contains functional STAT-3-binding sites. We therefore tested the hypothesis that 4PBA increases Hsp70 expression by an Elongator- and STAT-3-dependent mechanism. 4PBA treatment of IB3-1 CF bronchiolar epithelial cells caused transiently increased expression of Hsp70 protein, as well as Elp2 protein and mRNA. Elp2 depletion by transfection of small interfering RNAs, reduced both Elp2 and Hsp70 protein expression. 4PBA also caused transient activation of STAT-3, and increased abundance of nuclear proteins that bind to the STAT-3-responsive element of the Hsp70 promoter. Luciferase reporter assays demonstrated that both Elp2 overexpression and 4PBA increase Hsp70 promoter activity, while Elp2 depletion blocked the ability of 4PBA to stimulate Hsp70 promoter activity. Together, these data suggest that Elp2 and STAT-3 mediate, at least in part, the stimulation of Hsp70 expression by 4PBA.
Collapse
Affiliation(s)
- Laurence Suaud
- Division of Pulmonary Medicine and Cystic Fibrosis Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
23
|
Cohen-Kupiec R, Weinstein S, Kantor G, Peer D, Weil M. IKAP/hELP1 down-regulation in neuroblastoma cells causes enhanced cell adhesion mediated by contactin overexpression. Cell Adh Migr 2011; 4:541-50. [PMID: 20671422 DOI: 10.4161/cam.4.4.12923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A splicing mutation in the IKBKAP gene encoding the IKAP/hELP1 (IKAP) protein was found to be the major cause of Familial Dysautonomia (FD). This mutation affects both the normal development and survival of sensory and sympathetic neurons of the peripheral nervous system (PNS). To understand the FD phenotype it is important to study the specific role played by IKAP in developing and mature PNS neurons. We used the neuroblastoma SHSY5Y cell line, originated from neural crest adrenal tumor, and simulated the FD phenotype by reducing IKAP expression with retroviral constructs. We observed that IKAP – down - regulated cells formed cell clusters compared to control cells under regular culture conditions. We examined the ability of these cells to differentiate into mature neurons in the presence of laminin, an essential extracellular matrix for developing PNS neurons. We found that the cells showed reduced attachment to laminin, morphological changes and increased cell-to-cell adhesion resulting in cell aggregates. We identified Contactin as the adhesion molecule responsible for this phenotype. We show that Contactin expression is related to IKAP expression, suggesting that IKAP regulates Contactin levels for appropriate cell-cell adhesion that could modulate neuronal growth of PNS neurons during development.
Collapse
Affiliation(s)
- Rachel Cohen-Kupiec
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
24
|
Evrard SG, Brusco A. Ethanol Effects on the Cytoskeleton of Nerve Tissue Cells. ADVANCES IN NEUROBIOLOGY 2011. [DOI: 10.1007/978-1-4419-6787-9_29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Phosphatidylserine increases IKBKAP levels in familial dysautonomia cells. PLoS One 2010; 5:e15884. [PMID: 21209961 PMCID: PMC3012102 DOI: 10.1371/journal.pone.0015884] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 11/26/2010] [Indexed: 11/19/2022] Open
Abstract
Familial Dysautonomia (FD) is an autosomal recessive congenital neuropathy that results from abnormal development and progressive degeneration of the sensory and autonomic nervous system. The mutation observed in almost all FD patients is a point mutation at position 6 of intron 20 of the IKBKAP gene; this gene encodes the IκB kinase complex-associated protein (IKAP). The mutation results in a tissue-specific splicing defect: Exon 20 is skipped, leading to reduced IKAP protein expression. Here we show that phosphatidylserine (PS), an FDA-approved food supplement, increased IKAP mRNA levels in cells derived from FD patients. Long-term treatment with PS led to a significant increase in IKAP protein levels in these cells. A conjugate of PS and an omega-3 fatty acid also increased IKAP mRNA levels. Furthermore, PS treatment released FD cells from cell cycle arrest and up-regulated a significant number of genes involved in cell cycle regulation. Our results suggest that PS has potential for use as a therapeutic agent for FD. Understanding its mechanism of action may reveal the mechanism underlying the FD disease.
Collapse
|
26
|
Singh N, Lorbeck MT, Zervos A, Zimmerman J, Elefant F. The histone acetyltransferase Elp3 plays in active role in the control of synaptic bouton expansion and sleep in Drosophila. J Neurochem 2010; 115:493-504. [PMID: 20626565 DOI: 10.1111/j.1471-4159.2010.06892.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The histone acetyltransferase Elp3 (Elongator Protein 3) is the catalytic subunit of the highly conserved Elongator complex. Elp3 is essential for the complex functions of Elongator in both the nucleus and cytoplasm of neurons, including the epigenetic control of neuronal motility genes and the acetylation of α-tubulin that affects axonal branching and cortical neuron migration. Accordingly, misregulation of Elp3 has been implicated in human disorders that specifically affect neuronal function, including familial dysautonomia, a disease characterized by degeneration of the sensory and autonomic nervous system, and the motor neuron degenerative disorder amyotrophic lateral sclerosis. These studies underscore the importance of Elp3 in neurodevelopment and disease, and the need to further characterize the multiple nuclear and cytoplasmic based roles of ELP3 required for neurogenesis in animal models, in vivo. In this report, we investigate the behavioral and morphological consequences that result from targeted reduction of ELP3 specifically in the developing Drosophila nervous system. We demonstrate that loss of Elp3 during neurodevelopment leads to a hyperactive phenotype and sleep loss in the adult flies, a significant expansion in synaptic bouton number and axonal length and branching in the larval neuromuscular junction as well as the misregulation of certain genes known to be involved in these processes. Our results uncover a novel role for Elp3 in the regulation of synaptic bouton expansion during neurogenesis that may be linked with a requirement for sleep.
Collapse
Affiliation(s)
- Neetu Singh
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
27
|
Sheftel A, Stehling O, Lill R. Iron-sulfur proteins in health and disease. Trends Endocrinol Metab 2010; 21:302-14. [PMID: 20060739 DOI: 10.1016/j.tem.2009.12.006] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 12/11/2009] [Accepted: 12/15/2009] [Indexed: 11/29/2022]
Abstract
Iron-sulfur (Fe/S) proteins are a class of ubiquitous components that assist in vital and diverse biochemical tasks in virtually every living cell. These tasks include respiration, iron homeostasis and gene expression. The past decade has led to the discovery of novel Fe/S proteins and insights into how their Fe/S cofactors are formed and incorporated into apoproteins. This review summarizes our current knowledge of mammalian Fe/S proteins, diseases related to deficiencies in these proteins and on disorders stemming from their defective biogenesis. Understanding both the physiological functions of Fe/S proteins and how Fe/S clusters are formed will undoubtedly enhance our ability to identify and treat known disorders of Fe/S cluster biogenesis and to recognize hitherto undescribed Fe/S cluster-related diseases.
Collapse
Affiliation(s)
- Alex Sheftel
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, D-35033 Marburg, Germany
| | | | | |
Collapse
|
28
|
Tang CS, Sribudiani Y, Miao XP, de Vries AR, Burzynski G, So MT, Leon YY, Yip BH, Osinga J, Hui KJWS, Verheij JBGM, Cherny SS, Tam PKH, Sham PC, Hofstra RMW, Garcia-Barceló MM. Fine mapping of the 9q31 Hirschsprung's disease locus. Hum Genet 2010; 127:675-83. [PMID: 20361209 PMCID: PMC2871095 DOI: 10.1007/s00439-010-0813-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 03/17/2010] [Indexed: 12/18/2022]
Abstract
Hirschsprung’s disease (HSCR) is a congenital disorder characterised by the absence of ganglia along variable lengths of the intestine. The RET gene is the major HSCR gene. Reduced penetrance of RET mutations and phenotypic variability suggest the involvement of additional modifying genes in the disease. A RET-dependent modifier locus was mapped to 9q31 in families bearing no coding sequence (CDS) RET mutations. Yet, the 9q31 causative locus is to be identified. To fine-map the 9q31 region, we genotyped 301 tag-SNPs spanning 7 Mb on 137 HSCR Dutch trios. This revealed two HSCR-associated regions that were further investigated in 173 Chinese HSCR patients and 436 controls using the genotype data obtained from a genome-wide association study recently conducted. Within one of the two identified regions SVEP1 SNPs were found associated with Dutch HSCR patients in the absence of RET mutations. This ratifies the reported linkage to the 9q31 region in HSCR families with no RET CDS mutations. However, this finding could not be replicated. In Chinese, HSCR was found associated with IKBKAP. In contrast, this association was stronger in patients carrying RET CDS mutations with p = 5.10 × 10−6 [OR = 3.32 (1.99, 5.59)] after replication. The HSCR-association found for IKBKAP in Chinese suggests population specificity and implies that RET mutation carriers may have an additional risk. Our finding is supported by the role of IKBKAP in the development of the nervous system.
Collapse
Affiliation(s)
- C S Tang
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Solinger JA, Paolinelli R, Klöß H, Scorza FB, Marchesi S, Sauder U, Mitsushima D, Capuani F, Stürzenbaum SR, Cassata G. The Caenorhabditis elegans Elongator complex regulates neuronal alpha-tubulin acetylation. PLoS Genet 2010; 6:e1000820. [PMID: 20107598 PMCID: PMC2809763 DOI: 10.1371/journal.pgen.1000820] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 12/18/2009] [Indexed: 12/18/2022] Open
Abstract
Although acetylated alpha-tubulin is known to be a marker of stable microtubules in neurons, precise factors that regulate alpha-tubulin acetylation are, to date, largely unknown. Therefore, a genetic screen was employed in the nematode Caenorhabditis elegans that identified the Elongator complex as a possible regulator of alpha-tubulin acetylation. Detailed characterization of mutant animals revealed that the acetyltransferase activity of the Elongator is indeed required for correct acetylation of microtubules and for neuronal development. Moreover, the velocity of vesicles on microtubules was affected by mutations in Elongator. Elongator mutants also displayed defects in neurotransmitter levels. Furthermore, acetylation of alpha-tubulin was shown to act as a novel signal for the fine-tuning of microtubules dynamics by modulating alpha-tubulin turnover, which in turn affected neuronal shape. Given that mutations in the acetyltransferase subunit of the Elongator (Elp3) and in a scaffold subunit (Elp1) have previously been linked to human neurodegenerative diseases, namely Amyotrophic Lateral Sclerosis and Familial Dysautonomia respectively highlights the importance of this work and offers new insights to understand their etiology.
Collapse
Affiliation(s)
- Jachen A. Solinger
- C. elegans Genetics, IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Roberta Paolinelli
- C. elegans Genetics, IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Holger Klöß
- C. elegans Genetics, IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | | | - Stefano Marchesi
- C. elegans Genetics, IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Ursula Sauder
- Microscopy Center, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Dai Mitsushima
- Department of Physiology, Yokohama City University, Yokohama, Japan
| | | | - Stephen R. Stürzenbaum
- School of Biomedical and Health Sciences, Pharmaceutical Science Division, King's College London, London, United Kingdom
| | - Giuseppe Cassata
- C. elegans Genetics, IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
- * E-mail:
| |
Collapse
|
30
|
Nguyen L, Humbert S, Saudou F, Chariot A. Elongator - an emerging role in neurological disorders. Trends Mol Med 2009; 16:1-6. [PMID: 20036197 DOI: 10.1016/j.molmed.2009.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 11/04/2009] [Accepted: 11/17/2009] [Indexed: 10/20/2022]
Abstract
Neurological disorders are becoming a major public health issue in our aging society. An important objective is to understand the molecular events that underlie these diseases to prevent their onset and/or halt their progression. Acetylation of alpha-tubulin is a post-translational modification of microtubules that serves as a recognition signal for the anchoring of molecular motors and, as such, underlies the transport of various proteins or organelles in neurons. This process is affected in striatal and cortical neurons from Huntington's disease patients. Recent studies have shown that Elp3, the catalytic subunit of the Elongator complex, promotes the acetylation of alpha-tubulin in microtubules. Elongator complex activity is impaired in patients with familial dysautonomia. Based on converging experimental and clinical evidence, we propose that Elongator might be commonly targeted in different neurological disorders, and thus might represent a strong candidate for research and development efforts to design drug-based therapies.
Collapse
Affiliation(s)
- Laurent Nguyen
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research), University of Liège, C.H.U. Sart Tilman, Liège, Belgium.
| | | | | | | |
Collapse
|
31
|
Lötsch J, Geisslinger G, Tegeder I. Genetic modulation of the pharmacological treatment of pain. Pharmacol Ther 2009; 124:168-84. [DOI: 10.1016/j.pharmthera.2009.06.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 06/22/2009] [Indexed: 12/15/2022]
|
32
|
Mehlgarten C, Jablonowski D, Breunig KD, Stark MJR, Schaffrath R. Elongator function depends on antagonistic regulation by casein kinase Hrr25 and protein phosphatase Sit4. Mol Microbiol 2009; 73:869-81. [PMID: 19656297 DOI: 10.1111/j.1365-2958.2009.06811.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In yeast, the role for the Elongator complex in tRNA anticodon modification is affected by phosphorylation of Elongator subunit Elp1. Thus, hyperphosphorylation of Elp1 due to inactivation of protein phosphatase Sit4 correlates with Elongator-minus phenotypes including resistance towards zymocin, a tRNase cleaving anticodons of Elongator-dependent tRNAs. Here we show that zymocin resistance of casein kinase hrr25 mutants associates with hypophosphorylation of Elp1 and that nonsense suppression by the Elongator-dependent SUP4 tRNA is abolished in hrr25 or sit4 mutants. Thus changes that perturb the evenly balanced ratio between hyper- and hypophosphorylated Elp1 forms present in wild-type cells lead to Elongator inactivation. Antagonistic roles for Hrr25 and Sit4 in Elongator function are further supported by our data that Sit4 inactivation is capable of restoring both zymocin sensitivity and normal ratios between the two Elp1 forms in hrr25 mutants. Hrr25 binds to Elongator in a fashion dependent on Elongator partner Kti12. Like sit4 mutants, overexpression of Kti12 triggers Elp1 hyperphosphorylation. Intriguingly, this effect of Kti12 is blocked by hrr25 mutations, which also show enhanced binding of Kti12 to Elongator. Collectively, our data suggest that rather than directly targeting Elp1, the Hrr25 kinase indirectly affects Elp1 phosphorylation states through control of Sit4-dependent dephosphorylation of Elp1.
Collapse
Affiliation(s)
- Constance Mehlgarten
- Institut für Biologie, Genetik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
33
|
Erceg S, Ronaghi M, Stojković M. Human embryonic stem cell differentiation toward regional specific neural precursors. Stem Cells 2009; 27:78-87. [PMID: 18845761 PMCID: PMC2729673 DOI: 10.1634/stemcells.2008-0543] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human embryonic stem cells (hESCs) are self-renewing pluripotent cells that have the capacity to differentiate into a wide variety of cell types. This potentiality represents a promising source to overcome many human diseases by providing an unlimited supply of all cell types, including cells with neural characteristics. Therefore, this review summarizes early neural development and the potential of hESCs to differentiate under in vitro conditions, examining at the same time the potential use of differentiated hESCs for therapeutic applications for neural tissue and cell regeneration.
Collapse
Affiliation(s)
- Slaven Erceg
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | |
Collapse
|
34
|
Tegeder I, Lötsch J. Current evidence for a modulation of low back pain by human genetic variants. J Cell Mol Med 2009; 13:1605-1619. [PMID: 19228264 DOI: 10.1111/j.1582-4934.2009.00703.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The manifestation of chronic back pain depends on structural, psychosocial, occupational and genetic influences. Heritability estimates for back pain range from 30% to 45%. Genetic influences are caused by genes affecting intervertebral disc degeneration or the immune response and genes involved in pain perception, signalling and psychological processing. This inter-individual variability which is partly due to genetic differences would require an individualized pain management to prevent the transition from acute to chronic back pain or improve the outcome. The genetic profile may help to define patients at high risk for chronic pain. We summarize genetic factors that (i) impact on intervertebral disc stability, namely Collagen IX, COL9A3, COL11A1, COL11A2, COL1A1, aggrecan (AGAN), cartilage intermediate layer protein, vitamin D receptor, metalloproteinsase-3 (MMP3), MMP9, and thrombospondin-2, (ii) modify inflammation, namely interleukin-1 (IL-1) locus genes and IL-6 and (iii) and pain signalling namely guanine triphosphate (GTP) cyclohydrolase 1, catechol-O-methyltransferase, mu opioid receptor (OPMR1), melanocortin 1 receptor (MC1R), transient receptor potential channel A1 and fatty acid amide hydrolase and analgesic drug metabolism (cytochrome P450 [CYP]2D6, CYP2C9).
Collapse
Affiliation(s)
- Irmgard Tegeder
- pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt am Main, Theodor-Stern-Kai, Frankfurt am Main, Germany
| | - Jörn Lötsch
- pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt am Main, Theodor-Stern-Kai, Frankfurt am Main, Germany
| |
Collapse
|
35
|
Creppe C, Malinouskaya L, Volvert ML, Gillard M, Close P, Malaise O, Laguesse S, Cornez I, Rahmouni S, Ormenese S, Belachew S, Malgrange B, Chapelle JP, Siebenlist U, Moonen G, Chariot A, Nguyen L. Elongator Controls the Migration and Differentiation of Cortical Neurons through Acetylation of α-Tubulin. Cell 2009; 136:551-64. [DOI: 10.1016/j.cell.2008.11.043] [Citation(s) in RCA: 382] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 09/12/2008] [Accepted: 11/25/2008] [Indexed: 12/18/2022]
|
36
|
Loss of mouse Ikbkap, a subunit of elongator, leads to transcriptional deficits and embryonic lethality that can be rescued by human IKBKAP. Mol Cell Biol 2008; 29:736-44. [PMID: 19015235 DOI: 10.1128/mcb.01313-08] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Familial dysautonomia (FD), a devastating hereditary sensory and autonomic neuropathy, results from an intronic mutation in the IKBKAP gene that disrupts normal mRNA splicing and leads to tissue-specific reduction of IKBKAP protein (IKAP) in the nervous system. To better understand the roles of IKAP in vivo, an Ikbkap knockout mouse model was created. Results from our study show that ablating Ikbkap leads to embryonic lethality, with no homozygous Ikbkap knockout (Ikbkap(-)(/)(-)) embryos surviving beyond 12.5 days postcoitum. Morphological analyses of the Ikbkap(-)(/)(-) conceptus at different stages revealed abnormalities in both the visceral yolk sac and the embryo, including stunted extraembryonic blood vessel formation, delayed entry into midgastrulation, disoriented dorsal primitive neural alignment, and failure to establish the embryonic vascular system. Further, we demonstrate downregulation of several genes that are important for neurulation and vascular development in the Ikbkap(-)(/)(-) embryos and show that this correlates with a defect in transcriptional elongation-coupled histone acetylation. Finally, we show that the embryonic lethality resulting from Ikbkap ablation can be rescued by a human IKBKAP transgene. For the first time, we demonstrate that IKAP is crucial for both vascular and neural development during embryogenesis and that protein function is conserved between mouse and human.
Collapse
|
37
|
|
38
|
Pomp O, Brokhman I, Ziegler L, Almog M, Korngreen A, Tavian M, Goldstein RS. PA6-induced human embryonic stem cell-derived neurospheres: a new source of human peripheral sensory neurons and neural crest cells. Brain Res 2008; 1230:50-60. [PMID: 18671952 DOI: 10.1016/j.brainres.2008.07.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 07/01/2008] [Accepted: 07/04/2008] [Indexed: 11/19/2022]
Abstract
Human embryonic stem cells (hESC) have been directed to differentiate into CNS cells with clinical importance. However, for study of development and regeneration of the human PNS, and peripheral neuropathies, it would be useful to have a source of human PNS derivatives. We have demonstrated that peripheral sensory neuron-like cells (PSN) can also be derived from hESC via neural crest-like (NC) intermediates, and from neural progenitors induced from hESC using noggin. Here we report the generation of higher purity PSN from passagable neurospheres (NSP) induced by murine PA6 stromal cells. hESC were cultured with PA6, and colonies that developed a specific morphology were cut from the plates. Culture of these colonies under non-adhesive conditions yielded NSPs. Several NC marker genes were expressed in the NSP, and these were also detected in 3-5week gestation human embryos containing migrating NC. These NSPs passaged for 2-8weeks and re-plated on PA6 gave rise to many Brn3a+/peripherin+ cells, characteristic of early sensory-like neurons. Re-culturing PA6-induced NSP cells with PA6 resulted in about 25% of the human cells in the co-cultures differentiating to PSN after 1week, compared to only about 10% PSN obtained after 3 weeks when noggin-induced NSP were used. Two month adherent cultures of PA6-induced NSP cells contained neurons expressing several PSN neuropeptides, and voltage-dependent currents and action potentials were obtained from a molecularly identified PSN. hESC-derived PA6-induced NSP cells are therefore an excellent potential source of human PSN for study of differentiation and modeling of PNS disease.
Collapse
Affiliation(s)
- Oz Pomp
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat-Gan, Israel
| | | | | | | | | | | | | |
Collapse
|
39
|
Deregulated expression of pro-survival and pro-apoptotic p53-dependent genes upon Elongator deficiency in colon cancer cells. Biochem Pharmacol 2008; 75:2122-34. [PMID: 18430410 DOI: 10.1016/j.bcp.2008.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/06/2008] [Accepted: 03/07/2008] [Indexed: 10/22/2022]
Abstract
Elongator, a multi-subunit complex assembled by the IkappaB kinase-associated protein (IKAP)/hELP1 scaffold protein is involved in transcriptional elongation in the nucleus as well as in tRNA modifications in the cytoplasm. However, the biological processes regulated by Elongator in human cells only start to be elucidated. Here we demonstrate that IKAP/hELP1 depleted colon cancer-derived cells show enhanced basal expression of some but not all pro-apoptotic p53-dependent genes such as BAX. Moreover, Elongator deficiency causes increased basal and daunomycin-induced expression of the pro-survival serum- and glucocorticoid-induced protein kinase (SGK) gene through a p53-dependent pathway. Thus, our data collectively demonstrate that Elongator deficiency triggers the activation of p53-dependent genes harbouring opposite functions with respect to apoptosis.
Collapse
|
40
|
Technical standards and guidelines for reproductive screening in the Ashkenazi Jewish population. Genet Med 2008; 10:57-72. [PMID: 18197058 DOI: 10.1097/gim.0b013e31815f6eac] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
DISCLAIMER These Technical Standards and Guidelines were developed primarily as an educational resource for clinical laboratory geneticists to help them provide quality clinical laboratory genetic services. Adherence to these standards and guidelines is voluntary and does not necessarily assure a successful medical outcome. These Standards and Guidelines should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, the clinical laboratory geneticist should apply his or her own professional judgment to the specific circumstances presented by the individual patient or specimen. Clinical laboratory geneticists are encouraged to document in the patient's record the rationale for the use of a particular procedure or test, whether or not it is in conformance with these Standards and Guidelines. They also are advised to take notice of the date any particular standard or guidelines was adopted, and to consider other relevant medical and scientific information that becomes available after that date.
Collapse
|
41
|
Falcone A, Nelissen H, Fleury D, Van Lijsebettens M, Bitonti MB. Cytological investigations of the Arabidopsis thaliana elo1 mutant give new insights into leaf lateral growth and Elongator function. ANNALS OF BOTANY 2007; 100:261-70. [PMID: 17565971 PMCID: PMC2735317 DOI: 10.1093/aob/mcm102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND AND AIMS Leaf growth is a complex developmental process controlled by genetic and environmental factors and is determined by a proliferation, expansion and maturation phase. Mutational analysis in Arabidopsis thaliana showed that leaf size and shape is dependent on cell division and cell expansion activity. An investigation was made at the cytophysiological and ultrastructural level of the elo1 mutant of Arabidopsis thaliana, which is defective in one of the components of the histone acetyl transferase Elongator complex and displays a distinct 'narrow leaves' phenotype, owing to a reduced cell number and no transition between petiole and lamina. Relative expression levels of three sucrose metabolism/transport-related genes were also investigated. The aim was to determine the physiological basis of leaf morphology in this mutant, by investigating the modulatory role of sucrose. METHODS The elo1 mutant was taken as representative of all the elo mutations and investigated at cytophysiological level. A germination test and growth assays were performed on seedlings grown for 21 d at different sucrose concentrations. Leaf morphometric and ultrastructural features were also investigated by image analysis and electron microscopy, respectively. Finally, a quantitative PCR (qPCR) analysis was performed with three sucrose metabolism/transport-related genes that were investigated under different sucrose concentrations. KEY RESULTS elo1 plants at high sucrose concentrations exhibited an enhancement of germination and inhibition of leaf growth as compared with wild-type plants. qPCR experiments with three sucrose metabolism/transport-related genes showed an interaction between sucrose availability and the elo1 mutation. Furthermore, electron microscopy analysis provided the first ultrastructural description of an elo mutant, which showed a hypotonic vacuole, alterations in the size of grana and starch grains in the chloroplasts, and the massive presence of Golgi vesicles in the cytoplasm. CONCLUSIONS Based on the results obtained it is proposed that mechanisms producing carbon assimilates or importing sucrose could be affected in elo1 plants and could account for the observed differences, implying a role for Elongator in the regulation of these processes.
Collapse
Affiliation(s)
- Andrea Falcone
- Università della Calabria, Dipartimento di Ecologia, Via ponte P. Bucci, Cubo 6B, I-87036, Arcavacata di Rende, CS, Italia.
| | | | | | | | | |
Collapse
|
42
|
Svejstrup JQ. Elongator complex: how many roles does it play? Curr Opin Cell Biol 2007; 19:331-6. [PMID: 17466506 DOI: 10.1016/j.ceb.2007.04.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 04/12/2007] [Indexed: 11/29/2022]
Abstract
The multi-subunit Elongator complex was first identified by its association with an RNA polymerase II holoenzyme engaged in transcriptional elongation, and subsequent data have provided further evidence that the complex is involved in histone acetylation and transcription. However, most Elongator is cytoplasmic, and recent data has indicated a role in processes as diverse as exocytosis and tRNA modification. One of the subunits of Elongator is encoded by a gene that is mutated in patients suffering from the severe neurodevelopmental disorder familial dysautonomia.
Collapse
Affiliation(s)
- Jesper Q Svejstrup
- Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, EN6 3LD, UK.
| |
Collapse
|
43
|
Chen Z, Zhang H, Jablonowski D, Zhou X, Ren X, Hong X, Schaffrath R, Zhu JK, Gong Z. Mutations in ABO1/ELO2, a subunit of holo-Elongator, increase abscisic acid sensitivity and drought tolerance in Arabidopsis thaliana. Mol Cell Biol 2006; 26:6902-12. [PMID: 16943431 PMCID: PMC1592858 DOI: 10.1128/mcb.00433-06] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phytohormone abscisic acid (ABA) plays an important role in modulating plant growth, development, and stress responses. In a genetic screen for mutants with altered drought stress responses, we identified an ABA-overly sensitive mutant, the abo1 mutant, which showed a drought-resistant phenotype. The abo1 mutation enhances ABA-induced stomatal closing and increases ABA sensitivity in inhibiting seedling growth. abo1 mutants are more resistant to oxidative stress than the wild type and show reduced levels of transcripts of several stress- or ABA-responsive genes. Interestingly, the mutation also differentially modulates the development and growth of adjacent guard cells. Map-based cloning identified ABO1 as a new allele of ELO2, which encodes a homolog of Saccharomyces cerevisiae Iki3/Elp1/Tot1 and human IkappaB kinase-associated protein. Iki3/Elp1/Tot1 is the largest subunit of Elongator, a multifunctional complex with roles in transcription elongation, secretion, and tRNA modification. Ecotopic expression of plant ABO1/ELO2 in a tot1/elp1Delta yeast Elongator mutant complements resistance to zymocin, a yeast killer toxin complex, indicating that ABO1/ELO2 substitutes for the toxin-relevant function of yeast Elongator subunit Tot1/Elp1. Our results uncover crucial roles for ABO1/ELO2 in modulating ABA and drought responses in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Zhizhong Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Close P, Hawkes N, Cornez I, Creppe C, Lambert CA, Rogister B, Siebenlist U, Merville MP, Slaugenhaupt SA, Bours V, Svejstrup JQ, Chariot A. Transcription Impairment and Cell Migration Defects in Elongator-Depleted Cells: Implication for Familial Dysautonomia. Mol Cell 2006; 22:521-31. [PMID: 16713582 DOI: 10.1016/j.molcel.2006.04.017] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 03/06/2006] [Accepted: 04/18/2006] [Indexed: 02/07/2023]
Abstract
Mutations in IKBKAP, encoding a subunit of Elongator, cause familial dysautonomia (FD), a severe neurodevelopmental disease with complex clinical characteristics. Elongator was previously linked not only with transcriptional elongation and histone acetylation but also with other cellular processes. Here, we used RNA interference (RNAi) and fibroblasts from FD patients to identify Elongator target genes and study the role of Elongator in transcription. Strikingly, whereas Elongator is recruited to both target and nontarget genes, only target genes display histone H3 hypoacetylation and progressively lower RNAPII density through the coding region in FD cells. Interestingly, several target genes encode proteins implicated in cell motility. Indeed, characterization of IKAP/hELP1 RNAi cells, FD fibroblasts, and neuronal cell-derived cells uncovered defects in this cellular function upon Elongator depletion. These results indicate that defects in Elongator function affect transcriptional elongation of several genes and that the ensuing cell motility deficiencies may underlie the neuropathology of FD patients.
Collapse
Affiliation(s)
- Pierre Close
- Laboratory of Medical Chemistry and Human Genetics, Center for Biomedical Integrative Genoproteomics, University of Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Brennwald P. A new function for the Elongator complex: polarization of Rab activity? Dev Cell 2005; 8:454-6. [PMID: 15809026 DOI: 10.1016/j.devcel.2005.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Elongator complex was first identified through association with hyperphosphorylated forms of RNA polymerase II and was thought to have a role in transcriptional elongation in yeast. In this issue of Molecular Cell, Rahl et al. suggest a novel function for this complex: regulating polarized cell-surface transport. Defects in the human form of this complex result in a neurodegenerative disease, familial dysautomia (FD), suggesting that a deficiency in neuronal polarized trafficking is the underlying cause of FD.
Collapse
Affiliation(s)
- Patrick Brennwald
- Department of Cell & Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, USA
| |
Collapse
|
46
|
Nelissen H, Fleury D, Bruno L, Robles P, De Veylder L, Traas J, Micol JL, Van Montagu M, Inzé D, Van Lijsebettens M. The elongata mutants identify a functional Elongator complex in plants with a role in cell proliferation during organ growth. Proc Natl Acad Sci U S A 2005; 102:7754-9. [PMID: 15894610 PMCID: PMC1140448 DOI: 10.1073/pnas.0502600102] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The key enzyme for transcription of protein-encoding genes in eukaryotes is RNA polymerase II (RNAPII). The recruitment of this enzyme during transcription initiation and its passage along the template during transcription elongation is regulated through the association and dissociation of several complexes. Elongator is a histone acetyl transferase complex, consisting of six subunits (ELP1-ELP6), that copurifies with the elongating RNAPII in yeast and humans. We demonstrate that point mutations in three Arabidopsis thaliana genes, encoding homologs of the yeast Elongator subunits ELP1, ELP3 (histone acetyl transferase), and ELP4 are responsible for the phenotypes of the elongata2 (elo2), elo3, and elo1 mutants, respectively. The elo mutants are characterized by narrow leaves and reduced root growth that results from a decreased cell division rate. Morphological and molecular phenotypes show that the ELONGATA (ELO) genes function in the same biological process and the epistatic interactions between the ELO genes can be explained by the model of complex formation in yeast. Furthermore, the plant Elongator complex is genetically positioned in the process of RNAPII-mediated transcription downstream of Mediator. Our data indicate that the Elongator complex is evolutionarily conserved in structure and function but reveal that the mechanism by which it stimulates cell proliferation is different in yeast and plants.
Collapse
Affiliation(s)
- Hilde Nelissen
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pomp O, Brokhman I, Ben-Dor I, Reubinoff B, Goldstein RS. Generation of peripheral sensory and sympathetic neurons and neural crest cells from human embryonic stem cells. Stem Cells 2005; 23:923-30. [PMID: 15883233 DOI: 10.1634/stemcells.2005-0038] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human embryonic stem cells (hESCs) have been directed to differentiate into neuronal cells using many cell-culture techniques. Central nervous system cells with clinical importance have been produced from hESCs. To date, however, there have been no definitive reports of generation of peripheral neurons from hESCs. We used a modification of the method of Sasai and colleagues for mouse and primate embryonic stem cells to elicit neuronal differentiation from hESCs. When hESCs are cocultured with the mouse stromal line PA6 for 3 weeks, neurons are induced that coexpress (a) peripherin and Brn3a, and (b) peripherin and tyrosine hydroxylase, combinations characteristic of peripheral sensory and sympathetic neurons, respectively. In vivo, peripheral sensory and sympathetic neurons develop from the neural crest (NC). Analysis of expression of mRNAs identified in other species as NC markers reveals that the PA6 cells induce NC-like cells before neuronal differentiation takes place. Several NC markers, including SNAIL, dHAND, and Sox9, are increased at 1 week of coculture relative to naive cells. Furthermore, the expression of several NC marker genes known to be downregulated upon in vivo differentiation of NC derivatives, was observed to be present at lower levels at 3 weeks of PA6-hESC coculture than at 1 week. Our report is the first on the expression of molecular markers of NC-like cells in primates, in general, and in humans, specifically. Our results suggest that this system can be used for studying molecular and cellular events in the almost inaccessible human NC, as well as for producing normal human peripheral neurons for developing therapies for diseases such as familial dysautonomia.
Collapse
Affiliation(s)
- Oz Pomp
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | |
Collapse
|
48
|
Bösenberg A. Anaesthesia and familial dysautonomia with congenital insensitivity to pain. SOUTHERN AFRICAN JOURNAL OF ANAESTHESIA AND ANALGESIA 2005. [DOI: 10.1080/22201173.2005.10872400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Rahl PB, Chen CZ, Collins RN. Elp1p, the yeast homolog of the FD disease syndrome protein, negatively regulates exocytosis independently of transcriptional elongation. Mol Cell 2005; 17:841-53. [PMID: 15780940 DOI: 10.1016/j.molcel.2005.02.018] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 02/02/2005] [Accepted: 02/14/2005] [Indexed: 11/23/2022]
Abstract
The activation of Rab GTPases is a critical focal point of membrane trafficking events in eukaryotic cells; however, the cellular mechanisms that spatially and temporally regulate this process are poorly understood. Here, we identify a null allele of ELP1 as a suppressor of a mutant in a Rab guanine nucleotide exchange factor Sec2p. Elp1p was previously thought to be involved in transcription elongation as part of the Elongator complex. We show that elp1Delta suppression of sec2(ts) is not a result of reduced transcriptional elongation and that Elp1p physically associates with Sec2p. The Sec2p interaction domain of Elp1p is necessary for both Elp1p function and for the polarized localization of Sec2p. Mutations in human Elp1p (IKAP) are a known cause of familial dysautonomia (FD). Our results raise the possibility that regulation of polarized exocytosis is an evolutionarily conserved function of the entire Elongator complex and that FD results from a dysregulation of neuronal exocytosis.
Collapse
Affiliation(s)
- Peter B Rahl
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
50
|
Kamboj MK, Axelrod FB, David R, Geffner ME, Novogroder M, Oberfield SE, Turco JH, Maayan C, Kohn B. Growth hormone treatment in children with familial dysautonomia. J Pediatr 2004; 144:63-7. [PMID: 14722520 DOI: 10.1016/j.jpeds.2003.10.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To assess experience with growth hormone (GH) therapy in patients with familial dysautonomia (FD). Study design Of 580 patients with FD registered at the Dysautonomia Center at New York University Medical Center, 13 patients (8 males, 5 females) aged 1.10 to 15.10 years received GH treatment. GH doses ranged from 0.2 to 0.3 mg/kg/wk; one patient received 0.14 mg/kg/wk. Information regarding auxologic data, skeletal age, pubertal status, and spinal deformity before and after GH therapy was obtained from center records and treating endocrinologists. Growth velocity was analyzed before and during GH treatment at 0 to 6 months, 6 to 12 months, 1 to 2 years, and >2 years. RESULTS Before GH therapy, growth velocity was <5 cm/y in 10 patients and 5 to 6 cm/y in three patients. In the first six months of GH therapy, growth velocity exceeded pretreatment rates in all but one patient; 10 patients achieved an annualized growth rate >7 cm/y. Six of nine patients treated for more than one year grew >5 cm/y. Less than optimal treatment responses were attributed to poor compliance, intercurrent illness, scoliosis, or advanced puberty. CONCLUSION The data demonstrate that GH treatment in patients with FD may increase growth velocity, at least in the short term. This experiential data supports a future prospective study.
Collapse
Affiliation(s)
- Manmohan K Kamboj
- Department of Pediatrics, New York University Medical Center, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|