1
|
Uslupehlivan M, Deveci R. Glycosylation analysis of transcription factor TFIIB using bioinformatics and experimental methods. J Biomol Struct Dyn 2024:1-11. [PMID: 39601751 DOI: 10.1080/07391102.2024.2434031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/06/2024] [Indexed: 11/29/2024]
Abstract
Transcription is a fundamental process involving the interaction of RNA polymerase II and related transcription factors. TFIIB is a transcription factor that plays a significant role in the formation and stability of the preinitiation complex in a precise orientation, as well as in the control of initiation and pre-elongation steps. At the initiation step, TFIIB interacts with three structures: the end of the TATA-binding protein, a GC-rich DNA sequence followed by the TATA box, and the C-terminal domain of RNA polymerase II. It is known that RNA polymerase II is a glycoprotein and contains O-GlcNAc sugar at the C-terminal domain during the initiation stage of transcription. However, it is unclear whether the transcription factors interacting with RNA polymerase II are glycoproteins or not. The study aims to determine the glycosylation (N- and/or O-linked glycosylations) of TFIIB by using bioinformatics in one invertebrate and seven vertebrate species and experimental methods in the sea urchin Paracentrotus lividus oocyte. Both bioinformatics and experimental analysis have shown that TFIIB is a glycoprotein. In addition, PNGase-F enzyme treatment, lectin blotting, and colloidal-gold conjugated lectin labeling results revealed that TFIIB contains O-linked GalNAc, mannose, GlcNAc, and α-2,3-linked sialic acid. Based on our results, we suggest that glycosylation modification may be involved in the transcription mechanism of the TFIIB protein.
Collapse
Affiliation(s)
- Muhammet Uslupehlivan
- Faculty of Science, Department of Biology, Molecular Biology Section, Ege University, Izmir, Türkiye
| | - Remziye Deveci
- Faculty of Science, Department of Biology, Molecular Biology Section, Ege University, Izmir, Türkiye
| |
Collapse
|
2
|
Jin Z, Song M, Wang J, Zhu W, Sun D, Liu H, Shi G. Integrative multiomics evaluation reveals the importance of pseudouridine synthases in hepatocellular carcinoma. Front Genet 2022; 13:944681. [PMID: 36437949 PMCID: PMC9686406 DOI: 10.3389/fgene.2022.944681] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/20/2022] [Indexed: 07/29/2023] Open
Abstract
Background: The pseudouridine synthases (PUSs) have been reported to be associated with cancers. However, their involvement in hepatocellular carcinoma (HCC) has not been well documented. Here, we assess the roles of PUSs in HCC. Methods: RNA sequencing data of TCGA-LIHC and LIRI-JP were downloaded from the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), respectively. GSE36376 gene expression microarray was downloaded from the Gene Expression Omnibus (GEO). Proteomics data for an HBV-related HCC cohort was obtained from the CPTAC Data Portal. The RT-qPCR assay was performed to measure the relative mRNA expression of genes in clinical tissues and cell lines. Diagnostic efficiency was evaluated by the ROC curve. Prognostic value was assessed using the Kaplan-Meier curve, Cox regression model, and time-dependent ROC curve. Copy number variation (CNV) was analyzed using the GSCA database. Functional analysis was carried out with GSEA, GSVA, and clusterProfiler package. The tumor microenvironment (TME) related analysis was performed using ssGSEA and the ESTIMATE algorithm. Results: We identified 7 PUSs that were significantly upregulated in HCC, and 5 of them (DKC1, PUS1, PUS7, PUSL1, and RPUSD3) were independent risk factors for patients' OS. Meanwhile, the protein expression of DKC1, PUS1, and PUS7 was also upregulated and related to poor survival. Both mRNA and protein of these PUSs were highly diagnostic of HCC. Moreover, the CNV of PUS1, PUS7, PUS7L, and RPUSD2 was also associated with prognosis. Further functional analysis revealed that PUSs were mainly involved in pathways such as genetic information processing, substance metabolism, cell cycle, and immune regulation. Conclusion: PUSs may play crucial roles in HCC and could be used as potential biomarkers for the diagnosis and prognosis of patients.
Collapse
Affiliation(s)
- Zhipeng Jin
- Graduate School of Dalian Medical University, Dalian, China; Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Mengying Song
- Department of Operation Room, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Jianping Wang
- Graduate School of Dalian Medical University, Dalian, China; Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Wenjing Zhu
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao, China
| | - Dongxu Sun
- Graduate School of Dalian Medical University, Dalian, China; Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Huayuan Liu
- Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Guangjun Shi
- Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
3
|
An RNA Polymerase III General Transcription Factor Engages in Cell Type-Specific Chromatin Looping. Int J Mol Sci 2022; 23:ijms23042260. [PMID: 35216376 PMCID: PMC8878802 DOI: 10.3390/ijms23042260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 12/10/2022] Open
Abstract
Transcription factors (TFs) bind DNA in a sequence-specific manner and are generally cell type-specific factors and/or developmental master regulators. In contrast, general TFs (GTFs) are part of very large protein complexes and serve for RNA polymerases’ recruitment to promoter sequences, generally in a cell type-independent manner. Whereas, several TFs have been proven to serve as anchors for the 3D genome organization, the role of GTFs in genome architecture have not been carefully explored. Here, we used ChIP-seq and Hi-C data to depict the role of TFIIIC, one of the RNA polymerase III GTFs, in 3D genome organization. We find that TFIIIC genome occupancy mainly occurs at specific regions, which largely correspond to Alu elements; other characteristic classes of repetitive elements (REs) such as MIR, FLAM-C and ALR/alpha are also found depending on the cell’s developmental origin. The analysis also shows that TFIIIC-enriched regions are involved in cell type-specific DNA looping, which does not depend on colocalization with the master architectural protein CTCF. This work extends previous knowledge on the role of TFIIIC as a bona fide genome organizer whose action participates in cell type-dependent 3D genome looping via binding to REs.
Collapse
|
4
|
Chen J, Luo Y, Cao J, Xie L. Fluoride exposure changed the expression of microRNAs in gills of male zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 233:105789. [PMID: 33667915 DOI: 10.1016/j.aquatox.2021.105789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Fluoride has been found to cause detrimental effects on fish gills. Despite essential roles in various metabolism activities, whether and how miRNAs participate in the course of toxicity caused by fluoride in gills is still unclear. In this study, male zebrafish were exposed to 0, 20, 40 mg/L fluoride for 60 days to study the underlying osmotic regulatory mechanism by determining the influences of fluoride on the miRNAs and regulated genes in gills. mRNAs were isolated from the gills and the expression profiles were analyzed by using Illumina Hiseq 2500 platforms. Expressions of 7 differentially miRNAs and some related-genes in gills were validated by qRT-PCR. The results showed that miRNAs expressions were notably altered by fluoride. A total of 584 and 327 miRNAs were remarkably changed after 20 and 40 mg/L fluoride exposure, of which 322 were increased and 262 were decreased in 20 mg/L fluoride group, whereas 219 were elevated and 108 were reduced in 40 mg/L fluoride group. The differentially expressive miRNAs confirmed by qRT-PCR were consistent with micro-assay data. Cluster of Orthologous Groups of proteins (COG) function classification showed that the target genes of differentially expressive miRNAs are mainly related to signal transduction mechanisms, replication, transcription, inorganic ion transport and metabolism, repair and recombination, and energy formation and transformation. In addition, fluoride disturbed the expressions of target genes involved in the osmoregulation of the gill in the fluoride-exposed zebrafish, such as the increased expressions of OSTF1 and the decreased expressions of Na+-K+-ATPase, CFTR, and AQP-3, which provides a possibility that miRNAs regulation induced by fluoride has an effects on osmotic regulation, providing new hints to the osmotic regulatory mechanism of the toxicity caused by fluoride in zebrafish, and distinguishes new biomarkers of miRNAs for fluoride toxicity.
Collapse
Affiliation(s)
- Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, Guangxi, 530021, China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Kirchner S, Reuter S, Westphal A, Mrowka R. Decipher the complexity of cis-regulatory regions by a modified Cas9. PLoS One 2020; 15:e0235530. [PMID: 32614871 PMCID: PMC7332081 DOI: 10.1371/journal.pone.0235530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/18/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Understanding complex mechanisms of human transcriptional regulation remains a major challenge. Classical reporter studies already enabled the discovery of cis-regulatory elements within the non-coding DNA; however, the influence of genomic context and potential interactions are still largely unknown. Using a modified Cas9 activation complex we explore the complexity of renin transcription in its native genomic context. METHODS With the help of genomic editing, we stably tagged the native renin on chromosome 1 with the firefly luciferase and stably integrated a programmable modified Cas9 based trans-activation complex (SAM-complex) by lentiviral transduction into human cells. By delivering five specific guide-RNA homologous to specific promoter regions of renin we were able to guide this SAM-complex to these regions of interest. We measured gene expression and generated and compared computational models. RESULTS SAM complexes induced activation of renin in our cells after renin specific guide-RNA had been provided. All possible combinations of the five guides were subjected to model analysis in linear models. Quantifying the prediction error and the calculation of an estimator of the relative quality of the statistical models for our given set of data revealed that a model incorporating interactions in the proximal promoter is the superior model for explanation of the data. CONCLUSION By applying our combined experimental and modelling approach we can show that interactions occur within the selected sequences of the proximal renin promoter region. This combined approach might potentially be useful to investigate other genomic regions. Our findings may help to better understand the transcriptional regulation of human renin.
Collapse
Affiliation(s)
- Steven Kirchner
- Experimental Nephrology Group, KIM III, Universitätsklinikum Jena, Jena, Germany
| | - Stefanie Reuter
- Experimental Nephrology Group, KIM III, Universitätsklinikum Jena, Jena, Germany
| | - Anika Westphal
- Experimental Nephrology Group, KIM III, Universitätsklinikum Jena, Jena, Germany
| | - Ralf Mrowka
- Experimental Nephrology Group, KIM III, Universitätsklinikum Jena, Jena, Germany
| |
Collapse
|
6
|
Wang F, Liu F, Chen W. Exposure to triclosan changes the expression of microRNA in male juvenile zebrafish (Danio rerio). CHEMOSPHERE 2019; 214:651-658. [PMID: 30292047 DOI: 10.1016/j.chemosphere.2018.09.163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 05/23/2023]
Abstract
Triclosan (TCS) is a broad-spectrum antibacterial agent which is widely used in various personal care products and cosmetics. It has been found that TCS affects endocrine, immune, nervous, reproductive, and developmental system. Although microRNAs (miRNAs) act a pivotal part in lots of metabolic activities, whether and how they are related to the process of TCS-induced toxicity is unknown. In the present study, TCS induced changes in miRNAs and target gene expression in male zebrafish (Danio rerio) brain, and the potential mechanism was studied. Male juvenile zebrafish were exposed to 0 and 68 μg/L TCS for 42 d. miRNA was isolated from the brain pool of the zebrafish and the expression profiles of 255 known zebrafish miRNAs were analysed by using Affymetrix miRNA 4.0 microarrays. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to assay the expression of 5 differentially expressed miRNAs in the microarray data and some related-genes in brains. The GO term analysis revealed that miRNAs significantly affected by TCS exposure were mainly involved in translation, transcription, DNA-templated, protein transport, and motor neuron axon guidance biological process. Pathway analysis showed that target genes of 5 differentially expressed miRNAs prominently participate in basal transcription factors, purine metabolism, and ribosome biogenesis in eukaryotes. In addition, key genes in purine metabolism pathway and oxidative stress related-genes were significantly changed. These findings offer novel insight into the mechanisms of epigenetic regulation in TCS-induced toxicity in male zebrafish, and distinguish novel miRNA biomarkers for exposure to TCS.
Collapse
Affiliation(s)
- Fan Wang
- School of Biological Science, Luoyang Normal University, Luoyang 471022, China; Cold Water Fish Breeding Engineering Technology Research Center of Henan Province, Luoyang 471022, China.
| | - Fei Liu
- School of Biological Science, Luoyang Normal University, Luoyang 471022, China; Cold Water Fish Breeding Engineering Technology Research Center of Henan Province, Luoyang 471022, China
| | - Wanguang Chen
- School of Biological Science, Luoyang Normal University, Luoyang 471022, China; Cold Water Fish Breeding Engineering Technology Research Center of Henan Province, Luoyang 471022, China
| |
Collapse
|
7
|
Huminiecki L. Modelling of the breadth of expression from promoter architectures identifies pro-housekeeping transcription factors. PLoS One 2018; 13:e0198961. [PMID: 29928029 PMCID: PMC6013173 DOI: 10.1371/journal.pone.0198961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/28/2018] [Indexed: 12/22/2022] Open
Abstract
Understanding how regulatory elements control mammalian gene expression is a challenge of post-genomic era. We previously reported that size of proximal promoter architecture predicted the breadth of expression (fraction of tissues in which a gene is expressed). Herein, the contributions of individual transcription factors (TFs) were quantified. Several technologies of statistical modelling were utilized and compared: tree models, generalized linear models (GLMs, without and with regularization), Bayesian GLMs and random forest. Both linear and non-linear modelling strategies were explored. Encouragingly, different models led to similar statistical conclusions and biological interpretations. The majority of ENCODE TFs correlated positively with housekeeping expression, a minority correlated negatively. Thus, housekeeping expression can be understood as a cumulative effect of many types of TF binding sites. This is accompanied by the exclusion of fewer types of binding sites for TFs which are repressors, or support cell lineage commitment or temporarily inducible or spatially-restricted expression.
Collapse
Affiliation(s)
- Lukasz Huminiecki
- Instytut Genetyki i Hodowli Zwierząt Polskiej Akademii Nauk, Jastrzębiec, Magdalenka, Poland
| |
Collapse
|
8
|
Wang M, Zhou Z, Wu J, Ji Z, Zhang J. Comparative transcriptome analysis reveals significant differences in gene expression between appressoria and hyphae in Colletotrichum gloeosporioides. Gene 2018; 670:63-69. [PMID: 29792948 DOI: 10.1016/j.gene.2018.05.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 12/30/2022]
Abstract
Fruit rot caused mainly by Colletotrichum gloeosporioides is a major cause of pre- and/or post-harvest diseases, which seriously constrains production, marketing, and export of fruits. To infect the host, this fungus evolves a specialized infection structure called the appressorium. Extensive past studies have characterized many appressorium-related genes in C. gloeosporioides, separately. However, a comprehensive understanding of the genes contributing to appressorium formation is far from complete. Here, global changes in gene expression were analyzed between appressoria and hyphae using RNA-Seq. We identified 4071 genes that are up-regulated in appressorium and discovered 468 unigenes that are expressed only in appressoria, compared with the fungal hyphae. Differentially expressed genes between appressoria and hyphae were assigned to 107 KEGG pathways, including metabolic pathways, secondary metabolite biosynthesis, molecular transport and signal transduction. Fourteen putative ABC transporter genes are significantly up-regulated in appressoria, and in contrast, twenty-six down-regulated. One hundred and one transcription factor genes show more than a 2-fold up-regulation in appressoria compared to hyphae. The up-regulation of 39 secreted protein candidates is observed, suggesting they may play important roles in initial infection processes. Our data demonstrate that appressorium development of C. gloeosporioides is accompanied by significant changes in gene expression, which provides novel insights to elucidate how this fungus regulates its development, pathogenicity and immune evasion.
Collapse
Affiliation(s)
- Meiyu Wang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, Liaoning, China
| | - Zongshan Zhou
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, Liaoning, China
| | - Jianyuan Wu
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, Liaoning, China
| | - Zhirui Ji
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Ministry of Agriculture, Xingcheng 125100, Liaoning, China
| | - Junxiang Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Ministry of Agriculture, Xingcheng 125100, Liaoning, China; Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, Liaoning, China.
| |
Collapse
|
9
|
Xu G, Yang S, Meng L, Wang BG. The plant hormone abscisic acid regulates the growth and metabolism of endophytic fungus Aspergillus nidulans. Sci Rep 2018; 8:6504. [PMID: 29695775 PMCID: PMC5916901 DOI: 10.1038/s41598-018-24770-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/10/2018] [Indexed: 01/14/2023] Open
Abstract
Plant hormones are well known chemical signals that regulate plant growth, development, and adaptation. However, after comparative transcriptome and metabolite analysis, we found that the plant hormone abscisic acid (ABA) also affect the growth and metabolism of endophytic fungus Aspergillus nidulans. There were 3148 up-regulated and 3160 down-regulated genes identified during 100 nM ABA induction. These differentially expressed genes (DEGs) were mainly involved in: RNA polymerase and basal transcription factors; ribosome biogenesis, protein processing, proteasome, and ubiquitin mediated proteolysis; nucleotide metabolism and tri-carboxylic acid (TCA) cycle; cell cycle and biosynthesis of secondary metabolites. Production of mycotoxins, which have insect-resistance or anti-pathogen activity, was also changed with ABA induction. This study provides the first global view of ABA induced transcription and metabolite changes in endophytic fungus, which might suggest a potential fungus-plant cross-talk via ABA.
Collapse
Affiliation(s)
- Gangming Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, People's Republic of China. .,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, People's Republic of China.
| | - Suiqun Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, People's Republic of China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Linghong Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, People's Republic of China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, People's Republic of China
| | - Bin-Gui Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, People's Republic of China. .,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
10
|
Schrenk C, Fetz V, Vallet C, Heiselmayer C, Schröder E, Hensel A, Hahlbrock A, Wünsch D, Goesswein D, Bier C, Habtemichael N, Schneider G, Stauber RH, Knauer SK. TFIIA transcriptional activity is controlled by a 'cleave-and-run' Exportin-1/Taspase 1-switch. J Mol Cell Biol 2018; 10:33-47. [PMID: 28992066 DOI: 10.1093/jmcb/mjx025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/09/2017] [Indexed: 12/24/2022] Open
Abstract
Transcription factor TFIIA is controlled by complex regulatory networks including proteolysis by the protease Taspase 1, though the full impact of cleavage remains elusive. Here, we demonstrate that in contrast to the general assumption, de novo produced TFIIA is rapidly confined to the cytoplasm via an evolutionary conserved nuclear export signal (NES, amino acids 21VINDVRDIFL30), interacting with the nuclear export receptor Exportin-1/chromosomal region maintenance 1 (Crm1). Chemical export inhibition or genetic inactivation of the NES not only promotes TFIIA's nuclear localization but also affects its transcriptional activity. Notably, Taspase 1 processing promotes TFIIA's nuclear accumulation by NES masking, and modulates its transcriptional activity. Moreover, TFIIA complex formation with the TATA box binding protein (TBP) is cooperatively enhanced by inhibition of proteolysis and nuclear export, leading to an increase of the cell cycle inhibitor p16INK, which is counteracted by prevention of TBP binding. We here identified a novel mechanism how proteolysis and nuclear transport cooperatively fine-tune transcriptional programs.
Collapse
Affiliation(s)
- Christian Schrenk
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Verena Fetz
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Cecilia Vallet
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Christina Heiselmayer
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Elisabeth Schröder
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Astrid Hensel
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Angelina Hahlbrock
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Désirée Wünsch
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Dorothee Goesswein
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Carolin Bier
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Negusse Habtemichael
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Günter Schneider
- University Hospital Klinikum rechts der Isar, II. Medizinische Klinik, Technical University München, 81675 Munich, Germany
| | - Roland H Stauber
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Shirley K Knauer
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
11
|
Cardiac Development and Transcription Factors: Insulin Signalling, Insulin Resistance, and Intrauterine Nutritional Programming of Cardiovascular Disease. J Nutr Metab 2018; 2018:8547976. [PMID: 29484207 PMCID: PMC5816854 DOI: 10.1155/2018/8547976] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/22/2017] [Accepted: 12/24/2017] [Indexed: 12/22/2022] Open
Abstract
Programming with an insult or stimulus during critical developmental life stages shapes metabolic disease through divergent mechanisms. Cardiovascular disease increasingly contributes to global morbidity and mortality, and the heart as an insulin-sensitive organ may become insulin resistant, which manifests as micro- and/or macrovascular complications due to diabetic complications. Cardiogenesis is a sequential process during which the heart develops into a mature organ and is regulated by several cardiac-specific transcription factors. Disrupted cardiac insulin signalling contributes to cardiac insulin resistance. Intrauterine under- or overnutrition alters offspring cardiac structure and function, notably cardiac hypertrophy, systolic and diastolic dysfunction, and hypertension that precede the onset of cardiovascular disease. Optimal intrauterine nutrition and oxygen saturation are required for normal cardiac development in offspring and the maintenance of their cardiovascular physiology.
Collapse
|
12
|
Gayali S, Acharya S, Lande NV, Pandey A, Chakraborty S, Chakraborty N. CicerTransDB 1.0: a resource for expression and functional study of chickpea transcription factors. BMC PLANT BIOLOGY 2016; 16:169. [PMID: 27472917 PMCID: PMC4966752 DOI: 10.1186/s12870-016-0860-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 05/17/2023]
Abstract
BACKGROUND Transcription factor (TF) databases are major resource for systematic studies of TFs in specific species as well as related family members. Even though there are several publicly available multi-species databases, the information on the amount and diversity of TFs within individual species is fragmented, especially for newly sequenced genomes of non-model species of agricultural significance. DESCRIPTION We constructed CicerTransDB (Cicer Transcription Factor Database), the first database of its kind, which would provide a centralized putatively complete list of TFs in a food legume, chickpea. CicerTransDB, available at www.cicertransdb.esy.es , is based on chickpea (Cicer arietinum L.) annotation v 1.0. The database is an outcome of genome-wide domain study and manual classification of TF families. This database not only provides information of the gene, but also gene ontology, domain and motif architecture. CONCLUSION CicerTransDB v 1.0 comprises information of 1124 genes of chickpea and enables the user to not only search, browse and download sequences but also retrieve sequence features. CicerTransDB also provides several single click interfaces, transconnecting to various other databases to ease further analysis. Several webAPI(s) integrated in the database allow end-users direct access of data. A critical comparison of CicerTransDB with PlantTFDB (Plant Transcription Factor Database) revealed 68 novel TFs in the chickpea genome, hitherto unexplored. Database URL: http://www.cicertransdb.esy.es.
Collapse
Affiliation(s)
- Saurabh Gayali
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Shankar Acharya
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Nilesh Vikram Lande
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Aarti Pandey
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
13
|
Su Y, Fu Y, Zhang H, Shi Z, Zhang J, Gao L. Identification and expression of SRF targeted by miR-133a during early development of Paralichthys olivaceus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1093-1104. [PMID: 26036211 DOI: 10.1007/s10695-015-0071-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 05/08/2015] [Indexed: 06/04/2023]
Abstract
Serum response factor (SRF) is a MADS-box transcription factor that regulates the expression of genes involved in development, metabolism, cell proliferation, and differentiation. In the present study, we cloned the full-length SRF cDNA which includes the coding region of 1503 bp, a 573-bp 5'untranslated region (UTR) and a 400-bp 3'-UTR. The deduced 501 amino acid sequence of the SRF protein contained a MADS domain and NLS at the N terminus, similar to other organisms, and it also is highly phylogenetically conserved. SRF mRNA is ubiquitously expressed in various tissues, with the highest level in the kidneys, and it is also highly expressed during the embryonic and metamorphic stages. During metamorphosis, the SRF mRNA levels are down-regulated by exogenous thyroid hormone (TH) at 17 dph and by thiourea (TU) at 29, 36, and 41 dph, whereas SRF mRNA levels were significantly up-regulated by the added exogenous TH to the TU-treated larvae at 41 dph, which indicates that thyroid hormone is essential for expression of SRF mRNA, so, higher levels of TH did not result in changes of SRF mRNA levels, while TH deficiency or inhibited by the non-specific TU toxicity cause down-regulation of SRF mRNA, which indicated that TH can indirectly affect the SRF mRNA levels. Meanwhile, using a luciferase reporter assay, we verified that SRF is a common target gene of miR-133a which is a muscle-specific microRNA (miRNA), which indicated that SRF may be involved in the signaling pathway of miRNA that regulates muscle development.
Collapse
Affiliation(s)
- Yanfang Su
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| | - Yuanshuai Fu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| | - Hongmei Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| | - Zhiyi Shi
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China.
| | - Junling Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| | - Lina Gao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| |
Collapse
|
14
|
Regulation of transcription factors on sexual dimorphism of fig wasps. Sci Rep 2015; 5:10696. [PMID: 26031454 PMCID: PMC4451555 DOI: 10.1038/srep10696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/27/2015] [Indexed: 11/08/2022] Open
Abstract
Fig wasps exhibit extreme intraspecific morphological divergence in the wings, compound eyes, antennae, body color, and size. Corresponding to this, behaviors and lifestyles between two sexes are also different: females can emerge from fig and fly to other fig tree to oviposit and pollinate, while males live inside fig for all their lifetime. Genetic regulation may drive these extreme intraspecific morphological and behavioral divergence. Transcription factors (TFs) involved in morphological development and physiological activity may exhibit sex-specific expressions. Herein, we detect 865 TFs by using genomic and transcriptomic data of the fig wasp Ceratosolen solmsi. Analyses of transcriptomic data indicated that up-regulated TFs in females show significant enrichment in development of the wing, eye and antenna in all stages, from larva to adult. Meanwhile, TFs related to the development of a variety of organs display sex-specific patterns of expression in the adults and these may contribute significantly to their sexual dimorphism. In addition, up-regulated TFs in adult males exhibit enrichment in genitalia development and circadian rhythm, which correspond with mating and protandry. This finding is consistent with their sex-specific behaviors. In conclusion, our results strongly indicate that TFs play important roles in the sexual dimorphism of fig wasps.
Collapse
|
15
|
Hieb AR, Gansen A, Böhm V, Langowski J. The conformational state of the nucleosome entry-exit site modulates TATA box-specific TBP binding. Nucleic Acids Res 2014; 42:7561-76. [PMID: 24829456 PMCID: PMC4081063 DOI: 10.1093/nar/gku423] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The TATA binding protein (TBP) is a critical transcription factor used for nucleating assembly of the RNA polymerase II machinery. TBP binds TATA box elements with high affinity and kinetic stability and in vivo is correlated with high levels of transcription activation. However, since most promoters use less stable TATA-less or TATA-like elements, while also competing with nucleosome occupancy, further mechanistic insight into TBP's DNA binding properties and ability to access chromatin is needed. Using bulk and single-molecule FRET, we find that TBP binds a minimal consensus TATA box as a two-state equilibrium process, showing no evidence for intermediate states. However, upon addition of flanking DNA sequence, we observe non-specific cooperative binding to multiple DNA sites that compete for TATA-box specificity. Thus, we conclude that TBP binding is defined by a branched pathway, wherein TBP initially binds with little sequence specificity and is thermodynamically positioned by its kinetic stability to the TATA box. Furthermore, we observed the real-time access of TBP binding to TATA box DNA located within the DNA entry–exit site of the nucleosome. From these data, we determined salt-dependent changes in the nucleosome conformation regulate TBP's access to the TATA box, where access is highly constrained under physiological conditions, but is alleviated by histone acetylation and TFIIA.
Collapse
Affiliation(s)
- Aaron R Hieb
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Alexander Gansen
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Vera Böhm
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Jörg Langowski
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| |
Collapse
|
16
|
Xiang Z, Qu F, Qi L, Zhang Y, Xiao S, Yu Z. A novel ortholog of serum response factor (SRF) with immune defense function identified in Crassostrea hongkongensis. FISH & SHELLFISH IMMUNOLOGY 2014; 36:75-82. [PMID: 24161761 DOI: 10.1016/j.fsi.2013.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 06/02/2023]
Abstract
Serum response factor (SRF) function is essential for transcriptional regulation of numerous growth-factor-inducible genes and triggers proliferation, differentiation and apoptosis of the cells. In this report, the first mollusk serum response factor like homolog gene (designated ChSRF) was identified and characterized from the Hong Kong oyster, Crassostrea hongkongensis. The full-length cDNA of ChSRF was 1716 bp in length and encodes a putative protein of 434 amino acids respectively, and shares the MADS domain at the N-terminal. ChSRF is ubiquitously expressed in various tissues, with the highest expression level observed in muscle. Temporal expression of ChSRF following microbe infection shows that the expression of ChSRF in hemocytes increases from 3 to 24 h post-challenge. As a target gene of SRF, β-actin demonstrates a similar gene expression mode in constitutive tissue and pathogen infection. Furthermore, some protein profiles of ChSRF was revealed, fluorescence microscopy results show that ChSRF located in the nuclei of HeLa cells and over-expression of ChSRF activated the transcriptional activities of MAPK signal pathway in HEK293T cells. These results indicate that ChSRF maybe play an important role in signal transduction in the immunity and development response of oysters. Furthermore, we found that ChSRF could regulate the expression of β-actin gene, which indicate that ChSRF is a muscle differentiation regulator in the oyster and it will help us to improve aquaculture production.
Collapse
Affiliation(s)
- Zhiming Xiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China.
| | - Fufa Qu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Lin Qi
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China
| | - Shu Xiao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China
| | - Ziniu Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China.
| |
Collapse
|
17
|
Kohli S, Ahuja S, Rani V. Transcription factors in heart: promising therapeutic targets in cardiac hypertrophy. Curr Cardiol Rev 2013; 7:262-71. [PMID: 22758628 PMCID: PMC3322445 DOI: 10.2174/157340311799960618] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 01/08/2012] [Accepted: 01/08/2011] [Indexed: 12/16/2022] Open
Abstract
Regulation of gene expression is central to cell growth, differentiation and diseases. Context specific and signal dependent regulation of gene expression is achieved to a large part by transcription factors. Cardiac transcription factors regulate heart development and are also involved in stress regulation of the adult heart, which may lead to cardiac hypertrophy. Hypertrophy of cardiac myocytes is an outcome of the imbalance between prohypertrophic factors and anti-hypertrophic factors. This is initially a compensatory mechanism but sustained hypertrophy may lead to heart failure. The growing knowledge of transcriptional control mechanisms is helpful in the development of novel therapies. This review summarizes the role of cardiac transcription factors in cardiac hypertrophy, emphasizing their potential as attractive therapeutic targets to prevent the onset of heart failure and sudden death as they can be converging targets for current therapy.
Collapse
Affiliation(s)
- Shrey Kohli
- Department of Biotechnology, Jaypee Institute of Information Technology University, NOIDA 210307, India
| | | | | |
Collapse
|
18
|
Shahzad K, Loor JJ. Application of Top-Down and Bottom-up Systems Approaches in Ruminant Physiology and Metabolism. Curr Genomics 2013; 13:379-94. [PMID: 23372424 PMCID: PMC3401895 DOI: 10.2174/138920212801619269] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 05/31/2012] [Accepted: 05/31/2012] [Indexed: 12/13/2022] Open
Abstract
Systems biology is a computational field that has been used for several years across different scientific areas of biological research to uncover the complex interactions occurring in living organisms. Applications of systems concepts at the mammalian genome level are quite challenging, and new complimentary computational/experimental techniques are being introduced. Most recent work applying modern systems biology techniques has been conducted on bacteria, yeast, mouse, and human genomes. However, these concepts and tools are equally applicable to other species including ruminants (e.g., livestock). In systems biology, both bottom-up and top-down approaches are central to assemble information from all levels of biological pathways that must coordinate physiological processes. A bottom-up approach encompasses draft reconstruction, manual curation, network reconstruction through mathematical methods, and validation of these models through literature analysis (i.e., bibliomics). Whereas top-down approach encompasses metabolic network reconstructions using ‘omics’ data (e.g., transcriptomics, proteomics) generated through DNA microarrays, RNA-Seq or other modern high-throughput genomic techniques using appropriate statistical and bioinformatics methodologies. In this review we focus on top-down approach as a means to improve our knowledge of underlying metabolic processes in ruminants in the context of nutrition. We also explore the usefulness of tissue specific reconstructions (e.g., liver and adipose tissue) in cattle as a means to enhance productive efficiency.
Collapse
Affiliation(s)
- Khuram Shahzad
- Department of Animal Sciences, University of Illinois, Urbana-Champaign, Urbana, Illinois, 61801, USA
| | | |
Collapse
|
19
|
Wiesler SC, Werner F, Weinzierl ROJ. Promoter independent abortive transcription assays unravel functional interactions between TFIIB and RNA polymerase. Methods Mol Biol 2013; 977:217-227. [PMID: 23436365 DOI: 10.1007/978-1-62703-284-1_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
TFIIB-like general transcription factors are required for transcription initiation by all eukaryotic and archaeal RNA polymerases (RNAPs). TFIIB facilitates both recruitment and post-recruitment steps of initiation; in particular, TFIIB stimulates abortive initiation. X-ray crystallography of TFIIB-RNAP II complexes shows that the TFIIB linker region penetrates the RNAP active center, yet the impact of this arrangement on RNAP activity and underlying mechanisms remains elusive. Promoter-independent abortive initiation assays exploit the intrinsic ability of RNAP enzymes to initiate transcription from nicked DNA templates and record the formation of the first phosphodiester bonds. These assays can be used to measure the effect of transcription factors such as TFIIB and RNAP mutations on abortive transcription.
Collapse
Affiliation(s)
- Simone C Wiesler
- Department of Life Sciences, Imperial College London, London, UK
| | | | | |
Collapse
|
20
|
Viswanathan R, Auble DT. One small step for Mot1; one giant leap for other Swi2/Snf2 enzymes? BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1809:488-96. [PMID: 21658482 PMCID: PMC3171519 DOI: 10.1016/j.bbagrm.2011.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/14/2011] [Accepted: 05/20/2011] [Indexed: 12/13/2022]
Abstract
The TATA-binding protein (TBP) is a major target for transcriptional regulation. Mot1, a Swi2/Snf2-related ATPase, dissociates TBP from DNA in an ATP dependent process. The experimental advantages of this relatively simple reaction have been exploited to learn more about how Swi2/Snf2 ATPases function biochemically. However, many unanswered questions remain and fundamental aspects of the Mot1 mechanism are still under debate. Here, we review the available data and integrate the results with structural and biochemical studies of related enzymes to derive a model for Mot1's catalytic action consistent with the broad literature on enzymes in this family. We propose that the Mot1 ATPase domain is tethered to TBP by a flexible, spring-like linker of alpha helical hairpins. The linker juxtaposes the ATPase domain such that it can engage duplex DNA on one side of the TBP-DNA complex. This allows the ATPase to employ short-range, nonprocessive ATP-driven DNA tracking to pull or push TBP off its DNA site. DNA translocation is a conserved property of ATPases in the broader enzyme family. As such, the model explains how a structurally and functionally conserved ATPase domain has been put to use in a very different context than other enzymes in the Swi2/Snf2 family. This article is part of a Special Issue entitled:Snf2/Swi2 ATPase structure and function.
Collapse
Affiliation(s)
- Ramya Viswanathan
- Department of Biochemistry and Molecular Genetics, Box 800733 Jordan Hall, University of Virginia Health System, Charlottesville, VA 22908
| | - David T. Auble
- Department of Biochemistry and Molecular Genetics, Box 800733 Jordan Hall, University of Virginia Health System, Charlottesville, VA 22908
| |
Collapse
|
21
|
Fang Z, Ge C, Zhang W, Lie P, Zeng L. A lateral flow biosensor for rapid detection of DNA-binding protein c-jun. Biosens Bioelectron 2011; 27:192-6. [DOI: 10.1016/j.bios.2011.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/13/2011] [Accepted: 06/13/2011] [Indexed: 12/27/2022]
|
22
|
Oqani RK, Kim HR, Diao YF, Park CS, Jin DI. The CDK9/cyclin T1 subunits of P-TEFb in mouse oocytes and preimplantation embryos: a possible role in embryonic genome activation. BMC DEVELOPMENTAL BIOLOGY 2011; 11:33. [PMID: 21639898 PMCID: PMC3127986 DOI: 10.1186/1471-213x-11-33] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 06/03/2011] [Indexed: 01/01/2023]
Abstract
Background Two stages of genome activation have been identified in the mouse embryo. Specifically, minor transcriptional activation is evident at the one-cell stage and a second major episode of activation occurs at the two-cell stage. Nuclear translocation of RNA polymerase II and phosphorylation of the C-terminal domain (CTD) of the largest enzyme subunit are major determinants of embryonic genome activation. P-TEFb, the Pol II CTD kinase, regulates transcriptional elongation via phosphorylation of the serine 2 residues of the CTD. Results Here, we show that the CDK9 and cyclin T1 subunits of P-TEFb are present in mouse oocytes and preimplantation embryos. Both proteins translocate to pronuclei at the late one-cell stage and are predominantly localized in nuclei at the two-cell stage. We additionally examine the effects of the CDK9-specific inhibitor, flavopiridol, on mouse preimplantation development. Our data show that treatment with the drug results in mislocalization of CDK9, cyclin T1, and phosphorylated Pol II, as well as developmental arrest at the two-cell stage. Conclusions A change in CDK9 localization from the cytoplasm to the pronucleus occurs at the time of minor embryonic genome activation, and CDK9 accumulation at the two-cell stage is evident, concomitant with major transcriptional activation of the embryonic genome. Moreover, CDK9 inhibition triggers a developmental block at the two-cell stage. Our findings clearly indicate that CDK9 is essential for embryonic genome activation in the mouse.
Collapse
Affiliation(s)
- Reza K Oqani
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, Korea
| | | | | | | | | |
Collapse
|
23
|
Abstract
Mediator, a conserved multiprotein complex in animals, plants, and fungi, is a cofactor of RNA Polymerase II (Pol II). It is known to promote basal Pol II-mediated transcription as well as bridge sequence-specific transcriptional regulators and Pol II to integrate regulatory information. Pol II transcribes not only protein-coding genes but also intergenic regions to generate noncoding RNAs such as small RNAs (microRNAs and small interfering RNAs) and long noncoding RNAs. Intriguingly, two plant-specific polymerases, Pol IV and Pol V, have evolved from Pol II and play a role in the production of small interfering RNAs and long noncoding RNAs at heterochromatic regions to maintain genome stability through transcriptional gene silencing (TGS). Recent studies have defined the composition of the plant Mediator and evaluated its role in noncoding RNA production in relationship to Pol II, Pol IV and Pol V. Here, we review the functions of Mediator and that of noncoding RNAs generated by Pol II, Pol IV and Pol V in plants, and discuss a role of Mediator in epigenetic regulation via noncoding RNA production.
Collapse
Affiliation(s)
- Yun Ju Kim
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| | | |
Collapse
|
24
|
Medvedeva YA, Kulakovskii IV, Oparina NY, Favorov AV, Makeev VY. The GC skew near Pol II start sites and its association with SP1-binding site variants. Biophysics (Nagoya-shi) 2010. [DOI: 10.1134/s0006350910060023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
25
|
Poorey K, Sprouse RO, Wells MN, Viswanathan R, Bekiranov S, Auble DT. RNA synthesis precision is regulated by preinitiation complex turnover. Genome Res 2010; 20:1679-88. [PMID: 20855454 DOI: 10.1101/gr.109504.110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
TATA-binding protein (TBP) nucleates the assembly of the transcription preinitiation complex (PIC), and although TBP can bind promoters with high stability in vitro, recent results establish that virtually the entire TBP population is highly dynamic in yeast nuclei in vivo. This dynamic behavior is surprising in light of models that posit that a stable TBP-containing scaffold facilitates transcription reinitiation at active promoters. The dynamic behavior of TBP is a consequence of the enzymatic activity of the essential Snf2/Swi2 ATPase Mot1, suggesting that ensuring a highly mobile TBP population is critical for transcriptional regulation on a global scale. Here high-resolution tiling arrays were used to define how perturbed TBP dynamics impact the precision of RNA synthesis in Saccharomyces cerevisiae. We find that Mot1 plays a broad role in establishing the precision and efficiency of RNA synthesis: In mot1-42 cells, RNA length changes were observed for 713 genes, about twice the number observed in set2Δ cells, which display a previously reported propensity for spurious initiation within open reading frames. Loss of Mot1 led to both aberrant transcription initiation and termination, with prematurely terminated transcripts representing the largest class of events. Genetic and genomic analyses support the conclusion that these effects on RNA length are mechanistically tied to dynamic TBP occupancies at certain types of promoters. These results suggest a new model whereby dynamic disassembly of the PIC can influence productive RNA synthesis.
Collapse
Affiliation(s)
- Kunal Poorey
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
26
|
Wang Z, Libault M, Joshi T, Valliyodan B, Nguyen HT, Xu D, Stacey G, Cheng J. SoyDB: a knowledge database of soybean transcription factors. BMC PLANT BIOLOGY 2010; 10:14. [PMID: 20082720 PMCID: PMC2826334 DOI: 10.1186/1471-2229-10-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 01/18/2010] [Indexed: 05/05/2023]
Abstract
BACKGROUND Transcription factors play the crucial rule of regulating gene expression and influence almost all biological processes. Systematically identifying and annotating transcription factors can greatly aid further understanding their functions and mechanisms. In this article, we present SoyDB, a user friendly database containing comprehensive knowledge of soybean transcription factors. DESCRIPTION The soybean genome was recently sequenced by the Department of Energy-Joint Genome Institute (DOE-JGI) and is publicly available. Mining of this sequence identified 5,671 soybean genes as putative transcription factors. These genes were comprehensively annotated as an aid to the soybean research community. We developed SoyDB - a knowledge database for all the transcription factors in the soybean genome. The database contains protein sequences, predicted tertiary structures, putative DNA binding sites, domains, homologous templates in the Protein Data Bank (PDB), protein family classifications, multiple sequence alignments, consensus protein sequence motifs, web logo of each family, and web links to the soybean transcription factor database PlantTFDB, known EST sequences, and other general protein databases including Swiss-Prot, Gene Ontology, KEGG, EMBL, TAIR, InterPro, SMART, PROSITE, NCBI, and Pfam. The database can be accessed via an interactive and convenient web server, which supports full-text search, PSI-BLAST sequence search, database browsing by protein family, and automatic classification of a new protein sequence into one of 64 annotated transcription factor families by hidden Markov models. CONCLUSIONS A comprehensive soybean transcription factor database was constructed and made publicly accessible at http://casp.rnet.missouri.edu/soydb/.
Collapse
Affiliation(s)
- Zheng Wang
- Computer Science Department, University of Missouri, Columbia, MO 65211, USA
| | - Marc Libault
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Division of Plant Sciences, National Center for Soybean Biotechnology, Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Trupti Joshi
- Computer Science Department, University of Missouri, Columbia, MO 65211, USA
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Babu Valliyodan
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Division of Plant Sciences, National Center for Soybean Biotechnology, Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Henry T Nguyen
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Division of Plant Sciences, National Center for Soybean Biotechnology, Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Dong Xu
- Computer Science Department, University of Missouri, Columbia, MO 65211, USA
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Informatics Institute, University of Missouri, Columbia, MO 65211, USA
| | - Gary Stacey
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Division of Plant Sciences, National Center for Soybean Biotechnology, Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jianlin Cheng
- Computer Science Department, University of Missouri, Columbia, MO 65211, USA
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Informatics Institute, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
27
|
Biochemical analyses of nuclear receptor-dependent transcription with chromatin templates. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:137-92. [PMID: 20374704 DOI: 10.1016/s1877-1173(09)87005-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Chromatin, the physiological template for transcription, plays important roles in gene regulation by nuclear receptors (NRs). It can (1) restrict the binding of NRs or the transcriptional machinery to their genomic targets, (2) serve as a target of regulatory posttranslational modifications by NR coregulator proteins with histone-directed enzymatic activities, and (3) function as a binding scaffold for a variety of transcription-related proteins. The advent of in vitro or "cell-free" systems that accurately recapitulate ligand-dependent transcription by NRs with chromatin templates has allowed detailed analyses of these processes. Biochemical studies have advanced our understanding of the mechanisms of gene regulation, including the role of ligands, coregulators, and nucleosome remodeling. In addition, they have provided new insights about the dynamics of NR-mediated transcription. This chapter reviews the current methodologies for assembling, transcribing, and analyzing chromatin in vitro, as well as the new information that has been gained from these studies.
Collapse
|
28
|
Thompson NE, Glaser BT, Foley KM, Burton ZF, Burgess RR. Minimal promoter systems reveal the importance of conserved residues in the B-finger of human transcription factor IIB. J Biol Chem 2009; 284:24754-66. [PMID: 19590095 DOI: 10.1074/jbc.m109.030486] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The "B-finger" of transcription factor IIB (TFIIB) is highly conserved and believed to play a role in the initiation process. We performed alanine substitutions across the B-finger of human TFIIB, made change-of-charge mutations in selected residues, and substituted the B-finger sequence from other organisms. Mutant proteins were examined in two minimal promoter systems (containing only RNA polymerase II, TATA-binding protein, and TFIIB) and in a complex system, using TFIIB-immunodepleted HeLa cell nuclear extract (NE). Mutations in conserved residues located on the sides of the B-finger had the greatest effect on activity in both minimal promoter systems, with mutations in residues Glu-51 and Arg-66 eliminating activity. The double change-of-charge mutant (E51R:R66E) did not show activity in either minimal promoter system. Mutations in the nonconserved residues at the tip of the B-finger did not significantly affect activity. However, all of the mutations in the B-finger showed at least 25% activity in the HeLa cell NE. Chimeric proteins, containing B-finger sequences from species with conserved residues on the side of the B-finger, showed wild-type activity in a minimal promoter system and in the HeLa cell NE. However, chimeric proteins whose sequence showed divergence on the sides of the B-finger had reduced activity. Transcription factor IIF (TFIIF) partially restored activity of the inactive mutants in the minimal promoter system, suggesting that TFIIF in HeLa cell NE helps to rescue the inactive mutations by interacting with either the B-finger or another component of the initiation complex that is influenced by the B-finger.
Collapse
Affiliation(s)
- Nancy E Thompson
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | | | | | | | | |
Collapse
|
29
|
Sikorski TW, Buratowski S. The basal initiation machinery: beyond the general transcription factors. Curr Opin Cell Biol 2009; 21:344-51. [PMID: 19411170 PMCID: PMC2692371 DOI: 10.1016/j.ceb.2009.03.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/26/2009] [Accepted: 03/29/2009] [Indexed: 01/19/2023]
Abstract
In vitro experiments led to a simple model in which basal transcription factors sequentially assembled with RNA Polymerase II to generate a preinitiation complex (PIC). Emerging evidence indicates that PIC composition is not universal, but promoter-dependent. Active promoters are occupied by a mixed population of complexes, including regulatory factors such as NC2, Mot1, Mediator, and TFIIS. Recent studies are expanding our understanding of the roles of these factors, demonstrating that their functions are both broader and more context dependent than previously realized.
Collapse
Affiliation(s)
- Timothy W Sikorski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, United States
| | | |
Collapse
|
30
|
Sprouse RO, Wells MN, Auble DT. TATA-binding protein variants that bypass the requirement for Mot1 in vivo. J Biol Chem 2009; 284:4525-35. [PMID: 19098311 PMCID: PMC2640957 DOI: 10.1074/jbc.m808951200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 12/18/2008] [Indexed: 12/27/2022] Open
Abstract
Mot1 is an essential TATA-binding protein (TBP)-associated factor and Snf2/Swi2 ATPase that both represses and activates transcription. Biochemical and structural results support a model in which ATP binding and hydrolysis induce a conformational change in Mot1 that drives local translocation along DNA, thus removing TBP. Although this activity explains transcriptional repression, it does not as easily explain Mot1-mediated transcriptional activation, and several different models have been proposed to explain how Mot1 activates transcription. To better understand the function of Mot1 in yeast cells in vivo, particularly with regard to gene activation, TBP mutants were identified that bypass the requirement for Mot1 in vivo. Although TBP has been extensively mutated and analyzed previously, this screen uncovered two novel TBP variants that are unique in their ability to bypass the requirement for Mot1. Surprisingly, in vitro analyses reveal that rather than having acquired an improved biochemical activity, one of the TBPs was defective for interaction with polymerase II preinitiation complex (PIC) components and other regulators of TBP function. The other mutant was defective for DNA binding in vitro yet was still recruited to chromatin in vivo. These results suggest that Mot1-mediated dissociation of TBP (or TBP-containing complexes) from chromatin can explain the Mot1 activation mechanism at some promoters. The results also suggest that PICs can be dynamically unstable and that appropriate PIC instability is critical for the regulation of transcription in vivo.
Collapse
Affiliation(s)
- Rebekka O Sprouse
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
31
|
Sprouse RO, Shcherbakova I, Cheng H, Jamison E, Brenowitz M, Auble DT. Function and structural organization of Mot1 bound to a natural target promoter. J Biol Chem 2008; 283:24935-48. [PMID: 18606810 DOI: 10.1074/jbc.m803749200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mot1 is an essential, conserved TATA-binding protein (TBP)-associated factor in Saccharomyces cerevisiae and a member of the Snf2/Swi2 ATPase family. Mot1 uses ATP hydrolysis to displace TBP from DNA, an activity that can be readily reconciled with its global role in gene repression. Less well understood is how Mot1 directly activates gene expression. It has been suggested that Mot1-mediated activation can occur by displacement of inactive TBP-containing complexes from promoters, thereby permitting assembly of functional transcription complexes. Mot1 may also activate transcription by other mechanisms that have not yet been defined. A gap in our understanding has been the absence of biochemical information related to the activity of Mot1 on natural target genes. Using URA1 as a model Mot1-activated promoter, we show striking differences in the way that both TBP and Mot1 interact with DNA compared with other model DNA substrates analyzed previously. These differences are due at least in part to the propensity of TBP alone to bind to the URA1 promoter in the wrong orientation to direct appropriate assembly of the URA1 preinitiation complex. The results suggest that Mot1-mediated activation of URA1 transcription involves at least two steps, one of which is the removal of TBP bound to the promoter in the opposite orientation required for URA1 transcription.
Collapse
Affiliation(s)
- Rebekka O Sprouse
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
32
|
Bogolyubov D, Parfenov V. Chapter 2 Structure of the Insect Oocyte Nucleus with Special Reference to Interchromatin Granule Clusters and Cajal Bodies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:59-110. [DOI: 10.1016/s1937-6448(08)01002-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Qureshi SA. Role of the Sulfolobus shibatae viral T6 initiator in conferring promoter strength and in influencing transcription start site selection. Can J Microbiol 2007; 52:1136-40. [PMID: 17215906 DOI: 10.1139/w06-073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Archaeal promoters contain a TATA-box, an adjacent upstream TFB-recognition element (BRE), and a downstream initiator (INR) region from which transcription originates. While the contribution of A-box and BRE to promoter strength is well established, the role of DNA sequences within the INR region and its vicinity on transcription efficiency and start site selection remains unclear. Here, I demonstrate using the strong Sulfolobus shibatae viral T6 promoter that either substitution of its natural sequence from -17 and beyond with plasmid DNA or introduction of point transversion mutations at +3, -2, -4, and -5 positions reduce promoter strength dramatically, whereas +1, -1, and -2 mutations influence the transcription start site. These data therefore reveal that the INR region plays a role as important as the BRE and the A-box in T6 gene transcription.
Collapse
Affiliation(s)
- Sohail A Qureshi
- Department of Biological and Biomedical Sciences, The Aga Khan University Hospital, Karachi, Pakistan.
| |
Collapse
|
34
|
Paes de Faria J, Fernandes L. Protection against oxidative stress through SUA7/TFIIB regulation in Saccharomyces cerevisiae. Free Radic Biol Med 2006; 41:1684-93. [PMID: 17145557 DOI: 10.1016/j.freeradbiomed.2006.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2006] [Revised: 08/12/2006] [Accepted: 09/02/2006] [Indexed: 01/21/2023]
Abstract
The general transcription factor TFIIB, encoded by SUA7 in Saccharomyces cerevisiae, is required for transcription activation but apparently of a specific subset of genes, for example, linked with mitochondrial activity and hence with oxidative environments. Therefore, studying SUA7/TFIIB as a potential target of oxidative stress is fundamental. We found that controlled SUA7 expression under oxidative conditions occurs at transcriptional and mRNA stability levels. Both regulatory events are associated with the transcription activator Yap1 in distinct ways: Yap1 affects SUA7 transcription up regulation in exponentially growing cells facing oxidative signals; the absence of this activator per se contributes to increase SUA7 mRNA stability. However, unlike SUA7 mRNA, TFIIB abundance is not altered on oxidative signals. The biological impact of this preferential regulation of SUA7 mRNA pool is revealed by the partial suppression of cellular oxidative sensitivity by SUA7 overexpression, and supported by the insights on the existence of a novel RNA-binding factor, acting as an oxidative sensor, which regulates mRNA stability. Taken together the results point out a primarily cellular commitment to guarantee SUA7 mRNA levels under oxidative environments.
Collapse
Affiliation(s)
- Joana Paes de Faria
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6 Apartado 14, 2780-156 Oeiras, Portugal
| | | |
Collapse
|
35
|
Palenchar JB, Liu W, Palenchar PM, Bellofatto V. A divergent transcription factor TFIIB in trypanosomes is required for RNA polymerase II-dependent spliced leader RNA transcription and cell viability. EUKARYOTIC CELL 2006; 5:293-300. [PMID: 16467470 PMCID: PMC1405894 DOI: 10.1128/ec.5.2.293-300.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcription by RNA polymerase II in trypanosomes deviates from the standard eukaryotic paradigm. Genes are transcribed polycistronically and subsequently cleaved into functional mRNAs, requiring trans splicing of a capped 39-nucleotide leader RNA derived from a short transcript, the spliced leader (SL) RNA. The only identified trypanosome RNA polymerase II promoter is that of the SL RNA gene. We have previously shown that transcription of SL RNA requires divergent trypanosome homologs of RNA polymerase II, TATA binding protein, and the small nuclear RNA (snRNA)-activating protein complex. In other eukaryotes, TFIIB is an additional key component of transcription for both mRNAs and polymerase II-dependent snRNAs. We have identified a divergent homolog of the usually highly conserved basal transcription factor, TFIIB, from the pathogenic parasite Trypanosoma brucei. T. brucei TFIIB (TbTFIIB) interacted directly with the trypanosome TATA binding protein and RNA polymerase II, confirming its identity. Functionally, in vitro transcription studies demonstrated that TbTFIIB is indispensable in SL RNA gene transcription. RNA interference (RNAi) studies corroborated the essential nature of TbTFIIB, as depletion of this protein led to growth arrest of parasites. Furthermore, nuclear extracts prepared from parasites depleted of TbTFIIB, after the induction of RNAi, required recombinant TbTFIIB to support spliced leader transcription. The information gleaned from TbTFIIB studies furthers our understanding of SL RNA gene transcription and the elusive overall transcriptional processes in trypanosomes.
Collapse
Affiliation(s)
- Jennifer B Palenchar
- Department of Microbiology and Molecular Genetics, UMDNJ-NJ Medical School, International Center for Public Health, 225 Warren St., Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
36
|
Balaeff A, Mahadevan L, Schulten K. Modeling DNA loops using the theory of elasticity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:031919. [PMID: 16605570 DOI: 10.1103/physreve.73.031919] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Indexed: 05/08/2023]
Abstract
An elastic rod model of a protein-bound DNA loop is adapted for application in multi-scale simulations of protein-DNA complexes. The classical Kirchhoff system of equations which describes the equilibrium structure of the elastic loop is modified to account for the intrinsic twist and curvature, anisotropic bending properties, and electrostatic charge of DNA. The effects of bending anisotropy and electrostatics are studied for the DNA loop clamped by the lac repressor protein. For two possible lengths of the loop, several topologically different conformations are predicted and extensively analyzed over the broad range of model parameters describing DNA bending and electrostatic properties. The scope and applications of the model in already accomplished and in future multi-scale studies of protein-DNA complexes are discussed.
Collapse
Affiliation(s)
- Alexander Balaeff
- Beckman Institute, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
37
|
Palenchar JB, Bellofatto V. Gene transcription in trypanosomes. Mol Biochem Parasitol 2006; 146:135-41. [PMID: 16427709 DOI: 10.1016/j.molbiopara.2005.12.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 12/13/2005] [Accepted: 12/15/2005] [Indexed: 10/25/2022]
Abstract
Trypanosoma brucei and the other members of the trypanosomatid family of parasitic protozoa, contain an unusual RNA polymerase II enzyme, uncoordinated mRNA 5' capping and transcription initiation events, and most likely contain an abridged set of transcription factors. Pre-mRNA start sites remain elusive. In addition, two important life cycle stage-specific mRNAs are transcribed by RNA polymerase I. This review interprets these unusual transcription traits in the context of parasite biology.
Collapse
Affiliation(s)
- Jennifer B Palenchar
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry-New Jersey Medical School, Newark, 07103, USA
| | | |
Collapse
|
38
|
Roepcke S, Zhi D, Vingron M, Arndt PF. Identification of highly specific localized sequence motifs in human ribosomal protein gene promoters. Gene 2006; 365:48-56. [PMID: 16343812 DOI: 10.1016/j.gene.2005.09.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 07/22/2005] [Accepted: 09/27/2005] [Indexed: 11/28/2022]
Abstract
For ribosomal protein (RP) genes the start of transcription is rigidly controlled to maintain the 5'-TOP signal on the messenger RNA. The responsible regulatory mechanism is not yet fully understood. Careful comparative analysis of their proximal promoter sequences reveals common characteristics and thus provides clues to the underlying mechanism. We have extracted the proximal promoters of the 80 human cytosolic ribosomal protein genes together with the orthologous mouse sequences. After annotating the set with transcription factor binding sites based on the available literature, we searched for over-represented sequence motifs. We uncovered a novel motif that is localized at a fixed distance downstream to the transcription start. 31 out of the 80 promoters contain the motif in the same orientation around position +62 (standard deviation 6). A second evolutionary conserved and palindromic motif is found 13 times in the RP promoter set, 9 instances of which are located upstream around position -40. In addition, we see a characteristic profile of the GC-content and of the CpG dinucleotide frequencies. Our results support a model for the transcription of ribosomal protein genes in which the maintenance of the accurate start of transcription is provided by specific transcription factors. Such a factor binds the target DNA at a fixed location relative to the TSS, and possibly interacts directly with the basal transcription machinery.
Collapse
Affiliation(s)
- Stefan Roepcke
- Max Planck Institute for Molecular Genetics, Ihnestr. 73, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|
39
|
Sims RJ, Mandal SS, Reinberg D. Recent highlights of RNA-polymerase-II-mediated transcription. Curr Opin Cell Biol 2005; 16:263-71. [PMID: 15145350 DOI: 10.1016/j.ceb.2004.04.004] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Considerable advances into the basis of RNA-polymerase-II-mediated transcriptional regulation have recently emerged. Biochemical, genetic and structural studies have contributed to novel insights into transcription, as well as the functional significance of covalent histone modifications. New details regarding transcription elongation through chromatin have further defined the mechanism behind this action, and identified how chromatin structure may be maintained after RNAP II traverses a nucleosome. ATP-dependent chromatin remodeling complexes, along with histone chaperone complexes, were recently discovered to facilitate histone exchange. In addition, it has become increasingly clear that transcription by RNA polymerase II extends beyond RNA synthesis, towards a more active role in mRNA maturation, surveillance and export to the cytoplasm.
Collapse
Affiliation(s)
- Robert J Sims
- Howard Hughes Medical Institute, Division of Nucleic Acids Enzymology, Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
40
|
O'Gorman W, Thomas B, Kwek KY, Furger A, Akoulitchev A. Analysis of U1 small nuclear RNA interaction with cyclin H. J Biol Chem 2005; 280:36920-5. [PMID: 16115885 DOI: 10.1074/jbc.m505791200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TFIIH is a general transcription and repair factor implicated in RNA polymerase II transcription, nucleotide excision repair, and transcription-coupled repair. Genetic defects in TFIIH lead to three distinct inheritable diseases: xeroderma pigmentosa, Cockayne syndrome, and trichothiodystrophy, with xeroderma pigmentosa patients being highly susceptible to skin cancer. Earlier data revealed that the cyclin H subunit of TFIIH associates with U1 small nuclear RNA, a core-splicing component. In addition to its role in RNA processing U1 small nuclear RNA also regulates diverse stages of transcription by RNA polymerase II both in vivo and in vitro, including abortive initiation and re-initiation. Here we identify structural components of U1 and cyclin H implicated in the direct interaction and show how they affect function. Because of unique features of cyclin H we have developed a new methodology for mapping RNA interaction with the full-length cyclin H polypeptide based on electrospray ionization tandem mass spectrometry. We also demonstrate the importance of U1 stem-loops 1 and 2 for the interaction with cyclin H. Functional assays implicate the identified interaction with U1 in regulation of the activity of the cyclin H associated kinase CDK7.
Collapse
Affiliation(s)
- William O'Gorman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | | | | | |
Collapse
|
41
|
Buendía-Orozco J, Guerrero A, Pastor N. Model of the TBP–TFIIB Complex from Plasmodium falciparum: Interface Analysis and Perspectives as a New Target for Antimalarial Design. Arch Med Res 2005; 36:317-30. [PMID: 15950069 DOI: 10.1016/j.arcmed.2005.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Accepted: 01/24/2005] [Indexed: 01/21/2023]
Abstract
BACKGROUND Malaria affects 200-300 million individuals per year worldwide. Plasmodium falciparum is the causative agent of the most severe and mortal type of malaria. The need for new antimalarials comes from the widespread resistance to those in current use. New antimalarial targets are required to increase chemical diversity and effectiveness of the drugs. The research for such new targets and drug chemotypes is aided by structure-based drug design. We present a model of the TBP-TFIIB complex from P. falciparum (pfTBP-pfTFIIB) and a detailed study of the interactions at the TBP-TFIIB interface. METHODS The model was built using standard methodology, optimized energetically and evaluated structurally. We carried out an analysis of the interface considering its evolution, available experimental data on TBP and TFIIB mutants, and the main conserved and non-conserved interactions. To support the perspective of using this complex as a new target for rational antimalarial design, we present the comparison of the pfTBP-pfTFIIB interface with its human homolog. RESULTS Despite the high residue conservation at the interface, we identified a potential region, composed of species-specific residues that can be used for rational antimalarial design. CONCLUSIONS Currently there are no antimalarial drugs targeted to stop the nuclear transcription process, a vital event for all replication stages of P. falciparum. Due to its absolute requirement in transcription initiation, we consider the pfTBP-pfTFIIB interface as a new potential target for novel antimalarial chemotypes.
Collapse
Affiliation(s)
- Jacob Buendía-Orozco
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Morelos, Mexico
| | | | | |
Collapse
|
42
|
Abstract
Transcription by RNA polymerase II requires the assembly of the general transcription factors at the promoter to form a preinitiaiton complex. TFIIB (transcription factor IIB) plays a central role in this process, mediating the recruitment of RNA polymerase II and positioning it over the transcription start site. The assembly of TFIIB at the promoter can be a limiting event and several activator proteins have been shown to target TFIIB recruitment in the process of transcriptional stimulation. TFIIB is composed of two domains that engage in an intramolecular interaction. Indeed, the conformation of TFIIB has been found to underpin the function of this general transcription factor. Here we discuss our current understanding of TFIIB conformation and its role in transcription control.
Collapse
Affiliation(s)
- L M Elsby
- School of Biological Sciences, The Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
43
|
Abstract
Cellular and molecular processes that regulate the development of skeletal tissues resemble those required for regeneration. Given the prevalence of degenerative skeletal disorders in an increasingly aging population, the molecular mechanisms of skeletal development must be understood in detail if novel strategies are to be developed in regenerative medicine. Research in this area over the past decade has revealed that cell differentiation is largely controlled at the level of gene transcription, which in turn is regulated by transcription factors. Transcription factors usually recognize and bind to specific DNA sequences in the promoter of target genes via characteristic DNA-binding domains. Although the gene family containing C2H2 zinc fingers as DNA-binding motifs is the largest family of transciptional regulators, with several hundred individual members in mammals, only a small but increasing number of zinc finger genes have been implicated in bone, cartilage, or tooth development. These zinc finger proteins (ZFPs) contain multiple structural motifs that require zinc to maintain their structural integrity and function. Interestingly, zinc deficiency is known to result in skeletal growth retardation and has been identified as a risk factor in the pathogenesis of osteoporosis. This review attempts to summarize our current state of knowledge regarding the role of ZFPs in the molecular regulation of skeletogenesis.
Collapse
|
44
|
Glossop JA, Dafforn TR, Roberts SGE. A conformational change in TFIIB is required for activator-mediated assembly of the preinitiation complex. Nucleic Acids Res 2004; 32:1829-35. [PMID: 15037660 PMCID: PMC390344 DOI: 10.1093/nar/gkh504] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 03/04/2004] [Accepted: 03/04/2004] [Indexed: 11/14/2022] Open
Abstract
TFIIB plays a pivotal role during assembly of the RNA polymerase II transcription preinitiation complex. TFIIB is composed of two domains that engage in an intramolecular interaction that can be disrupted by the VP16 activation domain. In this study, we describe a novel human TFIIB derivative harbouring two point mutations in the highly conserved N-terminal charged cluster domain. This mutant, TFIIB R53E:R66E, exhibits an enhanced affinity in its intramolecular interaction when compared with wild-type TFIIB. Consistent with this, the mutant displays a significantly reduced affinity for VP16. However, its ability to complex with TATA-binding protein at a model promoter is equivalent to that of wild-type TFIIB. Furthermore, this TFIIB derivative is able to support high order preinitiation complex assembly in the absence of an activator. Strikingly though, an activator fails to recruit the TFIIB mutant to the promoter. Taken together, our results show that a TFIIB conformational change is critical for the formation of activator-dependent transcription complexes.
Collapse
Affiliation(s)
- James A Glossop
- School of Biological Sciences, The Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
45
|
Zheng L, Hoeflich KP, Elsby LM, Ghosh M, Roberts SGE, Ikura M. FRET evidence for a conformational change in TFIIB upon TBP-DNA binding. ACTA ACUST UNITED AC 2004; 271:792-800. [PMID: 14764096 DOI: 10.1111/j.1432-1033.2004.03983.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a critical step of the preinitiation complex assembly in transcription, the general transcription factor TFIIB forms a complex with the TATA-box binding protein (TBP) bound to a promoter element. Transcriptional activators such as the herpes simplex virus VP16 facilitate this complex formation through conformational activation of TFIIB, a focal molecule of transcriptional initiation and activation. Here, we used fluorescence resonance energy transfer to investigate conformational states of human TFIIB fused to enhanced cyan fluorescent protein and enhanced yellow fluorescent protein at its N- and C-terminus, respectively. A significant reduction in fluorescence resonance energy transfer ratio was observed when this fusion protein, hereafter named CYIIB, was mixed with promoter-loaded TBP. The rate for the TFIIB-TBP-DNA complex formation is accelerated drastically by GAL4-VP16 and is also dependent on the type of promoter sequences. These results provide compelling evidence for a 'closed-to-open' conformational change of TFIIB upon binding to the TBP-DNA complex, which probably involves alternation of the spatial orientation between the N-terminal zinc ribbon domain and the C-terminal conserved core domain responsible for direct interactions with TBP and a DNA element.
Collapse
Affiliation(s)
- Le Zheng
- Division of Molecular and Structural Biology, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|