1
|
Cai J, Yang W, Chen D, Zhang Y, He Z, Zhang W, Zhang L. Transcriptomic analysis of the differentiating ovary of the protogynous ricefield eel Monopterus albus. BMC Genomics 2017; 18:573. [PMID: 28768496 PMCID: PMC5541746 DOI: 10.1186/s12864-017-3953-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 07/23/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The ricefield eel is a protogynous hermaphroditic Synbranchiform species that changes sex naturally from female to male, which offers an interesting model for studying gonadal (particularly ovarian) differentiation in vertebrates. In the present study, transcriptome sequencing of the gonad of ricefield eel larvae was performed to explore the molecular mechanisms underlying the ovarian differentiation and development. RESULTS A total of 301,267,988 clean reads were generated from cDNA libraries of gonadal tissues of ricefield eel larvae at 6, 9, 12, and 20 days post hatching (dph), which contained undifferentiated gonads, differentiating ovaries, ovaries with oogonia, and ovaries with meiotic oocytes, respectively. De-novo assembly of all the clean reads generated a total of 265,896 unigenes with a mean size of 720 bp and a N50 of 1107 bp. RT-qPCR analysis of the developmental expression of 13 gonadal development-related functional genes indicated that RNA-seq data are reliable. Transcriptome data suggest that high expression of female development-related genes and low expression of male development-related genes in the early gonads of ricefield eel larvae participate in the cascade of sex differentiation leading to the final female phenotype. The contrasting expression patterns of genes involved in retinoid acid (RA) synthesis and degradation might result in peak production of RA at 12 dph in the gonad of ricefield eel larvae, and induce molecular events responsible for the initiation of meiosis before the meiotic signs could be observed at 20 dph. In addition, only stra6 but not stra8 could be identified in gonadal transcriptome data of ricefield eel larvae, and the expression pattern of stra6 paralleled those of genes involved in RA synthesis, suggesting that stra6 may be a downstream target of RA and play a role in RA metabolism and/or meiotic initiation in the gonad of ricefield eel larvae. CONCLUSIONS The present study depicted the first large-scale RNA sequencing of the gonad of ricefield eel larvae, and identified many important functional genes, GO terms and KEGG pathways involved in gonadal development and germ cell meiosis. Results of the present study will facilitate future study on the ovarian differentiation of ricefield eels and other teleosts as well.
Collapse
Affiliation(s)
- Jinfeng Cai
- Department of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Wei Yang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Dong Chen
- Department of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yize Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zhi He
- College of Animal Sciences and Technology, Sichuan Agricultural University, Ya'an, 625014, P. R. China
| | - Weimin Zhang
- Department of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China. .,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Lihong Zhang
- Department of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
2
|
Radhakrishnan S, Literman R, Neuwald J, Severin A, Valenzuela N. Transcriptomic responses to environmental temperature by turtles with temperature-dependent and genotypic sex determination assessed by RNAseq inform the genetic architecture of embryonic gonadal development. PLoS One 2017; 12:e0172044. [PMID: 28296881 PMCID: PMC5352168 DOI: 10.1371/journal.pone.0172044] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/30/2017] [Indexed: 12/24/2022] Open
Abstract
Vertebrate sexual fate is decided primarily by the individual's genotype (GSD), by the environmental temperature during development (TSD), or both. Turtles exhibit TSD and GSD, making them ideal to study the evolution of sex determination. Here we analyze temperature-specific gonadal transcriptomes (RNA-sequencing validated by qPCR) of painted turtles (Chrysemys picta TSD) before and during the thermosensitive period, and at equivalent stages in soft-shell turtles (Apalone spinifera-GSD), to test whether TSD's and GSD's transcriptional circuitry is identical but deployed differently between mechanisms. Our data show that most elements of the mammalian urogenital network are active during turtle gonadogenesis, but their transcription is generally more thermoresponsive in TSD than GSD, and concordant with their sex-specific function in mammals [e.g., upregulation of Amh, Ar, Esr1, Fog2, Gata4, Igf1r, Insr, and Lhx9 at male-producing temperature, and of β-catenin, Foxl2, Aromatase (Cyp19a1), Fst, Nf-kb, Crabp2 at female-producing temperature in Chrysemys]. Notably, antagonistic elements in gonadogenesis (e.g., β-catenin and Insr) were thermosensitive only in TSD early-embryos. Cirbp showed warm-temperature upregulation in both turtles disputing its purported key TSD role. Genes that may convert thermal inputs into sex-specific development (e.g., signaling and hormonal pathways, RNA-binding and heat-shock) were differentially regulated. Jak-Stat, Nf-κB, retinoic-acid, Wnt, and Mapk-signaling (not Akt and Ras-signaling) potentially mediate TSD thermosensitivity. Numerous species-specific ncRNAs (including Xist) were differentially-expressed, mostly upregulated at colder temperatures, as were unannotated loci that constitute novel TSD candidates. Cirbp showed warm-temperature upregulation in both turtles. Consistent transcription between turtles and alligator revealed putatively-critical reptilian TSD elements for male (Sf1, Amh, Amhr2) and female (Crabp2 and Hspb1) gonadogenesis. In conclusion, while preliminary, our data helps illuminate the regulation and evolution of vertebrate sex determination, and contribute genomic resources to guide further research into this fundamental biological process.
Collapse
Affiliation(s)
- Srihari Radhakrishnan
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, United States of America
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States of America
| | - Robert Literman
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States of America
- Ecology and Evolutionary Biology Program, Iowa State University, Ames, IA, United States of America
| | - Jennifer Neuwald
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States of America
| | - Andrew Severin
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States of America
- Genome Informatics Facility, Iowa State University, Ames, IA, United States of America
| | - Nicole Valenzuela
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
3
|
Robledo D, Ribas L, Cal R, Sánchez L, Piferrer F, Martínez P, Viñas A. Gene expression analysis at the onset of sex differentiation in turbot (Scophthalmus maximus). BMC Genomics 2015; 16:973. [PMID: 26581195 PMCID: PMC4652359 DOI: 10.1186/s12864-015-2142-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/23/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Controlling sex ratios is essential for the aquaculture industry, especially in those species with sex dimorphism for relevant productive traits, hence the importance of knowing how the sexual phenotype is established in fish. Turbot, a very important fish for the aquaculture industry in Europe, shows one of the largest sexual growth dimorphisms amongst marine cultured species, being all-female stocks a desirable goal for the industry. Although important knowledge has been achieved on the genetic basis of sex determination (SD) in this species, the master SD gene remains unknown and precise information on gene expression at the critical stage of sex differentiation is lacking. In the present work, we examined the expression profiles of 29 relevant genes related to sex differentiation, from 60 up to 135 days post fertilization (dpf), when gonads are differentiating. We also considered the influence of three temperature regimes on sex differentiation. RESULTS The first sex-related differences in molecular markers could be observed at 90 days post fertilization (dpf) and so we have called that time the onset of sex differentiation. Three genes were the first to show differential expression between males and females and also allowed us to sex turbot accurately at the onset of sex differentiation (90 dpf): cyp19a1a, amh and vasa. The expression of genes related to primordial germ cells (vasa, gsdf, tdrd1) started to increase between 75-90 dpf and vasa and tdrd1 later presented higher expression in females (90-105 dpf). Two genes placed on the SD region of turbot (sox2, fxr1) did not show any expression pattern suggestive of a sex determining function. We also detected changes in the expression levels of several genes (ctnnb1, cyp11a, dmrt2 or sox6) depending on culture temperature. CONCLUSION Our results enabled us to identify the first sex-associated genetic cues (cyp19a1a, vasa and amh) at the initial stages of gonad development in turbot (90 dpf) and to accurately sex turbot at this age, establishing the correspondence between gene expression profiles and histological sex. Furthermore, we profiled several genes involved in sex differentiation and found specific temperature effects on their expression.
Collapse
Affiliation(s)
- Diego Robledo
- Departamento de Genética, Facultad de Biología, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003, Barcelona, Spain.
| | - Rosa Cal
- Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, 36390, Vigo, Spain.
| | - Laura Sánchez
- Departamento de Genética. Facultad de Veterinaria, Universidade de Santiago de Compostela, Campus de Lugo, 27002, Lugo, Spain.
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003, Barcelona, Spain.
| | - Paulino Martínez
- Departamento de Genética. Facultad de Veterinaria, Universidade de Santiago de Compostela, Campus de Lugo, 27002, Lugo, Spain.
| | - Ana Viñas
- Departamento de Genética, Facultad de Biología, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Morel Y, Roucher F, Mallet D, Plotton I. Genetic of gonadal determination. ANNALES D'ENDOCRINOLOGIE 2014; 75:32-9. [DOI: 10.1016/j.ando.2014.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Valenzuela N, Neuwald JL, Literman R. Transcriptional evolution underlying vertebrate sexual development. Dev Dyn 2012; 242:307-19. [DOI: 10.1002/dvdy.23897] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2012] [Indexed: 12/30/2022] Open
Affiliation(s)
- Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology; Iowa State University; Ames; Iowa
| | - Jennifer L. Neuwald
- Department of Ecology, Evolution, and Organismal Biology; Iowa State University; Ames; Iowa
| | - Robert Literman
- Department of Ecology, Evolution, and Organismal Biology; Iowa State University; Ames; Iowa
| |
Collapse
|
6
|
Dickey C, Toot J, Terwilliger M, Payne R, Turner M, Ely D. The SHR Y chromosome increases cardiovascular, endocrine, and behavioral responses to stress compared to the WKY Y chromosome. Physiol Behav 2012; 106:101-8. [PMID: 22285213 DOI: 10.1016/j.physbeh.2012.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 01/10/2012] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
Abstract
The SHR Y chromosome has loci which are involved with behavioral, endocrine and brain phenotypes and respond to acute stress to a different degree than that of the WKY Y chromosome. The objectives were to determine if WKY males with an SHR Y chromosome (SHR/y) when compared to males with a WKY Y chromosome would have: 1. a greater increase in systolic and diastolic blood pressures (BP), heart rate (HR), and locomotor activity when placed in an open field environment and during an acute stress procedure; 2. enhanced stress hormone responses; 3. greater voluntary running; and 4. increased brain Sry expression. The SHR/y strain showed a significant rise in BP (32%) and HR (10%) during the open field test and exhibited higher BP (46% change) during air jet stress. SHR/y had higher locomotor activity and less immobility and had increased stress induced plasma norepinephrine and adrenocorticotrophic hormone and 3-4× more voluntary running compared to WKY. Differential Sry expression between WKY and SHR/y in amygdala and hippocampus was altered at rest and during acute stress more than that of WKY. Evidence suggests that this animal model allows novel functions of Y chromosome loci to be revealed. In conclusion, a transcription factor on the SHR Y chromosome, Sry, may be responsible for the cardiovascular, endocrine and behavioral phenotype differences between SHR/y and WKY males.
Collapse
Affiliation(s)
- Cherec Dickey
- Department of Biology, The University of Akron, Akron, OH 44325-3908, United States
| | | | | | | | | | | |
Collapse
|
7
|
STELKENS RIKEB, WEDEKIND CLAUS. Environmental sex reversal, Trojan sex genes, and sex ratio adjustment: conditions and population consequences. Mol Ecol 2010; 19:627-46. [DOI: 10.1111/j.1365-294x.2010.04526.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Valenzuela N. Evolution of the gene network underlying gonadogenesis in turtles with temperature-dependent and genotypic sex determination. Integr Comp Biol 2008; 48:476-85. [DOI: 10.1093/icb/icn031] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
9
|
Abstract
There are numerous reports describing the pathology of the fetus and placenta in triploidy. Although gonadal pathology is described in many of these reports, consistent changes have not been noted nor is it clear whether genital ambiguity can be considered part of the triploid phenotype. We present a case of triploidy of probable diandric origin, in which there were dysgenetic gonads with abnormal seminiferous tubules, nodules of undifferentiated stroma, and focal absence of the tunica albuginea. As this finding was distinctly unusual in our experience of triploid gonadal pathology, we reviewed the gonadal histology in 51 fetal and infant triploids examined in our autopsy/embryopathology laboratory. The gonads were compared to age-matched normal controls to determine if there was a specific gonadal pathology associated with triploidy and if there was any correlation of this pathology with parental origin of the triploidy. Our review of the triploid gonads indicated that while minor, nonspecific changes were not uncommon, overtly dysgenetic gonads, as observed in the index case, are rare.
Collapse
Affiliation(s)
- D E McFadden
- Department of Pathology, Children's and Women's Health Centre of British Columbia and University of British Columbia, 4480 Oak Street, Vancouver, British Columbia, Canada V6H 3V4
| | | | | |
Collapse
|
10
|
de Martino S, Yan YL, Jowett T, Postlethwait JH, Varga ZM, Ashworth A, Austin CA. Expression of sox11 gene duplicates in zebrafish suggests the reciprocal loss of ancestral gene expression patterns in development. Dev Dyn 2000; 217:279-92. [PMID: 10741422 DOI: 10.1002/(sici)1097-0177(200003)217:3<279::aid-dvdy6>3.0.co;2-s] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To investigate the role of sox genes in vertebrate development, we have isolated sox11 from zebrafish (Danio rerio). Two distinct classes of sox11-related cDNAs were identified, sox11a and sox11b. The predicted protein sequences shared 75% identity. In a gene phylogeny, both sox11a and sox11b cluster with human, mouse, chick, and Xenopus Sox11, indicating that zebrafish, like Xenopus, has two orthologues of tetrapod Sox11. The work reported here investigates the evolutionary origin of these two gene duplicates and the consequences of their duplication for development. The sox11a and sox11b genes map to linkage groups 17 and 20, respectively, together with other loci whose orthologues are syntenic with human SOX11, suggesting that during the fish lineage, a large chromosome region sharing conserved syntenies with mammals has become duplicated. Studies in mouse and chick have shown that Sox11 is expressed in the central nervous system during development. Expression patterns of zebrafish sox11a and sox11b confirm that they are expressed in the developing nervous system, including the forebrain, midbrain, hindbrain, eyes, and ears from an early stage. Other sites of expression include the fin buds and somites. The two sox genes, sox11a and sox11b, are expressed in both overlapping and distinct sites. Their expression patterns suggest that sox11a and sox11b may share the developmental domains of the single Sox11 gene present in mouse and chick. For example, zebrafish sox11a is expressed in the anterior somites, and zebrafish sox11b is expressed in the posterior somites, but the single Sox11 gene of mouse is expressed in all the somites. Thus, the zebrafish duplicate genes appear to have reciprocally lost expression domains present in the sox11 gene of the last common ancestor of tetrapods and zebrafish. This splitting of the roles of Sox11 between two paralogues suggests that regulatory elements governing the expression of the sox11 gene in the common ancestor of zebrafish and tetrapods may have been reciprocally mutated in the zebrafish gene duplicates. This is consistent with duplicate gene evolution via a duplication-degeneration-complementation process.
Collapse
Affiliation(s)
- S de Martino
- School of Biochemistry and Genetics, The Medical School, University of Newcastle, Newcastle-upon-Tyne, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Subtractive hybridization was used to identify differences in gene expression between medaka (Oryzias latipes) males and females during sex differentiation. Fifty female-specific cDNA fragments were cloned. They can be classified into three groups by virtue of whether their earliest expression is at 1, 5, or 30 days after hatching. All 15 near full-length cDNAs belonging to the first two groups were cloned. Many of these female-specific genes are coordinately expressed in oocytes at the earliest stages of oogenesis. Some of the genes that were identified by their sequences include egg envelope proteins, oocyte-specific RNA binding proteins, and a transcription factor containing a basic helix-loop-helix motif.
Collapse
Affiliation(s)
- A Kanamori
- Cell Engineering Section, National Research Institute of Aquaculture, Hiruta, Tamaki, Japan. , USA
| |
Collapse
|
12
|
Abstract
The epididymis is a tubular organ exhibiting vectorial functions of sperm concentration, maturation, transport, and storage. The molecular basis for these functions is poorly understood. However, it has become increasingly clear that regional differences along the length of the duct play a role in epididymal physiology and that region-specific gene expression is involved in the formation of these differences. Although not an overtly segmented organ, the epididymis consists of a series of highly coiled "zones," separated by connective tissue septulae and distinct by cell morphology and their pattern of gene expression. Thus, it constitutes an interesting mammalian model to study how pattern formation is achieved by differential gene activity. A large number of epididymis-expressed genes have been cloned and analyzed at the molecular level, most of them have been characterized by a distinct temporal and spatial expression pattern within the organ. Only recently have theories been developed about how and when during ontogenesis this pattern formation takes place and what its significance might be. This review summarizes the current knowledge on regionalized gene expression in the epididymis and presents hypotheses concerning its ontogenetic origin and regulation in the adult.
Collapse
Affiliation(s)
- C Kirchhoff
- IHF Institute for Hormone and Fertility Research, Hamburg, Germany
| |
Collapse
|
13
|
Carmi I, Kopczynski JB, Meyer BJ. The nuclear hormone receptor SEX-1 is an X-chromosome signal that determines nematode sex. Nature 1998; 396:168-73. [PMID: 9823896 DOI: 10.1038/24164] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Organisms in many phyla determine sexual fate by distinguishing one X chromosome from two. Here we use the model organism Caenorhabditis elegans to dissect such an X-chromosome-counting mechanism in molecular detail. In this nematode, several genes on the X chromosome called X signal elements communicate X-chromosome dose by controlling the activity of the sex-determination gene xol-1. xol-1 specifies male (XO) fate when active and hermaphrodite (XX) fate when inactive. The only X signal element described so far represses xol-1 post-transcriptionally, but xol-1 is repressed in XX animals by transcriptional and post-transcriptional mechanisms. Here we identify a nuclear-hormone-receptor homologue, SEX-1, that regulates the transcription of xol-1. We show that sex-1 is vital to X-chromosome counting: changing sex-1 gene dose in XX or XO embryos causes sexual transformation and death from inadequate dosage compensation (the hermaphrodite-specific process that equalizes X-gene expression between the sexes). The SEX-1 protein acts directly on xol-1, associating with its promoter in vivo and repressing xol-1 transcription in XX embryos. Thus, xol-1 is the direct molecular target of the primary sex-determination signal, and the dose of a nuclear hormone receptor helps to communicate X-chromosome number to determine nematode sex.
Collapse
Affiliation(s)
- I Carmi
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley 94720-3204, USA
| | | | | |
Collapse
|
14
|
Affiliation(s)
- John H. Werren
- Biology Department, University of Rochester, Rochester, New York 14627; e-mail:
| | - Leo W. Beukeboom
- Institute of Evolutionary and Ecological Sciences, University of Leiden, RA Leiden, NL-2300 The Netherlands; e-mail:
| |
Collapse
|
15
|
Abstract
REVIEW There is substantial cytogenetic data indicating that the process of sex determination can evolve relatively rapidly. However, recent molecular studies on the evolution of the regulatory genes that control sex determination in the insect Drosophila melanogaster, the nematode Caenorhabditis elegans, and mammals suggest that, although certain sex determination regulatory genes have evolved relatively rapidly, other sex determination regulatory genes are quite conserved. Thus, studies of the evolution of sex determination, a process that appears to have elements that undergo substantial evolutionary change and others that may be conserved, could provide substantial insights into the kinds of forces that both drive and constrain the evolution of developmental hierarchies.
Collapse
Affiliation(s)
- I Marín
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
16
|
Appert A, Fridmacher V, Locquet O, Magre S. Patterns of keratins 8, 18 and 19 during gonadal differentiation in the mouse: sex- and time-dependent expression of keratin 19. Differentiation 1998; 63:273-84. [PMID: 9810706 DOI: 10.1046/j.1432-0436.1998.6350273.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The acidic keratins K18 and K19 have been shown to display a sex-specific expression during gonadal differentiation in the rat. To extend these findings, we have undertaken a study of the expression of genes encoding for K18 and K19 and their basic partner K8 in the mouse from 10.5 days of gestation until adulthood, using immunofluorescence, in situ hybridization, and reverse transcriptase polymerase chain reaction (RT-PCR). In the urogenital ridge at 10.5 days of gestation, K18, K19, and K8 are present, in both sexes, in coelomic epithelium in the area of the prospective gonad. At 11 days and 10 h of gestation, they are detected in differentiating gonadal blastema. In male gonads at 11 days and 16 h of gestation the first Sertoli cells differentiate. They are stained for anti-Müllerian hormone by immunofluorescence and appear as dispersed cells throughout the blastema. Progressively, they adhere to each other and form differentiating seminiferous cords. K19 disappears as Sertoli cells differentiate. K18 and K8 continue to be detected in Sertoli cells during fetal life and after birth until 14 days postpartum. In the adult testis, no keratin is observed. In differentiating ovaries, the three keratins are present in somatic cells of the ovigerous cords during fetal life and in primordial follicles differentiating from 1-2 days postpartum. In the course of follicular development, K19 is no longer detected as primordial follicles differentiate into growing follicles. K18 and K18 are present in all stages of follicular development. These results show both differences and similarities with the results previously obtained in the rat. In the mouse, in contrast to the rat, keratins are detected in adult ovaries, and K18 is found in undifferentiated gonads and in ovaries. K18 is, thus, not specific to the testis in the mouse, as it is in the rat. In both species, K19 ceases to be expressed in male gonads as Sertoli cells differentiate and form seminiferous cords. The present observations confirm that downregulation of K19 gene expression in the fetal testis is one of the earliest molecular events attesting the commitment of the undifferentiated gonad to the male differentiative pathway.
Collapse
Affiliation(s)
- A Appert
- Laboratoire de Physiologie de la Reproduction URA-CNRS 1449, Université Pierre et Marie Curie, Paris, France
| | | | | | | |
Collapse
|
17
|
Pilon N, Behdjani R, Daneau I, Lussier JG, Silversides DW. Porcine steroidogenic factor-1 gene (pSF-1) expression and analysis of embryonic pig gonads during sexual differentiation. Endocrinology 1998; 139:3803-12. [PMID: 9724033 DOI: 10.1210/endo.139.9.6193] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The porcine steroidogenic factor-1 gene (pSF-1) was cloned using a combination of genomic and RT-PCR based cloning methods. pSF-1 consists of an open reading frame of 1383 nt corresponding to a deduced amino acid sequence of 461 aa, similar to bovine and human SF-1. Sequence homologies between pSF-1 and human, bovine and mouse molecules indicate strong evolutionary conservation at both the nt and aa levels. Northern analysis of pSF-1 expression in adult steroidogenic tissues correlated with porcine steroidogenic acute regulatory protein gene (pStAR) and porcine side chain cleavage (pP450scc) gene expression. Notably, pSF-1 expression was readily detected in neonatal testes, absent at 3 weeks of age, and again readily detected at 3 months and in adult testes. pSF-1 expression was weak but detectable in placental tissues at various times of gestation, and was correlated with pStAR and pP450scc expression, indicating classical steroidogenesis in this organ. In developing gonads from 6-12 weeks of gestation, i.e. during the time of sex differentiation in the pig, Northern analysis demonstrated increasing expression of PSF-1 in fetal testes and no expression in ovaries. This expression pattern was paralleled for pStAR, pP450scc, and porcine Müllerian inhibitory substance (pMIS), consistent with pSF-1 involvement in both steroid and protein hormone secretions of the developing testes during sex differentiation. Porcine SRY HMG-box related gene-9 (pSOX-9) expression also paralleled that of pSF-1 in developing testes. In contrast, DSS-AHC critical region on the X chromosome, gene 1 (pDAX-1) was expressed predominantly in the developing ovaries, indicating a possible reciprocal regulation of pSF-1 and pDAX-1 genes in developing pig testes and ovaries.
Collapse
Affiliation(s)
- N Pilon
- Centre de Recherche en Reproduction Animale, Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, University of Montréal, St.-Hyacinthe, Québec, Canada
| | | | | | | | | |
Collapse
|
18
|
Abstract
Human sex determination is a fascinating topic, particularly at the level of molecular genetics, as it represents an excellent paradigm for mammalian organ development. Recent progress has seen the addition of several new pieces to this developmental jigsaw puzzle. In mammals, the Y chromosome is male determining, and encodes a gene referred to as TDF (testis-determining factor), which induces the indifferent embryonic gonad to develop as a testis. Subsequent male sexual differentiation is largely a consequence of hormonal secretion from the testis. In the absence of the Y chromosome, the testis-determining pathway fails to be initiated, and the embryonic gonad develops as an ovary, resulting in female development. (Ford et al. [1959] Lancet i:711; Jacobs and Strong [1959] Nature, 183:302-303; Jost et al. [1973] Rec. Prog. Horm. Res., 29:1-41).
Collapse
Affiliation(s)
- A H Sinclair
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Victoria, Australia
| |
Collapse
|
19
|
Liu WS, Eriksson L, Fredga K. XY sex reversal in the wood lemming is associated with deletion of Xp21-23 as revealed by chromosome microdissection and fluorescence in situ hybridization. Chromosome Res 1998; 6:379-83. [PMID: 9872667 DOI: 10.1023/a:1009273205788] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the wood lemming (Myopus schisticolor), XY sex reversal occurs naturally because of the presence of an X chromosome variant designated X*. The two types of X chromosome, X and X*, can be distinguished by G-banding, and analyses have demonstrated complex rearrangements of the short arm of X*. Here, chromosomal microdissection, degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR) and fluorescence in situ hybridization (FISH) techniques have been used to generate and map DNA probes for different parts of the X and X* chromosomes. The results showed that the region of Xp21-23 is deleted from the X* and some of the deleted DNA sequences are homologous to the mouse gamma-satellite. The deletion must be associated with the sex reversal in this species. FISH experiments with dissected probes of X and distal half of Xq provided evidence for presence of homologous sequences between large regions of the X and Y chromosomes, including euchromatic and heterochromatic parts of the sex chromosomes. The findings of this study will be of significance for further cloning of important candidate gene(s) responsible for the XY sex reversal.
Collapse
Affiliation(s)
- W S Liu
- Department of Genetics, Uppsala University, Sweden.
| | | | | |
Collapse
|
20
|
Spotila LD, Spotila JR, Hall SE. Sequence and expression analysis of WT1 and Sox9 in the red-eared slider turtle, Trachemys scripta. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1998; 281:417-27. [PMID: 9662829 DOI: 10.1002/(sici)1097-010x(19980801)281:5<417::aid-jez7>3.0.co;2-r] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Temperature-dependent sex-determination (TSD) is a phenomenon that has been characterized at the ecological, morphological, and endocrinological levels in some reptilian species. We have begun to investigate TSD at the level of molecular development by cloning, sequencing, and analyzing the expression of two genes, WT1 and Sox9, in the red-eared slider turtle Trachemys scripta. We obtained almost full-length cDNA clones for WT1 and Sox9 that were greater than 73% identical to the human homologues at the nucleotide level. WT1 was expressed in urogenital tissue at all developmental stages examined (Yntema stages 12-20) at incubation temperatures that produce males (26 degrees C) or females (32 degrees C). Sox9 was also expressed throughout these same stages, but some differences were observed. At both 26 degrees C and 32 degrees C Sox9 was expressed in the mesonephroi and the undifferentiated gonads until Yntema stage 20, when only the gonad from the 26 degrees C embryos expressed a high level. In addition, there were two transcripts of Sox9 at all stages, but the relative proportion of the two transcripts differed at the two temperatures. Although the similarities in gene expression between a TSD species and other species with genotypically determined sex probably reflect the common features of organogenesis, differences may illustrate unique mechanisms for TSD.
Collapse
Affiliation(s)
- L D Spotila
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
21
|
Jamieson RV, Zhou SX, Wheatley SC, Koopman P, Tam PP. Sertoli cell differentiation and Y-chromosome activity: a developmental study of X-linked transgene activity in sex-reversed X/XSxra mouse embryos. Dev Biol 1998; 199:235-44. [PMID: 9698443 DOI: 10.1006/dbio.1998.8925] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The requirement of Y-chromosome activity for the differentiation of somatic cells and germ cells was studied in the fetal gonads of X/XSxra mouse embryos where the activity of the Sxra fragment of the Y chromosome is influenced by the inactivation and reactivation of the X chromosome. In the interstitial somatic cells, random inactivation of the X and the XSxra chromosomes took place which was revealed by the mosaic expression of an X-linked lacZ transgene. The Sertoli cells, however, displayed a preferentially active XSxra chromosome and the presence of Sxra-active Sertoli cells was associated with the morphogenesis of testicular tubules in the sex-reversed gonads. The activity of the Y-chromosome fragment is therefore necessary for the differentiation of the Sertoli cells which may direct the development of the testis. The expression pattern of the X-linked transgene in X/XSxra germ cells suggests that both the X and the XSxra chromosomes are active. This finding suggests that the presence of Sxra has no impact on the reactivation of the X chromosome in the germ cells and that the X chromosome can be reactivated even though the germ cells are found in the testicular environment. Our results are consistent with the concept that the activity of genes on the XSxra fragment is essential for the differentiation of Sertoli cells and the morphogenesis of the testis, but not for premeiotic differentiation of germ cells in sex-reversed mice.
Collapse
Affiliation(s)
- R V Jamieson
- Embryology Unit, Children's Medical Research Institute, Wentworthville, New South Wales, Australia
| | | | | | | | | |
Collapse
|
22
|
Paukku T, Kero J, Zhang FP, Rahman N, Kananen K, Huhtaniemi I. Direct luteinizing hormone action triggers adrenocortical tumorigenesis in castrated mice transgenic for the murine inhibin alpha-subunit promoter/simian virus 40 T-antigen fusion gene. Mol Endocrinol 1998; 12:801-9. [PMID: 9626655 DOI: 10.1210/mend.12.6.0117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transgenic (TG) mice, expressing the Simian Virus 40 T-antigen (Tag) under a 6-kb fragment of the murine inhibin alpha-subunit promoter (inh alpha p), develop gonadal tumors of granulosa/theca or Leydig cell origin. We showed previously that adrenocortical tumors develop if the TG mice are gonadectomized but never develop in intact animals. However, if functional gonadectomy was induced by GnRH antagonist treatment or by cross-breeding the TG mice into the hypogonadotropic hpg genetic background, neither gonadal nor adrenal tumors appeared. Since the most obvious difference between the gonadectomized and GnRH-antagonist-treated or Tag/hpg double mutant mice is the elevated gonadotropin secretion in the first group, we examined whether the adrenal tumorigenesis would be gonadotropin-dependent. Surprisingly, both the adrenal tumors and a cell line (C alpha 1) derived from one of them expressed highly functional LH receptors (LHR), as assessed by Northern hybridization, immunocytochemistry, ligand binding, and human CG (hCG)-stimulated cAMP and steroid production. No FSH receptor expression was found in the adrenal tumors by RT-PCR. hCG treatment of the C alpha 1 cells stimulated their proliferation, as measured by [3H]thymidine incorporation. This effect was related to hCG-stimulated steroidogenesis since progesterone, testosterone, and estradiol, at physiological concentrations, also stimulated the C alpha 1 cell proliferation. Different adrenocortical cells expressed initially LHR and Tag, whereas both were highly expressed in the tumor cells. In conclusion, the high level of functional LHR in the adrenal tumors indicates that this receptor can function as tumor promoter when ectopically expressed and stimulated by the ligand hormone.
Collapse
MESH Headings
- Adrenal Cortex Neoplasms/genetics
- Adrenal Cortex Neoplasms/physiopathology
- Animals
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/physiology
- Castration
- Cell Transformation, Neoplastic/genetics
- Chorionic Gonadotropin/pharmacology
- Crosses, Genetic
- DNA Replication/drug effects
- Female
- Gonadal Steroid Hormones/pharmacology
- Gonadotropin-Releasing Hormone/analogs & derivatives
- Gonadotropin-Releasing Hormone/toxicity
- Gonadotropins, Pituitary/deficiency
- Granulosa Cell Tumor/genetics
- Granulosa Cell Tumor/physiopathology
- Humans
- Inhibins
- Leydig Cell Tumor/genetics
- Leydig Cell Tumor/physiopathology
- Luteinizing Hormone/pharmacology
- Luteinizing Hormone/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Mutant Strains
- Mice, Transgenic
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/physiopathology
- Organ Specificity
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/physiopathology
- Peptides/genetics
- Peptides/physiology
- Promoter Regions, Genetic
- Receptors, FSH/analysis
- Receptors, LH/biosynthesis
- Receptors, LH/physiology
- Recombinant Fusion Proteins/physiology
- Simian virus 40/physiology
- Testicular Neoplasms/genetics
- Testicular Neoplasms/physiopathology
- Thecoma/genetics
- Thecoma/physiopathology
- Tumor Cells, Cultured
Collapse
|
23
|
Abstract
The transcription factors that trigger the determinative switch to chondrocyte differentiation in mesenchymal cells are still unknown. In humans, mutations in the gene for SOX9, a transcription factor with a DNA-binding domain similar to that of the mammalian testis-determining factor SRY, cause campomelic dysplasia, a severe dwarfism syndrome which affects all cartilage-derived structures. During mouse embryonic development, the Sox9 gene becomes active in all prechondrocytic mesenchymal condensations, and at later stages its expression is maintained at high levels in fully differentiated chondrocytes. A chondrocyte-specific enhancer in the gene for collagen type II (Col2a1), a characteristic marker of chondrocytes, is a direct target for SOX9, and ectopic expression of SOX9 in transgenic mouse embryos is sufficient to activate the endogenous Col2a1 gene in some tissues. These data suggest that SOX9 could have a major role in chondrogenesis. Studies are in progress to identify other target genes for SOX9 in chondrocytes and also other transcription factors that are believed to cooperate with SOX9 in the activation of chondrocyte-specific genes. Defining SOX9 function and the mechanisms that regulate SOX9 gene expression should contribute to a better understanding of chondrocyte differentiation.
Collapse
Affiliation(s)
- V Lefebvre
- Department of Molecular Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, USA
| | | |
Collapse
|