1
|
Tang Z, Liu Q, Pan Z, Liu C, Dong J, Han F, Fu S. Stable minichromosome and functional neocentromere derived from rye 7R chromosome arm. BMC PLANT BIOLOGY 2024; 24:1185. [PMID: 39695363 DOI: 10.1186/s12870-024-05918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND The study of newly formed centromere with stable transmission ability can provide theoretical guidance for the construction of artificial chromosomes. More neocentromeres are needed to study the mechanisms of their formation. RESULTS In this study, a minichromosome 7RLmini was derived from the progeny of wheat-rye 7R monosomic addition line. The minichromosome 7RLmini contained subtelomeric tandem repeats pSc119.2 and rye-specific pSc200, and it came from the distal region of the long arm of 7R chromosome. A neocentromere was formed in this minichromosome, and it did not contain centromeric repetitive sequences CCS1 and pAWRC.1. CENH3 ChIP-seq and ssDRIP-seq data confirmed that a 2.4 Mb segment from the rye 7R chromosome was involved in the neocentromere formation and enrichment of R-loops in this region. Within the 2.4 Mb segment, the GC content was higher that of AT, and a major binding position of CENH3 nucleosomes was identified on a 6 kb unknown LTR retrotransposon TE00002448. This unknown LTR retrotransposon was rye-specific and distributed through all the arms of rye chromosomes. The minichromosome exhibited stable generational transmission. CONCLUSION A minichromosome from rye 7R with neocentromere was obtained in this study and the neocentromere was formed at the position far away from its native equivalent. This minichromosome provides additional material for the research on the mechanism of neocentromere formation. We theorize that R-loops and transposable element might be involved in the positioning of CENH3 nucleosomes in a functional neocentromere.
Collapse
Affiliation(s)
- Zongxiang Tang
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zijin Pan
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Chang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jieran Dong
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shulan Fu
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
- Provincial Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
2
|
Balzano E, Giunta S. Centromeres under Pressure: Evolutionary Innovation in Conflict with Conserved Function. Genes (Basel) 2020; 11:E912. [PMID: 32784998 PMCID: PMC7463522 DOI: 10.3390/genes11080912] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022] Open
Abstract
Centromeres are essential genetic elements that enable spindle microtubule attachment for chromosome segregation during mitosis and meiosis. While this function is preserved across species, centromeres display an array of dynamic features, including: (1) rapidly evolving DNA; (2) wide evolutionary diversity in size, shape and organization; (3) evidence of mutational processes to generate homogenized repetitive arrays that characterize centromeres in several species; (4) tolerance to changes in position, as in the case of neocentromeres; and (5) intrinsic fragility derived by sequence composition and secondary DNA structures. Centromere drive underlies rapid centromere DNA evolution due to the "selfish" pursuit to bias meiotic transmission and promote the propagation of stronger centromeres. Yet, the origins of other dynamic features of centromeres remain unclear. Here, we review our current understanding of centromere evolution and plasticity. We also detail the mutagenic processes proposed to shape the divergent genetic nature of centromeres. Changes to centromeres are not simply evolutionary relics, but ongoing shifts that on one side promote centromere flexibility, but on the other can undermine centromere integrity and function with potential pathological implications such as genome instability.
Collapse
Affiliation(s)
- Elisa Balzano
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, 00185 Roma, Italy;
| | - Simona Giunta
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
3
|
Gambogi CW, Dawicki-McKenna JM, Logsdon GA, Black BE. The unique kind of human artificial chromosome: Bypassing the requirement for repetitive centromere DNA. Exp Cell Res 2020; 391:111978. [PMID: 32246994 DOI: 10.1016/j.yexcr.2020.111978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022]
Abstract
Centromeres are essential components of all eukaryotic chromosomes, including artificial/synthetic ones built in the laboratory. In humans, centromeres are typically located on repetitive α-satellite DNA, and these sequences are the "major ingredient" in first-generation human artificial chromosomes (HACs). Repetitive centromeric sequences present a major challenge for the design of synthetic mammalian chromosomes because they are difficult to synthesize, assemble, and characterize. Additionally, in most eukaryotes, centromeres are defined epigenetically. Here, we review the role of the genetic and epigenetic contributions to establishing centromere identity, highlighting recent work to hijack the epigenetic machinery to initiate centromere identity on a new generation of HACs built without α-satellite DNA. We also discuss the opportunities and challenges in developing useful unique sequence-based HACs.
Collapse
Affiliation(s)
- Craig W Gambogi
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, Penn Center for Genome Integrity, and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jennine M Dawicki-McKenna
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, Penn Center for Genome Integrity, and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, Penn Center for Genome Integrity, and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Discovery of 33mer in chromosome 21 - the largest alpha satellite higher order repeat unit among all human somatic chromosomes. Sci Rep 2019; 9:12629. [PMID: 31477765 PMCID: PMC6718397 DOI: 10.1038/s41598-019-49022-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/13/2019] [Indexed: 11/10/2022] Open
Abstract
The centromere is important for segregation of chromosomes during cell division in eukaryotes. Its destabilization results in chromosomal missegregation, aneuploidy, hallmarks of cancers and birth defects. In primate genomes centromeres contain tandem repeats of ~171 bp alpha satellite DNA, commonly organized into higher order repeats (HORs). In spite of crucial importance, satellites have been understudied because of gaps in sequencing - genomic “black holes”. Bioinformatical studies of genomic sequences open possibilities to revolutionize understanding of repetitive DNA datasets. Here, using robust (Global Repeat Map) algorithm we identified in hg38 sequence of human chromosome 21 complete ensemble of alpha satellite HORs with six long repeat units (≥20 mers), five of them novel. Novel 33mer HOR has the longest HOR unit identified so far among all somatic chromosomes and novel 23mer reverse HOR is distant far from the centromere. Also, we discovered that for hg38 assembly the 33mer sequences in chromosomes 21, 13, 14, and 22 are 100% identical but nearby gaps are present; that seems to require an additional more precise sequencing. Chromosome 21 is of significant interest for deciphering the molecular base of Down syndrome and of aneuploidies in general. Since the chromosome identifier probes are largely based on the detection of higher order alpha satellite repeats, distinctions between alpha satellite HORs in chromosomes 21 and 13 here identified might lead to a unique chromosome 21 probe in molecular cytogenetics, which would find utility in diagnostics. It is expected that its complete sequence analysis will have profound implications for understanding pathogenesis of diseases and development of new therapeutic approaches.
Collapse
|
5
|
Carducci F, Barucca M, Canapa A, Biscotti MA. Rex Retroelements and Teleost Genomes: An Overview. Int J Mol Sci 2018; 19:ijms19113653. [PMID: 30463278 PMCID: PMC6274825 DOI: 10.3390/ijms19113653] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/31/2018] [Accepted: 11/16/2018] [Indexed: 01/29/2023] Open
Abstract
Repetitive DNA is an intriguing portion of the genome still not completely discovered and shows a high variability in terms of sequence, genomic organization, and evolutionary mode. On the basis of the genomic organization, it includes satellite DNAs, which are organized as long arrays of head-to-tail linked repeats, and transposable elements, which are dispersed throughout the genome. These repeated elements represent a considerable fraction of vertebrate genomes contributing significantly in species evolution. In this review, we focus our attention on Rex1, Rex3 and Rex6, three elements specific of teleost genomes. We report an overview of data available on these retroelements highlighting their significative impact in chromatin and heterochromatin organization, in the differentiation of sex chromosomes, in the formation of supernumerary chromosomes, and in karyotype evolution in teleosts.
Collapse
Affiliation(s)
- Federica Carducci
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy.
| |
Collapse
|
6
|
Oliveira LC, Torres GA. Plant centromeres: genetics, epigenetics and evolution. Mol Biol Rep 2018; 45:1491-1497. [DOI: 10.1007/s11033-018-4284-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 07/26/2018] [Indexed: 12/20/2022]
|
7
|
Biscotti MA, Barucca M, Canapa A. New insights into the genome repetitive fraction of the Antarctic bivalve Adamussium colbecki. PLoS One 2018; 13:e0194502. [PMID: 29590185 PMCID: PMC5874043 DOI: 10.1371/journal.pone.0194502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/05/2018] [Indexed: 11/29/2022] Open
Abstract
Repetitive DNA represents the major component of the genome in both plant and animal species. It includes transposable elements (TEs), which are dispersed throughout the genome, and satellite DNAs (satDNAs), which are tandemly organized in long arrays. The study of the structure and organization of repetitive DNA contributes to our understanding of genome architecture and the mechanisms leading to its evolution. Molluscs represent one of the largest groups of invertebrates and include organisms with a wide variety of morphologies and lifestyles. To increase our knowledge of bivalves at the genome level, we analysed the Antarctic scallop Adamussium colbecki. The screening of the genomic library evidenced the presence of two novel satDNA elements and the CvA transposon. The interspecific investigation performed in this study demonstrated that one of the two satDNAs isolated in A. colbecki is widespread in polar molluscan species, indicating a possible link between repetitive DNA and abiotic factors. Moreover, the transcriptional activity of CvA and its presence in long-diverged bivalves suggests a possible role for this ancient element in shaping the genome architecture of this clade.
Collapse
Affiliation(s)
- Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
8
|
Abstract
Centromeres are essential for cell division and growth in all eukaryotes, and knowledge of their sequence and structure guides the development of artificial chromosomes for functional cellular biology studies. Centromeric proteins are conserved among eukaryotes; however, centromeric DNA sequences are highly variable. We combined forward and reverse genetic approaches with chromatin immunoprecipitation to identify centromeres of the model diatom Phaeodactylum tricornutum We observed 25 unique centromere sequences typically occurring once per chromosome, a finding that helps to resolve nuclear genome organization and indicates monocentric regional centromeres. Diatom centromere sequences contain low-GC content regions but lack repeats or other conserved sequence features. Native and foreign sequences with similar GC content to P. tricornutum centromeres can maintain episomes and recruit the diatom centromeric histone protein CENH3, suggesting nonnative sequences can also function as diatom centromeres. Thus, simple sequence requirements may enable DNA from foreign sources to persist in the nucleus as extrachromosomal episomes, revealing a potential mechanism for organellar and foreign DNA acquisition.
Collapse
|
9
|
Yaginuma Y, Yoshimoto M, Eguchi A, Tokuda A, Takahashi S. The human papillomavirus18 E7 protein inhibits CENP-C binding to α-satellite DNA. Virus Res 2015; 205:27-32. [PMID: 25997930 DOI: 10.1016/j.virusres.2015.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 10/23/2022]
Abstract
Human papillomavirus (HPV) infection leads to aneuploidy, a numerical chromosomal aberration that is caused by dysregulation of chromosomal segregation. We previously found that the E7 proteins of high-risk HPVs, but not of low-risk HPVs, could bind to centromere protein-C (CENP-C). In this study, we first found that CENP-C could bind centromere α-satellite DNAs using ChIP analysis and HA-tagged CENP-C/nuc transfected 293T cells. We then investigated if HA-CENP-C/nuc binding to α-satellite DNAs was affected by the E7 proteins of high- or low-risk HPVs. We found that transfection of the FLAG tagged HPV18 E7 inhibited the binding of HA-CENP-C/nuc to α-satellite DNAs. This finding was confirmed in HeLa S3 cells transfected with siRNA targeted to HPV18 E7 expression. We therefore speculate that altered function of kinetochores as a result of inhibition of CENP-C and α-satellite DNAs binding may be associated with the chromosomal abnormalities observed in HPV18-positive cancers.
Collapse
Affiliation(s)
- Yuji Yaginuma
- Department of Oncology, Graduate School of Health Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuouku, Kumamoto 862-0976, Japan.
| | - Masafumi Yoshimoto
- Department of Oncology, Graduate School of Health Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuouku, Kumamoto 862-0976, Japan
| | - Ayami Eguchi
- Department of Oncology, Graduate School of Health Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuouku, Kumamoto 862-0976, Japan
| | - Aoi Tokuda
- School of Health Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuouku, Kumamoto 862-0976, Japan
| | - Shoko Takahashi
- School of Health Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuouku, Kumamoto 862-0976, Japan
| |
Collapse
|
10
|
A novel satellite DNA isolated in Pecten jacobaeus shows high sequence similarity among molluscs. Mol Genet Genomics 2015; 290:1717-25. [PMID: 25832354 DOI: 10.1007/s00438-015-1036-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/24/2015] [Indexed: 12/25/2022]
Abstract
The aim of this work is to investigate the sequence conservation and the evolution of repeated DNA in related species. Satellite DNA is a component of eukaryotic genomes and is made up of tandemly repeated sequences. These sequences are affected by high rates of mutation that lead to the occurrence of species-specific satellite DNAs, which are different in terms of both quantity and quality. In this work, a novel repetitive DNA family, named PjHhaI sat, is described in Pecten jacobaeus. The quantitative analyses revealed a different abundance of this element in the molluscan species investigated in agreement with the "library hypothesis" even if, in this case, at a high taxonomic level. In addition, the qualitative analysis demonstrated an astonishing sequence conservation not only among scallops but also in six other molluscan species belonging to three classes. These findings suggest that the PjHhaI sat may be considered as the most ancients of DNA described so far, which remained "frozen" during molluscan evolution. The widespread distribution of this sat DNA in molluscs as well as its long evolutionary preservation open up questions on the functional role of this element. A future challenge might be the identification of proteins or molecules which interact with the PjHhaI sat.
Collapse
|
11
|
Emadzade K, Jang TS, Macas J, Kovařík A, Novák P, Parker J, Weiss-Schneeweiss H. Differential amplification of satellite PaB6 in chromosomally hypervariable Prospero autumnale complex (Hyacinthaceae). ANNALS OF BOTANY 2014; 114:1597-608. [PMID: 25169019 PMCID: PMC4273535 DOI: 10.1093/aob/mcu178] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Chromosomal evolution, including numerical and structural changes, is a major force in plant diversification and speciation. This study addresses genomic changes associated with the extensive chromosomal variation of the Mediterranean Prospero autumnale complex (Hyacinthaceae), which includes four diploid cytotypes each with a unique combination of chromosome number (x = 5, 6, 7), rDNA loci and genome size. METHODS A new satellite repeat PaB6 has previously been identified, and monomers were reconstructed from next-generation sequencing (NGS) data of P. autumnale cytotype B(6)B(6) (2n = 12). Monomers of all other Prospero cytotypes and species were sequenced to check for lineage-specific mutations. Copy number, restriction patterns and methylation levels of PaB6 were analysed using Southern blotting. PaB6 was localized on chromosomes using fluorescence in situ hybridization (FISH). KEY RESULTS The monomer of PaB6 is 249 bp long, contains several intact and truncated vertebrate-type telomeric repeats and is highly methylated. PaB6 is exceptional because of its high copy number and unprecedented variation among diploid cytotypes, ranging from 10(4) to 10(6) copies per 1C. PaB6 is always located in pericentromeric regions of several to all chromosomes. Additionally, two lineages of cytotype B(7)B(7) (x = 7), possessing either a single or duplicated 5S rDNA locus, differ in PaB6 copy number; the ancestral condition of a single locus is associated with higher PaB6 copy numbers. CONCLUSIONS Although present in all Prospero species, PaB6 has undergone differential amplification only in chromosomally variable P. autumnale, particularly in cytotypes B(6)B(6) and B(5)B(5). These arose via independent chromosomal fusions from x = 7 to x = 6 and 5, respectively, accompanied by genome size increases. The copy numbers of satellite DNA PaB6 are among the highest in angiosperms, and changes of PaB6 are exceptionally dynamic in this group of closely related cytotypes of a single species. The evolution of the PaB6 copy numbers is discussed, and it is suggested that PaB6 represents a recent and highly dynamic system originating from a small pool of ancestral repeats.
Collapse
Affiliation(s)
- Khatere Emadzade
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Tae-Soo Jang
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Jiří Macas
- Czech Academy of Sciences, Institute of Plant Molecular Biology, Ceske Budejovice, Czech Republic
| | - Ales Kovařík
- Czech Academy of Sciences, Institute of Biophysics, Brno, Czech Republic
| | - Petr Novák
- Czech Academy of Sciences, Institute of Plant Molecular Biology, Ceske Budejovice, Czech Republic
| | - John Parker
- Cambridge University Botanic Garden, Cambridge CB2 1JF, UK
| | - Hanna Weiss-Schneeweiss
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| |
Collapse
|
12
|
Lee HR, Hayden KE, Willard HF. Organization and molecular evolution of CENP-A--associated satellite DNA families in a basal primate genome. Genome Biol Evol 2011; 3:1136-49. [PMID: 21828373 PMCID: PMC3194837 DOI: 10.1093/gbe/evr083] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Centromeric regions in many complex eukaryotic species contain highly repetitive satellite DNAs. Despite the diversity of centromeric DNA sequences among species, the functional centromeres in all species studied to date are marked by CENP-A, a centromere-specific histone H3 variant. Although it is well established that families of multimeric higher-order alpha satellite are conserved at the centromeres of human and great ape chromosomes and that diverged monomeric alpha satellite is found in old and new world monkey genomes, little is known about the organization, function, and evolution of centromeric sequences in more distant primates, including lemurs. Aye-Aye (Daubentonia madagascariensis) is a basal primate and is located at a key position in the evolutionary tree to study centromeric satellite transitions in primate genomes. Using the approach of chromatin immunoprecipitation with antibodies directed to CENP-A, we have identified two satellite families, Daubentonia madagascariensis Aye-Aye 1 (DMA1) and Daubentonia madagascariensis Aye-Aye 2 (DMA2), related to each other but unrelated in sequence to alpha satellite or any other previously described primate or mammalian satellite DNA families. Here, we describe the initial genomic and phylogenetic organization of DMA1 and DMA2 and present evidence of higher-order repeats in Aye-Aye centromeric domains, providing an opportunity to study the emergence of chromosome-specific modes of satellite DNA evolution in primate genomes.
Collapse
Affiliation(s)
- Hye-Ran Lee
- Genome Biology Group, Duke Institute for Genome Sciences & Policy, Duke University, USA
| | | | | |
Collapse
|
13
|
Perpelescu M, Nozaki N, Obuse C, Yang H, Yoda K. Active establishment of centromeric CENP-A chromatin by RSF complex. J Cell Biol 2009; 185:397-407. [PMID: 19398759 PMCID: PMC2700388 DOI: 10.1083/jcb.200903088] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 04/06/2009] [Indexed: 01/11/2023] Open
Abstract
Centromeres are chromosomal structures required for equal DNA segregation to daughter cells, comprising specialized nucleosomes containing centromere protein A (CENP-A) histone, which provide the basis for centromeric chromatin assembly. Discovery of centromere protein components is progressing, but knowledge related to their establishment and maintenance remains limited. Previously, using anti-CENP-A native chromatin immunoprecipitation, we isolated the interphase-centromere complex (ICEN). Among ICEN components, subunits of the remodeling and spacing factor (RSF) complex, Rsf-1 and SNF2h proteins, were found. This paper describes the relationship of the RSF complex to centromere structure and function, demonstrating its requirement for maintenance of CENP-A at the centromeric core chromatin in HeLa cells. The RSF complex interacted with CENP-A chromatin in mid-G1. Rsf-1 depletion induced loss of centromeric CENP-A, and purified RSF complex reconstituted and spaced CENP-A nucleosomes in vitro. From these data, we propose the RSF complex as a new factor actively supporting the assembly of CENP-A chromatin.
Collapse
Affiliation(s)
- Marinela Perpelescu
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Naohito Nozaki
- Kanagawa Dental College, Yokosuka, Kanagawa 238-8580, Japan
| | - Chikashi Obuse
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Hua Yang
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Kinya Yoda
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
14
|
Bussiek M, Müller G, Waldeck W, Diekmann S, Langowski J. Organisation of nucleosomal arrays reconstituted with repetitive African green monkey alpha-satellite DNA as analysed by atomic force microscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 37:81-93. [PMID: 17503032 PMCID: PMC2082062 DOI: 10.1007/s00249-007-0166-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 04/05/2007] [Accepted: 04/14/2007] [Indexed: 10/31/2022]
Abstract
Alpha-satellite DNA (AS) is part of centromeric DNA and could be relevant for centromeric chromatin structure: its repetitive character may generate a specifically ordered nucleosomal arrangement and thereby facilitate kinetochore protein binding and chromatin condensation. Although nucleosomal positioning on some satellite sequences had been shown, including AS from African green monkey (AGM), the sequence-dependent nucleosomal organisation of repetitive AS of this species has so far not been analysed. We therefore studied the positioning of reconstituted nucleosomes on AGM AS tandemly repeated DNA. Enzymatic analysis of nucleosome arrays formed on an AS heptamer as well as the localisation of mononucleosomes on an AS dimer by atomic force microscopy (AFM) showed one major positioning frame, in agreement with earlier results. The occupancy of this site was in the range of 45-50%, in quite good agreement with published in vivo observations. AFM measurements of internucleosomal distances formed on the heptamer indicated that the nucleosomal arrangement is governed by sequence-specific DNA-histone interactions yielding defined internucleosomal distances, which, nevertheless, are not compatible with a uniform phasing of the nucleosomes with the AGM AS repeats.
Collapse
Affiliation(s)
- Malte Bussiek
- Biophysical Engineering, Universiteit Twente, PO BOX 217, 7500AE Enschede, The Netherlands
| | - Gabriele Müller
- Division of Biophysics of Macromolecules, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, TP3, 69120 Heidelberg, Germany
| | - Waldemar Waldeck
- Division of Biophysics of Macromolecules, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, TP3, 69120 Heidelberg, Germany
| | - Stephan Diekmann
- Division of Molecular Biology, Fritz Lipmann Institut, Beutenbergstraße 11, 07708 Jena, Germany
| | - Jörg Langowski
- Division of Biophysics of Macromolecules, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, TP3, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Basu J, Willard HF. Human artificial chromosomes: potential applications and clinical considerations. Pediatr Clin North Am 2006; 53:843-53, viii. [PMID: 17027613 DOI: 10.1016/j.pcl.2006.08.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Human artificial chromosomes demonstrate promise as a novel class of nonintegrative gene therapy vectors. The authors outline current developments in human artificial chromosome technology and examine their potential for clinical application.
Collapse
Affiliation(s)
- Joydeep Basu
- Institute for Genome Sciences & Policy, Duke University, 101 Science Drive, Durham, NC 27708, USA.
| | | |
Collapse
|
16
|
Yan H, Ito H, Nobuta K, Ouyang S, Jin W, Tian S, Lu C, Venu RC, Wang GL, Green PJ, Wing RA, Buell CR, Meyers BC, Jiang J. Genomic and genetic characterization of rice Cen3 reveals extensive transcription and evolutionary implications of a complex centromere. THE PLANT CELL 2006; 18:2123-33. [PMID: 16877494 PMCID: PMC1560911 DOI: 10.1105/tpc.106.043794] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The centromere is the chromosomal site for assembly of the kinetochore where spindle fibers attach during cell division. In most multicellular eukaryotes, centromeres are composed of long tracts of satellite repeats that are recalcitrant to sequencing and fine-scale genetic mapping. Here, we report the genomic and genetic characterization of the complete centromere of rice (Oryza sativa) chromosome 3. Using a DNA fiber-fluorescence in situ hybridization approach, we demonstrated that the centromere of chromosome 3 (Cen3) contains approximately 441 kb of the centromeric satellite repeat CentO. Cen3 includes an approximately 1,881-kb domain associated with the centromeric histone CENH3. This CENH3-associated chromatin domain is embedded within a 3,113-kb region that lacks genetic recombination. Extensive transcription was detected within the CENH3 binding domain based on comprehensive annotation of protein-coding genes coupled with empirical measurements of mRNA levels using RT-PCR and massively parallel signature sequencing. Genes <10 kb from the CentO satellite array were expressed in several rice tissues and displayed histone modification patterns consistent with euchromatin, suggesting that rice centromeric chromatin accommodates normal gene expression. These results support the hypothesis that centromeres can evolve from gene-containing genomic regions.
Collapse
Affiliation(s)
- Huihuang Yan
- Department of Horticulture, University of Wisconsin, Madison, 53706, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Basu J, Willard HF. Artificial and engineered chromosomes: non-integrating vectors for gene therapy. Trends Mol Med 2005; 11:251-8. [PMID: 15882613 DOI: 10.1016/j.molmed.2005.03.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Non-integrating gene-delivery platforms demonstrate promise as potentially ideal gene-therapy vector systems. Although several approaches are under development, there is little consensus as to what constitutes a true 'artificial' versus an 'engineered' human chromosome. Recent progress must be evaluated in light of significant technical challenges that remain before such vectors achieve clinical utility. Here, we examine the principal classes of non-integrating vectors, ranging from episomes to engineered mini-chromosomes to true human artificial chromosomes. We compare their potential as practical gene-transfer platforms and summarize recent advances towards eventual applications in gene therapy. Although chromosome-engineering technology has advanced considerably within recent years, difficulties in establishing composition of matter and effective vector delivery currently prevent artificial or engineered chromosomes being accepted as viable gene-delivery platforms.
Collapse
Affiliation(s)
- Joydeep Basu
- Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
18
|
Lee HR, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J. Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci U S A 2005; 102:11793-8. [PMID: 16040802 PMCID: PMC1187982 DOI: 10.1073/pnas.0503863102] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The functional centromeres of rice (Oryza sativa, AA genome) chromosomes contain two key DNA components: the CRR centromeric retrotransposons and a 155-bp satellite repeat, CentO. However, several wild Oryza species lack the CentO repeat. We developed a chromatin immunoprecipitation-based technique to clone DNA fragments derived from chromatin containing the centromeric histone H3 variant CenH3. Chromatin immunoprecipitation cloning was carried out in the CentO-less species Oryza rhizomatis (CC genome) and Oryza brachyantha (FF genome). Three previously uncharacterized genome-specific satellite repeats, CentO-C1, CentO-C2, and CentO-F, were discovered in the centromeres of these two species. An 80-bp DNA region was found to be conserved in CentO-C1, CentO, and centromeric satellite repeats from maize and pearl millet, species which diverged from rice many millions of years ago. In contrast, the CentO-F repeat shows no sequence similarity to other centromeric repeats but has almost completely replaced other centromeric sequences in O. brachyantha, including the CRR-related sequences that normally constitute a significant fraction of the centromeric DNA in grass species.
Collapse
Affiliation(s)
- Hye-Ran Lee
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Schueler MG, Dunn JM, Bird CP, Ross MT, Viggiano L, Rocchi M, Willard HF, Green ED. Progressive proximal expansion of the primate X chromosome centromere. Proc Natl Acad Sci U S A 2005; 102:10563-8. [PMID: 16030148 PMCID: PMC1180780 DOI: 10.1073/pnas.0503346102] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies of the pericentromeric region of the human X chromosome short arm (Xp) revealed an age gradient from ancient DNA that contains expressed genes to recent human-specific DNA at the functional centromere. We analyzed the finished sequence of this human genomic region to investigate its evolutionary history. Phylogenetic analysis of >1,500 alpha-satellite monomers from the region revealed the presence of five physical domains, each containing monomers from a distinct phylogenetic clade. The most distal domain contains long interspersed nucleotide element repeats that were active >35 million years ago, whereas the four proximal domains contain more recently active long interspersed nucleotide element repeats. An out-of-register, unequal recombination (i.e., crossover) detected at the edge of the X chromosome-specific alpha-satellite array (DXZ1) may reflect the most recent of a series of punctuating events during evolution that resulted in a proximal physical expansion of the X centromere. The first 18 kb of this array has 97-99% pairwise identity among all 2-kb repeat units. To perform more detailed evolutionary comparisons, we sequenced the junction between the ancient DNA of Xp and the primate-specific alpha satellite in chimpanzee, gorilla, orangutan, vervet, macaque, and baboon. The striking conservation found in all cases supports the ancestral nature of the alpha satellite at this location. These studies demonstrate that the primate X centromere appears to have evolved through repeated expansion events occurring within the central, active region of centromeric DNA, with the newly added sequences then conferring centromere function.
Collapse
Affiliation(s)
- Mary G Schueler
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Feliciello I, Picariello O, Chinali G. The first characterisation of the overall variability of repetitive units in a species reveals unexpected features of satellite DNA. Gene 2005; 349:153-64. [PMID: 15777738 DOI: 10.1016/j.gene.2004.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 10/21/2004] [Accepted: 12/06/2004] [Indexed: 10/25/2022]
Abstract
We investigated the overall variability of the S1a satellite DNA repeats in ten European populations of Rana temporaria by a new procedure that determines the average sequence of the repeats in a genome. The average genomic sequences show that only 17% of the S1a repeat sequence (494 bp) is variable. The variable positions contain the same major and minor bases in all or many of the population samples tested, but the percentages of these bases can greatly vary among populations. This indicates the presence in the species of an enormous number of repeats having a different distribution of bases in these variable positions. Individual genomes contain thousands of repeat variants, but these mixtures have very similar characteristics in all populations because they present the same type of restricted and species-specific variability. Southern blots analyses and sequences of cloned S1a repeats fully support this conclusion. The S1 satellite DNA of other European brown frog species also presents properties indicating the same type of variability. This first characterisation of the overall repeat variability of a satellite DNA in a species has revealed features that cannot be determined by gene conversion and crossing over. Our results suggest that a specific directional process based on rolling circle amplification should play a relevant role in the evolution of satellite DNA.
Collapse
Affiliation(s)
- Isidoro Feliciello
- Dipartimento di Medicina Clinica e Sperimentale, Facoltà di Medicina e Chirurgia, Università di Napoli Federico II, Via Pansini 5, I-80131 Napoli, Italy
| | | | | |
Collapse
|
21
|
Grimes BR, Babcock J, Rudd MK, Chadwick B, Willard HF. Assembly and characterization of heterochromatin and euchromatin on human artificial chromosomes. Genome Biol 2004; 5:R89. [PMID: 15535865 PMCID: PMC545780 DOI: 10.1186/gb-2004-5-11-r89] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 08/31/2004] [Accepted: 09/22/2004] [Indexed: 01/07/2023] Open
Abstract
An assay of the formation of heterochromatin and euchromatin on de novo human artificial chromosomes containing alpha satellite DNA revealed that only a small amount of heterochromatin may be required for centromere function and that replication late in S phase is not a requirement for centromere function. Background Human centromere regions are characterized by the presence of alpha-satellite DNA, replication late in S phase and a heterochromatic appearance. Recent models propose that the centromere is organized into conserved chromatin domains in which chromatin containing CenH3 (centromere-specific H3 variant) at the functional centromere (kinetochore) forms within regions of heterochromatin. To address these models, we assayed formation of heterochromatin and euchromatin on de novo human artificial chromosomes containing alpha-satellite DNA. We also examined the relationship between chromatin composition and replication timing of artificial chromosomes. Results Heterochromatin factors (histone H3 lysine 9 methylation and HP1α) were enriched on artificial chromosomes estimated to be larger than 3 Mb in size but depleted on those smaller than 3 Mb. All artificial chromosomes assembled markers of euchromatin (histone H3 lysine 4 methylation), which may partly reflect marker-gene expression. Replication timing studies revealed that the replication timing of artificial chromosomes was heterogeneous. Heterochromatin-depleted artificial chromosomes replicated in early S phase whereas heterochromatin-enriched artificial chromosomes replicated in mid to late S phase. Conclusions Centromere regions on human artificial chromosomes and host chromosomes have similar amounts of CenH3 but exhibit highly varying degrees of heterochromatin, suggesting that only a small amount of heterochromatin may be required for centromere function. The formation of euchromatin on all artificial chromosomes demonstrates that they can provide a chromosome context suitable for gene expression. The earlier replication of the heterochromatin-depleted artificial chromosomes suggests that replication late in S phase is not a requirement for centromere function.
Collapse
Affiliation(s)
- Brenda R Grimes
- Department of Genetics, Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106, USA
- Current address: Indiana University, School of Medicine, Department of Medical and Molecular Genetics, Medical Research Building 130, 975 West Walnut Street, Indianapolis, IN 46202-5251, USA
| | - Jennifer Babcock
- Department of Genetics, Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106, USA
| | - M Katharine Rudd
- Department of Genetics, Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106, USA
- Institute for Genome Sciences and Policy and Department of Molecular Genetics and Microbiology, Duke University, 103 Research Drive, Durham, NC 27710, USA
| | - Brian Chadwick
- Department of Genetics, Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106, USA
- Institute for Genome Sciences and Policy and Department of Molecular Genetics and Microbiology, Duke University, 103 Research Drive, Durham, NC 27710, USA
| | - Huntington F Willard
- Department of Genetics, Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106, USA
- Institute for Genome Sciences and Policy and Department of Molecular Genetics and Microbiology, Duke University, 103 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
22
|
Rudd MK, Schueler MG, Willard HF. Sequence organization and functional annotation of human centromeres. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 68:141-9. [PMID: 15338612 DOI: 10.1101/sqb.2003.68.141] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- M K Rudd
- Institute for Genome Sciences & Policy, Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
23
|
Rudd MK, Mays RW, Schwartz S, Willard HF. Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag. Mol Cell Biol 2003; 23:7689-97. [PMID: 14560014 PMCID: PMC207596 DOI: 10.1128/mcb.23.21.7689-7697.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fully recapitulate normal centromere function has not been explored. Here, we have used two kinds of alpha satellite DNA, DXZ1 (from the X chromosome) and D17Z1 (from chromosome 17), to generate human artificial chromosomes. Although artificial chromosomes are mitotically stable over many months in culture, when we examined their segregation in individual cell divisions using an anaphase assay, artificial chromosomes exhibited more segregation errors than natural human chromosomes (P < 0.001). Naturally occurring, but abnormal small ring chromosomes derived from chromosome 17 and the X chromosome also missegregate more than normal chromosomes, implicating overall chromosome size and/or structure in the fidelity of chromosome segregation. As different artificial chromosomes missegregate over a fivefold range, the data suggest that variable centromeric DNA content and/or epigenetic assembly can influence the mitotic behavior of artificial chromosomes.
Collapse
Affiliation(s)
- M Katharine Rudd
- Department of Genetics, Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
24
|
Wang L, Ogawa S, Hangaishi A, Qiao Y, Hosoya N, Nanya Y, Ohyashiki K, Mizoguchi H, Hirai H. Molecular characterization of the recurrent unbalanced translocation der(1;7)(q10;p10). Blood 2003; 102:2597-604. [PMID: 12816870 DOI: 10.1182/blood-2003-01-0031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An unbalanced translocation der(1;7)(q10; p10) is a nonrandom chromosomal aberration commonly observed in myelodysplastic syndrome and acute myeloid leukemia. We molecularly analyzed the breakpoints of der(1;7)(q10;p10) by quantitative fluorescent in situ hybridization (FISH) analyses using centromeric satellite DNAs mapped to chromosomes 1 and 7 as probes. We found that the signal intensities of 2 centromere alphoid probes, D1Z7 on chromosome 1 and D7Z1 on chromosome 7, were almost invariably reduced on the derivative chromosome compared with those on their normal counterparts. These results suggest that this translocation results from the recombination between the 2 alphoids, which was further confirmed by fiber FISH experiments. Because the relative reduction in the intensities of D1Z7 and D7Z1 signals on the derivative chromosomes was highly variable among patients, it was estimated that the breakpoints in these patients were randomly distributed over several megabase pairs within each alphoid cluster except for its extreme end to the short arm. Our results provide a novel insight into the structural basis for generation of this translocation as well as its leukemogenic roles.
Collapse
Affiliation(s)
- Lili Wang
- Department of Hematology & Oncology, Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Balczon R, Wilson M, Bhatnagar YM. Analysis of detached human kinetochores. Chromosoma 2003; 112:96-102. [PMID: 12883946 DOI: 10.1007/s00412-003-0248-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2002] [Revised: 06/23/2003] [Accepted: 06/26/2003] [Indexed: 10/26/2022]
Abstract
A method has recently been established for inducing the physical detachment of kinetochores from chromosomes in human HeLa cells, and was used in the studies reported here to investigate the organization and function of dissociated HeLa kinetochores. Immunofluorescence labeling demonstrated that the detached HeLa kinetochores were relatively intact, with the number of detached kinetochores being only moderately more than the diploid number of chromosomes in HeLa cells. In addition, the detached kinetochores could be labeled with antibodies specific for the inner kinetochore plate, outer kinetochore, and subjacent centromeric heterochromatin. A functional assay demonstrated that detached kinetochores retained the capacity to activate the spindle checkpoint, leading to metaphase arrest. Analysis of kinetochore DNA indicated that it consisted primarily of DNA fragments of 130-160 kb in size, while the remainder of the chromosomes were sheared into much smaller fragments during the kinetochore detachment event. Further analysis of kinetochore DNA indicated that it was first cleaved into high molecular weight DNA (>200 kb) fragments during the initial stages of the kinetochore detachment process, and then underwent further maturation following nuclear envelope breakdown to give rise to the 130-160 kb fragment in detached kinetochores. Collectively, these data indicate that detached human kinetochores will be a useful system for investigating the organization, assembly, and function of human kinetochores.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Cell Biology and Neuroscience, The University of South Alabama, Mobile, AL 36688, USA.
| | | | | |
Collapse
|
26
|
Ouspenski II, Van Hooser AA, Brinkley BR. Relevance of histone acetylation and replication timing for deposition of centromeric histone CENP-A. Exp Cell Res 2003; 285:175-88. [PMID: 12706113 DOI: 10.1016/s0014-4827(03)00011-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A centromere-specific variant of histone H3, centromere protein A (CENP-A), is a critical determinant of centromeric chromatin, and its location on the chromosome may determine centromere identity. To search for factors that direct CENP-A deposition at a specific chromosomal locus, we took advantage of the observation that CENP-A, when expressed at elevated levels, can get incorporated at ectopic sites on the chromosome, in addition to the centromere. As core histone hypoacetylation and DNA replication timing have been implicated as epigenetic factors that may be important for centromere identity, we hypothesized that the sites of preferential CENP-A deposition will be distinguished by these parameters. We found that, on human dicentric chromosomes, ectopically expressed CENP-A preferentially incorporates at the active centromere only, despite the fact that the levels of histone acetylation and replication timing were indistinguishable at the two centromeres. In CHO cells, ectopically expressed CENP-A is preferentially targeted to some, but not all telomeric regions. Again, these regions could not be distinguished from other telomeres by their acetylation levels or replication timing. Thus histone acetylation and replication timing are not sufficient for specifying the sites of CENP-A deposition and likely for centromere identity.
Collapse
Affiliation(s)
- Ilia I Ouspenski
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | |
Collapse
|
27
|
Chen ES, Saitoh S, Yanagida M, Takahashi K. A cell cycle-regulated GATA factor promotes centromeric localization of CENP-A in fission yeast. Mol Cell 2003; 11:175-87. [PMID: 12535531 DOI: 10.1016/s1097-2765(03)00011-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
CENP-A, the centromere-specific histone H3 variant, plays a crucial role in organizing kinetochore chromatin for precise chromosome segregation. We have isolated Ams2, a Daxx-like motif-containing GATA factor, and histone H4, as multicopy suppressors of cnp1-1, an S. pombe CENP-A mutant. While depletion of Ams2 results in the reduction of CENP-A binding to the centromere and chromosome missegregation, increasing its dosage restores association of a CENP-A mutant protein with centromeres. Conversely, overexpression of CENP-A or histone H4 suppresses an ams2 disruptant. The intracellular amount of Ams2 thus affects centromeric nucleosomal constituents. Ams2 is abundant in S phase and associates with chromatin, including the central centromeres through binding to GATA-core sequences. Ams2 is thus a cell cycle-regulated GATA factor that is required for centromere function.
Collapse
Affiliation(s)
- Ee Sin Chen
- Department of Biophysics, Graduate School of Science, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
28
|
Ahmad K, Henikoff S. Histone H3 variants specify modes of chromatin assembly. Proc Natl Acad Sci U S A 2002; 99 Suppl 4:16477-84. [PMID: 12177448 PMCID: PMC139911 DOI: 10.1073/pnas.172403699] [Citation(s) in RCA: 256] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Histone variants have been known for 30 years, but their functions and the mechanism of their deposition are still largely unknown. Drosophila has three versions of histone H3. H3 packages the bulk genome, H3.3 marks active chromatin and may be essential for gene regulation, and Cid is the characteristic structural component of centromeric chromatin. We have characterized the properties of these histones by using a Drosophila cell-line system that allows precise analysis of both DNA replication and histone deposition. The deposition of H3 is restricted to replicating DNA. In striking contrast, H3.3 and Cid deposit throughout the cell cycle. Deposition of H3.3 occurs without any corresponding DNA replication. To confirm that the deposition of Cid is also replication-independent (RI), we examined centromere replication in cultured cells and neuroblasts. We found that centromeres replicate out of phase with heterochromatin and display replication patterns that may limit H3 deposition. This confirms that both variants undergo RI deposition, but at different locations in the nucleus. How variant histones accomplish RI deposition is unknown, and raises basic questions about the stability of nucleosomes, the machinery that accomplishes nucleosome assembly, and the functional organization of the nucleus. The different in vivo properties of H3, H3.3, and Cid set the stage for identifying the mechanisms by which they are differentially targeted. Here we suggest that local effects of "open" chromatin and broader effects of nuclear organization help to guide the two different H3 variants to their target sites.
Collapse
Affiliation(s)
- Kami Ahmad
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A1-162, Seattle, WA 98109, USA
| | | |
Collapse
|
29
|
Grimes BR, Rhoades AA, Willard HF. Alpha-satellite DNA and vector composition influence rates of human artificial chromosome formation. Mol Ther 2002; 5:798-805. [PMID: 12027565 DOI: 10.1006/mthe.2002.0612] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human artificial chromosomes (HACs) have been proposed as a new class of potential gene transfer and gene therapy vector. HACs can be formed when bacterial cloning vectors containing alpha-satellite DNA are transfected into cultured human cells. We have compared the HAC-forming potential of different sequences to identify features critical to the efficiency of the process. Chromosome 17 or 21 alpha-satellite arrays are highly competent HAC-forming substrates in this assay. In contrast, a Y-chromosome-derived alpha-satellite sequence is inefficient, suggesting that centromere specification is at least partly dependent on DNA sequence. The length of the input array is also an important determinant, as reduction of the chromosome-17-based array from 80 kb to 35 kb reduced the frequency of HAC formation. In addition to the alpha-satellite component, vector composition also influenced HAC formation rates, size, and copy number. The data presented here have a significant impact on the design of future HAC vectors that have potential to be developed for therapeutic applications and as tools for investigating human chromosome structure and function.
Collapse
MESH Headings
- Cell Line
- Centromere/physiology
- Chromosomes, Artificial, Human/genetics
- Chromosomes, Artificial, Human/physiology
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Y
- Cytogenetic Analysis
- DNA, Satellite/genetics
- Genetic Vectors
- Humans
- In Situ Hybridization, Fluorescence
- Kinetochores/physiology
- Mitosis
Collapse
Affiliation(s)
- Brenda R Grimes
- Department of Genetics, Case Western Reserve University School of Medicine, and Center for Human Genetics and Research Institute, University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
30
|
Abstract
Recent advances in chromosome engineering and the potential for downstream applications in gene therapy were presented at the Artificial Chromosome Session of Genome Medicine: Gene Therapy for the Millennium in Rome, Italy in September 2001. This session concentrated primarily on the structure and function of human centromeres and the ongoing challenge of equipping human artificial chromosomes (HACs) with centromeres to ensure their mitotic stability. Advances in the 'bottom up' construction of HACs included the transfer into HT1080 cells of circular PACs containing alpha satellite DNA, and the correction of HPRT deficiency in cells using HACs. Advances in the 'top down' construction of HACs using telomere associated chromosome fragmentation in DT40 cells included the formation of HACs that are less than a megabase in size and transfer of HACs through the mouse germline. Significant progress has also been made in the use of human minichromosomes for stable trans-gene expression. While many obstacles remain towards the use of HACs for gene therapy, this session provided an optimistic outlook for future success.
Collapse
Affiliation(s)
- B R Grimes
- Department of Genetics, School of Medicine, Case Western Reserve University and University Hospital of Cleveland, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
31
|
Ando S, Yang H, Nozaki N, Okazaki T, Yoda K. CENP-A, -B, and -C chromatin complex that contains the I-type alpha-satellite array constitutes the prekinetochore in HeLa cells. Mol Cell Biol 2002; 22:2229-41. [PMID: 11884609 PMCID: PMC133672 DOI: 10.1128/mcb.22.7.2229-2241.2002] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CENP-A is a component of centromeric chromatin and defines active centromere regions by forming centromere-specific nucleosomes. We have isolated centromeric chromatin containing the CENP-A nucleosome, CENP-B, and CENP-C from HeLa cells using anti-CENP-A and/or anti-CENP-C antibodies and shown that the CENP-A/B/C complex is predominantly formed on alpha-satellite DNA that contains the CENP-B box (alphaI-type array). Mapping of hypersensitive sites for micrococcal nuclease (MNase) digestion indicated that CENP-A nucleosomes were phased on the alphaI-type array as a result of interactions between CENP-B and CENP-B boxes, implying a repetitive configuration for the CENP-B/CENP-A nucleosome complex. Molecular mass analysis by glycerol gradient sedimentation showed that MNase digestion released a CENP-A/B/C chromatin complex of three to four nucleosomes into the soluble fraction, suggesting that CENP-C is a component of the repetitive CENP-B/CENP-A nucleosome complex. Quantitative analysis by immunodepletion of CENP-A nucleosomes showed that most of the CENP-C and approximately half the CENP-B took part in formation of the CENP-A/B/C chromatin complex. A kinetic study of the solubilization of CENPs showed that MNase digestion first released the CENP-A/B/C chromatin complex into the soluble fraction, and later removed CENP-B and CENP-C from the complex. This result suggests that CENP-A nucleosomes form a complex with CENP-B and CENP-C through interaction with DNA. On the basis of these results, we propose that the CENP-A/B/C chromatin complex is selectively formed on the I-type alpha-satellite array and constitutes the prekinetochore in HeLa cells.
Collapse
Affiliation(s)
- Satoshi Ando
- Bioscience Center, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | |
Collapse
|
32
|
Mejía JE, Alazami A, Willmott A, Marschall P, Levy E, Earnshaw WC, Larin Z. Efficiency of de novo centromere formation in human artificial chromosomes. Genomics 2002; 79:297-304. [PMID: 11863359 DOI: 10.1006/geno.2002.6704] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a comparative study, we show that human artificial chromosome (HAC) vectors based on alpha-satellite (alphoid) DNA from chromosome 17 but not the Y chromosome regularly form HACs in HT1080 human cells. We constructed four structurally similar HAC vectors, two with chromosome 17 or Y alphoid DNA (17alpha, Yalpha) and two with 17alpha or Yalpha and the hypoxanthine guanine phosphoribosyltransferase locus (HPRT1). The 17alpha HAC vectors generated artificial minichromosomes in 32-79% of the HT1080 clones screened, compared with only approximately 4% for the Yalpha HAC vectors, indicating that Yalpha is inefficient at forming a de novo centromere. The 17alpha HAC vectors produced megabase-sized, circular HACs containing multiple copies of alphoid fragments (60-250 kb) interspersed with either vector or HPRT1 DNA. The 17alpha-HPRT1 HACs were less stable than those with 17alpha only, and these results may influence the design of new HAC gene transfer vectors.
Collapse
Affiliation(s)
- José E Mejía
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | | | | | | | | | | | | |
Collapse
|
33
|
Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF. Genomic and genetic definition of a functional human centromere. Science 2001; 294:109-15. [PMID: 11588252 DOI: 10.1126/science.1065042] [Citation(s) in RCA: 349] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The definition of centromeres of human chromosomes requires a complete genomic understanding of these regions. Toward this end, we report integration of physical mapping, genetic, and functional approaches, together with sequencing of selected regions, to define the centromere of the human X chromosome and to explore the evolution of sequences responsible for chromosome segregation. The transitional region between expressed sequences on the short arm of the X and the chromosome-specific alpha satellite array DXZ1 spans about 450 kilobases and is satellite-rich. At the junction between this satellite region and canonical DXZ1 repeats, diverged repeat units provide direct evidence of unequal crossover as the homogenizing force of these arrays. Results from deletion analysis of mitotically stable chromosome rearrangements and from a human artificial chromosome assay demonstrate that DXZ1 DNA is sufficient for centromere function. Evolutionary studies indicate that, while alpha satellite DNA present throughout the pericentromeric region of the X chromosome appears to be a descendant of an ancestral primate centromere, the current functional centromere based on DXZ1 sequences is the product of the much more recent concerted evolution of this satellite DNA.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Line
- Centromere/chemistry
- Centromere/genetics
- Centromere/physiology
- Chromosome Segregation
- Chromosomes, Artificial, Bacterial
- Chromosomes, Artificial, Human
- Computer Simulation
- Contig Mapping
- Crossing Over, Genetic
- DNA, Satellite/chemistry
- DNA, Satellite/genetics
- DNA, Satellite/physiology
- Evolution, Molecular
- Humans
- Interspersed Repetitive Sequences
- Models, Genetic
- Phylogeny
- Repetitive Sequences, Nucleic Acid
- Restriction Mapping
- Sequence Analysis, DNA
- Sequence Deletion
- Sequence Tagged Sites
- Transfection
- Turner Syndrome/genetics
- X Chromosome/genetics
- X Chromosome/physiology
- X Chromosome/ultrastructure
Collapse
Affiliation(s)
- M G Schueler
- Department of Genetics, Case Western Reserve University School of Medicine and Center for Human Genetics, and, Research Institute, University Hospitals of Cleveland, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
34
|
Tsuchiya K, Schueler MG, Dev VG. Familial X centromere variant resulting in false-positive prenatal diagnosis of monosomy X by interphase FISH. Prenat Diagn 2001; 21:852-5. [PMID: 11746128 DOI: 10.1002/pd.156] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Interphase fluorescent in situ hybridization (FISH) analysis performed on uncultured amniotic fluid cells from a female fetus revealed a single signal using an X chromosome alpha-satellite probe, and the absence of any signal using a Y chromosome alpha-satellite probe. This result was initially interpreted as monosomy for the X chromosome in the fetus. Subsequent chromosome analysis from the cultured amniotic fluid cells showed two apparently normal X chromosomes. FISH using the X alpha-satellite probe on metaphase spreads revealed hybridization to both X chromosomes, although one signal was markedly reduced compared to the other. The same hybridization pattern was observed in the mother of the fetus. This is the first report of a rare familial X centromere variant resulting in a false-positive diagnosis of monosomy X by interphase FISH analysis for prenatal diagnosis.
Collapse
Affiliation(s)
- K Tsuchiya
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232-2561, USA.
| | | | | |
Collapse
|
35
|
Abstract
Centromeric chromatin is uniquely marked by the centromere-specific histone CENP-A. For assembly of CENP-A into nucleosomes to occur without competition from H3 deposition, it was proposed that centromeres are among the first or last sequences to be replicated. In this study, centromere replication in Drosophila was studied in cell lines and in larval tissues that contain minichromosomes that have structurally defined centromeres. Two different nucleotide incorporation methods were used to evaluate replication timing of chromatin containing CID, a Drosophila homologue of CENP-A. Centromeres in Drosophila cell lines were replicated throughout S phase but primarily in mid S phase. However, endogenous centromeres and X-derived minichromosome centromeres in vivo were replicated asynchronously in mid to late S phase. Minichromosomes with structurally intact centromeres were replicated in late S phase, and those in which centric and surrounding heterochromatin were partially or fully deleted were replicated earlier in mid S phase. We provide the first in vivo evidence that centromeric chromatin is replicated at different times in S phase. These studies indicate that incorporation of CID/CENP-A into newly duplicated centromeres is independent of replication timing and argue against determination of centromere identity by temporal sequestration of centromeric chromatin replication relative to bulk genomic chromatin.
Collapse
Affiliation(s)
- B Sullivan
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
36
|
Henikoff S, Ahmad K, Malik HS. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 2001; 293:1098-102. [PMID: 11498581 DOI: 10.1126/science.1062939] [Citation(s) in RCA: 932] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Every eukaryotic chromosome has a centromere, the locus responsible for poleward movement at mitosis and meiosis. Although conventional loci are specified by their DNA sequences, current evidence favors a chromatin-based inheritance mechanism for centromeres. The chromosome segregation machinery is highly conserved across all eukaryotes, but the DNA and protein components specific to centromeric chromatin are evolving rapidly. Incompatibilities between rapidly evolving centromeric components may be responsible for both the organization of centromeric regions and the reproductive isolation of emerging species.
Collapse
Affiliation(s)
- S Henikoff
- Howard Hughes Medical Institute Research Laboratories, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | | | |
Collapse
|
37
|
Sullivan BA, Blower MD, Karpen GH. Determining centromere identity: cyclical stories and forking paths. Nat Rev Genet 2001; 2:584-96. [PMID: 11483983 DOI: 10.1038/35084512] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The centromere is the genetic locus required for chromosome segregation. It is the site of spindle attachment to the chromosomes and is crucial for the transfer of genetic information between cell and organismal generations. Although the centromere was first recognized more than 120 years ago, little is known about what determines its site(s) of activity, and how it contributes to kinetochore formation and spindle attachment. Recent work in this field has supported the hypothesis that most eukaryotic centromeres are determined epigenetically rather than by primary DNA sequence. Here, we review recent studies that have elucidated the organization and functions of centromeric chromatin, and evaluate present-day models for how centromere identity and propagation are determined.
Collapse
Affiliation(s)
- B A Sullivan
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
38
|
Mejía JE, Willmott A, Levy E, Earnshaw WC, Larin Z. Functional complementation of a genetic deficiency with human artificial chromosomes. Am J Hum Genet 2001; 69:315-26. [PMID: 11452360 PMCID: PMC1235305 DOI: 10.1086/321977] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2001] [Accepted: 06/11/2001] [Indexed: 11/03/2022] Open
Abstract
We have shown functional complementation of a genetic deficiency in human cultured cells, using artificial chromosomes derived from cloned human genomic fragments. A 404-kb human-artificial-chromosome (HAC) vector, consisting of 220 kb of alphoid DNA from the centromere of chromosome 17, human telomeres, and the hypoxanthine guanine phosphoribosyltransferase (HPRT) genomic locus, was transferred to HPRT-deficient HT1080 fibrosarcoma cells. We generated several cell lines with low-copy-number, megabase-sized HACs containing a functional centromere and one or possibly several copies of the HPRT1 gene complementing the metabolic deficiency. The HACs consisted of alternating alphoid and nonalphoid DNA segments derived only from the input DNA (within the sensitivity limits of FISH detection), and the largest continuous alphoid segment was 158-250 kb. The study of both the structure and mitotic stability of these HACs offers insights into the mechanisms of centromere formation in synthetic chromosomes and will further the development of this human-gene-transfer technology.
Collapse
Affiliation(s)
- José E. Mejía
- Institute of Molecular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford; and Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh
| | - Adrian Willmott
- Institute of Molecular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford; and Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh
| | - Elaine Levy
- Institute of Molecular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford; and Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh
| | - William C. Earnshaw
- Institute of Molecular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford; and Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh
| | - Zoia Larin
- Institute of Molecular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford; and Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh
| |
Collapse
|
39
|
Haupt W, Fischer TC, Winderl S, Fransz P, Torres-Ruiz RA. The centromere1 (CEN1) region of Arabidopsis thaliana: architecture and functional impact of chromatin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 27:285-296. [PMID: 11532174 DOI: 10.1046/j.1365-313x.2001.01087.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have analysed the centromere 1 (CEN1) of Arabidopsis thaliana by integration of genetic, sequence and fluorescence in situ hybridisation (FISH) data. CEN1 is considered to include the centromeric core and the flanking left and right pericentromeric regions, which are distinct parts by structural and/or functional properties. CEN1 pericentromeres are composed of different dispersed repetitive elements, sometimes interrupted by functional genes. In contrast the CEN1 core is more uniformly structured harbouring only two different repeats. The presented analysis reveals aspects concerning distribution and effects of the uniformly shaped heterochromatin, which covers all CEN1 regions. A lethal mutation tightly linked to CEN1 enabled us to measure recombination frequencies within the heterochromatin in detail. In the left pericentromere, the change from eu- to heterochromatin is accompanied by a gradual change in sequence composition but by an extreme change in recombination frequency (from normal to 53-fold decrease) which takes place within a small region spanning 15 kb. Generally, heterochromatin is known to suppress recombination. However, the same analysis reveals that left and right pericentromere, though similar in sequence composition, differ markedly in suppression (53-fold versus 10-fold). The centromeric core exhibits at least 200-fold if not complete suppression. We discuss whether differences in (fine) composition reflect quantitative and qualitative differences in binding sites for heterochromatin proteins and in turn render different functional properties. Based on the presented data we estimate the sizes of Arabidopsis centromeres. These are typical for regional centromeres of higher eukaryotes and range from 4.4 Mb (CEN1) to 3.55 Mb (CEN4).
Collapse
Affiliation(s)
- W Haupt
- Lehrstuhl für Genetik, Technische Universität München, Germany
| | | | | | | | | |
Collapse
|
40
|
Willard HF. Neocentromeres and human artificial chromosomes: an unnatural act. Proc Natl Acad Sci U S A 2001; 98:5374-6. [PMID: 11344277 PMCID: PMC33217 DOI: 10.1073/pnas.111167398] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- H F Willard
- Center for Human Genetics and Research Institute, University Hospitals of Cleveland and Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
41
|
Abstract
The properties that define centromeres in complex eukaryotes are poorly understood because the underlying DNA is normally repetitive and indistinguishable from surrounding noncentromeric sequences. However, centromeric chromatin contains variant H3-like histones that may specify centromeric regions. Nucleosomes are normally assembled during DNA replication; therefore, we examined replication and chromatin assembly at centromeres in Drosophila cells. DNA in pericentric heterochromatin replicates late in S phase, and so centromeres are also thought to replicate late. In contrast to expectation, we show that centromeres replicate as isolated domains early in S phase. These domains do not appear to assemble conventional H3-containing nucleosomes, and deposition of the Cid centromeric H3-like variant proceeds by a replication-independent pathway. We suggest that late-replicating pericentric heterochromatin helps to maintain embedded centromeres by blocking conventional nucleosome assembly early in S phase, thereby allowing the deposition of centromeric histones.
Collapse
Affiliation(s)
- Kami Ahmad
- Howard Hughes Medical Institute, and Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Steven Henikoff
- Howard Hughes Medical Institute, and Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| |
Collapse
|
42
|
Vernis L, Poljak L, Chasles M, Uchida K, Casarégola S, Käs E, Matsuoka M, Gaillardin C, Fournier P. Only centromeres can supply the partition system required for ARS function in the yeast Yarrowia lipolytica. J Mol Biol 2001; 305:203-17. [PMID: 11124900 DOI: 10.1006/jmbi.2000.4300] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autonomously replicating sequences (ARSs) in the yeast Yarrowia lipolytica require two components: an origin of replication (ORI) and centromere (CEN) DNA, both of which are necessary for extrachromosomal maintenance. To investigate this cooperation in more detail, we performed a screen for genomic sequences able to confer high frequency of transformation to a plasmid-borne ORI. Our results confirm a cooperation between ORI and CEN sequences to form an ARS, since all sequences identified in this screen displayed features of centromeric DNA and included the previously characterized CEN1-1, CEN3-1 and CEN5-1 fragments. Two new centromeric DNAs were identified as they are unique, map to different chromosomes (II and IV) and induce chromosome breakage after genomic integration. A third sequence, which is adjacent to, but distinct from the previously characterized CEN1-1 region was isolated from chromosome I. Although these CEN sequences do not share significant sequence similarities, they display a complex pattern of short repeats, including conserved blocks of 9 to 14 bp and regions of dyad symmetry. Consistent with their A+T-richness and strong negative roll angle, Y. lipolytica CEN-derived sequences, but not ORIs, were capable of binding isolated Drosophila nuclear scaffolds. However, a Drosophila scaffold attachment region that functions as an ARS in other yeasts was unable to confer autonomous replication to an ORI-containing plasmid. Deletion analysis of CEN1-1 showed that the sequences responsible for the induction of chromosome breakage could be eliminated without compromising extrachromosomal maintenance. We propose that, while Y. lipolytica CEN DNA is essential for plasmid maintenance, this function can be supplied by several sub-fragments which, together, form the active chromosomal centromere. This complex organization of Y. lipolytica centromeres is reminiscent of the regional structures described in the yeast Schizosaccharomyces pombe or in multicellular eukaryotes.
Collapse
Affiliation(s)
- L Vernis
- Laboratoire de Génétique Moléculaire et Cellulaire, INRA-CNRS, Thiverval-Grignon, 78850, France
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Shelby RD, Monier K, Sullivan KF. Chromatin assembly at kinetochores is uncoupled from DNA replication. J Cell Biol 2000; 151:1113-8. [PMID: 11086012 PMCID: PMC2174364 DOI: 10.1083/jcb.151.5.1113] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2000] [Accepted: 10/11/2000] [Indexed: 11/24/2022] Open
Abstract
The specification of metazoan centromeres does not depend strictly on centromeric DNA sequences, but also requires epigenetic factors. The mechanistic basis for establishing a centromeric "state" on the DNA remains unclear. In this work, we have directly examined replication timing of the prekinetochore domain of human chromosomes. Kinetochores were labeled by expression of epitope-tagged CENP-A, which stably marks prekinetochore domains in human cells. By immunoprecipitating CENP-A mononucleosomes from synchronized cells pulsed with [(3)H]thymidine we demonstrate that CENP-A-associated DNA is replicated in mid-to-late S phase. Cytological analysis of DNA replication further demonstrated that centromeres replicate asynchronously in parallel with numerous other genomic regions. In contrast, quantitative Western blot analysis demonstrates that CENP-A protein synthesis occurs later, in G2. Quantitative fluorescence microscopy and transient transfection in the presence of aphidicolin, an inhibitor of DNA replication, show that CENP-A can assemble into centromeres in the absence of DNA replication. Thus, unlike most genomic chromatin, histone synthesis and assembly are uncoupled from DNA replication at the kinetochore. Uncoupling DNA replication from CENP-A synthesis suggests that regulated chromatin assembly or remodeling could play a role in epigenetic centromere propagation.
Collapse
Affiliation(s)
- R D Shelby
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
44
|
Abstract
One of the biggest obstacles to gene therapy is the delivery of the therapeutic gene to the target tissue so that it is appropriately expressed. In his Perspective, Willard looks at the potential advantages of using a human artificial chromosome to maintain expression of a therapeutic gene and discusses some of the hurdles yet to be overcome before this gene delivery system can be tried out in the clinic.
Collapse
Affiliation(s)
- H F Willard
- Department of Genetics and Center for Human Genetics at Case Western Reserve University and the Research Institute of Universi Hospitals of Cleveland, Cleveland, OH 44106, USA.
| |
Collapse
|
45
|
Abstract
Two cases of marker chromosomes derived from a non-centromeric location were studied to determine the characteristics of these markers with respect to the presence of functional centromeres and whether an associated phenotype could be described. The markers were characterized by fluorescence in situ hybridization and centromeric protein studies. Assessments were done to identify clinical features. Case 1 is a girl referred at age 1.5 years with swirly areas of hyperpigmentation, bilateral preauricular pits, hypotonia, developmental delay, and seizures. Case 2 is a male first evaluated as a newborn and then later during the first year of life. He had streaky hypopigmentation, right preauricular pit, accessory nipples, postaxial polydactyly, asymmetric cerebral ventricles, duplicated right kidney, a right pulmonary artery stenosis, and seizures. Mosaicism for an extra marker from the 3qter region was present in both cases. Both markers had a constriction near one end and were C-band negative. Centromeric protein studies indicated absence of CENP-B, presence of CENP-C (data for case 1 only), and presence of CENP-E. Marker chromosomes were thus identified with a chromosomal origin far from their usual centromeric region and yet appeared to have functional centromeres. These two cases did not permit a specific clinical phenotype to be ascribed to the presence of tetrasomy for 3q26.2 approximately 3q27.2-->3qter.
Collapse
Affiliation(s)
- I Teshima
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Yoda K, Ando S, Morishita S, Houmura K, Hashimoto K, Takeyasu K, Okazaki T. Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro. Proc Natl Acad Sci U S A 2000; 97:7266-71. [PMID: 10840064 PMCID: PMC16534 DOI: 10.1073/pnas.130189697] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Centromere protein A (CENP-A) is a variant of histone H3 with more than 60% sequence identity at the C-terminal histone fold domain. CENP-A specifically locates to active centromeres of animal chromosomes and therefore is believed to be a component of the specialized centromeric nucleosomes on which the kinetochores are assembled. Here we report that CENP-A, highly purified from HeLa cells, can indeed replace histone H3 in a nucleosome reconstitution system mediated by nucleosome assembly protein-1 (NAP-1). The structure of the nucleosomes reconstituted with recombinant CENP-A, histones H2A, H2B, and H4, and closed circular DNAs had the following properties. By atomic force microscopy, "beads on a string" images were obtained that were similar to those obtained with nucleosomes reconstituted with four standard histones. DNA ladders with repeats of approximately 10 bp were produced by DNase I digestion, indicating that the DNA was wrapped round the protein complex. Mononucleosomes isolated by glycerol gradient sedimentation had a relative molecular mass of approximately 200 kDa and were composed of 120-150 bp of DNA and equimolar amounts of CENP-A, and histones H4, H2A, and H2B. Thus, we conclude that CENP-A forms an octameric complex with histones H4, H2A, and H2B in the presence of DNA.
Collapse
Affiliation(s)
- K Yoda
- Bioscience Center, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- S Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| |
Collapse
|
48
|
Henikoff S, Ahmad K, Platero JS, van Steensel B. Heterochromatic deposition of centromeric histone H3-like proteins. Proc Natl Acad Sci U S A 2000; 97:716-21. [PMID: 10639145 PMCID: PMC15396 DOI: 10.1073/pnas.97.2.716] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Centromeres of most organisms are embedded within constitutive heterochromatin, the condensed regions of chromosomes that account for a large fraction of complex genomes. The functional significance of this centromere-heterochromatin relationship, if any, is unknown. One possibility is that heterochromatin provides a suitable environment for assembly of centromere components, such as special centromeric nucleosomes that contain distinctive histone H3-like proteins. We describe a Drosophila H3-like protein, Cid (for centromere identifier) that localizes exclusively to fly centromeres. When the cid upstream region drives expression of H3 and H2B histone-green fluorescent protein fusion genes in Drosophila cells, euchromatin-specific deposition results. Remarkably, when the cid upstream region drives expression of yeast, worm, and human centromeric histone-green fluorescent protein fusion proteins, localization is preferentially within Drosophila pericentric heterochromatin. Heterochromatin-specific localization also was seen for yeast and worm centromeric proteins constitutively expressed in human cells. Preferential localization to heterochromatin in heterologous systems is unexpected if centromere-specific or site-specific factors determine H3-like protein localization to centromeres. Rather, the heterochromatic state itself may help localize centromeric components.
Collapse
Affiliation(s)
- S Henikoff
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA.
| | | | | | | |
Collapse
|
49
|
Molecular Cell Biology: Role of Repetitive DNA in Nuclear Architecture and Chromosome Structure. ACTA ACUST UNITED AC 2000. [DOI: 10.1007/978-3-642-57203-6_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
|
50
|
Platero JS, Ahmad K, Henikoff S. A distal heterochromatic block displays centromeric activity when detached from a natural centromere. Mol Cell 1999; 4:995-1004. [PMID: 10635324 DOI: 10.1016/s1097-2765(00)80228-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We repeatedly released a distal block of heterochromatin lacking a natural centromere in mitotic cells and assayed its segregation. At anaphase, control acentric fragments typically remained unoriented between daughter nuclei and were subsequently lost. Fragments containing the brownDominant (bWD) heterochromatic element displayed regular anaphase movement upon release. These fragments were found to segregate and function based on both cytological and phenotypic criteria. We also found that intact bWD-containing chromosomes normally display occasional dicentric behavior, suggesting that bWD has centromeric activity on the intact chromosome as well. Our findings suggest that centromere competence is innate to satellite-containing blocks of heterochromatin, challenging models for centromere identity in which competence is an acquired characteristic.
Collapse
Affiliation(s)
- J S Platero
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|