1
|
Xu M, Cui M, Wang Y, Li B, Feng L, Xing H, Zhang K. Therapeutic potentials of natural products for post-traumatic stress disorder: A focus on epigenetics. CHINESE HERBAL MEDICINES 2025; 17:203-219. [PMID: 40256720 PMCID: PMC12009077 DOI: 10.1016/j.chmed.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 07/18/2024] [Indexed: 04/22/2025] Open
Abstract
Post-traumatic stress disorder (PTSD) is a relatively common but complex mental illness with a range of diverse risk factors. Typical symptoms include the re-experience or avoidance of traumatic events, cognitive impairment, and hypervigilance. While the exact pathogenesis of PTSD is unclear, many studies indicate that epigenetic regulation plays a key role in its development. Specifically, numerous studies have indicated that the levels of histone acetylation and methylation, DNA methylation, and noncoding RNA are altered in PTSD patients. Further to this, natural products have been found to achieve epigenetic regulation of PTSD by regulating the expression of epigenetic enzymes, long noncoding RNA (lncRNA), and miRNA, thereby playing a role in improving PTSD symptoms. To date, however, no epigenetic regulation related drugs have been used in the treatment of PTSD. Furthermore, while natural products that can epigenetically regulate PTSD have received increasing levels of attention, there have not yet been any systematic reports on the topic. Here, we summarized the roles and mechanisms of natural products in the epigenetic regulation of PTSD, providing a novel and unique perspective that will help to guide the development and application of new PTSD treatments.
Collapse
Affiliation(s)
- Meijing Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Minghui Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Boru Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lijin Feng
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hang Xing
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kuo Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
2
|
Nokkeaw A, Thamjamrassri P, Tangkijvanich P, Ariyachet C. Regulatory Functions and Mechanisms of Circular RNAs in Hepatic Stellate Cell Activation and Liver Fibrosis. Cells 2023; 12:cells12030378. [PMID: 36766720 PMCID: PMC9913196 DOI: 10.3390/cells12030378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Chronic liver injury induces the activation of hepatic stellate cells (HSCs) into myofibroblasts, which produce excessive amounts of extracellular matrix (ECM), resulting in tissue fibrosis. If the injury persists, these fibrous scars could be permanent and disrupt liver architecture and function. Currently, effective anti-fibrotic therapies are lacking; hence, understanding molecular mechanisms that control HSC activation could hold a key to the development of new treatments. Recently, emerging studies have revealed roles of circular RNAs (circRNAs), a class of non-coding RNAs that was initially assumed to be the result of splicing errors, as new regulators in HSC activation. These circRNAs can modulate the activity of microRNAs (miRNAs) and their interacting protein partners involved in regulating fibrogenic signaling cascades. In this review, we will summarize the current knowledge of this class of non-coding RNAs for their molecular function in HSC activation and liver fibrosis progression.
Collapse
Affiliation(s)
- Archittapon Nokkeaw
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Biochemistry Program, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pannathon Thamjamrassri
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Biochemistry Program, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pisit Tangkijvanich
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (P.T.); (C.A.)
| | - Chaiyaboot Ariyachet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (P.T.); (C.A.)
| |
Collapse
|
3
|
de Almeida BC, dos Anjos LG, Dobroff AS, Baracat EC, Yang Q, Al-Hendy A, Carvalho KC. Epigenetic Features in Uterine Leiomyosarcoma and Endometrial Stromal Sarcomas: An Overview of the Literature. Biomedicines 2022; 10:2567. [PMID: 36289829 PMCID: PMC9599831 DOI: 10.3390/biomedicines10102567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
There is a consensus that epigenetic alterations play a key role in cancer initiation and its biology. Studies evaluating the modification in the DNA methylation and chromatin remodeling patterns, as well as gene regulation profile by non-coding RNAs (ncRNAs) have led to the development of novel therapeutic approaches to treat several tumor types. Indeed, despite clinical and translational challenges, combinatorial therapies employing agents targeting epigenetic modifications with conventional approaches have shown encouraging results. However, for rare neoplasia such as uterine leiomyosarcomas (LMS) and endometrial stromal sarcomas (ESS), treatment options are still limited. LMS has high chromosomal instability and molecular derangements, while ESS can present a specific gene fusion signature. Although they are the most frequent types of "pure" uterine sarcomas, these tumors are difficult to diagnose, have high rates of recurrence, and frequently develop resistance to current treatment options. The challenges involving the management of these tumors arise from the fact that the molecular mechanisms governing their progression have not been entirely elucidated. Hence, to fill this gap and highlight the importance of ongoing and future studies, we have cross-referenced the literature on uterine LMS and ESS and compiled the most relevant epigenetic studies, published between 2009 and 2022.
Collapse
Affiliation(s)
- Bruna Cristine de Almeida
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| | - Laura Gonzalez dos Anjos
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| | - Andrey Senos Dobroff
- UNM Comprehensive Cancer Center (UNMCCC), University of New Mexico, Albuquerque, NM 87131, USA
- Division of Molecular Medicine, Department of Internal Medicine, (UNM) School of Medicine, UNM Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Edmund Chada Baracat
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Katia Candido Carvalho
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| |
Collapse
|
4
|
Chakraborty B, Das S, Gupta A, Xiong Y, Vyshnavi TV, Kizer ME, Duan J, Chandrasekaran AR, Wang X. Aptamers for Viral Detection and Inhibition. ACS Infect Dis 2022; 8:667-692. [PMID: 35220716 PMCID: PMC8905934 DOI: 10.1021/acsinfecdis.1c00546] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 02/07/2023]
Abstract
Recent times have experienced more than ever the impact of viral infections in humans. Viral infections are known to cause diseases not only in humans but also in plants and animals. Here, we have compiled the literature review of aptamers selected and used for detection and inhibition of viral infections in all three categories: humans, animals, and plants. This review gives an in-depth introduction to aptamers, different types of aptamer selection (SELEX) methodologies, the benefits of using aptamers over commonly used antibody-based strategies, and the structural and functional mechanism of aptasensors for viral detection and therapy. The review is organized based on the different characterization and read-out tools used to detect virus-aptasensor interactions with a detailed index of existing virus-targeting aptamers. Along with addressing recent developments, we also discuss a way forward with aptamers for DNA nanotechnology-based detection and treatment of viral diseases. Overall, this review will serve as a comprehensive resource for aptamer-based strategies in viral diagnostics and treatment.
Collapse
Affiliation(s)
- Banani Chakraborty
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sreyashi Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Arushi Gupta
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - T-V Vyshnavi
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Megan E. Kizer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jinwei Duan
- Department of Chemistry and Materials Science, Chang’an University, Xi’an, Shaanxi 710064, China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Xing Wang
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Zhang J, Chen S, Liu K. Structural insights into piRNA biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194799. [PMID: 35182819 DOI: 10.1016/j.bbagrm.2022.194799] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 01/24/2023]
Abstract
Discovered two decades ago, Piwi-interacting RNAs (piRNAs) play critical roles in gene regulation, transposon element repression, and antiviral defense. Dysregulation of piRNAs has been noted in diverse human diseases including cancers. Recently, extensive studies have revealed that many more proteins are involved in piRNA biogenesis. This review will summarize the recent progress in piRNA biogenesis and functions, especially the molecular mechanisms by which piRNA biogenesis-related proteins contribute to piRNA processing.
Collapse
Affiliation(s)
- Jin Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Sizhuo Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
6
|
Comparative Genomics of Typical and Atypical Aeromonas salmonicida Complete Genomes Revealed New Insights into Pathogenesis Evolution. Microorganisms 2022; 10:microorganisms10010189. [PMID: 35056638 PMCID: PMC8780938 DOI: 10.3390/microorganisms10010189] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Aeromonas salmonicida is a global distributed Gram-negative teleost pathogen, affecting mainly salmonids in fresh and marine environments. A. salmonicida strains are classified as typical or atypical depending on their origin of isolation and phenotype. Five subspecies have been described, where A. salmonicida subsp. salmonicida is the only typical subspecies, and the subsp. achromogenes, masoucida, smithia, and pectinolytica are considered atypical. Genomic differences between A. salmonicida subsp. salmonicida isolates and their relationship with the current classification have not been explored. Here, we sequenced and compared the complete closed genomes of four virulent strains to elucidate their molecular diversity and pathogenic evolution using the more accurate genomic information so far. Phenotypes, biochemical, and enzymatic profiles were determined. PacBio and MiSeq sequencing platforms were utilized for genome sequencing. Comparative genomics showed that atypical strains belong to the subsp. salmonicida, with 99.55% ± 0.25% identity with each other, and are closely related to typical strains. The typical strain A. salmonicida J223 is closely related to typical strains, with 99.17% identity with the A. salmonicida A449. Genomic differences between atypical and typical strains are strictly related to insertion sequences (ISs) activity. The absence and presence of genes encoding for virulence factors, transcriptional regulators, and non-coding RNAs are the most significant differences between typical and atypical strains that affect their phenotypes. Plasmidome plays an important role in A. salmonicida virulence and genome plasticity. Here, we determined that typical strains harbor a larger number of plasmids and virulence-related genes that contribute to its acute virulence. In contrast, atypical strains harbor a single, large plasmid and a smaller number of virulence genes, reflected by their less acute virulence and chronic infection. The relationship between phenotype and A. salmonicida subspecies’ taxonomy is not evident. Comparative genomic analysis based on completed genomes revealed that the subspecies classification is more of a reflection of the ecological niche occupied by bacteria than their divergences at the genomic level except for their accessory genome.
Collapse
|
7
|
Entzian G, Hofacker I, Ponty Y, Lorenz R, Tanzer A. RNAxplorer: Harnessing the Power of Guiding Potentials to Sample RNA Landscapes. Bioinformatics 2021; 37:2126-2133. [PMID: 33538792 PMCID: PMC8352504 DOI: 10.1093/bioinformatics/btab066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/16/2020] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Abstract
Motivation Predicting the folding dynamics of RNAs is a computationally difficult problem, first and foremost due to the combinatorial explosion of alternative structures in the folding space. Abstractions are therefore needed to simplify downstream analyses, and thus make them computationally tractable. This can be achieved by various structure sampling algorithms. However, current sampling methods are still time consuming and frequently fail to represent key elements of the folding space. Method We introduce RNAxplorer, a novel adaptive sampling method to efficiently explore the structure space of RNAs. RNAxplorer uses dynamic programming to perform an efficient Boltzmann sampling in the presence of guiding potentials, which are accumulated into pseudo-energy terms and reflect similarity to already well-sampled structures. This way, we effectively steer sampling toward underrepresented or unexplored regions of the structure space. Results We developed and applied different measures to benchmark our sampling methods against its competitors. Most of the measures show that RNAxplorer produces more diverse structure samples, yields rare conformations that may be inaccessible to other sampling methods and is better at finding the most relevant kinetic traps in the landscape. Thus, it produces a more representative coarse graining of the landscape, which is well suited to subsequently compute better approximations of RNA folding kinetics. Availabilityand implementation https://github.com/ViennaRNA/RNAxplorer/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gregor Entzian
- Faculty of Chemistry, Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Ivo Hofacker
- Faculty of Chemistry, Department of Theoretical Chemistry, University of Vienna, Vienna, Austria.,Faculty of Computer Science, Bioinformatics and Computational Biology, University of Vienna, Vienna, Austria
| | - Yann Ponty
- LIX, CNRS UMR 7161, Ecole Polytechnique, Institut Polytechnique de Paris, France
| | - Ronny Lorenz
- Faculty of Chemistry, Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Andrea Tanzer
- Faculty of Chemistry, Department of Theoretical Chemistry, University of Vienna, Vienna, Austria.,Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Bogard B, Francastel C, Hubé F. Multiple information carried by RNAs: total eclipse or a light at the end of the tunnel? RNA Biol 2020; 17:1707-1720. [PMID: 32559119 PMCID: PMC7714488 DOI: 10.1080/15476286.2020.1783868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
The findings that an RNA is not necessarily either coding or non-coding, or that a precursor RNA can produce different types of mature RNAs, whether coding or non-coding, long or short, have challenged the dichotomous view of the RNA world almost 15 years ago. Since then, and despite an increasing number of studies, the diversity of information that can be conveyed by RNAs is rarely searched for, and when it is known, it remains largely overlooked in further functional studies. Here, we provide an update with prominent examples of multiple functions that are carried by the same RNA or are produced by the same precursor RNA, to emphasize their biological relevance in most living organisms. An important consequence is that the overall function of their locus of origin results from the balance between various RNA species with distinct functions and fates. The consideration of the molecular basis of this multiplicity of information is obviously crucial for downstream functional studies when the targeted functional molecule is often not the one that is believed.
Collapse
Affiliation(s)
- Baptiste Bogard
- Université De Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | | | - Florent Hubé
- Université De Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| |
Collapse
|
9
|
Zhao Y, Jia L, Zheng Y, Li W. Involvement of Noncoding RNAs in the Differentiation of Osteoclasts. Stem Cells Int 2020; 2020:4813140. [PMID: 32908541 PMCID: PMC7468661 DOI: 10.1155/2020/4813140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
As the most important bone-resorbing cells, osteoclasts play fundamental roles in bone remodeling and skeletal health. Much effort has been focused on identifying the regulators of osteoclast metabolism. Noncoding RNAs (ncRNAs) reportedly regulate osteoclast formation, differentiation, survival, and bone-resorbing activity to participate in bone physiology and pathology. The present review intends to provide a general framework for how ncRNAs and their targets regulate osteoclast differentiation and the important events of osteoclastogenesis they are involved in, including osteoclast precursor generation, early differentiation, mononuclear osteoclast fusion, and multinucleated osteoclast function and survival. This framework is beneficial for understanding bone biology and for identifying the potential biomarkers or therapeutic targets of bone diseases. The review also summarizes the results of in vivo experiments and classic experiment methods for osteoclast-related researches.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
10
|
Zheng GZ, Li W, Liu ZY. Alternative role of noncoding RNAs: coding and noncoding properties. J Zhejiang Univ Sci B 2019; 20:920-927. [PMID: 31595728 DOI: 10.1631/jzus.b1900336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Noncoding RNAs (ncRNAs) have played a critical role in cellular biological functions. Recently, some peptides or proteins originating from annotated ncRNAs were identified in organism development and various diseases. Here, we briefly review several novel peptides translated by annotated ncRNAs and related key functions. In addition, we summarize the potential mechanism of bifunctional ncRNAs and propose a specific "switch" triggering the transformation from the noncoding to the coding state under certain stimuli or cellular stress. The coding properties of ncRNAs and their peptide products may provide a novel horizon in proteomic research and can be regarded as a potential therapeutic target for the treatment of various diseases.
Collapse
Affiliation(s)
- Gui-Zhen Zheng
- Department of Emergency Internal Medicine, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Wei Li
- Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Zhi-Yong Liu
- Department of Laboratory Diagnostics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.,Kunming General Hospital of Chengdu Military Command, Kunming 650032, China
| |
Collapse
|
11
|
Patel S, Panchasara H, Braddick D, Gohil N, Singh V. Synthetic small RNAs: Current status, challenges, and opportunities. J Cell Biochem 2018; 119:9619-9639. [DOI: 10.1002/jcb.27252] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/20/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Shreya Patel
- Department of Microbiology, Synthetic Biology Laboratory School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area Gandhinagar India
| | - Happy Panchasara
- Department of Microbiology, Synthetic Biology Laboratory School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area Gandhinagar India
| | | | - Nisarg Gohil
- Department of Microbiology, Synthetic Biology Laboratory School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area Gandhinagar India
| | - Vijai Singh
- Department of Microbiology, Synthetic Biology Laboratory School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area Gandhinagar India
| |
Collapse
|
12
|
Pang Y, Mao C, Liu S. Encoding activities of non-coding RNAs. Am J Cancer Res 2018; 8:2496-2507. [PMID: 29721095 PMCID: PMC5928905 DOI: 10.7150/thno.24677] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/25/2018] [Indexed: 12/14/2022] Open
Abstract
The universal expression of various non-coding RNAs (ncRNAs) is now considered the main feature of organisms' genomes. Many regions in the genome are transcribed but not annotated to encode proteins, yet contain small open reading frames (smORFs). A widely accepted opinion is that a vast majority of ncRNAs are not further translated. However, increasing evidence underlines a series of intriguing translational events from the ncRNAs, which were previously considered to lack coding potential. Recent studies also suggest that products derived from such novel translational events display important regulatory functions in many fundamental biological and pathological processes. Here we give a critical review on the potential coding capacity of ncRNAs, in particular, about what is known and unknown in this emerging area. We also discuss the possible underlying coding mechanisms of these extraordinary ncRNAs and possible roles of peptides or proteins derived from the ncRNAs in disease development and theranostics. Our review offers an extensive resource for studying the biology of ncRNAs and sheds light into the use of ncRNAs and their corresponding peptides or proteins for disease diagnosis and therapy.
Collapse
|
13
|
Barik A, Das S. A comparative study of sequence- and structure-based features of small RNAs and other RNAs of bacteria. RNA Biol 2017; 15:95-103. [PMID: 29099311 DOI: 10.1080/15476286.2017.1387709] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Small RNAs (sRNAs) in bacteria have emerged as key players in transcriptional and post-transcriptional regulation of gene expression. Here, we present a statistical analysis of different sequence- and structure-related features of bacterial sRNAs to identify the descriptors that could discriminate sRNAs from other bacterial RNAs. We investigated a comprehensive and heterogeneous collection of 816 sRNAs, identified by northern blotting across 33 bacterial species and compared their various features with other classes of bacterial RNAs, such as tRNAs, rRNAs and mRNAs. We observed that sRNAs differed significantly from the rest with respect to G+C composition, normalized minimum free energy of folding, motif frequency and several RNA-folding parameters like base-pairing propensity, Shannon entropy and base-pair distance. Based on the selected features, we developed a predictive model using Random Forests (RF) method to classify the above four classes of RNAs. Our model displayed an overall predictive accuracy of 89.5%. These findings would help to differentiate bacterial sRNAs from other RNAs and further promote prediction of novel sRNAs in different bacterial species.
Collapse
Affiliation(s)
- Amita Barik
- a Biomedical Informatics Centre , National Institute of Cholera and Enteric Diseases , Kolkata , West Bengal , India
| | - Santasabuj Das
- a Biomedical Informatics Centre , National Institute of Cholera and Enteric Diseases , Kolkata , West Bengal , India.,b Division of Clinical Medicine , National Institute of Cholera and Enteric Diseases , Kolkata , West Bengal , India
| |
Collapse
|
14
|
Dong Y, Yoshitomi T, Hu JF, Cui J. Long noncoding RNAs coordinate functions between mitochondria and the nucleus. Epigenetics Chromatin 2017; 10:41. [PMID: 28835257 PMCID: PMC5569521 DOI: 10.1186/s13072-017-0149-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 08/17/2017] [Indexed: 11/23/2022] Open
Abstract
In animal cells, mitochondria are the primary powerhouses and metabolic factories. They also contain genomes and can produce mitochondrial-specific nucleic acids and proteins. To maintain homeostasis of the entire cell, an intense cross-talk between mitochondria and the nucleus, mediated by encoded noncoding RNAs (ncRNAs), as well as proteins, is required. Long ncRNAs (lncRNAs) contain characteristic structures, and they are involved in the regulation of almost every stage of gene expression, as well as being implicated in a variety of disease states, such as cancer. In the coordinated signaling system, several lncRNAs, transcribed in the nucleus but residing in mitochondria, play a key role in regulating mitochondrial functions or dynamics. For example, RMRP, a component of the mitochondrial RNase MRP, is important for mitochondrial DNA replication and RNA processing, and the steroid receptor RNA activator, SRA, is a key modulator of hormone signaling and is present in both the nucleus and mitochondria. Some RNA-binding proteins maybe play a role in the lncRNAs transport system, such as HuR, GRSF1, SHARP, SLIRP, PPR, and PNPASE. Furthermore, a series of nuclear DNA-encoded lncRNAs were implicated in mitochondria-mediated apoptosis, mitochondrial bioenergetics and biosynthesis, and glutamine metabolism. The mitochondrial genome can also encode a set of lncRNAs, and they are divided into three categories: (1) lncND5, lncND6, and lncCyt b RNA; (2) chimeric mitochondrial DNA-encoded lncRNAs; and (3) putative mitochondrial DNA-encoded lncRNAs. It has been reported that the mitochondrial DNA-encoded lncRNAs appear to operate in the nucleus. The molecular mechanisms underlying trafficking of the mitochondrial DNA-encoded lncRNAs to the nucleus in mammals are only now beginning to emerge. In conclusion, both nuclear- and mitochondrial DNA-encoded lncRNAs mediate an intense intercompartmental cross-talk, which opens a rich field for investigation of the mechanism underlying the intercompartmental coordination and the maintenance of whole cell homeostasis.
Collapse
Affiliation(s)
- Yaru Dong
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, Jilin, China.,Stanford University Medical School, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
| | - Takeshi Yoshitomi
- Department of Ophthalmology, Akita University School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Ji-Fan Hu
- Stanford University Medical School, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA. .,Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, 130061, Jilin, China.
| | - Jizhe Cui
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, Jilin, China.
| |
Collapse
|
15
|
Schmidt C, Beilsten-Edmands V, Robinson CV. Insights into Eukaryotic Translation Initiation from Mass Spectrometry of Macromolecular Protein Assemblies. J Mol Biol 2015; 428:344-356. [PMID: 26497764 DOI: 10.1016/j.jmb.2015.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/28/2015] [Accepted: 10/14/2015] [Indexed: 02/05/2023]
Abstract
Translation initiation in eukaryotes requires the interplay of at least 10 initiation factors that interact at the different steps of this phase of gene expression. The interactions of initiation factors and related proteins are in general controlled by phosphorylation, which serves as a regulatory switch to turn protein translation on or off. The structures of initiation factors and a complete description of their post-translational modification (PTM) status are therefore required in order to fully understand these processes. In recent years, mass spectrometry has contributed considerably to provide this information and nowadays is proving to be indispensable when studying dynamic heterogeneous protein complexes such as the eukaryotic initiation factors. Herein, we highlight mass spectrometric approaches commonly applied to identify interacting subunits and their PTMs and the structural techniques that allow the architecture of protein complexes to be assessed. We present recent structural investigations of initiation factors and their interactions with other factors and with ribosomes and we assess the models generated. These models allow us to locate PTMs within initiation factor complexes and to highlight possible roles for phosphorylation sites in regulating interaction interfaces.
Collapse
Affiliation(s)
- Carla Schmidt
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.
| | - Victoria Beilsten-Edmands
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.
| | - Carol V Robinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.
| |
Collapse
|
16
|
Hajjari M, Khoshnevisan A, Shin YK. Molecular function and regulation of long non-coding RNAs: paradigms with potential roles in cancer. Tumour Biol 2014; 35:10645-63. [PMID: 25266799 DOI: 10.1007/s13277-014-2636-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/12/2014] [Indexed: 01/06/2023] Open
Abstract
Different long non-coding RNAs (lncRNAs) are transcribed within the genome. Although initially argued to be spurious transcriptional noise, these RNAs play important roles in biological pathways, as shown by different studies. Also, there are some reports about the role of lncRNAs in different cancers. They can contribute to the development and progression of cancer by the functioning as oncogene or/and tumor suppressor molecules. In this review, we point to some important lncRNAs as examples which seem to be involved in cancer initiation/progression.
Collapse
|
17
|
Yang G, Lu X, Yuan L. LncRNA: a link between RNA and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1097-109. [PMID: 25159663 DOI: 10.1016/j.bbagrm.2014.08.012] [Citation(s) in RCA: 809] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/04/2014] [Accepted: 08/18/2014] [Indexed: 12/19/2022]
Abstract
Unraveling the gene expression networks governing cancer initiation and development is essential while remains largely uncompleted. With the innovations in RNA-seq technologies and computational biology, long noncoding RNAs (lncRNAs) are being identified and characterized at a rapid pace. Recent findings reveal that lncRNAs are implicated in serial steps of cancer development. These lncRNAs interact with DNA, RNA, protein molecules and/or their combinations, acting as an essential regulator in chromatin organization, and transcriptional and post-transcriptional regulation. Their misexpression confers the cancer cell capacities for tumor initiation, growth, and metastasis. The review here will emphasize their aberrant expression and function in cancer, and the roles in cancer diagnosis and therapy will be also discussed.
Collapse
Affiliation(s)
- Guodong Yang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an 710032, PR China.
| | - Xiaozhao Lu
- Department of Nephrology, 323 Hospital of PLA, Xi'an 710054, PR China
| | - Lijun Yuan
- Department of Ultrasound, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China.
| |
Collapse
|
18
|
Combinatorial Insights into RNA Secondary Structure. DISCRETE AND TOPOLOGICAL MODELS IN MOLECULAR BIOLOGY 2014. [DOI: 10.1007/978-3-642-40193-0_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Transcription Factors and Gene Expression. Mol Pharmacol 2012. [DOI: 10.1002/9781118451908.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
20
|
Zakov S, Tsur D, Ziv-Ukelson M. Reducing the worst case running times of a family of RNA and CFG problems, using Valiant's approach. Algorithms Mol Biol 2011; 6:20. [PMID: 21851589 PMCID: PMC3741081 DOI: 10.1186/1748-7188-6-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 08/18/2011] [Indexed: 01/11/2023] Open
Abstract
Background RNA secondary structure prediction is a mainstream bioinformatic domain, and is key to computational analysis of functional RNA. In more than 30 years, much research has been devoted to defining different variants of RNA structure prediction problems, and to developing techniques for improving prediction quality. Nevertheless, most of the algorithms in this field follow a similar dynamic programming approach as that presented by Nussinov and Jacobson in the late 70's, which typically yields cubic worst case running time algorithms. Recently, some algorithmic approaches were applied to improve the complexity of these algorithms, motivated by new discoveries in the RNA domain and by the need to efficiently analyze the increasing amount of accumulated genome-wide data. Results We study Valiant's classical algorithm for Context Free Grammar recognition in sub-cubic time, and extract features that are common to problems on which Valiant's approach can be applied. Based on this, we describe several problem templates, and formulate generic algorithms that use Valiant's technique and can be applied to all problems which abide by these templates, including many problems within the world of RNA Secondary Structures and Context Free Grammars. Conclusions The algorithms presented in this paper improve the theoretical asymptotic worst case running time bounds for a large family of important problems. It is also possible that the suggested techniques could be applied to yield a practical speedup for these problems. For some of the problems (such as computing the RNA partition function and base-pair binding probabilities), the presented techniques are the only ones which are currently known for reducing the asymptotic running time bounds of the standard algorithms.
Collapse
|
21
|
A portable RNA sequence whose recognition by a synthetic antibody facilitates structural determination. Nat Struct Mol Biol 2010; 18:100-6. [PMID: 21151117 PMCID: PMC3058332 DOI: 10.1038/nsmb.1945] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 10/01/2010] [Indexed: 02/03/2023]
Abstract
RNA crystallization and phasing represent major bottlenecks in RNA structure determination. Seeking to exploit antibody fragments as RNA crystallization chaperones, we have used an arginine-enriched synthetic Fab library displayed on phage to obtain Fabs against the class I ligase ribozyme. We solved the structure of a Fab:ligase complex at 3.1Å using molecular replacement with Fab coordinates, confirming the ribozyme architecture and revealing the chaperone’s role in RNA recognition and crystal contacts. The epitope resides in the GAAACAC sequence that caps the P5 helix and retains high-affinity Fab binding within the context of other structured RNAs. This portable epitope provides a new RNA crystallization chaperone system that easily can be screened in parallel to the U1A RNA-binding protein, with the advantages of the smaller size of the loop and high molecular weight, large surface area, and phasing power provided by Fabs.
Collapse
|
22
|
Zimmermann B, Bilusic I, Lorenz C, Schroeder R. Genomic SELEX: a discovery tool for genomic aptamers. Methods 2010; 52:125-32. [PMID: 20541015 PMCID: PMC2954320 DOI: 10.1016/j.ymeth.2010.06.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 06/03/2010] [Indexed: 11/29/2022] Open
Abstract
Genomic SELEX is a discovery tool for genomic aptamers, which are genomically encoded functional domains in nucleic acid molecules that recognize and bind specific ligands. When combined with genomic libraries and using RNA-binding proteins as baits, Genomic SELEX used with high-throughput sequencing enables the discovery of genomic RNA aptamers and the identification of RNA-protein interaction networks. Here we describe how to construct and analyze genomic libraries, how to choose baits for selections, how to perform the selection procedure and finally how to analyze the enriched sequences derived from deep sequencing. As a control procedure, we recommend performing a "Neutral" SELEX experiment in parallel to the selection, omitting the selection step. This control experiment provides a background signal for comparison with the positively selected pool. We also recommend deep sequencing the initial library in order to facilitate the final in silico analysis of enrichment with respect to the initial levels. Counter selection procedures, using modified or inactive baits, allow strengthening the binding specificity of the winning selected sequences.
Collapse
Affiliation(s)
| | | | | | - Renée Schroeder
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Austria
| |
Collapse
|
23
|
Hagan JP, O'Neill BL, Stewart CL, Kozlov SV, Croce CM. At least ten genes define the imprinted Dlk1-Dio3 cluster on mouse chromosome 12qF1. PLoS One 2009; 4:e4352. [PMID: 19194500 PMCID: PMC2632752 DOI: 10.1371/journal.pone.0004352] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 12/09/2008] [Indexed: 11/25/2022] Open
Abstract
Background Genomic imprinting is an exception to Mendelian genetics in that imprinted genes are expressed monoallelically, dependent on parental origin. In mammals, imprinted genes are critical in numerous developmental and physiological processes. Aberrant imprinted gene expression is implicated in several diseases including Prader-Willi/Angelman syndromes and cancer. Methodology/Principal Findings To identify novel imprinted genes, transcription profiling was performed on two uniparentally derived cell lines, androgenetic and parthenogenetic primary mouse embryonic fibroblasts. A maternally expressed transcript termed Imprinted RNA near Meg3/Gtl2 (Irm) was identified and its expression studied by Northern blotting and whole mounts in situ hybridization. The imprinted region that contains Irm has a parent of origin effect in three mammalian species, including the sheep callipyge locus. In mice and humans, both maternal and paternal uniparental disomies (UPD) cause embryonic growth and musculoskeletal abnormalities, indicating that both alleles likely express essential genes. To catalog all imprinted genes in this chromosomal region, twenty-five mouse mRNAs in a 1.96Mb span were investigated for allele specific expression. Conclusions/Significance Ten imprinted genes were elucidated. The imprinting of three paternally expressed protein coding genes (Dlk1, Peg11, and Dio3) was confirmed. Seven noncoding RNAs (Meg3/Gtl2, Anti-Peg11, Meg8, Irm/“Rian”, AK050713, AK053394, and Meg9/Mirg) are characterized by exclusive maternal expression. Intriguingly, the majority of these noncoding RNA genes contain microRNAs and/or snoRNAs within their introns, as do their human orthologs. Of the 52 identified microRNAs that map to this region, six are predicted to regulate negatively Dlk1, suggesting an additional mechanism for interactions between allelic gene products. Since several previous studies relied heavily on in silico analysis and RT-PCR, our findings from Northerns and cDNA cloning clarify the genomic organization of this region. Our results expand the number of maternally expressed noncoding RNAs whose loss may be responsible for the phenotypes associated with mouse pUPD12 and human pUPD14 syndromes.
Collapse
Affiliation(s)
- John P. Hagan
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio, United States of America
- * E-mail:
| | - Brittany L. O'Neill
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Colin L. Stewart
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Serguei V. Kozlov
- Center for Advanced Preclinical Research and Mouse Cancer Genetics Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio, United States of America
| |
Collapse
|
24
|
Replogle K, Arnold AP, Ball GF, Band M, Bensch S, Brenowitz EA, Dong S, Drnevich J, Ferris M, George JM, Gong G, Hasselquist D, Hernandez AG, Kim R, Lewin HA, Liu L, Lovell PV, Mello CV, Naurin S, Rodriguez-Zas S, Thimmapuram J, Wade J, Clayton DF. The Songbird Neurogenomics (SoNG) Initiative: community-based tools and strategies for study of brain gene function and evolution. BMC Genomics 2008; 9:131. [PMID: 18366674 PMCID: PMC2329646 DOI: 10.1186/1471-2164-9-131] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 03/18/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Songbirds hold great promise for biomedical, environmental and evolutionary research. A complete draft sequence of the zebra finch genome is imminent, yet a need remains for application of genomic resources within a research community traditionally focused on ethology and neurobiological methods. In response, we developed a core set of genomic tools and a novel collaborative strategy to probe gene expression in diverse songbird species and natural contexts. RESULTS We end-sequenced cDNAs from zebra finch brain and incorporated additional sequences from community sources into a database of 86,784 high quality reads. These assembled into 31,658 non-redundant contigs and singletons, which we annotated via BLAST search of chicken and human databases. The results are publicly available in the ESTIMA:Songbird database. We produced a spotted cDNA microarray with 20,160 addresses representing 17,214 non-redundant products of an estimated 11,500-15,000 genes, validating it by analysis of immediate-early gene (zenk) gene activation following song exposure and by demonstrating effective cross hybridization to genomic DNAs of other songbird species in the Passerida Parvorder. Our assembly was also used in the design of the "Lund-zfa" Affymetrix array representing approximately 22,000 non-redundant sequences. When the two arrays were hybridized to cDNAs from the same set of male and female zebra finch brain samples, both arrays detected a common set of regulated transcripts with a Pearson correlation coefficient of 0.895. To stimulate use of these resources by the songbird research community and to maintain consistent technical standards, we devised a "Community Collaboration" mechanism whereby individual birdsong researchers develop experiments and provide tissues, but a single individual in the community is responsible for all RNA extractions, labelling and microarray hybridizations. CONCLUSION Immediately, these results set the foundation for a coordinated set of 25 planned experiments by 16 research groups probing fundamental links between genome, brain, evolution and behavior in songbirds. Energetic application of genomic resources to research using songbirds should help illuminate how complex neural and behavioral traits emerge and evolve.
Collapse
Affiliation(s)
- Kirstin Replogle
- Cell & Developmental Biology, Univ. of Illinois, Urbana, IL, USA
- Institute for Genomic Biology, Univ. of Illinois, Urbana, IL, USA
| | | | - Gregory F Ball
- Psychological & Brain Sci., Johns Hopkins Univ., Baltimore, MD, USA
| | - Mark Band
- W.M. Keck Center for Comparative & Functional Genomics, Univ. of Illinois, Urbana, IL, USA
| | | | - Eliot A Brenowitz
- Psychology, Biology, and Bloedel Hearing Research Center, Univ. of Washington, Seattle, WA, USA
| | - Shu Dong
- Cell & Developmental Biology, Univ. of Illinois, Urbana, IL, USA
| | - Jenny Drnevich
- W.M. Keck Center for Comparative & Functional Genomics, Univ. of Illinois, Urbana, IL, USA
| | | | - Julia M George
- Mol. & Integrative Physiology, Univ. of Illinois, Urbana, IL, USA
| | - George Gong
- W.M. Keck Center for Comparative & Functional Genomics, Univ. of Illinois, Urbana, IL, USA
| | | | - Alvaro G Hernandez
- W.M. Keck Center for Comparative & Functional Genomics, Univ. of Illinois, Urbana, IL, USA
| | - Ryan Kim
- W.M. Keck Center for Comparative & Functional Genomics, Univ. of Illinois, Urbana, IL, USA
| | - Harris A Lewin
- Institute for Genomic Biology, Univ. of Illinois, Urbana, IL, USA
- Animal Sciences, Univ. of Illinois, Urbana, IL, USA
| | - Lei Liu
- W.M. Keck Center for Comparative & Functional Genomics, Univ. of Illinois, Urbana, IL, USA
| | - Peter V Lovell
- Neurological Sci. Inst., Oregon Hlth. Sci. Univ., Beaverton, OR, USA
| | - Claudio V Mello
- Neurological Sci. Inst., Oregon Hlth. Sci. Univ., Beaverton, OR, USA
| | - Sara Naurin
- Animal Ecology, Lund University, S-223 62 Lund, Sweden
| | | | - Jyothi Thimmapuram
- W.M. Keck Center for Comparative & Functional Genomics, Univ. of Illinois, Urbana, IL, USA
| | - Juli Wade
- Psychology, Zoology & Neuroscience, Michigan State Univ., East Lansing, MI, USA
| | - David F Clayton
- Cell & Developmental Biology, Univ. of Illinois, Urbana, IL, USA
- Institute for Genomic Biology, Univ. of Illinois, Urbana, IL, USA
- Neuroscience Program, Univ. of Illinois, Urbana, IL, USA
| |
Collapse
|
25
|
Allali-Hassani A, Pereira MP, Navani NK, Brown ED, Li Y. Isolation of DNA aptamers for CDP-ribitol synthase, and characterization of their inhibitory and structural properties. Chembiochem 2008; 8:2052-7. [PMID: 17929340 DOI: 10.1002/cbic.200700257] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Abdellah Allali-Hassani
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | | | | | | | | |
Collapse
|
26
|
Veksler-Lublinsky I, Ziv-Ukelson M, Barash D, Kedem K. A structure-based flexible search method for motifs in RNA. J Comput Biol 2008; 14:908-26. [PMID: 17803370 DOI: 10.1089/cmb.2007.0061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The discovery of non-coding RNA (ncRNA) motifs and their role in regulating gene expression has recently attracted considerable attention. The goal is to discover these motifs in a sequence database. Current RNA motif search methods start from the primary sequence and only then take into account secondary structure considerations. One can think of developing a flexible structure-based motif search method that will filter datasets based on secondary structure first, while allowing extensive primary sequence factors and additional factors such as potential pseudoknots as constraints. Since different motifs vary in structure rigidity and in local sequence constraints, there is a need for algorithms and tools that can be fine-tuned according to the searched RNA motif, but differ in their approach from the RNAMotif descriptor language. We present an RNA motif search tool called STRMS (Structural RNA Motif Search), which takes as input the secondary structure of the query, including local sequence and structure constraints, and a target sequence database. It reports all occurrences of the query in the target, ranked by their similarity to the query, and produces an html file that displays graphical images of the predicted structures for both the query and the candidate hits. Our tool is flexible and takes into account a large number of sequence options and existence of potential pseudoknots as dictated by specific queries. Our approach combines pre-folding and an O(m n) RNA pattern matching algorithm based on subtree homeomorphism for ordered, rooted trees. An O(n(2) log n) extension is described that allows the search engine to take into account the pseudoknots typical to riboswitches. We employed STRMS in search for both new and known RNA motifs (riboswitches and tRNAs) in large target databases. Our results point to a number of additional purine bacterial riboswitch candidates in newly sequenced bacteria, and demonstrate high sensitivity on known riboswitches and tRNAs. Code and data are available at www.cs.bgu.ac.il/vaksler/STRMS.
Collapse
|
27
|
Sridhar J, Rafi ZA. Small RNA identification in Enterobacteriaceae using synteny and genomic backbone retention. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2007; 11:74-99. [PMID: 17411397 DOI: 10.1089/omi.2006.0006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Genomic screens for small RNA candidates in Enterobacteriacae genomes were carried out with existing small RNA sequences, conserved flanking genes, and genomic backbone information. The small RNA sequences and contexts from E. coli K12 formed the basis of the search. Sequence identity identified 117 additional small RNA homologs in related genomes. Motifs of continuous sequence stretches added another 48 sRNA regions, termed partial homologs. However, this study is unique in identifying 160 nonhomologous sRNA loci in related genomes based on the conserved flanking gene synteny and the backbone retention information obtained from KEGG-SSDB. Gene synteny and genomic backbone continuity were observed to be correlated with all of the sRNAs in related genomes. This search is the first of its kind toward identification of functionally important regions using gene order and back-bone information. A disruption in flanking gene order or genomic backbone indicates a possible hotspot for alien gene pool integration. This study reports both occurrence of multiple copies of a sRNA and co-occurrence of different sRNAs between a pair of conserved flanking genes. In general, synteny and genomic backbone retention information can be added as additional search criteria toward the design of precise bioinformatics tools for sRNA, gene identification, and gene functional annotations in related genomes.
Collapse
Affiliation(s)
- Jayavel Sridhar
- Centre of Excellence in Bioinformatics, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamilnadu, India
| | | |
Collapse
|
28
|
Zhu Y, Pulukkunat DK, Li Y. Deciphering RNA structural diversity and systematic phylogeny from microbial metagenomes. Nucleic Acids Res 2007; 35:2283-94. [PMID: 17389640 PMCID: PMC1874661 DOI: 10.1093/nar/gkm057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Metagenomics has been employed to systematically sequence, classify, analyze and manipulate the entire genetic material isolated from environmental samples. Finding genes within metagenomic sequences remains a formidable challenge, and noncoding RNA genes other than those encoding rRNA and tRNA are not well annotated in metagenomic projects. In this work, we identify, validate and analyze the genes coding for RNase P RNA (P RNA) from all published metagenomic projects. P RNA is the RNA subunit of a ubiquitous endoribonuclease RNase P that consists of one RNA subunit and one or more protein subunits. The bacterial P RNAs are classified into two types, Type A and Type B, based on the constituents of the structure involved in precursor tRNA binding. Archaeal P RNAs are classified into Type A and Type M, whereas the Type A is ancestral and close to Type A bacterial P RNA. Bacterial and some archaeal P RNAs are catalytically active without protein subunits, capable of cleaving precursor tRNA transcripts to produce their mature 5′-termini. We have found 328 distinctive P RNAs (320 bacterial and 8 archaeal) from all published metagenomics sequences, which led us to expand by 60% the total number of this catalytic RNA from prokaryotes. Surprisingly, all newly identified P RNAs from metagenomics sequences are Type A, i.e. neither Type B bacterial nor Type M archaeal P RNAs are found. We experimentally validate the authenticity of an archaeal P RNA from Sargasso Sea. One of the distinctive features of some new P RNAs is that the P2 stem has kinked nucleotides in its 5′ strand. We find that the single nucleotide J2/3 joint region linking the P2 and P3 stem that was used to distinguish a bacterial P RNA from an archaeal one is no longer applicable, i.e. some archaeal P RNAs have only one nucleotide in the J2/3 joint. We also discuss the phylogenetic analysis based on covariance model of P RNA that offers a few advantages over the one based on 16S rRNA.
Collapse
Affiliation(s)
- Yanglong Zhu
- Department of Biochemistry and Molecular Biology, and Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, 319 Abraham Flexner Way, Louisville, KY, 40202, USA and Ohio State Biochemistry Program, Department of Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Dileep K. Pulukkunat
- Department of Biochemistry and Molecular Biology, and Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, 319 Abraham Flexner Way, Louisville, KY, 40202, USA and Ohio State Biochemistry Program, Department of Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Yong Li
- Department of Biochemistry and Molecular Biology, and Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, 319 Abraham Flexner Way, Louisville, KY, 40202, USA and Ohio State Biochemistry Program, Department of Biochemistry, Ohio State University, Columbus, OH 43210, USA
- *To whom correspondence should be addressed. +1-502-852-7551+1-502-852-6222
| |
Collapse
|
29
|
Liu J, Ma B, Zhang K. An algorithm for searching RNA motifs in genomic sequences. ACTA ACUST UNITED AC 2007; 24:343-50. [PMID: 17482512 DOI: 10.1016/j.bioeng.2007.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 05/11/2006] [Accepted: 05/11/2006] [Indexed: 11/22/2022]
Abstract
RNA molecules, which are found in all living cells, fold into characteristic structures that account for their diverse functional activities. Many of these RNA structures consist of a collection of fundamental RNA motifs. The various combinations of RNA basic components form different RNA classes and define their unique structural and functional properties. The availability of many genome sequences makes it possible to search computationally for functional RNAs. Biological experiments indicate that functional RNAs have characteristic RNA structural motifs represented by specific combinations of base pairings and conserved nucleotides in the loop regions. The searching for those well-ordered RNA structures and their homologues in genomic sequences is very helpful for the understanding of RNA-based gene regulation. In this paper, we consider the following problem: given an RNA sequence with a known secondary structure, efficiently determine candidate segments in genomic sequences that can potentially form RNA secondary structures similar to the given RNA secondary structure. Our new bottom-up approach searches all potential stem-loops similar to ones of the given RNA secondary structure first, and then based on located stem-loops, detects potential homologous structural RNAs in genomic sequences.
Collapse
Affiliation(s)
- Jingping Liu
- Department of Computer Science, University of Western Ontario, London, Ontario, Canada.
| | | | | |
Collapse
|
30
|
Sun M, Srikantan V, Ma L, Li J, Zhang W, Petrovics G, Makarem M, Strovel JW, Horrigan SG, Augustus M, Sesterhenn IA, Moul JW, Chandrasekharappa S, Zou Z, Srivastava S. Characterization of frequently deleted 6q locus in prostate cancer. DNA Cell Biol 2006; 25:597-607. [PMID: 17132090 DOI: 10.1089/dna.2006.25.597] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The long arm of chromosome 6 is frequently deleted in diverse human neoplasms. Our previous study showed a minimum deletion region between markers D6S1056 and D6S300 on chromosome 6q in primary prostate cancer (CaP). In this study, we further refined a 200-kb minimal region of deletion (6qTSG1) centered around D6S1013 marker. The 6qTSG1 transcripts contained complex multiple splicing variants with low or absent expression in CaP cells. None of the transcripts identified contained open reading frames that code for a protein in the NCBI database. The expression of 6qTSG transcripts revealed interesting hormonal regulation relevant to CaP biology. Expression of 6q TSG transcript was induced in LNCaP cells that were cultured in charcoal-stripped serum medium suggesting an upregulation of 6qTSG transcript by androgen ablation and cell growth inhibition/apoptosis. Induction of 6qTSG1 expression in response to androgen ablation was abrogated in androgen-independent derivatives of LNCaP cells. In summary, we have defined a candidate CaP suppressor locus on chromosome 6q16.1, and deletions of this locus are frequently associated with prostate tumorigenesis. In the light of emerging role of noncoding RNAs in cancer biology including CaP, future investigations of 6qTSG11 locus is warranted.
Collapse
Affiliation(s)
- Mei Sun
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Rockville, Maryland 20832, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ingraham SE, Lynch RA, Surti U, Rutter JL, Buckler AJ, Khan SA, Menon AG, Lepont P. Identification and characterization of novel human transcripts embedded within HMGA2 in t(12;14)(q15;q24.1) uterine leiomyoma. Mutat Res 2006; 602:43-53. [PMID: 17045619 DOI: 10.1016/j.mrfmmm.2006.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 07/28/2006] [Accepted: 07/31/2006] [Indexed: 11/22/2022]
Abstract
The high mobility group A2 protein (HMGA2) has been implicated in the pathogenesis of mesenchymal tumors such as leiomyoma, lipoma and hamartoma. HMGA2 was pinpointed by mapping the breakpoints in the chromosomal translocations in 12q15, especially the t(12;14) that is commonly seen in uterine leiomyoma. It is generally assumed that altered expression of HMGA2 is an early event in the pathway to tumor formation. Here, we show evidence that three novel transcripts, A15, B6 and D12 are located within the HMGA2 gene itself and are transcribed from the opposite strand. These embedded transcripts are expressed at 6-20-fold higher levels in tumors compared to matched myometrium from the same patients. We estimate that the domain of increased expression extends 500kb on chromosome 12q15, and encompasses the majority of t(12;14) translocation breakpoints. However, a corresponding domain of consistently altered expression is not seen on chromosome 14 or outside of the chromosome 12 multiple aberration region. These data suggest that t(12;14) breakpoints contribute to the pathogenesis of uterine leiomyoma by interrupting a complex regulation of HMGA2 and other genes embedded within and around it. We also discovered a novel laminin receptor gene, transcribed from the opposite strand, within the promoter region of HMGA2. Although the roles for these embedded transcripts are still unknown, preliminary data suggest that they are members of the family of non-coding RNA and that they may play an important role in the pathology of uterine leiomyoma.
Collapse
Affiliation(s)
- Susan E Ingraham
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH 45267-0524, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lu W, Zhou D, Glusman G, Utleg AG, White JT, Nelson PS, Vasicek TJ, Hood L, Lin B. KLK31P is a novel androgen regulated and transcribed pseudogene of kallikreins that is expressed at lower levels in prostate cancer cells than in normal prostate cells. Prostate 2006; 66:936-44. [PMID: 16541416 DOI: 10.1002/pros.20382] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Fifteen human tissue kallikrein (KLK) genes have been identified as a cluster on chromosome 19. KLK expression is associated with various human diseases including cancers. Noncoding RNAs such as PCA3/DD3 and PCGEM1 have been identified in prostate cancer cells. METHODS Using massively parallel signature sequencing (MPSS) technology, RT-PCR, and 5' rapid amplification of cDNA ends (RACE), we identified and cloned a novel gene that maps to the KLK locus. RESULTS We have characterized this gene, named as KLK31P by the HUGO Gene Nomenclature Committee, as an unprocessed KLK pseudogene. It contains five exons, two of which are KLK-derived while the rest are "exonized" interspersed repeats. KLK31P is expressed abundantly in prostate tissues and is androgen regulated. KLK31P is expressed at lower levels in localized and metastatic prostate cancer cells than in normal prostate cells. CONCLUSIONS KLK31P is a novel androgen regulated and transcribed pseudogene of kallikreins that may play a role in prostate carcinogenesis or maintenance.
Collapse
MESH Headings
- Amino Acid Sequence
- Androgens/physiology
- Blotting, Northern
- Cell Line, Tumor
- Chromosomes, Human, Pair 19/genetics
- Cloning, Organism
- DNA/analysis
- DNA/genetics
- DNA, Complementary/genetics
- DNA, Neoplasm/analysis
- DNA, Neoplasm/genetics
- Exons/genetics
- Gene Expression Regulation
- Gene Expression Regulation, Neoplastic
- Humans
- Kidney/chemistry
- Male
- Molecular Sequence Data
- Multigene Family
- Prostate/chemistry
- Prostate/physiology
- Prostatic Neoplasms/chemistry
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/physiopathology
- Pseudogenes
- Reverse Transcriptase Polymerase Chain Reaction
- Tissue Kallikreins/analysis
- Tissue Kallikreins/genetics
- Tissue Kallikreins/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- Wei Lu
- Institute for Systems Biology, Seattle, Washington 98103, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Babak T, Blencowe BJ, Hughes TR. A systematic search for new mammalian noncoding RNAs indicates little conserved intergenic transcription. BMC Genomics 2005; 6:104. [PMID: 16083503 PMCID: PMC1199595 DOI: 10.1186/1471-2164-6-104] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 08/05/2005] [Indexed: 11/10/2022] Open
Abstract
Background Systematic identification and functional characterization of novel types of noncoding (nc)RNA in genomes is more difficult than it is for protein coding mRNAs, since ncRNAs typically do not possess sequence features such as splicing or translation signals, or long open reading frames. Recent "tiling" microarray studies have reported that a surprisingly larger proportion of mammalian genomes is transcribed than was previously anticipated. However, these non-genic transcripts often appear to be low in abundance, and their functional significance is not known. Results To systematically search for functional ncRNAs, we designed microarrays to detect 3,478 intergenic and intronic sequences that are conserved between the human, mouse, and rat genomes, and that score highly by other criteria that characterize ncRNAs. We probed these arrays with total RNA isolated from 16 wild-type mouse tissues. Among 55 candidates for highly-expressed novel ncRNAs tested by northern blotting, eight were confirmed as small, highly-and ubiquitously-expressed RNAs in mouse. Of the eight, five were also detected in rat tissues, but none were detected at appreciable levels in human tissues or cultured cells. Conclusion Since the sequence and expression of most known coding transcripts and functional ncRNAs is conserved between human and mouse, the lack of northern-detectable expression in human cells and tissues of the novel mouse and rat ncRNAs that we identified suggests that they are not functional or possibly have rodent-specific functions. Our results confirm that relatively little of the intergenic sequence conserved between human, mouse and rat is transcribed at high levels in mammalian tissues, possibly suggesting a limited role for transcribed intergenic and intronic sequences as independent functional elements.
Collapse
Affiliation(s)
- Tomas Babak
- Banting and Best Department of Medical Research, 112 College St., Toronto, ON M5G 1L6 Canada
- Department of Medical Genetics and Microbiology, 10 King's College Circle, Toronto, ON M1R 4F9 Canada
| | - Benjamin J Blencowe
- Banting and Best Department of Medical Research, 112 College St., Toronto, ON M5G 1L6 Canada
- Department of Medical Genetics and Microbiology, 10 King's College Circle, Toronto, ON M1R 4F9 Canada
| | - Timothy R Hughes
- Banting and Best Department of Medical Research, 112 College St., Toronto, ON M5G 1L6 Canada
- Department of Medical Genetics and Microbiology, 10 King's College Circle, Toronto, ON M1R 4F9 Canada
| |
Collapse
|
34
|
Patent Litigation. Biotechnol Law Rep 2005. [DOI: 10.1089/blr.2005.24.447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
35
|
Abstract
4.5SH RNA is a 94-nt small RNA with unknown function. This RNA is known to be present in the mouse, rat, and hamster cells; however, it is not found in human, rabbit, and chicken. In the mouse genome, the 4.5SH RNA gene is a part of a long (4.2 kb) tandem repeat ( approximately 800 copies) unit. Here, we found that 4.5SH RNA genes are present only in rodents of six families that comprise the Myodonta clade: Muridae, Cricetidae, Spalacidae, Rhizomyidae, Zapodidae, and Dipodidae. The analysis of complementary DNA derived from the rodents of these families showed general evolutionary conservation of 4.5SH RNA and some intraspecific heterogeneity of these RNA molecules. 4.5SH RNA genes in the Norway rat, mole rat, hamster and jerboa genomes are included in the repeated sequences. In the jerboa genome these repeats are 4.0-kb long and arranged tandemly, similar to the corresponding arrangements in the mouse and rat genomic DNA. Sequencing of the rat and jerboa DNA repeats containing 4.5SH RNA genes showed fast evolution of the gene-flanking sequences. The repeat sequences of the distantly related rodents (mouse and rat vs. jerboa) have no apparent similarity except for the 4.5SH RNA gene itself. Conservation of the 4.5SH RNA gene nucleotide sequence indicates that this RNA is likely to be under selection pressure and, thus, may have a function. The repeats from the different rodents have similar lengths and contain many simple short repeats. The data obtained suggest that long insertions, deletions, and simple sequence amplifications significantly contribute in the evolution of the repeats containing 4.5SH RNA genes. The 4.5SH RNA gene seems to have originated 50-85 MYA in a Myodonta ancestor from a copy of the B1 short interspersed element. The amplification of the gene with the flanking sequences could result from the supposed cellular requirement of the intensive synthesis of 4.5SH RNA. Further Myodonta evolution led to dramatic changes of the repeat sequences in every lineage with the conservation of the 4.5SH RNA genes only. This gene, like some other relatively recently originated genes, could be a useful model for studying generation and evolution of non-protein-coding genes.
Collapse
Affiliation(s)
- Irina K Gogolevskaya
- Laboratory of Eukaryotic Genome Evolution, Engelhardt Institute of Molecular Biology, 32 Vavilov Street, Moscow 19991, Russia
| | | | | |
Collapse
|
36
|
Holmes I. Accelerated probabilistic inference of RNA structure evolution. BMC Bioinformatics 2005; 6:73. [PMID: 15790387 PMCID: PMC1090553 DOI: 10.1186/1471-2105-6-73] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Accepted: 03/24/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pairwise stochastic context-free grammars (Pair SCFGs) are powerful tools for evolutionary analysis of RNA, including simultaneous RNA sequence alignment and secondary structure prediction, but the associated algorithms are intensive in both CPU and memory usage. The same problem is faced by other RNA alignment-and-folding algorithms based on Sankoff's 1985 algorithm. It is therefore desirable to constrain such algorithms, by pre-processing the sequences and using this first pass to limit the range of structures and/or alignments that can be considered. RESULTS We demonstrate how flexible classes of constraint can be imposed, greatly reducing the computational costs while maintaining a high quality of structural homology prediction. Any score-attributed context-free grammar (e.g. energy-based scoring schemes, or conditionally normalized Pair SCFGs) is amenable to this treatment. It is now possible to combine independent structural and alignment constraints of unprecedented general flexibility in Pair SCFG alignment algorithms. We outline several applications to the bioinformatics of RNA sequence and structure, including Waterman-Eggert N-best alignments and progressive multiple alignment. We evaluate the performance of the algorithm on test examples from the RFAM database. CONCLUSION A program, Stemloc, that implements these algorithms for efficient RNA sequence alignment and structure prediction is available under the GNU General Public License.
Collapse
Affiliation(s)
- Ian Holmes
- Department of Bioengineering, University of California, Berkeley, CA 94720-1762, USA.
| |
Collapse
|
37
|
Abstract
Immediate-early viral gene products of human cytomegalovirus (HCMV) are derived from several genomic loci and largely serve to establish a cellular environment conducive to viral replication. We have further examined an unusual immediate-early transcript known as the 5-kb RNA, concluding that it is a stable intron encoded by HCMV. The 5-kb RNA is highly AT rich in sequence and lacks open reading frames likely to be translated into protein. We confirmed the absence of polyadenylation of the transcript and showed that it is primarily nuclear localized during viral infection. We mapped the 5' end of the 5-kb RNA to a consensus splice donor site and localized the 3' end in the vicinity of a splice acceptor site. In transfection studies, we showed that the 5-kb RNA can be spliced from a heterologous primary transcript. Using bacterial artificial chromosome technology, we constructed a viral recombinant containing a mutation in the 5' splice donor site that defines the 5' end of the RNA and found that this mutation eliminates expression of the 5-kb RNA during viral infection. This mutant grows in human fibroblasts without complementation. Taken together, these data support the conclusion that the 5-kb RNA is a stable intron expressed by HCMV.
Collapse
Affiliation(s)
- Caroline A Kulesza
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
38
|
Neu-Yilik G, Gehring NH, Hentze MW, Kulozik AE. Nonsense-mediated mRNA decay: from vacuum cleaner to Swiss army knife. Genome Biol 2004; 5:218. [PMID: 15059251 PMCID: PMC395777 DOI: 10.1186/gb-2004-5-4-218] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) downmodulates mRNAs that have in-frame premature termination codons and prevents translation of potentially harmful truncated proteins from aberrant mRNAs. Two new approaches have identified physiological NMD substrates, and suggest that NMD functions as a multipurpose tool in the modulation of gene expression.
Collapse
Affiliation(s)
- Gabriele Neu-Yilik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Im Neuenheimer Feld 150, 69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
39
|
Abstract
Many non-coding sequences transcribed from the mammalian genome are proving to have important regulatory roles, but the functions of the majority remain mysterious. For decades, researchers have focused most of their attention on protein-coding genes and proteins. With the completion of the human and mouse genomes and the accumulation of data on the mammalian transcriptome, the focus now shifts to non-coding DNA sequences, RNA-coding genes and their transcripts. Many non-coding transcribed sequences are proving to have important regulatory roles, but the functions of the majority remain mysterious.
Collapse
Affiliation(s)
- Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
40
|
Xie T, Rowen L, Aguado B, Ahearn ME, Madan A, Qin S, Campbell RD, Hood L. Analysis of the gene-dense major histocompatibility complex class III region and its comparison to mouse. Genome Res 2004; 13:2621-36. [PMID: 14656967 PMCID: PMC403804 DOI: 10.1101/gr.1736803] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In mammals, the Major Histocompatibility Complex class I and II gene clusters are separated by an approximately 700-kb stretch of sequence called the MHC class III region, which has been associated with susceptibility to numerous diseases. To facilitate understanding of this medically important and architecturally interesting portion of the genome, we have sequenced and analyzed both the human and mouse class III regions. The cross-species comparison has facilitated the identification of 60 genes in human and 61 in mouse, including a potential RNA gene for which the introns are more conserved across species than the exons. Delineation of global organization, gene structure, alternative splice forms, protein similarities, and potential cis-regulatory elements leads to several conclusions: (1) The human MHC class III region is the most gene-dense region of the human genome: >14% of the sequence is coding, approximately 72% of the region is transcribed, and there is an average of 8.5 genes per 100 kb. (2) Gene sizes, number of exons, and intergenic distances are for the most part similar in both species, implying that interspersed repeats have had little impact in disrupting the tight organization of this densely packed set of genes. (3) The region contains a heterogeneous mixture of genes, only a few of which have a clearly defined and proven function. Although many of the genes are of ancient origin, some appear to exist only in mammals and fish, implying they might be specific to vertebrates. (4) Conserved noncoding sequences are found primarily in or near the 5'-UTR or the first intron of genes, and seldom in the intergenic regions. Many of these conserved blocks are likely to be cis-regulatory elements.
Collapse
Affiliation(s)
- Tao Xie
- Institute for Systems Biology, Seattle, Washington 98103, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The general basis of cancer is the loss of cell identity and inappropriate proliferation of cells. Classically, a universal paradigm in oncogenesis is the accumulation of mutations in the open reading frames of protein-encoding oncogenes and tumor suppressors. The identification of new classes of noncoding RNAs (ncRNA) important for development and cell homeostasis will likely change this current paradigm. Recent data suggests that a special class of ncRNAs called microRNAs might be involved in human disease. This review proposes a role for microRNAs in oncogenesis.
Collapse
Affiliation(s)
- Michael T McManus
- Center for Cancer Research, Massachusetts Institute of Technology, 40 Ames Street, Cambridge, MA 02139, USA.
| |
Collapse
|
42
|
Polesskaya OO, Haroutunian V, Davis KL, Hernandez I, Sokolov BP. Novel putative nonprotein-coding RNA gene from 11q14 displays decreased expression in brains of patients with schizophrenia. J Neurosci Res 2003; 74:111-22. [PMID: 13130513 DOI: 10.1002/jnr.10752] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A modified method of differential display was employed to identify a novel gene (named PSZA11q14), the expression of which was reduced in brains from patients with schizophrenia. Decreased expression of PSZA11q14 was identified initially in Brodmann's area (BA) 21 from a small group of patients with schizophrenia (n = 4) and normal controls (n = 6) and was confirmed subsequently using independent RT-PCR assay in BA 21, 22, and 9, and in hippocampus from a larger group of patients with schizophrenia (n = 36) and controls (n = 35). PSZA11q14 is located on chromosome 11q14, an area shown previously to co-segregate with schizophrenia and related disorders in several families. Decreased expression of PSZA11q14 in patients with schizophrenia and its location on 11q14 provide converging lines of evidence indicating that PSZA11q14 may be involved in at least some cases of schizophrenia. PSZA11q14 shows no significant homology with any known gene. It has no introns and produces two RNA transcripts of approximately 4.5 and approximately 7.0 kb. The largest open reading frame (ORF) in the PSZA11q14 transcripts may potentially encode for a short polypeptide of 71 amino acids. High frequency of rare codons, the short size of this ORF, and low homology with mouse sequences, however, indicate that PSZA11q14 may instead represent a novel member of a family of nonprotein-coding RNA genes that are not translated and that function at the RNA level. PSZA11q14 is located within the first intron of the DLG-2 gene and transcribed in the opposite direction to DLG-2. These results suggest that PSZA11q14 may be considered a candidate gene for schizophrenia acting as an antisense regulator of DLG-2, which controls assembling functional N-methyl-D-aspartate (NMDA) receptors.
Collapse
Affiliation(s)
- Oxana O Polesskaya
- Molecular Neurobiology Branch, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
43
|
Brosius J. Gene duplication and other evolutionary strategies: from the RNA world to the future. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2003; 3:1-17. [PMID: 12836680 DOI: 10.1023/a:1022627311114] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Beginning with a hypothetical RNA world, it is apparent that many evolutionary transitions led to the complexity of extant species. The duplication of genetic material is rooted in the RNA world. One of two major routes of gene amplification, retroposition, originated from mechanisms that facilitated the transition to DNA as hereditary material. Even in modern genomes the process of retroposition leads to genetic novelties including the duplication of protein and RNA coding genes, as well as regulatory elements and their juxtapositon. We examine whether and to what extent known evolutionary principles can be applied to an RNA-based world. We conclude that the major basic Neo-Darwinian principles that include amplification, variation and selection already governed evolution in the RNA and RNP worlds. In this hypothetical RNA world there were few restrictions on the exchange of genetic material and principles that acted as borders at later stages, such as Weismann's Barrier, the Central Dogma of Molecular Biology, or the Darwinian Threshold were absent or rudimentary. RNA was more than a gene: it had a dual role harboring, genotypic and phenotypic capabilities, often in the same molecule. Nuons, any discrete nucleic acid sequences, were selected on an individual basis as well as in groups. The performance and success of an individual nuon was markedly dependent on the type of other nuons in a given cell. In the RNA world the transition may already have begun towards the linkage of nuons to yield a composite linear RNA genome, an arrangement necessitating the origin of RNA processing. A concatenated genome may have curbed unlimited exchange of genetic material; concomitantly, selfish nuons were more difficult to purge. A linked genome may also have constituted the beginning of the phenotype/genotype separation. This division of tasks was expanded when templated protein biosynthesis led to the RNP world, and more so when DNA took over as genetic material. The aforementioned barriers and thresholds increased and the significance and extent of horizontal gene transfer fluctuated over major evolutionary transitions. At the dawn of the most recent transformation, a fast evolutionary transition that we will be witnessing in our life times, a form of Lamarckism is raising its head.
Collapse
Affiliation(s)
- Jürgen Brosius
- Institute of Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany.
| |
Collapse
|
44
|
Abstract
Experiments have shown that the canonical AUCG genetic alphabet is not the only possible nucleotide alphabet. In this work we address the question 'is the canonical alphabet optimal?' We make the assumption that the genetic alphabet was determined in the RNA world. Computational tools are used to infer the RNA secondary structure (shape) from a given RNA sequence, and statistics from RNA shapes are gathered with respect to alphabet size. Then, simulations based upon the replication and selection of fixed-sized RNA populations are used to investigate the effect of alternative alphabets upon RNA's ability to step through a fitness landscape. These results show that for a low copy fidelity the canonical alphabet is fitter than two-, six- and eight-letter alphabets. In higher copy-fidelity experiments, six-letter alphabets outperform the four-letter alphabets, suggesting that the canonical alphabet is indeed a relic of the RNA world.
Collapse
Affiliation(s)
- Paul P Gardner
- Institute of Fundamental Sciences, Massey University, PB 11 222, Palmerston North, New Zealand.
| | | | | | | | | |
Collapse
|
45
|
Peters NT, Rohrbach JA, Zalewski BA, Byrkett CM, Vaughn JC. RNA editing and regulation of Drosophila 4f-rnp expression by sas-10 antisense readthrough mRNA transcripts. RNA (NEW YORK, N.Y.) 2003; 9:698-710. [PMID: 12756328 PMCID: PMC1370437 DOI: 10.1261/rna.2120703] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2002] [Accepted: 03/06/2003] [Indexed: 05/19/2023]
Abstract
We have previously described an example of extensively A-to-G edited cDNA derived from adult heads of the fruitfly Drosophila melanogaster. In that study, the source of the predicted antisense RNA pairing strand for template recognition by dADAR editase was not identified, and the biological significance of the observed hyperediting was not known. Here, we address each of these questions. 4f-rnp and sas-10 are closely adjacent X-linked genes located on opposite DNA strands that produce convergent transcripts. We show that developmentally regulated antisense sas-10 readthrough mRNA arises by activation of an upstream promoter P2 during the late embryo stage of fly development. The sas-10 readthrough transcripts pair with 4f-rnp mRNA to form double-stranded molecules, as indicated by A-to-G editing observed in both RNA strands. It would be predicted that perfect RNA duplexes would be targeted for modification/degradation by enzyme pathways that recognize double-stranded RNAs, leading to decline in 4f-rnp mRNA levels, and this is what we observe. The observation using quantitative RT-PCR that sas-10 readthrough and 4f-rnp transcript levels are inversely related suggests a role for the antisense RNA in posttranscriptional regulation of 4f-rnp gene expression during development. Potential molecular mechanisms that could lead to this result are discussed, one of which is targeted transcript degradation via the RNAi pathway. Insofar as the dADAR editase and RNAi pathways are known to be constitutive in this system, it is likely that control of antisense RNA transcription is the rate-limiting factor. The results provide insight into roles of naturally occurring antisense RNAs in regulation of eukaryotic gene expression.
Collapse
Affiliation(s)
- Nick T Peters
- Department of Zoology, Miami University, Oxford, Ohio 45056, USA
| | | | | | | | | |
Collapse
|
46
|
De Lucca FL, Sales VSF, Souza LR, Murad JM, Watanabe MAE. Regulatory RNA induces the production of IFN-gamma, but not IL-4 in human lymphocytes: role of RNA-dependent protein kinase (PKR) and NF-kappaB. Mol Cell Biochem 2003; 247:211-7. [PMID: 12841650 DOI: 10.1023/a:1024107512419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previous results with p9-RNA, obtained from lymph nodes of animals immunized with the peptide p9 of HIV-1, suggested that its effects on lymphocytes could be mediated by RNA-dependent protein kinase (PKR). Here we report that p9-RNA activates PKR leading to the degradation of the inhibitor I-kappaB alpha and the concomitant nuclear factor kappa B (NF-kappaB) activation. The fractionation of p9-RNA by affinity chromatography indicates that the poly A(+) p9-RNA is the fraction responsible for PKR activation. We also found that p9-RNA induces the production of interferon-gamma (IFN-gamma), but not interleukin (IL-4) since only IFN-gamma gene promoter contains NF-kappaB binding site. This study provides the first evidence that transcriptional control of gene expression by regulatory RNAs can be mediated by PKR through NF-kappaB activation. A model for the mechanism of action of poly A(+) p9-RNA is proposed.
Collapse
Affiliation(s)
- Fernando L De Lucca
- Department of Biochemistry and Immunology, School of Medicine University of São Paulo, Ribeirão Preto, SP, Brazil.
| | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- M P Iribar
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP 14049-900, Brazil
| | | | | |
Collapse
|
48
|
Fedorova L, Fedorov A. Introns in gene evolution. CONTEMPORARY ISSUES IN GENETICS AND EVOLUTION 2003. [DOI: 10.1007/978-94-010-0229-5_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Mathé C, Sagot MF, Schiex T, Rouzé P. Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Res 2002; 30:4103-17. [PMID: 12364589 PMCID: PMC140543 DOI: 10.1093/nar/gkf543] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2002] [Revised: 08/07/2002] [Accepted: 08/07/2002] [Indexed: 11/14/2022] Open
Abstract
While the genomes of many organisms have been sequenced over the last few years, transforming such raw sequence data into knowledge remains a hard task. A great number of prediction programs have been developed that try to address one part of this problem, which consists of locating the genes along a genome. This paper reviews the existing approaches to predicting genes in eukaryotic genomes and underlines their intrinsic advantages and limitations. The main mathematical models and computational algorithms adopted are also briefly described and the resulting software classified according to both the method and the type of evidence used. Finally, the several difficulties and pitfalls encountered by the programs are detailed, showing that improvements are needed and that new directions must be considered.
Collapse
Affiliation(s)
- Catherine Mathé
- Institut de Pharmacologie et Biologie Structurale, UMR 5089, 205 route de Narbonne, F-31077 Toulouse Cedex, France.
| | | | | | | |
Collapse
|
50
|
Halfon MS, Michelson AM. Exploring genetic regulatory networks in metazoan development: methods and models. Physiol Genomics 2002; 10:131-43. [PMID: 12209016 DOI: 10.1152/physiolgenomics.00072.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One of the foremost challenges of 21st century biological research will be to decipher the complex genetic regulatory networks responsible for embryonic development. The recent explosion of whole genome sequence data and of genome-wide transcriptional profiling methods, such as microarrays, coupled with the development of sophisticated computational tools for exploiting and analyzing genomic data, provide a significant starting point for regulatory network analysis. In this article we review some of the main methodological issues surrounding genome annotation, transcriptional profiling, and computational prediction of cis-regulatory elements and discuss how the power of model genetic organisms can be used to experimentally verify and extend the results of genomic research.
Collapse
Affiliation(s)
- Marc S Halfon
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|