1
|
Michałowski MA, Kłopotowski K, Wiera G, Czyżewska MM, Mozrzymas JW. Molecular mechanisms of the GABA type A receptor function. Q Rev Biophys 2025; 58:e3. [PMID: 39806800 DOI: 10.1017/s0033583524000179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The GABA type A receptor (GABAAR) belongs to the family of pentameric ligand-gated ion channels and plays a key role in inhibition in adult mammalian brains. Dysfunction of this macromolecule may lead to epilepsy, anxiety disorders, autism, depression, and schizophrenia. GABAAR is also a target for multiple physiologically and clinically relevant modulators, such as benzodiazepines (BDZs), general anesthetics, and neurosteroids. The first GABAAR structure appeared in 2014, but the past years have brought a particularly abundant surge in structural data for these receptors with various ligands and modulators. Although the open conformation remains elusive, this novel information has pushed the structure-function studies to an unprecedented level. Electrophysiology, mutagenesis, photolabeling, and in silico simulations, guided by novel structural information, shed new light on the molecular mechanisms of receptor functioning. The main goal of this review is to present the current knowledge of GABAAR functional and structural properties. The review begins with an outline of the functional and structural studies of GABAAR, accompanied by some methodological considerations, especially biophysical methods, enabling the reader to follow how major breakthroughs in characterizing GABAAR features have been achieved. The main section provides a comprehensive analysis of the functional significance of specific structural elements in GABAARs. We additionally summarize the current knowledge on the binding sites for major GABAAR modulators, referring to the molecular underpinnings of their action. The final chapter of the review moves beyond examining GABAAR as an isolated macromolecule and describes the interactions of the receptor with other proteins in a broader context of inhibitory plasticity. In the final section, we propose a general conclusion that agonist binding to the orthosteric binding sites appears to rely on local interactions, whereas conformational transitions of bound macromolecule (gating) and allosteric modulation seem to reflect more global phenomena involving vast portions of the macromolecule.
Collapse
Affiliation(s)
- Michał A Michałowski
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Karol Kłopotowski
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Grzegorz Wiera
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Marta M Czyżewska
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Jerzy W Mozrzymas
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
2
|
Wang Z(Z, Folorunso OO, Morris K, Berretta S, Engin E. Early developmental changes in GABAA receptor expression in nucleus accumbens medium spiny neurons. Front Neurosci 2024; 18:1445162. [PMID: 39726828 PMCID: PMC11669658 DOI: 10.3389/fnins.2024.1445162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
The expression of GABAARs goes through large scale, evolutionarily conserved changes through the early postnatal period. While these changes have been well-studied in brain regions such as the hippocampus and sensory cortices, less is known about early developmental changes in other brain areas. The nucleus accumbens (NAc) is a major hub in the circuitry that mediates motivated behaviors and disruptions in NAc activity is a part of the neuropathology observed in mood and substance use disorders. Considering the importance of early developmental disruptions in the vulnerability to and etiology of these disorders, it is essential to understand normal developmental changes in the NAc as a first step to understanding how these changes might be disrupted to cause long-term pathology. Here, we aimed to address the gap in knowledge of early developmental changes in GABAAR expression in NAc neurons. We investigated the expression patterns of GABAAR α1, α2, and α4 subunits in Drd1+, Drd2+, and putative hybrid medium spiny neurons (MSNs) of the mouse NAc over a developmental window from P2 to P16. Our findings show a consistent increase in expression of all 3 GABAAR subunits in Drd1+ MSNs, accompanied by stable expression or even a decrease in expression in Drd2+ MSNs. The putative hybrid population showed a complex expression pattern, usually showing maximum expression at P9. These early developmental changes likely suggest a specific window where GABAAR expression patterns adjust to increasing glutamatergic inputs from external sources, changes in intracellular chloride concentrations, and a switch towards the mature, bistable activity patterns of MSNs from the immature, relatively excitable singular pattern. We propose that this time of dynamic changes in GABAAR expression could represent a sensitive period during which developmental insults might lead to permanent disruptions in GABAAR expression patterns.
Collapse
Affiliation(s)
- Ziyi (Zephyr) Wang
- Stress Neurobiology Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Oluwarotimi O. Folorunso
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Translational Neuroscience Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, United States
| | - Kiely Morris
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Translational Neuroscience Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, United States
| | - Sabina Berretta
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Translational Neuroscience Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, United States
| | - Elif Engin
- Stress Neurobiology Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Vierra NC. Compartmentalized signaling in the soma: Coordination of electrical and protein kinase A signaling at neuronal ER-plasma membrane junctions. Bioessays 2024; 46:e2400126. [PMID: 39268818 DOI: 10.1002/bies.202400126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Neuronal information processing depends on converting membrane depolarizations into compartmentalized biochemical signals that can modify neuronal activity and structure. However, our understanding of how neurons translate electrical signals into specific biochemical responses remains limited, especially in the soma where gene expression and ion channel function are crucial for neuronal activity. Here, I emphasize the importance of physically compartmentalizing action potential-triggered biochemical reactions within the soma. Emerging evidence suggests that somatic endoplasmic reticulum-plasma membrane (ER-PM) junctions are specialized organelles that coordinate electrical and biochemical signaling. The juxtaposition of ion channels and signaling proteins at a prominent subset of these sites enables compartmentalized calcium and cAMP-dependent protein kinase (PKA) signaling. I explore the hypothesis that these PKA-containing ER-PM junctions serve as critical sites for translating membrane depolarizations into PKA signals and identify key gaps in knowledge of the assembly, regulation, and neurobiological functions of this somatic signaling system.
Collapse
Affiliation(s)
- Nicholas C Vierra
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Sun X, Lin M, Tian Z, Ma Y, Lv L. GABA/baclofen stabilizes PD-L1 and enhances immunotherapy of breast cancer. Heliyon 2024; 10:e28600. [PMID: 38601585 PMCID: PMC11004533 DOI: 10.1016/j.heliyon.2024.e28600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
The programmed death-ligand 1 (PD-L1) on the surface of tumor cells binds to the receptor programmed cell death protein 1 (PD-1) on effector T cells, thereby inhibiting the anti-tumor immune response. Immune checkpoint blockade (ICB) therapy targeting PD-1/PD-L1 has been approved for the treatment of human cancers with lasting clinical benefit. However, many cancer patients did not respond to anti-PD-1/PD-L1 antibody blocking therapy or drugs targeting PD-1/PD-L1. Recent studies have shown that the response to PD-1/PD-L1 blockade may be related to the PD-L1 abundance of tumor cells. Therefore, it is of crucial significance to find drugs to regulate the expression of PD-L1, which can provide new strategies to improve the response rate and efficacy of PD-1/PD-L1 blocking in cancer treatment. Here, we found that GABA and baclofen, upregulates the protein level of PD-L1 by reducing the mRNA and protein levels of STUB1, a E3 ubiquitin ligase, thereby decreasing the interaction between STUB1 and PD-L1, and ultimately stabilizing PD-L1. Notably, GABA and baclofen did not affect cell proliferation in vitro, while in the treatment of breast cancer in mice, the therapeutic effect of baclofen combined with anti-PD-L1 antibody is significantly better than that of using anti-PD-L1 antibody alone by stimulating tumor infiltration of CD8+ T cells and antitumor immunity. Taken together, we unveiled a previously unappreciated role of GABA/baclofen in stabilizing PD-L1 and enhancing the immunotherapy of breast cancer.
Collapse
Affiliation(s)
- Xue Sun
- Nourse Centre for Pet Nutrition, Wuhu, 241200, China
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Mingen Lin
- Nourse Centre for Pet Nutrition, Wuhu, 241200, China
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ziyin Tian
- Shanghai Chowsing Pet Products Co., Ltd., Shanghai, 201702, China
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yan Ma
- Wuhu Weishi Biotechnology Co., Ltd., Wuhu, 241204, China
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Lei Lv
- Nourse Centre for Pet Nutrition, Wuhu, 241200, China
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
5
|
McManus E, Muhlert N, Duncan NW. InSpectro-Gadget: A Tool for Estimating Neurotransmitter and Neuromodulator Receptor Distributions for MRS Voxels. Neuroinformatics 2024; 22:135-145. [PMID: 38386228 DOI: 10.1007/s12021-024-09654-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 02/23/2024]
Abstract
Magnetic resonance spectroscopy (MRS) is widely used to estimate concentrations of glutamate and γ -aminobutyric acid (GABA) in specific regions of the living human brain. As cytoarchitectural properties differ across the brain, interpreting these measurements can be assisted by having knowledge of such properties for the MRS region(s) studied. In particular, some knowledge of likely local neurotransmitter receptor patterns can potentially give insights into the mechanistic environment GABA- and glutamatergic neurons are functioning in. This may be of particular utility when comparing two or more regions, given that the receptor populations may differ substantially across them. At the same time, when studying MRS data from multiple participants or timepoints, the homogeneity of the sample becomes relevant, as measurements taken from areas with different cytoarchitecture may be difficult to compare. To provide insights into the likely cytoarchitectural environment of user-defined regions-of-interest, we produced an easy to use tool - InSpectro-Gadget - that interfaces with receptor mRNA expression information from the Allen Human Brain Atlas. This Python tool allows users to input masks and automatically obtain a graphical overview of the receptor population likely to be found within. This includes comparison between multiple masks or participants where relevant. The receptors and receptor subunit genes featured include GABA- and glutamatergic classes, along with a wide range of neuromodulators. The functionality of the tool is explained here and its use is demonstrated through a set of example analyses. The tool is available at https://github.com/lizmcmanus/Inspectro-Gadget .
Collapse
Affiliation(s)
| | - Nils Muhlert
- School of Health Sciences, University of Manchester, Manchester, UK
| | - Niall W Duncan
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
6
|
Silva ARR, Silva PV, Soares AR, González-Alcaraz MN, van Gestel CAM, Roelofs D, Moura G, Soares AMVM, Loureiro S. Daphnia magna Multigeneration Exposure to Carbendazim: Gene Transcription Responses. TOXICS 2023; 11:918. [PMID: 37999570 PMCID: PMC10674461 DOI: 10.3390/toxics11110918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
The world population is experiencing colossal growth and thus demand for food, leading to an increase in the use of pesticides. Persistent pesticide contamination, such as carbendazim, remains a pressing environmental concern, with potentially long-term impacts on aquatic ecosystems. In the present study, Daphnia magna was exposed to carbendazim (5 µg L-1) for 12 generations, with the aim of assessing gene transcription alterations induced by carbendazim (using a D. magna custom microarray). The results showed that carbendazim caused changes in genes involved in the response to stress, DNA replication/repair, neurotransmission, ATP production, and lipid and carbohydrate metabolism at concentrations already found in the environment. These outcomes support the results of previous studies, in which carbendazim induced genotoxic effects and reproduction impairment (increasing the number of aborted eggs with the decreasing number of neonates produced). The exposure of daphnids to carbendazim did not cause a stable change in gene transcription between generations, with more genes being differentially expressed in the F0 generation than in the F12 generation. This could show some possible daphnid acclimation after 12 generations and is aligned with previous multigenerational studies where few ecotoxicological effects at the individual and populational levels and other subcellular level effects (e.g., biochemical biomarkers) were found.
Collapse
Affiliation(s)
- Ana Rita R. Silva
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.V.S.); (A.M.V.M.S.); (S.L.)
| | - Patrícia V. Silva
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.V.S.); (A.M.V.M.S.); (S.L.)
| | - Ana Raquel Soares
- Department of Medical Sciences & Institute for Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.S.); (G.M.)
| | - M. Nazaret González-Alcaraz
- Department of Agricultural Engineering of the E.T.S.I.A., Technical University of Cartagena, 30203 Cartagena, Spain;
| | - Cornelis A. M. van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; (C.A.M.v.G.); (D.R.)
| | - Dick Roelofs
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; (C.A.M.v.G.); (D.R.)
- Keygene N.V., Agro Business Park 90, 6708 PW Wageningen, The Netherlands
| | - Gabriela Moura
- Department of Medical Sciences & Institute for Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.S.); (G.M.)
| | - Amadeu M. V. M. Soares
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.V.S.); (A.M.V.M.S.); (S.L.)
| | - Susana Loureiro
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.V.S.); (A.M.V.M.S.); (S.L.)
| |
Collapse
|
7
|
García-Rojas F, Flores-Muñoz C, Santander O, Solis P, Martínez AD, Ardiles ÁO, Fuenzalida M. Pannexin-1 Modulates Inhibitory Transmission and Hippocampal Synaptic Plasticity. Biomolecules 2023; 13:887. [PMID: 37371467 DOI: 10.3390/biom13060887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Pannexin-1 (Panx1) hemichannel is a non-selective transmembrane channel that may play important roles in intercellular signaling by allowing the permeation of ions and metabolites, such as ATP. Although recent evidence shows that the Panx1 hemichannel is involved in controlling excitatory synaptic transmission, the role of Panx1 in inhibitory transmission remains unknown. Here, we studied the contribution of Panx1 to the GABAergic synaptic efficacy onto CA1 pyramidal neurons (PyNs) by using patch-clamp recordings and pharmacological approaches in wild-type and Panx1 knock-out (Panx1-KO) mice. We reported that blockage of the Panx1 hemichannel with the mimetic peptide 10Panx1 increases the synaptic level of endocannabinoids (eCB) and the activation of cannabinoid receptors type 1 (CB1Rs), which results in a decrease in hippocampal GABAergic efficacy, shifting excitation/inhibition (E/I) balance toward excitation and facilitating the induction of long-term potentiation. Our finding provides important insight unveiling that Panx1 can strongly influence the overall neuronal excitability and play a key role in shaping synaptic changes affecting the amplitude and direction of plasticity, as well as learning and memory processes.
Collapse
Affiliation(s)
- Francisca García-Rojas
- Centro de Neurobiología y Fisiopatología Integrativa, CENFI, Instituto de Fisiología, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Carolina Flores-Muñoz
- Centro de Neurobiología y Fisiopatología Integrativa, CENFI, Instituto de Fisiología, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2341386, Chile
| | - Odra Santander
- Centro de Neurobiología y Fisiopatología Integrativa, CENFI, Instituto de Fisiología, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Pamela Solis
- Centro de Neurobiología y Fisiopatología Integrativa, CENFI, Instituto de Fisiología, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Programa de Magister en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Agustín D Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Álvaro O Ardiles
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro Interdisciplinario de Estudios en Salud, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2572007, Chile
| | - Marco Fuenzalida
- Centro de Neurobiología y Fisiopatología Integrativa, CENFI, Instituto de Fisiología, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
8
|
Jiang F, Bello ST, Gao Q, Lai Y, Li X, He L. Advances in the Electrophysiological Recordings of Long-Term Potentiation. Int J Mol Sci 2023; 24:ijms24087134. [PMID: 37108295 PMCID: PMC10138642 DOI: 10.3390/ijms24087134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Understanding neuronal firing patterns and long-term potentiation (LTP) induction in studying learning, memory, and neurological diseases is critical. However, recently, despite the rapid advancement in neuroscience, we are still constrained by the experimental design, detection tools for exploring the mechanisms and pathways involved in LTP induction, and detection ability of neuronal action potentiation signals. This review will reiterate LTP-related electrophysiological recordings in the mammalian brain for nearly 50 years and explain how excitatory and inhibitory neural LTP results have been detected and described by field- and single-cell potentials, respectively. Furthermore, we focus on describing the classic model of LTP of inhibition and discuss the inhibitory neuron activity when excitatory neurons are activated to induce LTP. Finally, we propose recording excitatory and inhibitory neurons under the same experimental conditions by combining various electrophysiological technologies and novel design suggestions for future research. We discussed different types of synaptic plasticity, and the potential of astrocytes to induce LTP also deserves to be explored in the future.
Collapse
Affiliation(s)
- Feixu Jiang
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| | | | - Qianqian Gao
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| | - Yuanying Lai
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| | - Xiao Li
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Ling He
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
9
|
Naylor DE. In the fast lane: Receptor trafficking during status epilepticus. Epilepsia Open 2023; 8 Suppl 1:S35-S65. [PMID: 36861477 PMCID: PMC10173858 DOI: 10.1002/epi4.12718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Status epilepticus (SE) remains a significant cause of morbidity and mortality and often is refractory to standard first-line treatments. A rapid loss of synaptic inhibition and development of pharmacoresistance to benzodiazepines (BZDs) occurs early during SE, while NMDA and AMPA receptor antagonists remain effective treatments after BZDs have failed. Multimodal and subunit-selective receptor trafficking within minutes to an hour of SE involves GABA-A, NMDA, and AMPA receptors and contributes to shifts in the number and subunit composition of surface receptors with differential impacts on the physiology, pharmacology, and strength of GABAergic and glutamatergic currents at synaptic and extrasynaptic sites. During the first hour of SE, synaptic GABA-A receptors containing γ2 subunits move to the cell interior while extrasynaptic GABA-A receptors with δ subunits are preserved. Conversely, NMDA receptors containing N2B subunits are increased at synaptic and extrasynaptic sites, and homomeric GluA1 ("GluA2-lacking") calcium permeant AMPA receptor surface expression also is increased. Molecular mechanisms, largely driven by NMDA receptor or calcium permeant AMPA receptor activation early during circuit hyperactivity, regulate subunit-specific interactions with proteins involved with synaptic scaffolding, adaptin-AP2/clathrin-dependent endocytosis, endoplasmic reticulum (ER) retention, and endosomal recycling. Reviewed here is how SE-induced shifts in receptor subunit composition and surface representation increase the excitatory to inhibitory imbalance that sustains seizures and fuels excitotoxicity contributing to chronic sequela such as "spontaneous recurrent seizures" (SRS). A role for early multimodal therapy is suggested both for treatment of SE and for prevention of long-term comorbidities.
Collapse
Affiliation(s)
- David E Naylor
- VA Greater Los Angeles Healthcare System, Department of Neurology, David Geffen School of Medicine at UCLA, and The Lundquist Institute at Harbor-UCLA Medical Center, Los Angeles, California, USA
| |
Collapse
|
10
|
Ryner RF, Derera ID, Armbruster M, Kansara A, Sommer ME, Pirone A, Noubary F, Jacob M, Dulla CG. Cortical Parvalbumin-Positive Interneuron Development and Function Are Altered in the APC Conditional Knockout Mouse Model of Infantile and Epileptic Spasms Syndrome. J Neurosci 2023; 43:1422-1440. [PMID: 36717229 PMCID: PMC9987578 DOI: 10.1523/jneurosci.0572-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 02/01/2023] Open
Abstract
Infantile and epileptic spasms syndrome (IESS) is a childhood epilepsy syndrome characterized by infantile or late-onset spasms, abnormal neonatal EEG, and epilepsy. Few treatments exist for IESS, clinical outcomes are poor, and the molecular and circuit-level etiologies of IESS are not well understood. Multiple human IESS risk genes are linked to Wnt/β-catenin signaling, a pathway that controls developmental transcriptional programs and promotes glutamatergic excitation via β-catenin's role as a synaptic scaffold. We previously showed that deleting adenomatous polyposis coli (APC), a component of the β-catenin destruction complex, in excitatory neurons (APC cKO mice, APCfl/fl x CaMKIIαCre) increased β-catenin levels in developing glutamatergic neurons and led to infantile behavioral spasms, abnormal neonatal EEG, and adult epilepsy. Here, we tested the hypothesis that the development of GABAergic interneurons (INs) is disrupted in APC cKO male and female mice. IN dysfunction is implicated in human IESS, is a feature of other rodent models of IESS, and may contribute to the manifestation of spasms and seizures. We found that parvalbumin-positive INs (PV+ INs), an important source of cortical inhibition, were decreased in number, underwent disproportionate developmental apoptosis, and had altered dendrite morphology at P9, the peak of behavioral spasms. PV+ INs received excessive excitatory input, and their intrinsic ability to fire action potentials was reduced at all time points examined (P9, P14, P60). Subsequently, GABAergic transmission onto pyramidal neurons was uniquely altered in the somatosensory cortex of APC cKO mice at all ages, with both decreased IPSC input at P14 and enhanced IPSC input at P9 and P60. These results indicate that inhibitory circuit dysfunction occurs in APC cKOs and, along with known changes in excitation, may contribute to IESS-related phenotypes.SIGNIFICANCE STATEMENT Infantile and epileptic spasms syndrome (IESS) is a devastating epilepsy with limited treatment options and poor clinical outcomes. The molecular, cellular, and circuit disruptions that cause infantile spasms and seizures are largely unknown, but inhibitory GABAergic interneuron dysfunction has been implicated in rodent models of IESS and may contribute to human IESS. Here, we use a rodent model of IESS, the APC cKO mouse, in which β-catenin signaling is increased in excitatory neurons. This results in altered parvalbumin-positive GABAergic interneuron development and GABAergic synaptic dysfunction throughout life, showing that pathology arising in excitatory neurons can initiate long-term interneuron dysfunction. Our findings further implicate GABAergic dysfunction in IESS, even when pathology is initiated in other neuronal types.
Collapse
Affiliation(s)
- Rachael F Ryner
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Cell, Molecular, and Developmental Biology Graduate Program, Tufts Graduate School of Biomedical Sciences, Boston, Massachusetts 02111
| | - Isabel D Derera
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Anar Kansara
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Mary E Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Antonella Pirone
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Farzad Noubary
- Department of Health Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115
| | - Michele Jacob
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| |
Collapse
|
11
|
Pérez-Rodríguez D, Penedo MA, Rivera-Baltanás T, Peña-Centeno T, Burkhardt S, Fischer A, Prieto-González JM, Olivares JM, López-Fernández H, Agís-Balboa RC. MiRNA Differences Related to Treatment-Resistant Schizophrenia. Int J Mol Sci 2023; 24:ijms24031891. [PMID: 36768211 PMCID: PMC9916039 DOI: 10.3390/ijms24031891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Schizophrenia (SZ) is a serious mental disorder that is typically treated with antipsychotic medication. Treatment-resistant schizophrenia (TRS) is the condition where symptoms remain after pharmacological intervention, resulting in long-lasting functional and social impairments. As the identification and treatment of a TRS patient requires previous failed treatments, early mechanisms of detection are needed in order to quicken the access to effective therapy, as well as improve treatment adherence. In this study, we aim to find a microRNA (miRNA) signature for TRS, as well as to shed some light on the molecular pathways potentially involved in this severe condition. To do this, we compared the blood miRNAs of schizophrenia patients that respond to medication and TRS patients, thus obtaining a 16-miRNA TRS profile. Then, we assessed the ability of this signature to separate responders and TRS patients using hierarchical clustering, observing that most of them are grouped correctly (~70% accuracy). We also conducted a network, pathway analysis, and bibliography search to spot molecular pathways potentially altered in TRS. We found that the response to stress seems to be a key factor in TRS and that proteins p53, SIRT1, MDM2, and TRIM28 could be the potential mediators of such responses. Finally, we suggest a molecular pathway potentially regulated by the miRNAs of the TRS profile.
Collapse
Affiliation(s)
- Daniel Pérez-Rodríguez
- NeuroEpigenetics Lab, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, Spain
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, 36213 Vigo, Spain
| | - Maria Aránzazu Penedo
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, 36213 Vigo, Spain
- Grupo de Neurofarmacología de Las Adicciones y Los Trastornos Degenerativos (NEUROFAN), Universidad CEU San Pablo, 28925 Madrid, Spain
| | - Tania Rivera-Baltanás
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, 36213 Vigo, Spain
| | - Tonatiuh Peña-Centeno
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, 37075 Göttingen, Germany
| | - Susanne Burkhardt
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, 37075 Göttingen, Germany
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, 37075 Göttingen, Germany
| | - José M. Prieto-González
- NeuroEpigenetics Lab, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, Spain
- Servicio de Neurología, Hospital Clínico Universitario de Santiago, 15706 Santiago de Compostela, Spain
- Grupo Trastornos del Movimiento, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, Spain
| | - José Manuel Olivares
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, 36213 Vigo, Spain
- Department of Psychiatry, Área Sanitaria de Vigo, 36312 Vigo, Spain
| | - Hugo López-Fernández
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
- CINBIO, Department of Computer Science, ESEI-Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain
- Correspondence: (H.L.-F.); (R.C.A.-B.)
| | - Roberto Carlos Agís-Balboa
- NeuroEpigenetics Lab, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, Spain
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, 36213 Vigo, Spain
- Servicio de Neurología, Hospital Clínico Universitario de Santiago, 15706 Santiago de Compostela, Spain
- Grupo Trastornos del Movimiento, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, Spain
- Correspondence: (H.L.-F.); (R.C.A.-B.)
| |
Collapse
|
12
|
Ulanov M, Shtyrov Y. Oscillatory beta/alpha band modulations: A potential biomarker of functional language and motor recovery in chronic stroke? Front Hum Neurosci 2022; 16:940845. [PMID: 36226263 PMCID: PMC9549964 DOI: 10.3389/fnhum.2022.940845] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke remains one of the leading causes of various disabilities, including debilitating motor and language impairments. Though various treatments exist, post-stroke impairments frequently become chronic, dramatically reducing daily life quality, and requiring specific rehabilitation. A critical goal of chronic stroke rehabilitation is to induce, usually through behavioral training, experience-dependent plasticity processes in order to promote functional recovery. However, the efficiency of such interventions is typically modest, and very little is known regarding the neural dynamics underpinning recovery processes and possible biomarkers of their efficiency. Some studies have emphasized specific alterations of excitatory–inhibitory balance within distributed neural networks as an important recovery correlate. Neural processes sensitive to these alterations, such as task-dependent oscillatory activity in beta as well as alpha bands, may be candidate biomarkers of chronic stroke functional recovery. In this review, we discuss the results of studies on motor and language recovery with a focus on oscillatory processes centered around the beta band and their modulations during functional recovery in chronic stroke. The discussion is based on a framework where task-dependent modulations of beta and alpha oscillatory activity, generated by the deep cortical excitatory–inhibitory microcircuits, serve as a neural mechanism of domain-general top-down control processes. We discuss the findings, their limitations, and possible directions for future research.
Collapse
Affiliation(s)
- Maxim Ulanov
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
- *Correspondence: Maxim Ulanov,
| | - Yury Shtyrov
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Doliba NM, Rozo AV, Roman J, Qin W, Traum D, Gao L, Liu J, Manduchi E, Liu C, Golson ML, Vahedi G, Naji A, Matschinsky FM, Atkinson MA, Powers AC, Brissova M, Kaestner KH, Stoffers DA. α Cell dysfunction in islets from nondiabetic, glutamic acid decarboxylase autoantibody-positive individuals. J Clin Invest 2022; 132:156243. [PMID: 35642629 PMCID: PMC9151702 DOI: 10.1172/jci156243] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/14/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUNDMultiple islet autoantibodies (AAbs) predict the development of type 1 diabetes (T1D) and hyperglycemia within 10 years. By contrast, T1D develops in only approximately 15% of individuals who are positive for single AAbs (generally against glutamic acid decarboxylase [GADA]); hence, the single GADA+ state may represent an early stage of T1D.METHODSHere, we functionally, histologically, and molecularly phenotyped human islets from nondiabetic GADA+ and T1D donors.RESULTSSimilar to the few remaining β cells in the T1D islets, GADA+ donor islets demonstrated a preserved insulin secretory response. By contrast, α cell glucagon secretion was dysregulated in both GADA+ and T1D islets, with impaired glucose suppression of glucagon secretion. Single-cell RNA-Seq of GADA+ α cells revealed distinct abnormalities in glycolysis and oxidative phosphorylation pathways and a marked downregulation of cAMP-dependent protein kinase inhibitor β (PKIB), providing a molecular basis for the loss of glucose suppression and the increased effect of 3-isobutyl-1-methylxanthine (IBMX) observed in GADA+ donor islets.CONCLUSIONWe found that α cell dysfunction was present during the early stages of islet autoimmunity at a time when β cell mass was still normal, raising important questions about the role of early α cell dysfunction in the progression of T1D.FUNDINGThis work was supported by grants from the NIH (3UC4DK112217-01S1, U01DK123594-02, UC4DK112217, UC4DK112232, U01DK123716, and P30 DK019525) and the Vanderbilt Diabetes Research and Training Center (DK20593).
Collapse
Affiliation(s)
- Nicolai M. Doliba
- Department of Biochemistry and Biophysics,,Institute for Diabetes, Obesity, and Metabolism
| | - Andrea V. Rozo
- Institute for Diabetes, Obesity, and Metabolism,,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | | | - Wei Qin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | | | | | | | | | - Chengyang Liu
- Institute for Diabetes, Obesity, and Metabolism,,Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maria L. Golson
- Institute for Diabetes, Obesity, and Metabolism,,Department of Genetics, and
| | - Golnaz Vahedi
- Institute for Diabetes, Obesity, and Metabolism,,Department of Genetics, and
| | - Ali Naji
- Institute for Diabetes, Obesity, and Metabolism,,Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Franz M. Matschinsky
- Department of Biochemistry and Biophysics,,Institute for Diabetes, Obesity, and Metabolism
| | - Mark A. Atkinson
- Departments of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA.,Department of Pediatrics, University of Florida Diabetes Institute, College of Medicine, Gainesville, Florida, USA
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA.,VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Klaus H. Kaestner
- Institute for Diabetes, Obesity, and Metabolism,,Department of Genetics, and
| | - Doris A. Stoffers
- Institute for Diabetes, Obesity, and Metabolism,,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | | |
Collapse
|
14
|
Singh T, Batabyal T, Kapur J. Neuronal circuits sustaining neocortical-injury-induced status epilepticus. Neurobiol Dis 2022; 165:105633. [PMID: 35065250 PMCID: PMC8860889 DOI: 10.1016/j.nbd.2022.105633] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES Acute injuries or insults to the cortex, such as trauma, subarachnoid hemorrhage, lobar hemorrhage, can cause seizures or status epilepticus(SE). Neocortical SE is associated with coma, worse prognosis, delayed recovery, and the development of epilepsy. The anatomical structures progressively recruited during neocortical-onset status epilepticus (SE) is unknown. Therefore, we constructed large-scale maps of brain regions active during neocortical SE. METHODS We used a neocortical injury-induced SE mouse model. We implanted cobalt (Co) in the right supplementary motor cortex (M2). We 16 h later administered a homocysteine injection (845 mg/kg, intraperitoneal) to C57Bl/6 J mice to induce SE and monitored it by video and EEG. We harvested animals for 1 h (early-stage) and 2 h (late-stage) following homocysteine injections. To construct activation maps, we immunolabeled whole-brain sections for cFos and NeuN, imaged them using a confocal microscope and quantified cFos immunoreactivity (IR). RESULTS SE in the early phase consisted of discrete, focal intermittent seizures, which became continuous and bilateral in the late stage. In this early stage, cFos IR was primarily observed in the right hemisphere, ipsilateral to the Co lesion, specifically in the motor cortex, retrosplenial cortex, somatosensory cortex, anterior cingulate cortex, lateral and medial septal nuclei, and amygdala. We observed bilateral cFos IR in brain regions during the late stage, indicating the bilateral spread of focal seizures. We found increased cFOS IR in the bilateral somatosensory cortex and the motor cortex and subcortical regions, including the amygdala, thalamus, and hypothalamus. There was noticeably different, intense cFos IR in the bilateral hippocampus compared to the early stage. In addition, there was higher activity in the cortex ipsilateral to the seizure focus during the late stage compared with the early one. CONCLUSION We present a large-scale, high-resolution map of seizure spread during neocortical injury-induced SE. Cortico-cortical and cortico subcortical re-entrant circuits sustain neocortical SE. Neuronal loss following neocortical SE, distant from the neocortical focus, may result from seizures.
Collapse
Affiliation(s)
- Tanveer Singh
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - Tamal Batabyal
- UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA; UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
15
|
Michalettos G, Ruscher K. Crosstalk Between GABAergic Neurotransmission and Inflammatory Cascades in the Post-ischemic Brain: Relevance for Stroke Recovery. Front Cell Neurosci 2022; 16:807911. [PMID: 35401118 PMCID: PMC8983863 DOI: 10.3389/fncel.2022.807911] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Adaptive plasticity processes are required involving neurons as well as non-neuronal cells to recover lost brain functions after an ischemic stroke. Recent studies show that gamma-Aminobutyric acid (GABA) has profound effects on glial and immune cell functions in addition to its inhibitory actions on neuronal circuits in the post-ischemic brain. Here, we provide an overview of how GABAergic neurotransmission changes during the first weeks after stroke and how GABA affects functions of astroglial and microglial cells as well as peripheral immune cell populations accumulating in the ischemic territory and brain regions remote to the lesion. Moreover, we will summarize recent studies providing data on the immunomodulatory actions of GABA of relevance for stroke recovery. Interestingly, the activation of GABA receptors on immune cells exerts a downregulation of detrimental anti-inflammatory cascades. Conversely, we will discuss studies addressing how specific inflammatory cascades affect GABAergic neurotransmission on the level of GABA receptor composition, GABA synthesis, and release. In particular, the chemokines CXCR4 and CX3CR1 pathways have been demonstrated to modulate receptor composition and synthesis. Together, the actual view on the interactions between GABAergic neurotransmission and inflammatory cascades points towards a specific crosstalk in the post-ischemic brain. Similar to what has been shown in experimental models, specific therapeutic modulation of GABAergic neurotransmission and inflammatory pathways may synergistically promote neuronal plasticity to enhance stroke recovery.
Collapse
Affiliation(s)
- Georgios Michalettos
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
- LUBIN Lab—Lunds Laboratorium för Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- *Correspondence: Karsten Ruscher
| |
Collapse
|
16
|
Hyperammonemia Enhances GABAergic Neurotransmission in Hippocampus: Underlying Mechanisms and Modulation by Extracellular cGMP. Mol Neurobiol 2022; 59:3431-3448. [PMID: 35320456 DOI: 10.1007/s12035-022-02803-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
Rats with chronic hyperammonemia reproduce the cognitive and motor impairment present in patients with hepatic encephalopathy. It has been proposed that enhanced GABAergic neurotransmission in hippocampus may contribute to impaired learning and memory in hyperammonemic rats. However, there are no direct evidences of the effects of hyperammonemia on GABAergic neurotransmission in hippocampus or on the underlying mechanisms. The aims of this work were to assess if chronic hyperammonemia enhances the function of GABAA receptors in hippocampus and to identify the underlying mechanisms. Activation of GABAA receptors is enhanced in hippocampus of hyperammonemic rats, as analyzed in a multielectrode array system. Hyperammonemia reduces membrane expression of the GABA transporters GAT1 and GAT3, which is associated with increased extracellular GABA concentration. Hyperammonemia also increases gephyrin levels and phosphorylation of the β3 subunit of GABAA receptor, which are associated with increased membrane expression of the GABAA receptor subunits α1, α2, γ2, β3, and δ. Enhanced levels of extracellular GABA and increased membrane expression of GABAA receptors would be responsible for the enhanced GABAergic neurotransmission in hippocampus of hyperammonemic rats. Increasing extracellular cGMP reverses the increase in GABAA receptors activation by normalizing the membrane expression of GABA transporters and GABAA receptors. The increased GABAergic neurotransmission in hippocampus would contribute to cognitive impairment in hyperammonemic rats. The results reported suggest that reducing GABAergic tone in hippocampus by increasing extracellular cGMP or by other means may be useful to improve cognitive function in hyperammonemia and in cirrhotic patients with minimal or clinical hepatic encephalopathy.
Collapse
|
17
|
Li N, Tao W, Yang L, Spain WJ, Ransom CB. GABA-B receptors enhance GABA-A receptor currents by modulation of membrane trafficking in dentate gyrus granule cells. Neurosci Lett 2022; 773:136481. [DOI: 10.1016/j.neulet.2022.136481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/24/2022]
|
18
|
Huang SJ, Zuo MT, Qi XJ, Huang CY, Liu ZY. Phosphoproteomics reveals NMDA receptor-mediated excitotoxicity as a key signaling pathway in the toxicity of gelsenicine. Food Chem Toxicol 2021; 156:112507. [PMID: 34389372 DOI: 10.1016/j.fct.2021.112507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/21/2021] [Accepted: 08/09/2021] [Indexed: 01/08/2023]
Abstract
Gelsenicine is one of the most toxic compounds in the genus Gelsemium, but the mechanism of toxicity is not clear. In this paper, tandem mass tag quantitative phosphoproteomics was used to study the changes in protein phosphorylation in different brain regions at different time points after gelsenicine poisoning in mice. The correlation between neurotransmitter receptors and the toxicity of gelsenicine was analyzed by molecular docking and rescue experiments. Parallel reaction monitoring (PRM) was used to verify the related proteins. A total of 17877 unique phosphosites were quantified and mapped to 4170 brain proteins to understand the signaling pathways. Phosphoproteomics revealed gelsenicine poisoning mainly affected protein phosphorylation levels in the hippocampus, and through bioinformatics analysis, it was found gelsenicine poisoning significantly affected neurotransmitter synaptic pathway. The molecular docking results showed that gelsenicine could bind to the N-methyl-D-aspartic acid receptor (NMDAR). In addition, we found that NMDA was effective in improving the survival rate of the animals tested, and this effect was associated with reduced protein phosphorylation by PRM validation. The results revealed that gelsenicine affects neurotransmitter release and receptor function. This is the first demonstration that NMDA receptor-mediated excitotoxicity is a key signaling pathway in the toxicity of gelsenicine.
Collapse
Affiliation(s)
- Si-Juan Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Meng-Ting Zuo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Xue-Jia Qi
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Chong-Yin Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
19
|
Electrophysiology of ionotropic GABA receptors. Cell Mol Life Sci 2021; 78:5341-5370. [PMID: 34061215 PMCID: PMC8257536 DOI: 10.1007/s00018-021-03846-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 10/30/2022]
Abstract
GABAA receptors are ligand-gated chloride channels and ionotropic receptors of GABA, the main inhibitory neurotransmitter in vertebrates. In this review, we discuss the major and diverse roles GABAA receptors play in the regulation of neuronal communication and the functioning of the brain. GABAA receptors have complex electrophysiological properties that enable them to mediate different types of currents such as phasic and tonic inhibitory currents. Their activity is finely regulated by membrane voltage, phosphorylation and several ions. GABAA receptors are pentameric and are assembled from a diverse set of subunits. They are subdivided into numerous subtypes, which differ widely in expression patterns, distribution and electrical activity. Substantial variations in macroscopic neural behavior can emerge from minor differences in structure and molecular activity between subtypes. Therefore, the diversity of GABAA receptors widens the neuronal repertoire of responses to external signals and contributes to shaping the electrical activity of neurons and other cell types.
Collapse
|
20
|
Maingret F, Groc L. Characterization of the Functional Cross-Talk between Surface GABA A and Dopamine D5 Receptors. Int J Mol Sci 2021; 22:4867. [PMID: 34064454 PMCID: PMC8125140 DOI: 10.3390/ijms22094867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 01/17/2023] Open
Abstract
The γ-aminobutyric acid type A receptor (GABAAR) plays a major role in fast inhibitory synaptic transmission and is highly regulated by the neuromodulator dopamine. In this aspect, most of the attention has been focused on the classical intracellular signaling cascades following dopamine G-protein-coupled receptor activation. Interestingly, the GABAAR and dopamine D5 receptor (D5R) have been shown to physically interact in the hippocampus, but whether a functional cross-talk occurs is still debated. In the present study, we use a combination of imaging and single nanoparticle tracking in live hippocampal neurons to provide evidence that GABAARs and D5Rs form dynamic surface clusters. Disrupting the GABAAR-D5R interaction with a competing peptide leads to an increase in the diffusion coefficient and the explored area of both receptors, and a drop in immobile synaptic GABAARs. By means of patch-clamp recordings, we show that this fast lateral redistribution of surface GABAARs correlates with a robust depression in the evoked GABAergic currents. Strikingly, it also shifts in time the expression of long-term potentiation at glutamatergic synapses. Together, our data both set the plasma membrane as the primary stage of a functional interplay between GABAAR and D5R, and uncover a non-canonical role in regulating synaptic transmission.
Collapse
Affiliation(s)
- François Maingret
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, 33076 Bordeaux, France;
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, 33076 Bordeaux, France
| | - Laurent Groc
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, 33076 Bordeaux, France;
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, 33076 Bordeaux, France
| |
Collapse
|
21
|
Cifelli P, Di Angelantonio S, Alfano V, Morano A, De Felice E, Aronica E, Ruffolo G, Palma E. Dissecting the Molecular Determinants of GABA A Receptors Current Rundown, a Hallmark of Refractory Human Epilepsy. Brain Sci 2021; 11:brainsci11040441. [PMID: 33808090 PMCID: PMC8066365 DOI: 10.3390/brainsci11040441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 11/16/2022] Open
Abstract
GABAA receptors-(Rs) are fundamental for the maintenance of an efficient inhibitory function in the central nervous system (CNS). Their dysfunction is associated with a wide range of CNS disorders, many of which characterized by seizures and epilepsy. Recently, an increased use-dependent desensitization due to a repetitive GABA stimulation (GABAA current rundown) of GABAARs has been associated with drug-resistant temporal lobe epilepsy (TLE). Here, we aimed to investigate the molecular determinants of GABAA current rundown with two different heterologous expression systems (Xenopus oocytes and human embryonic kidney cells; HEK) which allowed us to manipulate receptor stoichiometry and to study the GABAA current rundown on different GABAAR configurations. To this purpose, we performed electrophysiology experiments using two-electrode voltage clamp in oocytes and confirming part of our results in HEK. We found that different degrees of GABAA current rundown can be associated with the expression of different GABAAR β-subunits reaching the maximum current decrease when functional α1β2 receptors are expressed. Furthermore, the blockade of phosphatases can prevent the current rundown observed in α1β2 GABAARs. Since GABAAR represents one important therapeutic target in the treatment of human epilepsy, our results could open new perspectives on the therapeutic management of drug-resistant patients showing a GABAergic impairment.
Collapse
Affiliation(s)
- Pierangelo Cifelli
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (S.D.A.); (V.A.); (E.D.F.); (E.P.)
- Center for Life Nanoscience, Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Veronica Alfano
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (S.D.A.); (V.A.); (E.D.F.); (E.P.)
| | - Alessandra Morano
- Department of Human Neuroscience, University of Rome Sapienza, 00185 Rome, Italy;
| | - Eleonora De Felice
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (S.D.A.); (V.A.); (E.D.F.); (E.P.)
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, 1105 Amsterdam, The Netherlands;
- Stichting Epilepsie Instellingen Nederland, 0397 Heemstede, The Netherlands
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (S.D.A.); (V.A.); (E.D.F.); (E.P.)
- Correspondence:
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (S.D.A.); (V.A.); (E.D.F.); (E.P.)
| |
Collapse
|
22
|
Han W, Shepard RD, Lu W. Regulation of GABA ARs by Transmembrane Accessory Proteins. Trends Neurosci 2021; 44:152-165. [PMID: 33234346 PMCID: PMC7855156 DOI: 10.1016/j.tins.2020.10.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
The vast majority of fast inhibitory transmission in the brain is mediated by GABA acting on GABAA receptors (GABAARs), which provides inhibitory balance to excitatory drive and controls neuronal output. GABAARs are also effectively targeted by clinically important drugs for treatment in a number of neurological disorders. It has long been hypothesized that function and pharmacology of GABAARs are determined by the channel pore-forming subunits. However, recent studies have provided new dimensions in studying GABAARs due to several transmembrane proteins that interact with GABAARs and modulate their trafficking and function. In this review, we summarize recent findings on these novel GABAAR transmembrane regulators and highlight a potential avenue to develop new GABAAR psychopharmacology by targeting these receptor-associated membrane proteins.
Collapse
Affiliation(s)
- Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan D Shepard
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
23
|
Althaus AL, Ackley MA, Belfort GM, Gee SM, Dai J, Nguyen DP, Kazdoba TM, Modgil A, Davies PA, Moss SJ, Salituro FG, Hoffmann E, Hammond RS, Robichaud AJ, Quirk MC, Doherty JJ. Preclinical characterization of zuranolone (SAGE-217), a selective neuroactive steroid GABA A receptor positive allosteric modulator. Neuropharmacology 2020; 181:108333. [PMID: 32976892 PMCID: PMC8265595 DOI: 10.1016/j.neuropharm.2020.108333] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/26/2020] [Accepted: 09/18/2020] [Indexed: 01/04/2023]
Abstract
Zuranolone (SAGE-217) is a novel, synthetic, clinical stage neuroactive steroid GABAA receptor positive allosteric modulator designed with the pharmacokinetic properties to support oral daily dosing. In vitro, zuranolone enhanced GABAA receptor current at nine unique human recombinant receptor subtypes, including representative receptors for both synaptic (γ subunit-containing) and extrasynaptic (δ subunit-containing) configurations. At a representative synaptic subunit configuration, α1β2γ2, zuranolone potentiated GABA currents synergistically with the benzodiazepine diazepam, consistent with the non-competitive activity and distinct binding sites of the two classes of compounds at synaptic receptors. In a brain slice preparation, zuranolone produced a sustained increase in GABA currents consistent with metabotropic trafficking of GABAA receptors to the cell surface. In vivo, zuranolone exhibited potent activity, indicating its ability to modulate GABAA receptors in the central nervous system after oral dosing by protecting against chemo-convulsant seizures in a mouse model and enhancing electroencephalogram β-frequency power in rats. Together, these data establish zuranolone as a potent and efficacious neuroactive steroid GABAA receptor positive allosteric modulator with drug-like properties and CNS exposure in preclinical models. Recent clinical data support the therapeutic promise of neuroactive steroid GABAA receptor positive modulators for treating mood disorders; brexanolone is the first therapeutic approved specifically for the treatment of postpartum depression. Zuranolone is currently under clinical investigation for the treatment of major depressive episodes in major depressive disorder, postpartum depression, and bipolar depression.
Collapse
Affiliation(s)
- Alison L Althaus
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA.
| | - Michael A Ackley
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA
| | - Gabriel M Belfort
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA
| | - Steven M Gee
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA
| | - Jing Dai
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA
| | - David P Nguyen
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA
| | - Tatiana M Kazdoba
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA
| | - Amit Modgil
- Department of Neuroscience, Tufts University, Boston, MA, USA
| | - Paul A Davies
- Department of Neuroscience, Tufts University, Boston, MA, USA
| | - Stephen J Moss
- Department of Neuroscience, Tufts University, Boston, MA, USA
| | - Francesco G Salituro
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA
| | - Ethan Hoffmann
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA
| | - Rebecca S Hammond
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA
| | - Albert J Robichaud
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA
| | - Michael C Quirk
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA
| | - James J Doherty
- Research and Nonclinical Development, Sage Therapeutics, Inc., Cambridge, MA, USA
| |
Collapse
|
24
|
Cheon M, Park H, Chung C. Protein kinase C mediates neuropeptide Y-induced reduction in inhibitory neurotransmission in the lateral habenula. Neuropharmacology 2020; 180:108295. [PMID: 32882226 DOI: 10.1016/j.neuropharm.2020.108295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Accepted: 08/29/2020] [Indexed: 11/30/2022]
Abstract
Neuropeptide Y (NPY) is one of peptide neuromodulators, well known for orexigenic, anxiolytic and antidepressant effects. We previously reported that NPY decreases GABAergic transmission in the lateral habenula (LHb). In the current study, we aim to investigate the underlying signaling pathways that mediate inhibitory action of NPY in the LHb by employing whole-cell patch clamp recording with pharmacological interventions. Here, we revealed that Y1 receptors (Y1Rs) but not Y2Rs mediate NPY-induced decrease of GABAergic transmission in the LHb. Surprisingly, NPY-induced decrease of inhibitory transmission in the LHb was not dependent on adenylyl cyclase (AC)/protein kinase A (PKA)-dependent pathway as reported in other brain areas. Instead, pharmacological blockade of phospholipase C (PLC) or protein kinase C (PKC) activity abolished the decrease of GABAergic transmission by NPY in the LHb. Our findings suggest that Y1Rs in the LHb may trigger the activation of PLC/PKC-dependent pathway but not the classical AC/PKA-dependent pathway to decrease inhibitory transmission of the LHb.
Collapse
Affiliation(s)
- Myunghyun Cheon
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Hoyong Park
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
25
|
Fricke S, Metzdorf K, Ohm M, Haak S, Heine M, Korte M, Zagrebelsky M. Fast Regulation of GABA AR Diffusion Dynamics by Nogo-A Signaling. Cell Rep 2020; 29:671-684.e6. [PMID: 31618635 DOI: 10.1016/j.celrep.2019.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/02/2019] [Accepted: 09/06/2019] [Indexed: 12/29/2022] Open
Abstract
Precisely controlling the excitatory and inhibitory balance is crucial for the stability and information-processing ability of neuronal networks. However, the molecular mechanisms maintaining this balance during ongoing sensory experiences are largely unclear. We show that Nogo-A signaling reciprocally regulates excitatory and inhibitory transmission. Loss of function for Nogo-A signaling through S1PR2 rapidly increases GABAAR diffusion, thereby decreasing their number at synaptic sites and the amplitude of GABAergic mIPSCs at CA3 hippocampal neurons. This increase in GABAAR diffusion rate is correlated with an increase in Ca2+ influx and requires the calcineurin-mediated dephosphorylation of the γ2 subunit at serine 327. These results suggest that Nogo-A signaling rapidly strengthens inhibitory GABAergic transmission by restricting the diffusion dynamics of GABAARs. Together with the observation that Nogo-A signaling regulates excitatory transmission in an opposite manner, these results suggest a crucial role for Nogo-A signaling in modulating the excitation and inhibition balance to restrict synaptic plasticity.
Collapse
Affiliation(s)
- Steffen Fricke
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig 38108, Germany
| | - Kristin Metzdorf
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig 38108, Germany
| | - Melanie Ohm
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig 38108, Germany
| | - Stefan Haak
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig 38108, Germany
| | - Martin Heine
- Molecular Physiology Group, Leibniz Institute of Neurobiology, Magdeburg 39118, Germany; Functional Neurobiology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz 55128, Germany
| | - Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig 38108, Germany; Helmholtz Centre for Infection Research, AG NIND, Inhoffenstr. 7, Braunschweig 38124, Germany
| | - Marta Zagrebelsky
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig 38108, Germany.
| |
Collapse
|
26
|
Li X, Chen L, Zhu X, Lu Z, Lu Y. Effect of γ-aminobutyric acid-rich yogurt on insulin sensitivity in a mouse model of type 2 diabetes mellitus. J Dairy Sci 2020; 103:7719-7729. [PMID: 32684454 DOI: 10.3168/jds.2019-17757] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/24/2020] [Indexed: 12/28/2022]
Abstract
This study aimed to investigate the effect of a γ-aminobutyric acid (GABA)-rich yogurt fermented with Streptococcus thermophilus fmb-5 on insulin sensitivity in high-fat and low-dose streptozotocin-induced type 2 diabetes mellitus mice. To study the ability of the yogurt to enhance insulin sensitivity, diabetic mice were treated with 0.5, 1, or 2 g/L of GABA yogurt once a day from wk 1 to 12. Compared with results in untreated diabetic mice, treatment with different dosages of GABA yogurt was associated with increased serum insulin and fat coefficient (fat weight relative to body weight) levels, decreased blood urea nitrogen, kidney coefficient (kidney weight relative to body weight), glucose area under the curve levels, and insulin sensitivity index, but did not alter blood glucose level or body weight. The highest dosage of GABA yogurt had a greater beneficial effect with respect to insulin resistance than the lower dosages. In particular, dietary supplementation of the high dosage of GABA yogurt favorably regulated HOMA-β (homeostasis model assessment of β-cell function), total cholesterol, high-density lipoprotein cholesterol, fat coefficient, and improved islet cells morphology. These results demonstrated that 2 g/L GABA yogurt could ameliorate insulin sensitivity. The GABA-rich yogurts appeared to be responsible for health-beneficial effects in this mouse model of diabetes.
Collapse
Affiliation(s)
- Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, P. R. China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lin Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xiaoyu Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, P. R. China.
| |
Collapse
|
27
|
Vaaga CE, Brown ST, Raman IM. Cerebellar modulation of synaptic input to freezing-related neurons in the periaqueductal gray. eLife 2020; 9:e54302. [PMID: 32207681 PMCID: PMC7124251 DOI: 10.7554/elife.54302] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/24/2020] [Indexed: 01/23/2023] Open
Abstract
Innate defensive behaviors, such as freezing, are adaptive for avoiding predation. Freezing-related midbrain regions project to the cerebellum, which is known to regulate rapid sensorimotor integration, raising the question of cerebellar contributions to freezing. Here, we find that neurons of the mouse medial (fastigial) cerebellar nuclei (mCbN), which fire spontaneously with wide dynamic ranges, send glutamatergic projections to the ventrolateral periaqueductal gray (vlPAG), which contains diverse cell types. In freely moving mice, optogenetically stimulating glutamatergic vlPAG neurons that express Chx10 reliably induces freezing. In vlPAG slices, mCbN terminals excite ~20% of neurons positive for Chx10 or GAD2 and ~70% of dopaminergic TH-positive neurons. Stimulating either mCbN afferents or TH neurons augments IPSCs and suppresses EPSCs in Chx10 neurons by activating postsynaptic D2 receptors. The results suggest that mCbN activity regulates dopaminergic modulation of the vlPAG, favoring inhibition of Chx10 neurons. Suppression of cerebellar output may therefore facilitate freezing.
Collapse
Affiliation(s)
| | - Spencer T Brown
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | - Indira M Raman
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
28
|
Gandolfi D, Bigiani A, Porro CA, Mapelli J. Inhibitory Plasticity: From Molecules to Computation and Beyond. Int J Mol Sci 2020; 21:E1805. [PMID: 32155701 PMCID: PMC7084224 DOI: 10.3390/ijms21051805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022] Open
Abstract
Synaptic plasticity is the cellular and molecular counterpart of learning and memory and, since its first discovery, the analysis of the mechanisms underlying long-term changes of synaptic strength has been almost exclusively focused on excitatory connections. Conversely, inhibition was considered as a fixed controller of circuit excitability. Only recently, inhibitory networks were shown to be finely regulated by a wide number of mechanisms residing in their synaptic connections. Here, we review recent findings on the forms of inhibitory plasticity (IP) that have been discovered and characterized in different brain areas. In particular, we focus our attention on the molecular pathways involved in the induction and expression mechanisms leading to changes in synaptic efficacy, and we discuss, from the computational perspective, how IP can contribute to the emergence of functional properties of brain circuits.
Collapse
Affiliation(s)
- Daniela Gandolfi
- Department of Biomedical, Metabolic and Neural Sciences and Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (A.B.); (C.A.P.)
- Department of Brain and behavioral sciences, University of Pavia, 27100 Pavia, Italy
| | - Albertino Bigiani
- Department of Biomedical, Metabolic and Neural Sciences and Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (A.B.); (C.A.P.)
| | - Carlo Adolfo Porro
- Department of Biomedical, Metabolic and Neural Sciences and Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (A.B.); (C.A.P.)
| | - Jonathan Mapelli
- Department of Biomedical, Metabolic and Neural Sciences and Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (A.B.); (C.A.P.)
| |
Collapse
|
29
|
TGF-β/Smad3 Signalling Modulates GABA Neurotransmission: Implications in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21020590. [PMID: 31963327 PMCID: PMC7013528 DOI: 10.3390/ijms21020590] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
γ-Aminobutiryc acid (GABA) is found extensively in different brain nuclei, including parts involved in Parkinson’s disease (PD), such as the basal ganglia and hippocampus. In PD and in different models of the disorder, an increase in GABA neurotransmission is observed and may promote bradykinesia or L-Dopa-induced side-effects. In addition, proteins involved in GABAA receptor (GABAAR) trafficking, such as GABARAP, Trak1 or PAELR, may participate in the aetiology of the disease. TGF-β/Smad3 signalling has been associated with several pathological features of PD, such as dopaminergic neurodegeneration; reduction of dopaminergic axons and dendrites; and α-synuclein aggregation. Moreover, TGF-β/Smad3 intracellular signalling was recently shown to modulate GABA neurotransmission in the context of parkinsonism and cognitive alterations. This review provides a summary of GABA neurotransmission and TGF-β signalling; their implications in PD; and the regulation of GABA neurotransmission by TGF-β/Smad3. There appear to be new possibilities to develop therapeutic approaches for the treatment of PD using GABA modulators.
Collapse
|
30
|
Pernia M, Díaz I, Colmenárez-Raga AC, Rivadulla C, Cudeiro J, Plaza I, Merchán MA. Cross-modal reaction of auditory and visual cortices after long-term bilateral hearing deprivation in the rat. Brain Struct Funct 2020; 225:129-148. [PMID: 31781971 PMCID: PMC6957565 DOI: 10.1007/s00429-019-01991-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 11/21/2019] [Indexed: 12/26/2022]
Abstract
Visual cortex (VC) over-activation analysed by evoked responses has been demonstrated in congenital deafness and after long-term acquired hearing loss in humans. However, permanent hearing deprivation has not yet been explored in animal models. Thus, the present study aimed to examine functional and molecular changes underlying the visual and auditory cross-modal reaction. For such purpose, we analysed cortical visual evoked potentials (VEPs) and the gene expression (RT-qPCR) of a set of markers for neuronal activation (c-Fos) and activity-dependent homeostatic compensation (Arc/Arg3.1). To determine the state of excitation and inhibition, we performed RT-qPCR and quantitative immunocytochemistry for excitatory (receptor subunits GluA2/3) and inhibitory (GABAA-α1, GABAB-R2, GAD65/67 and parvalbumin-PV) markers. VC over-activation was demonstrated by a significant increase in VEPs wave N1 and by up-regulation of the activity-dependent early genes c-Fos and Arc/Arg3.1 (thus confirming, by RT-qPCR, our previously published immunocytochemical results). GluA2 gene and protein expression were significantly increased in the auditory cortex (AC), particularly in layers 2/3 pyramidal neurons, but inhibitory markers (GAD65/67 and PV-GABA interneurons) were also significantly upregulated in the AC, indicating a concurrent increase in inhibition. Therefore, after permanent hearing loss in the rat, the VC is not only over-activated but also potentially balanced by homeostatic regulation, while excitatory and inhibitory markers remain imbalanced in the AC, most likely resulting from changes in horizontal intermodal regulation.
Collapse
Affiliation(s)
- M Pernia
- Instituto de Neurociencias of Castilla y León-INCyL, Universidad de Salamanca, Salamanca, Spain
| | - I Díaz
- Instituto de Neurociencias of Castilla y León-INCyL, Universidad de Salamanca, Salamanca, Spain
| | - A C Colmenárez-Raga
- Instituto de Neurociencias of Castilla y León-INCyL, Universidad de Salamanca, Salamanca, Spain
| | - C Rivadulla
- Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias de la Salud, Universidad de A Coruña and Instituto de Investigaciones Biomédicas de A Coruña (INIBIC), A Coruña, Spain
| | - J Cudeiro
- Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias de la Salud, Universidad de A Coruña and Instituto de Investigaciones Biomédicas de A Coruña (INIBIC), A Coruña, Spain
| | - I Plaza
- Instituto de Neurociencias of Castilla y León-INCyL, Universidad de Salamanca, Salamanca, Spain
| | - M A Merchán
- Instituto de Neurociencias of Castilla y León-INCyL, Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
31
|
Khalyfa A, Sanz-Rubio D. Genetics and Extracellular Vesicles of Pediatrics Sleep Disordered Breathing and Epilepsy. Int J Mol Sci 2019; 20:ijms20215483. [PMID: 31689970 PMCID: PMC6862182 DOI: 10.3390/ijms20215483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022] Open
Abstract
Sleep remains one of the least understood phenomena in biology, and sleep disturbances are one of the most common behavioral problems in childhood. The etiology of sleep disorders is complex and involves both genetic and environmental factors. Epilepsy is the most popular childhood neurological condition and is characterized by an enduring predisposition to generate epileptic seizures, and the neurobiological, cognitive, psychological, and social consequences of this condition. Sleep and epilepsy are interrelated, and the importance of sleep in epilepsy is less known. The state of sleep also influences whether a seizure will occur at a given time, and this differs considerably for various epilepsy syndromes. The development of epilepsy has been associated with single or multiple gene variants. The genetics of epilepsy is complex and disorders exhibit significant genetic heterogeneity and variability in the expressivity of seizures. Phenobarbital (PhB) is the most widely used antiepileptic drug. With its principal mechanism of action to prolong the opening time of the γ-aminobutyric acid (GABA)-A receptor-associated chloride channel, it enhances chloride anion influx into neurons, with subsequent hyperpolarization, thereby reducing excitability. Enzymes that metabolize pharmaceuticals including PhB are well known for having genetic polymorphisms that contribute to adverse drug–drug interactions. PhB metabolism is highly dependent upon the cytochrome P450 (CYP450) and genetic polymorphisms can lead to variability in active drug levels. The highly polymorphic CYP2C19 isozymes are responsible for metabolizing a large portion of routinely prescribed drugs and variants contribute significantly to adverse drug reactions and therapeutic failures. A limited number of CYP2C19 single nucleotide polymorphisms (SNPs) are involved in drug metabolism. Extracellular vesicles (EVs) are circular membrane fragments released from the endosomal compartment as exosomes are shed from the surfaces of the membranes of most cell types. Increasing evidence indicated that EVs play a pivotal role in cell-to-cell communication. Theses EVs may play an important role between sleep, epilepsy, and treatments. The discovery of exosomes provides potential strategies for the diagnosis and treatment of many diseases including neurocognitive deficit. The aim of this study is to better understand and provide further knowledge about the metabolism and interactions between phenobarbital and CYP2C19 polymorphisms in children with epilepsy, interplay between sleep, and EVs. Understanding this interplay between epilepsy and sleep is helpful in the optimal treatment of all patients with epileptic seizures. The use of genetics and extracellular vesicles as precision medicine for the diagnosis and treatment of children with sleep disorder will improve the prognosis and the quality of life in patients with epilepsy.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Department of Pediatrics, Section of Sleep Medicine, The University of Chicago, Chicago, IL 60637, USA.
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA.
| | - David Sanz-Rubio
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA.
| |
Collapse
|
32
|
Shi Y, Li Y, Yin J, Hu H, Xue M, Li X, Cheng W, Wang Y, Li X, Wang Y, Tan J, Yan S. A novel sympathetic neuronal GABAergic signalling system regulates NE release to prevent ventricular arrhythmias after acute myocardial infarction. Acta Physiol (Oxf) 2019; 227:e13315. [PMID: 31116911 PMCID: PMC6813916 DOI: 10.1111/apha.13315] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 11/30/2022]
Abstract
AIM Overactivation of the sympathetic nerve may lead to severe ventricular arrhythmias (VAs) after myocardial infarction (MI). Thus, targeting sympathetic nerve activity is an effective strategy to prevent VAs clinically. The superior cervical ganglion (SCG), the extracardiac sympathetic ganglion innervating cardiac muscles, has been found to have a GABAergic signalling system, the physiological significance of which is obscure. We aimed to explore the functional significance of SCG post MI and whether the GABAergic signal system is involved in the process. METHODS Adult male Sprague-Dawley rats were divided into seven different groups. Rats in the MI groups underwent ligation of the left anterior descending coronary artery. All animals were used for electrophysiological testing, renal sympathetic nerve activity (RSNA) testing, and ELISA. Primary SCG sympathetic neurons were used for the in vitro study. RESULTS The GABAA receptor agonist muscimol significantly decreased the ATP-induced increase in intracellular Ca2+ (P < 0.05). GABA treatment in MI rats significantly attenuated the level of serum and cardiac norepinephrine (NE; P < 0.05). Sympathetic activity and inducible VAs were also lower in MI + GABA rats than in MI rats (P < 0.05). Knockdown of the GABAA Rs β2 subunit (GABAA Rβ2 ) in the SCG of MI rats increased the NE levels in serum and cardiac tissue, RSNA and inducible VAs compared with vehicle shRNA (P < 0.05). CONCLUSION The GABAergic signalling system is functionally expressed in SCG sympathetic neurons, and activation of this system suppresses sympathetic activity, thereby facilitating cardiac protection and making it a potential target to alleviate VAs.
Collapse
Affiliation(s)
- Yugen Shi
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Yan Li
- Medical Research CenterShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
- School of MedicineShandong UniversityShandongChina
| | - Jie Yin
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Hesheng Hu
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Mei Xue
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Xiaolu Li
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Wenjuan Cheng
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Ye Wang
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Xinran Li
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Yu Wang
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Jiayu Tan
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Suhua Yan
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| |
Collapse
|
33
|
Effect of gamma aminobutyric acid (GABA) or GABA with glutamic acid decarboxylase (GAD) on the progression of type 1 diabetes mellitus in children: Trial design and methodology. Contemp Clin Trials 2019; 82:93-100. [DOI: 10.1016/j.cct.2019.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/06/2019] [Accepted: 06/19/2019] [Indexed: 11/18/2022]
|
34
|
Usui M, Kaneko K, Oi Y, Kobayashi M. Orexin facilitates GABAergic IPSCs via postsynaptic OX 1 receptors coupling to the intracellular PKC signalling cascade in the rat cerebral cortex. Neuropharmacology 2019; 149:97-112. [PMID: 30763655 DOI: 10.1016/j.neuropharm.2019.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 10/27/2022]
Abstract
Orexin has multiple physiological functions including wakefulness, appetite, nicotine intake, and nociception. The cerebral cortex receives abundant orexinergic projections and expresses both orexinergic receptor 1 (OX1R) and 2 (OX2R). However, little is known about orexinergic regulation of GABA-mediated inhibitory synaptic transmission. In the cerebral cortex, there are multiple GABAergic neural subtypes, each of which has its own morphological and physiological characteristics. Therefore, identification of presynaptic GABAergic neural subtypes is critical to understand orexinergic effects on GABAergic connections. We focused on inhibitory synapses at pyramidal neurons (PNs) from fast-spiking GABAergic neurons (FSNs) in the insular cortex by a paired whole-cell patch-clamp technique, and elucidated the mechanisms of orexin-induced IPSC regulation. We found that both orexin A and orexin B enhanced unitary IPSC (uIPSC) amplitude in FSN→PN connections without changing the paired-pulse ratio or failure rate. These effects were blocked by SB-334867, an OX1 receptor (OX1R) antagonist, but not by TCS-OX2-29, an OX2R antagonist. [Ala11, D-Leu15]-orexin B, a selective OX2R agonist, had little effect on uIPSCs. Variance-mean analysis demonstrated an increase in quantal content without a change in release probability or the number of readily releasable pools. Laser photolysis of caged GABA revealed that orexin A enhanced GABA-mediated currents in PNs. Downstream blockade of Gq/11 protein-coupled OX1Rs by IP3 receptor or protein kinase C (PKC) blockers and BAPTA injection into postsynaptic PNs diminished the orexin A-induced uIPSC enhancement. These results suggest that the orexinergic uIPSC enhancement is mediated via postsynaptic OX1Rs, which potentiate GABAA receptors through PKC activation.
Collapse
Affiliation(s)
- Midori Usui
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Anaesthesiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Keisuke Kaneko
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Anaesthesiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Yoshiyuki Oi
- Department of Anaesthesiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Centre, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Molecular Dynamics Imaging Unit, RIKEN Centre for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
35
|
Sodium Valproate Ameliorates Neuronal Apoptosis in a Kainic Acid Model of Epilepsy via Enhancing PKC-Dependent GABA AR γ2 Serine 327 Phosphorylation. Neurochem Res 2018; 43:2343-2352. [PMID: 30311181 DOI: 10.1007/s11064-018-2659-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/19/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
GABA is a dominant inhibitory neurotransmitter in the brain and A type GABA receptor (GABAAR) phosphorylation is critical for GABA-mediated inhibitory effect. However, its role in the neuroprotective effect of sodium valproate (VPA), a prevalent drug for treating patients with epilepsy, remains elusive. The present study was conducted to explore the role of GABAAR phosphorylation in the neuroprotection of VPA against a kainic acid-induced epileptic rat model and the potential molecular mechanisms. Neuronal apoptosis was evaluated by TUNEL assay, PI/Annexin V double staining, caspase-3 activity detection and Bax and Bcl-2 proteins expression via Western blot analysis. The primary rat hippocampal neurons were cultivated and cell viability was measured by CCK8 detection following KA- or free Mg2+-induced neuronal impairment. Our results found that VPA treatment significantly reduced neuronal apoptosis in the KA-induced rat model (including reductions of TUNEL-positive cells, caspase-3 activity and Bax protein expression, and increase of Bcl-2 protein level). In the in vitro experiments, VPA at the concentration of 1 mM for 24 h also increased cell survival and suppressed cell apoptosis in KA- or no Mg2+-induced models via CCK8 assay and PI/Annexin V double staining, respectively. What is more important, the phosphorylation of γ2 subunit at serine 327 residue for GABAAR was found to be robustly enhanced both in the KA-induced epileptic rat model and neuronal cultures following KA exposure after VPA treatment, while no evident alteration was found in terms of GABAAR β3 phosphorylation (408 or 409 serine residue). Additionally, pharmacological inhibition of protein kinase C (PKC) clearly abrogated the neuroprotective potential of VPA against KA- or free Mg2+-associated neuronal injury, indicating a critical role of PKC in the effect of GABAAR γ2 serine 327 phosphorylation in VPA's protection. In summary, our work reveals that VPA mitigates neuronal apoptosis in KA-triggered epileptic seizures, at least, via augmenting PKC-dependent GABAAR γ2 phosphorylation at serine 327 residue.
Collapse
|
36
|
Tang X, Yu R, Zhou Q, Jiang S, Le G. Protective effects of γ-aminobutyric acid against H 2O 2-induced oxidative stress in RIN-m5F pancreatic cells. Nutr Metab (Lond) 2018; 15:60. [PMID: 30202421 PMCID: PMC6122738 DOI: 10.1186/s12986-018-0299-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/26/2018] [Indexed: 11/30/2022] Open
Abstract
Background γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the central nervous system and reported to maintain the redox homeostasis and insulin secretion function of pancreatic β cells. This study tested the hypothesis that GABA maintains cellular redox status, and modulates glycogen synthase kinase (GSK)-3β and antioxidant-related nuclear factor erythroid 2-related factor 2 (NRF2) nuclear mass ratio in the H2O2-injured RINm5F cells. Methods RINm5F cells were treated with/without GABA (50, 100 and 200 μmol/L) for 48 h and then exposed to 100 μmol/L H2O2 for 30 min. Viable cells were harvested, and dichloro-dihydro-fluorescein diacetate (DCFH-DA) was used to detect reactive oxygen species (ROS) level; cellular redox status and insulin secretion were measured; cell viability was determined by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay; mitochondrial membrane potential (MMP) was detected by flow cytometry; relative genes levels were analyzed by reverse transcriptase polymerase chain reaction (RT-PCR); western blotting was used to determine protein expression of GSK-3β and p-GSK-3β (Ser9), and nuclear and cytoplasmic NRF2. Results H2O2 increased ROS production, and induced adverse affects in relation to antioxidant defense systems and insulin secretion. These changes were restored by treatment with 100 and 200 μmol/L GABA. In addition, 100 or 200 μmol/L GABA induced membrane depolarization and increased cell viability. These effects were mediated by Caspase-3, Bcl-2 associated X protein (Bax) and B-cell lymphoma-2 (Bcl-2) expression. Western blotting indicated that GABA inhibited GSK-3β by increasing p-GSK-3β (Ser9) level, and directed the transcription factor NRF2 to the nucleus. Conclusion In rat insulin-producing RINm5F cells, GABA exerts its protective effect by regulating GSK-3β and NRF2, which governs redox homeostasis by inhibiting apoptosis and abnormal insulin secretion by exposure to H2O2.
Collapse
Affiliation(s)
- Xue Tang
- 1State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China.,3School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Renqiang Yu
- 2The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002 Jiangsu China
| | - Qin Zhou
- 2The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002 Jiangsu China
| | - Shanyu Jiang
- 2The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002 Jiangsu China
| | - Guowei Le
- 1State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China.,3School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| |
Collapse
|
37
|
Amundarain MJ, Viso JF, Zamarreño F, Giorgetti A, Costabel M. Orthosteric and benzodiazepine cavities of the α 1β 2γ 2 GABA A receptor: insights from experimentally validated in silico methods. J Biomol Struct Dyn 2018; 37:1597-1615. [PMID: 29633901 DOI: 10.1080/07391102.2018.1462733] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
γ-aminobutyric acid-type A (GABAA) receptors mediate fast synaptic inhibition in the central nervous system of mammals. They are modulated via several sites by numerous compounds, which include GABA, benzodiazepines, ethanol, neurosteroids and anaesthetics among others. Due to their potential as targets of novel drugs, a detailed knowledge of their structure-function relationships is needed. Here, we present the model of the α1β2γ2 subtype GABAA receptor in the APO state and in complex with selected ligands, including agonists, antagonists and allosteric modulators. The model is based on the crystallographic structure of the human β3 homopentamer GABAA receptor. The complexes were refined using atomistic molecular dynamics simulations. This allowed a broad description of the binding modes and the detection of important interactions in agreement with experimental information. From the best of our knowledge, this is the only model of the α1β2γ2 GABAA receptor that represents altogether the desensitized state of the channel and comprehensively describes the interactions of ligands of the orthosteric and benzodiazepines binding sites in agreement with the available experimental data. Furthermore, it is able to explain small differences regarding the binding of a variety of chemically divergent ligands. Finally, this new model may pave the way for the design of focused experimental studies that will allow a deeper description of the receptor.
Collapse
Affiliation(s)
- María Julia Amundarain
- a Departamento de Física, Instituto de Física del Sur (IFISUR) , Universidad Nacional del Sur (UNS), CONICET , Bahía Blanca , Argentina
| | - Juan Francisco Viso
- a Departamento de Física, Instituto de Física del Sur (IFISUR) , Universidad Nacional del Sur (UNS), CONICET , Bahía Blanca , Argentina
| | - Fernando Zamarreño
- a Departamento de Física, Instituto de Física del Sur (IFISUR) , Universidad Nacional del Sur (UNS), CONICET , Bahía Blanca , Argentina
| | - Alejandro Giorgetti
- b Faculty of Mathematical, Physical and Natural Sciences, Department of Biotechnology , University of Verona , Verona , Italy.,c Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Computational Biomedicine, Institute of Neuroscience and Medicine INM-9 , Forschungszentrum Jülich , Jülich , Germany
| | - Marcelo Costabel
- a Departamento de Física, Instituto de Física del Sur (IFISUR) , Universidad Nacional del Sur (UNS), CONICET , Bahía Blanca , Argentina
| |
Collapse
|
38
|
Colmers PLW, Bains JS. Balancing tonic and phasic inhibition in hypothalamic corticotropin-releasing hormone neurons. J Physiol 2018; 596:1919-1929. [PMID: 29419884 DOI: 10.1113/jp275588] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/29/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS GABA transporter (GAT) blockade recruits extrasynaptic GABAA receptors (GABAA Rs) and amplifies constitutive presynaptic GABAB R activity. Extrasynaptic GABAA Rs contribute to a tonic current. Corticosteroids increase the tonic current mediated by extrasynaptic GABAA Rs. ABSTRACT Corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVN) are integratory hubs that regulate the endocrine response to stress. GABA inputs provide a basal inhibitory tone that constrains this system and circulating glucocorticoids (CORT) are important feedback controllers of CRH output. Surprisingly little is known about the direct effects of CORT on GABA synapses in PVN. Here we used whole-cell patch clamp recordings from CRH neurons in mouse hypothalamic brain slices to examine the effects of CORT on synaptic and extrasynaptic GABA signalling. We show that GABA transporters (GATs) limit constitutive activation of presynaptic GABAB receptors and ensure high release probability at GABA synapses. GATs in combination with GABAB receptors also curtail extrasynaptic GABAA R signalling. CORT has no effect on synaptic GABA signalling, but increases extrasynaptic GABA tone through upregulation of postsynaptic GABAA receptors. These data show that efficient GABA clearance and autoinhibition control the balance between synaptic (phasic) and extrasynaptic (tonic) inhibition in PVN CRH neurons. This balance is shifted towards increased extrasynaptic inhibition by CORT.
Collapse
Affiliation(s)
- Phillip L W Colmers
- Hotchkiss Brain Institute and the Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Jaideep S Bains
- Hotchkiss Brain Institute and the Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
39
|
Martinello K, Sciaccaluga M, Morace R, Mascia A, Arcella A, Esposito V, Fucile S. Loss of constitutive functional γ-aminobutyric acid type A-B receptor crosstalk in layer 5 pyramidal neurons of human epileptic temporal cortex. Epilepsia 2017; 59:449-459. [PMID: 29283181 DOI: 10.1111/epi.13991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2017] [Indexed: 12/24/2022]
Abstract
OBJECTIVE γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in adult central nervous system, and profound alterations of GABA receptor functions are linked to temporal lobe epilepsy (TLE). Here we describe the functional relationships between GABA receptors type B (GABAB R) and type A (GABAA R) in human temporal cortex and how TLE affects this aspect of GABAergic signaling. METHODS Miniature inhibitory postsynaptic currents (mIPSCs) were recorded by patch-clamp techniques from human L5 pyramidal neurons in slices from temporal cortex tissue obtained from surgery. RESULTS We describe a constitutive functional crosstalk between GABAB Rs and GABAA Rs in human temporal layer 5 pyramidal neurons, which is lost in epileptic tissues. The activation of GABAB Rs by baclofen, in addition to the expected reduction of mIPSC frequency, produced, in cortex of nonepileptic patients, the prolongation of mIPSC rise and decay times, thus increasing the inhibitory net charge associated with a single synaptic event. Block of K+ channels did not prevent the increase of decay time and charge. Protein kinase A (PKA) blocker KT5720 and pertussis toxin inhibited the action of baclofen, whereas 8Br-cAMP mimicked the GABAB R action. The same GABAB R-mediated modulation of GABAA Rs was observed in pyramidal neurons of rat temporal cortex, with both PKA and PKC involved in the process. In cortices from TLE patients and epileptic rats, baclofen lost its ability to modulate mIPSCs. SIGNIFICANCE Our results highlight the association of TLE with functional changes of GABAergic signaling that may be related to seizure propagation, and suggest that the selective activation of a definite subset of nonpresynaptic GABAB Rs may be therapeutically useful in TLE.
Collapse
Affiliation(s)
| | | | | | | | | | - Vincenzo Esposito
- Neuromed IRCCS, Pozzilli, Italy.,Department of Neurosurgery, Sapienza University of Rome, Rome, Italy
| | - Sergio Fucile
- Neuromed IRCCS, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
40
|
Indrowati M, Pratiwi R, Rumiyati, Astuti P. Levels of Blood Glucose and Insulin Expression of Beta-cells in Streptozotocin-induced Diabetic Rats Treated with Ethanolic Extract of Artocarpus altilis Leaves and GABA. Pak J Biol Sci 2017; 20:28-35. [PMID: 29023012 DOI: 10.3923/pjbs.2017.28.35] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Information about the Artocarpus altilis leaf as an antidiabetic associated with the active compounds Gamma Amino Butyric Acid (GABA) is still limited. This study was conducted to determine the effects of ethanolic extract of A. altilis leaves decoction and GABA on blood glucose levels and insulin expression of beta-cells in streptozotocin-induced diabetic rats. MATERIAL AND METHODS This study was done by using completely randomized design and male Sprague Dewley rats. The rats were devided into normal control group and diabetic rats groups. Levels of bood glucose were measured using strip rapid test. The insulin expression in beta-cells was assessed using immunohistochemistry. Quantitative data were analyzed using ANOVA at 5% confidence level. RESULTS The result indicated that 50 mg k-1 b.wt., GABA, 400 and 800 mg k-1 b.wt., ethanolic extract of A. altilis leaves decreased the level of blood glucose and increased the insulin expression in pancreas beta-cells. CONCLUSION The GABA and ethanolic extract of A. altilis leaves with a minimum dose of 400 mg k-1 b.wt., can be used as an antidiabetic. Pancreas is the target organ was affected by GABA and A. altilis leaves as antidiabetic agents. Results of this study may support the development of research on the potency of GABA in natural materials as antidiabetic particularly type 1 diabetes.
Collapse
Affiliation(s)
- Meti Indrowati
- Department of Biological Education, Faculty of Teacher Training and Education, Universitas Sebelas Maret, Jalan Ir. Sutami 36A 57126, Surakarta, Indonesia
| | - Rarastoeti Pratiwi
- Faculty of Biology, Universitas Gadjah Mada, Jalan Te knika Selatan Sekip Utara, 55281 Yogyakarta, Indonesia
| | - Rumiyati
- Faculty of Pharmacy, Universitas Gadj ah Mada, 55281 Yogyakarta, Indonesia
| | - Pudji Astuti
- Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jalan Fauna No. 2, Karangmalang, 55281 Yogyakarta, Indonesia
| |
Collapse
|
41
|
Napolitano T, Avolio F, Vieira A, Ben-Othman N, Courtney M, Gjernes E, Hadzic B, Druelle N, Navarro Sanz S, Silvano S, Mansouri A, Collombat P. GABA signaling stimulates α-cell-mediated β-like cell neogenesis. Commun Integr Biol 2017; 10:e1300215. [PMID: 28702122 PMCID: PMC5501192 DOI: 10.1080/19420889.2017.1300215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 10/27/2022] Open
Abstract
Diabetes is a chronic and progressing disease, the number of patients increasing exponentially, especially in industrialized countries. Regenerating lost insulin-producing cells would represent a promising therapeutic alternative for most diabetic patients. To this end, using the mouse as a model, we reported that GABA, a food supplement, could induce insulin-producing beta-like cell neogenesis offering an attractive and innovative approach for diabetes therapeutics.
Collapse
Affiliation(s)
| | - Fabio Avolio
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | | | | | | | | | | | | | | | - Ahmed Mansouri
- Max-Planck Institute for Biophysical Chemistry, Department of Molecular Developmental Biology, Göttingen, Germany.,Department of Clinical Neurophysiology, University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
42
|
Ramesh SA, Tyerman SD, Gilliham M, Xu B. γ-Aminobutyric acid (GABA) signalling in plants. Cell Mol Life Sci 2017; 74:1577-1603. [PMID: 27838745 PMCID: PMC11107511 DOI: 10.1007/s00018-016-2415-7] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 01/11/2023]
Abstract
The role of γ-aminobutyric acid (GABA) as a signal in animals has been documented for over 60 years. In contrast, evidence that GABA is a signal in plants has only emerged in the last 15 years, and it was not until last year that a mechanism by which this could occur was identified-a plant 'GABA receptor' that inhibits anion passage through the aluminium-activated malate transporter family of proteins (ALMTs). ALMTs are multigenic, expressed in different organs and present on different membranes. We propose GABA regulation of ALMT activity could function as a signal that modulates plant growth, development, and stress response. In this review, we compare and contrast the plant 'GABA receptor' with mammalian GABAA receptors in terms of their molecular identity, predicted topology, mode of action, and signalling roles. We also explore the implications of the discovery that GABA modulates anion flux in plants, its role in signal transduction for the regulation of plant physiology, and predict the possibility that there are other GABA interaction sites in the N termini of ALMT proteins through in silico evolutionary coupling analysis; we also explore the potential interactions between GABA and other signalling molecules.
Collapse
Affiliation(s)
- Sunita A Ramesh
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Stephen D Tyerman
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Matthew Gilliham
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Bo Xu
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
43
|
Wang S, Xiang YY, Zhu J, Yi F, Li J, Liu C, Lu WY. Protective roles of hepatic GABA signaling in acute liver injury of rats. Am J Physiol Gastrointest Liver Physiol 2017; 312:G208-G218. [PMID: 27979827 DOI: 10.1152/ajpgi.00344.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 01/31/2023]
Abstract
γ-Aminobutyric acid (GABA) is produced by various cells through the catalytic activity of glutamic acid decarboxylase (GAD). Activation of type-A GABA receptor (GABAAR) inhibits stem cell proliferation but protects differentiated cells from injures. The present study investigated hepatic GABA signaling system and the role of this system in liver physiology and pathophysiology. RT-PCR and immunoblot assays identified GAD and GABAAR subunits in rat livers and in HepG2 and Clone 9 hepatocytes. Patch-clamp recording detected GABA-induced currents in Clone 9 hepatocytes and depolarization in WITT cholangiocytes. The function of hepatic GABA signaling system in rats was examined using models of d-galactosamine (GalN)-induced acute hepatocytic injury in vivo and in vitro. The expression of GAD increased whereas GABAAR subunits decreased in the liver of GalN-treated rats. Remarkably, treating rats with GABA or the GABAAR agonist muscimol, but not the GABABR agonist baclofen, protected hepatocytes against GalN toxicity and improved liver function. In addition, muscimol treatment decreased the formation of pseudobile ductules and the enlargement of hepatocytic canaliculi in GalN-treated rats. Our results revealed that a complex GABA signaling system exists in the rat liver. Activation of this intrahepatic GABAergic system protected the liver against toxic injury.NEW & NOTEWORTHY Auto- and paracrine GABAergic signaling systems exist in the rat hepatocytes and cholangiocytes. Activation of GABA signaling protects liver function from d-galactosamine injury by reducing toxic impairment of hepatocytes and by decreasing cholangiocyte proliferation.
Collapse
Affiliation(s)
- Shuanglian Wang
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.,Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada; and
| | - Yun-Yan Xiang
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.,Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada; and
| | - Jianchun Zhu
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Jingxin Li
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada; and
| | - Chuanyong Liu
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China;
| | - Wei-Yang Lu
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada; .,Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada; and
| |
Collapse
|
44
|
Meunier CNJ, Chameau P, Fossier PM. Modulation of Synaptic Plasticity in the Cortex Needs to Understand All the Players. Front Synaptic Neurosci 2017; 9:2. [PMID: 28203201 PMCID: PMC5285384 DOI: 10.3389/fnsyn.2017.00002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/13/2017] [Indexed: 12/19/2022] Open
Abstract
The prefrontal cortex (PFC) is involved in cognitive tasks such as working memory, decision making, risk assessment and regulation of attention. These functions performed by the PFC are supposed to rely on rhythmic electrical activity generated by neuronal network oscillations determined by a precise balance between excitation and inhibition balance (E/I balance) resulting from the coordinated activities of recurrent excitation and feedback and feedforward inhibition. Functional alterations in PFC functions have been associated with cognitive deficits in several pathologies such as major depression, anxiety and schizophrenia. These pathological situations are correlated with alterations of different neurotransmitter systems (i.e., serotonin (5-HT), dopamine (DA), acetylcholine…) that result in alterations of the E/I balance. The aim of this review article is to cover the basic aspects of the regulation of the E/I balance as well as to highlight the importance of the complementarity role of several neurotransmitters in the modulation of the plasticity of excitatory and inhibitory synapses. We illustrate our purpose by recent findings that demonstrate that 5-HT and DA cooperate to regulate the plasticity of excitatory and inhibitory synapses targeting layer 5 pyramidal neurons (L5PyNs) of the PFC and to fine tune the E/I balance. Using a method based on the decomposition of the synaptic conductance into its excitatory and inhibitory components, we show that concomitant activation of D1-like receptors (D1Rs) and 5-HT1ARs, through a modulation of NMDA receptors, favors long term potentiation (LTP) of both excitation and inhibition and consequently does not modify the E/I balance. We also demonstrate that activation of D2-receptors requires functional 5-HT1ARs to shift the E-I balance towards more inhibition and to favor long term depression (LTD) of excitatory synapses through the activation of glycogen synthase kinase 3β (GSK3β). This cooperation between different neurotransmitters is particularly relevant in view of pathological situations in which alterations of one neurotransmitter system will also have consequences on the regulation of synaptic efficacy by other neurotransmitters. This opens up new perspectives in the development of therapeutic strategies for the pharmacological treatment of neuronal disorders.
Collapse
Affiliation(s)
- Claire N J Meunier
- Institut de Neurosciences Paris-Saclay (NeuroPSI), UMR 91197 CNRS-Université Paris-Saclay Paris, France
| | - Pascal Chameau
- Swammerdam Institute for Life Sciences, Center for NeuroScience, University of Amsterdam Amsterdam, Netherlands
| | - Philippe M Fossier
- Institut de Neurosciences Paris-Saclay (NeuroPSI), UMR 91197 CNRS-Université Paris-Saclay Paris, France
| |
Collapse
|
45
|
Furukawa T, Shimoyama S, Miki Y, Nikaido Y, Koga K, Nakamura K, Wakabayashi K, Ueno S. Chronic diazepam administration increases the expression of Lcn2 in the CNS. Pharmacol Res Perspect 2017; 5:e00283. [PMID: 28596835 PMCID: PMC5461642 DOI: 10.1002/prp2.283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/03/2016] [Accepted: 11/11/2016] [Indexed: 12/17/2022] Open
Abstract
Benzodiazepines (BZDs), which bind with high affinity to gamma-aminobutyric acid type A receptors (GABAA-Rs) and potentiate the effects of GABA, are widely prescribed for anxiety, insomnia, epileptic discharge, and as anticonvulsants. The long-term use of BZDs is limited due to adverse effects such as tolerance, dependence, withdrawal effects, and impairments in cognition and learning. Additionally, clinical reports have shown that chronic BZD treatment increases the risk of Alzheimer's disease. Unusual GABAA-R subunit expression and GABAA-R phosphorylation are induced by chronic BZD use. However, the gene expression and signaling pathways related to these effects are not completely understood. In this study, we performed a microarray analysis to investigate the mechanisms underlying the effect of chronic BZD administration on gene expression. Diazepam (DZP, a BZD) was chronically administered, and whole transcripts in the brain were analyzed. We found that the mRNA expression levels were significantly affected by chronic DZP administration and that lipocalin 2 (Lcn2) mRNA was the most upregulated gene in the cerebral cortex, hippocampus, and amygdala. Lcn2 is known as an iron homeostasis-associated protein. Immunostained signals of Lcn2 were detected in neuron, astrocyte, microglia, and Lcn2 protein expression levels were consistently upregulated. This upregulation was observed without proinflammatory genes upregulation, and was attenuated by chronic treatment of deferoxamine mesylate (DFO), iron chelator. Our results suggest that chronic DZP administration regulates transcription and upregulates Lcn2 expression levels without an inflammatory response in the mouse brain. Furthermore, the DZP-induced upregulation of Lcn2 expression was influenced by ambient iron.
Collapse
Affiliation(s)
- Tomonori Furukawa
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Shuji Shimoyama
- Research Center for Child Mental Development Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Yasuo Miki
- Department of Neuropathology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Yoshikazu Nikaido
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Kohei Koga
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Kazuhiko Nakamura
- Research Center for Child Mental Development Hirosaki University Graduate School of Medicine Hirosaki Japan.,Department of Neuropsychiatry Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Koichi Wakabayashi
- Department of Neuropathology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Shinya Ueno
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan.,Research Center for Child Mental Development Hirosaki University Graduate School of Medicine Hirosaki Japan
| |
Collapse
|
46
|
Domínguez S, Fernández de Sevilla D, Buño W. Muscarinic Long-Term Enhancement of Tonic and Phasic GABA A Inhibition in Rat CA1 Pyramidal Neurons. Front Cell Neurosci 2016; 10:244. [PMID: 27833531 PMCID: PMC5080370 DOI: 10.3389/fncel.2016.00244] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/06/2016] [Indexed: 01/23/2023] Open
Abstract
Acetylcholine (ACh) regulates network operation in the hippocampus by controlling excitation and inhibition in rat CA1 pyramidal neurons (PCs), the latter through gamma-aminobutyric acid type-A receptors (GABAARs). Although, the enhancing effects of ACh on GABAARs have been reported (Dominguez et al., 2014, 2015), its role in regulating tonic GABAA inhibition has not been explored in depth. Therefore, we aimed at determining the effects of the activation of ACh receptors on responses mediated by synaptic and extrasynaptic GABAARs. Here, we show that under blockade of ionotropic glutamate receptors ACh, acting through muscarinic type 1 receptors, paired with post-synaptic depolarization induced a long-term enhancement of tonic GABAA currents (tGABAA) and puff-evoked GABAA currents (pGABAA). ACh combined with depolarization also potentiated IPSCs (i.e., phasic inhibition) in the same PCs, without signs of interactions of synaptic responses with pGABAA and tGABAA, suggesting the contribution of two different GABAA receptor pools. The long-term enhancement of GABAA currents and IPSCs reduced the excitability of PCs, possibly regulating plasticity and learning in behaving animals.
Collapse
Affiliation(s)
- Soledad Domínguez
- Instituto Cajal - Consejo Superior de Investigaciones CientificasMadrid, Spain; Centre National de la Recherche Scientifique, Paris Descartes University, UMR 8118, ParisFrance
| | - David Fernández de Sevilla
- Instituto Cajal - Consejo Superior de Investigaciones CientificasMadrid, Spain; Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autonoma de MadridMadrid, Spain
| | - Washington Buño
- Instituto Cajal - Consejo Superior de Investigaciones Cientificas Madrid, Spain
| |
Collapse
|
47
|
Mele M, Leal G, Duarte CB. Role of GABAAR trafficking in the plasticity of inhibitory synapses. J Neurochem 2016; 139:997-1018. [DOI: 10.1111/jnc.13742] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Miranda Mele
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Graciano Leal
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Carlos B. Duarte
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Department of Life Sciences; University of Coimbra; Coimbra Portugal
| |
Collapse
|
48
|
Stephens DN, King SL, Lambert JJ, Belelli D, Duka T. GABAAreceptor subtype involvement in addictive behaviour. GENES BRAIN AND BEHAVIOR 2016; 16:149-184. [DOI: 10.1111/gbb.12321] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/19/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022]
Affiliation(s)
| | - S. L. King
- School of Psychology; University of Sussex; Brighton UK
| | - J. J. Lambert
- Division of Neuroscience; University of Dundee; Dundee UK
| | - D. Belelli
- Division of Neuroscience; University of Dundee; Dundee UK
| | - T. Duka
- School of Psychology; University of Sussex; Brighton UK
| |
Collapse
|
49
|
Valentinova K, Mameli M. mGluR-LTD at Excitatory and Inhibitory Synapses in the Lateral Habenula Tunes Neuronal Output. Cell Rep 2016; 16:2298-307. [PMID: 27545888 PMCID: PMC5009114 DOI: 10.1016/j.celrep.2016.07.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/27/2016] [Accepted: 07/25/2016] [Indexed: 12/21/2022] Open
Abstract
Excitatory and inhibitory transmission onto lateral habenula (LHb) neurons is instrumental for the expression of positive and negative motivational states. However, insights into the molecular mechanisms modulating synaptic transmission and the repercussions for neuronal activity within the LHb remain elusive. Here, we report that, in mice, activation of group I metabotropic glutamate receptors triggers long-term depression at excitatory (eLTD) and inhibitory (iLTD) synapses in the LHb. mGluR-eLTD and iLTD rely on mGluR1 and PKC signaling. However, mGluR-dependent adaptations of excitatory and inhibitory synaptic transmission differ in their expression mechanisms. mGluR-eLTD occurs via an endocannabinoid receptor-dependent decrease in glutamate release. Conversely, mGluR-iLTD occurs postsynaptically through PKC-dependent reduction of β2-containing GABAA-R function. Finally, mGluR-dependent plasticity of excitation or inhibition decides the direction of neuronal firing, providing a synaptic mechanism to bidirectionally control LHb output. We propose mGluR-LTD as a cellular substrate that underlies LHb-dependent encoding of opposing motivational states.
Collapse
Affiliation(s)
- Kristina Valentinova
- Institut du Fer à Moulin, 75005 Paris, France; Inserm, UMR-S 839, 75005 Paris, France; Université Pierre et Marie Curie, 75005 Paris, France
| | - Manuel Mameli
- Institut du Fer à Moulin, 75005 Paris, France; Inserm, UMR-S 839, 75005 Paris, France; Université Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
50
|
Mele M, Aspromonte MC, Duarte CB. Downregulation of GABA A Receptor Recycling Mediated by HAP1 Contributes to Neuronal Death in In Vitro Brain Ischemia. Mol Neurobiol 2016; 54:45-57. [PMID: 26732589 DOI: 10.1007/s12035-015-9661-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/17/2015] [Indexed: 01/17/2023]
Abstract
Downregulation of GABAergic synaptic transmission contributes to the increase in overall excitatory activity in the ischemic brain. A reduction of GABAA receptor (GABAAR) surface expression partly accounts for this decrease in inhibitory activity, but the mechanisms involved are not fully elucidated. In this work, we investigated the alterations in GABAAR trafficking in cultured rat hippocampal neurons subjected to oxygen/glucose deprivation (OGD), an in vitro model of global brain ischemia, and their impact in neuronal death. The traffic of GABAAR was evaluated after transfection of hippocampal neurons with myc-tagged GABAAR β3 subunits. OGD decreased the rate of GABAAR β3 subunit recycling and reduced the interaction of the receptors with HAP1, a protein involved in the recycling of the receptors. Furthermore, OGD induced a calpain-mediated cleavage of HAP1. Transfection of hippocampal neurons with HAP1A or HAP1B isoforms reduced the OGD-induced decrease in surface expression of GABAAR β3 subunits, and HAP1A maintained the rate of receptor recycling. Furthermore, transfection of hippocampal neurons with HAP1 significantly decreased OGD-induced cell death. These results show a key role for HAP1 protein in the downmodulation of GABAergic neurotransmission during cerebral ischemia, which contributes to neuronal demise.
Collapse
Affiliation(s)
- Miranda Mele
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine (Polo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, 3030-789, Portugal
| | - Maria Cristina Aspromonte
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine (Polo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.,Department of Science and Technology, University of Sannio, Benevento, 82100, Italy
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine (Polo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal. .,Department of Life Sciences, University of Coimbra, Coimbra, 3001-401, Portugal.
| |
Collapse
|