1
|
Al-Marzooqi N, Al-Suhail H, AlRefai MO, Alhaj HA. Genomic factors associated with substance use disorder relapse: A critical review. Addict Behav Rep 2024; 20:100569. [PMID: 39553284 PMCID: PMC11568783 DOI: 10.1016/j.abrep.2024.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/01/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
Several genetic and epigenetic factors contribute to the elevated substance use disorder (SUD) relapse vulnerability, yet a comprehensive investigation into these factors is lacking. This review aims to delve into current literature to highlight key genomic factors associated with SUD relapse. Focusing on genetic predisposition and epigenetic modifications the review synthesized research findings of several genetic polymorphisms, histone modifications and DNA methylation patterns contributing to the initiation of SUD and the elevated relapse susceptibility. Notably, specific gene polymorphisms, such as Dopamine Receptor D2 gene (DRD2), Gamma-Aminobutyric Acid Receptor Alpha gene (GABRA2), Catechol-O-methyltransferase (COMT) gene, Dopamine Transporter (DAT1) gene and others were identified to be connected to various patterns of SUD relapse. Furthermore, SUD initiation and relapse has been shown to be influenced by epigenetics. Specifically, CpG hypermethylation has been associated with severe alcohol use disorder in the 5' untranslated region of the Bladder Cancer Associated Protein gene (BLCAP) and the upstream region of the Active BCR Related gene (ABR). Co-users of cannabis and tobacco showed notable variations in CpG site methylation, especially at the Aryl Hydrocarbon Receptor Repressor (AHRR), and factor II receptor-like 3 gene sites (F2RL3). In conclusion, there is good evidence of certain associations between genomic factors and relapse to SUD. However, further research is needed to ascertain causality effects of these factors and develop novel interventions for effective treatment and relapse prevention.
Collapse
Affiliation(s)
- Noora Al-Marzooqi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hanan Al-Suhail
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad O. AlRefai
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hamid A Alhaj
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
2
|
Puig S, Shelton MA, Barko K, Seney ML, Logan RW. Sex-specific role of the circadian transcription factor NPAS2 in opioid tolerance, withdrawal and analgesia. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12829. [PMID: 36053258 PMCID: PMC9744556 DOI: 10.1111/gbb.12829] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 02/05/2023]
Abstract
Opioids like fentanyl remain the mainstay treatment for chronic pain. Unfortunately, opioid's high dependence liability has led to the current opioid crisis, in part, because of side-effects that develop during long-term use, including analgesic tolerance and physical dependence. Both tolerance and dependence to opioids may lead to escalation of required doses to achieve previous therapeutic efficacy. Additionally, altered sleep and circadian rhythms are common in people on opioid therapy. Opioids impact sleep and circadian rhythms, while disruptions to sleep and circadian rhythms likely mediate the effects of opioids. However, the mechanisms underlying these bidirectional relationships between circadian rhythms and opioids remain largely unknown. The circadian protein, neuronal PAS domain protein 2 (NPAS2), regulates circadian-dependent gene transcription in structure of the central nervous system that modulate opioids and pain. Here, male and female wild-type and NPAS2-deficient (NPAS2-/-) mice were used to investigate the role of NPAS2 in fentanyl analgesia, tolerance, hyperalgesia and physical dependence. Overall, thermal pain thresholds, acute analgesia and tolerance to a fixed dose of fentanyl were largely similar between wild-type and NPAS2-/- mice. However, female NPAS2-/- exhibited augmented analgesic tolerance and significantly more behavioral symptoms of physical dependence to fentanyl. Only male NPAS2-/- mice had increased fentanyl-induced hypersensitivity, when compared with wild-type males. Together, our findings suggest sex-specific effects of NPAS2 signaling in the regulation of fentanyl-induced tolerance, hyperalgesia and dependence.
Collapse
Affiliation(s)
- Stephanie Puig
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
- Translational Neuroscience Program, Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Micah A. Shelton
- Translational Neuroscience Program, Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Kelly Barko
- Translational Neuroscience Program, Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Marianne L. Seney
- Translational Neuroscience Program, Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Ryan W. Logan
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
- Translational Neuroscience Program, Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Center for Systems NeuroscienceBoston UniversityBostonMassachusettsUSA
| |
Collapse
|
3
|
A Neuropharmacological Model to Explain Buprenorphine Induction Challenges. Ann Emerg Med 2022; 80:509-524. [DOI: 10.1016/j.annemergmed.2022.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
|
4
|
Huggett SB, Ikeda AS, McGeary JE, Kaun KR, Palmer RHC. Opioid Use Disorder and Alternative mRNA Splicing in Reward Circuitry. Genes (Basel) 2022; 13:1045. [PMID: 35741807 PMCID: PMC9222793 DOI: 10.3390/genes13061045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023] Open
Abstract
Opiate/opioid use disorder (OUD) is a chronic relapsing brain disorder that has increased in prevalence in the last two decades in the United States. Understanding the molecular correlates of OUD may provide key insights into the pathophysiology of this syndrome. Using publicly available RNA-sequencing data, our study investigated the possible role of alternative mRNA splicing in human brain tissue (dorsal-lateral prefrontal cortex (dlPFC), nucleus accumbens (NAc), and midbrain) of 90 individuals with OUD or matched controls. We found a total of 788 differentially spliced genes across brain regions. Alternative mRNA splicing demonstrated mostly tissue-specific effects, but a functionally characterized splicing change in the clathrin and AP-2-binding (CLAP) domain of the Bridging Integrator 1 (BIN1) gene was significantly linked to OUD across all brain regions. We investigated two hypotheses that may underlie differential splicing in OUD. First, we tested whether spliceosome genes were disrupted in the brains of individuals with OUD. Pathway enrichment analyses indicated spliceosome perturbations in OUD across brain regions. Second, we tested whether alternative mRNA splicing regions were linked to genetic predisposition. Using a genome-wide association study (GWAS) of OUD, we found no evidence that DNA variants within or surrounding differentially spliced genes were implicated in the heritability of OUD. Altogether, our study contributes to the understanding of OUD pathophysiology by providing evidence of a possible role of alternative mRNA splicing in OUD.
Collapse
Affiliation(s)
- Spencer B. Huggett
- Behavioral Genetics of Addiction Laboratory, Department of Psychology at Emory University, Atlanta, GA 30322, USA; (S.B.H.); (A.S.I.)
| | - Ami S. Ikeda
- Behavioral Genetics of Addiction Laboratory, Department of Psychology at Emory University, Atlanta, GA 30322, USA; (S.B.H.); (A.S.I.)
| | - John E. McGeary
- Providence Veterans Affairs Medical Center, Department of Psychiatry and Human Behavior, Brown University, Providence, RI 02908, USA;
| | - Karla R. Kaun
- Department of Neuroscience, Brown University, Providence, RI 02912, USA;
| | - Rohan H. C. Palmer
- Behavioral Genetics of Addiction Laboratory, Department of Psychology at Emory University, Atlanta, GA 30322, USA; (S.B.H.); (A.S.I.)
| |
Collapse
|
5
|
Eishingdrelo H, Qin X, Yuan L, Kongsamut S, Yu L. Ligands can differentially and temporally modulate GPCR interaction with 14-3-3 isoforms. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100123. [PMID: 35992381 PMCID: PMC9389249 DOI: 10.1016/j.crphar.2022.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 12/04/2022] Open
Abstract
GPCR signaling and function depend on their associated proteins and subcellular locations. Besides G-proteins and β-arrestins, 14-3-3 proteins participate in GPCR trafficking and signaling, and they connect a large number of diverse proteins to form signaling networks. Multiple 14-3-3 isoforms exist, and a GPCR can differentially interact with different 14-3-3 isoforms in response to agonist treatment. We found that some agonist-induced GPCR/14-3-3 signal intensities can rapidly decrease. We confirmed that this phenomenon of rapidly decreasing agonist-induced GPCR/14-3-3 signal intensity could also be paralleled with GPCR/β-arrestin-2 signals, indicating diminished levels of GPCR/signal adaptor complexes during endocytosis. The temporal signals could implicate either GPCR/14-3-3 complex dissociation or the complex undergoing a degradation process. Furthermore, we found that certain GPCR ligands can regulate GPCR/14-3-3 signals temporally, suggesting a new approach for GPCR drug development by modulating GPCR/14-3-3 signals temporally. Some GPCRs can engage or dissociate with different 14-3-3 isoforms in response to agonist treatment. Some GPCRs and 14-3-3 isoform interaction signals can be rapidly diminished in response to agonist treatment, the temporal signal strength changes can be paralleled with the same GPCR and β-arrestin-2 interaction signals. Adrenergic receptor alpha 2A (ADRA2A) drugs with different therapeutic indications can temporally regulate ADRA2A/14-3-3γ and ADRA2A/β-arrestin-2 interaction complex signals.
Collapse
|
6
|
Lubejko ST, Graham RD, Livrizzi G, Schaefer R, Banghart MR, Creed MC. The role of endogenous opioid neuropeptides in neurostimulation-driven analgesia. Front Syst Neurosci 2022; 16:1044686. [PMID: 36591324 PMCID: PMC9794630 DOI: 10.3389/fnsys.2022.1044686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Due to the prevalence of chronic pain worldwide, there is an urgent need to improve pain management strategies. While opioid drugs have long been used to treat chronic pain, their use is severely limited by adverse effects and abuse liability. Neurostimulation techniques have emerged as a promising option for chronic pain that is refractory to other treatments. While different neurostimulation strategies have been applied to many neural structures implicated in pain processing, there is variability in efficacy between patients, underscoring the need to optimize neurostimulation techniques for use in pain management. This optimization requires a deeper understanding of the mechanisms underlying neurostimulation-induced pain relief. Here, we discuss the most commonly used neurostimulation techniques for treating chronic pain. We present evidence that neurostimulation-induced analgesia is in part driven by the release of endogenous opioids and that this endogenous opioid release is a common endpoint between different methods of neurostimulation. Finally, we introduce technological and clinical innovations that are being explored to optimize neurostimulation techniques for the treatment of pain, including multidisciplinary efforts between neuroscience research and clinical treatment that may refine the efficacy of neurostimulation based on its underlying mechanisms.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert D. Graham
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert Schaefer
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Matthew R. Banghart,
| | - Meaghan C. Creed
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Meaghan C. Creed,
| |
Collapse
|
7
|
Liu S, Kang WJ, Abrimian A, Xu J, Cartegni L, Majumdar S, Hesketh P, Bekker A, Pan YX. Alternative Pre-mRNA Splicing of the Mu Opioid Receptor Gene, OPRM1: Insight into Complex Mu Opioid Actions. Biomolecules 2021; 11:biom11101525. [PMID: 34680158 PMCID: PMC8534031 DOI: 10.3390/biom11101525] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 12/03/2022] Open
Abstract
Most opioid analgesics used clinically, including morphine and fentanyl, as well as the recreational drug heroin, act primarily through the mu opioid receptor, a class A Rhodopsin-like G protein-coupled receptor (GPCR). The single-copy mu opioid receptor gene, OPRM1, undergoes extensive alternative splicing, creating multiple splice variants or isoforms via a variety of alternative splicing events. These OPRM1 splice variants can be categorized into three major types based on the receptor structure: (1) full-length 7 transmembrane (TM) C-terminal variants; (2) truncated 6TM variants; and (3) single TM variants. Increasing evidence suggests that these OPRM1 splice variants are pharmacologically important in mediating the distinct actions of various mu opioids. More importantly, the OPRM1 variants can be targeted for development of novel opioid analgesics that are potent against multiple types of pain, but devoid of many side-effects associated with traditional opiates. In this review, we provide an overview of OPRM1 alternative splicing and its functional relevance in opioid pharmacology.
Collapse
Affiliation(s)
- Shan Liu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Wen-Jia Kang
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Anna Abrimian
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Jin Xu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Luca Cartegni
- Department of Chemical Biology, Ernest Mario School of Pharmacy Rutgers University, Piscataway, NJ 08854, USA;
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Patrick Hesketh
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Alex Bekker
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Ying-Xian Pan
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
- Correspondence: ; Tel.: +1-973-972-3213
| |
Collapse
|
8
|
Antinociceptive effect of selective G protein-gated inwardly rectifying K+ channel agonist ML297 in the rat spinal cord. PLoS One 2020; 15:e0239094. [PMID: 32915912 PMCID: PMC7485804 DOI: 10.1371/journal.pone.0239094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/29/2020] [Indexed: 01/02/2023] Open
Abstract
The G protein-gated inwardly rectifying K+ (GIRK) channels play important signaling roles in the central and peripheral nervous systems. However, the role of GIRK channel activation in pain signaling remains unknown mainly due to the lack of potent and selective GIRK channel activators until recently. The present study was designed to determine the effects and mechanisms of ML297, a selective GIRK1/2 activator, on nociception in the spinal cord by using behavioral studies and whole-cell patch-clamp recordings from substantia gelatinosa (SG) neurons. Rats were prepared for chronic lumber catheterization and intrathecal administration of ML297. The nociceptive flexion reflex was tested using an analgesy-meter, and the influence on motor performance was assessed using an accelerating rotarod. We also investigated pre- and post-synaptic actions of ML297 in spinal cord preparations by whole-cell patch-clamp recordings. Intrathecal administration of ML297 increased the mechanical nociceptive threshold without impairing motor function. In voltage-clamp mode of patch-clamp recordings, bath application of ML297 induced outward currents in a dose-dependent manner. The ML297-induced currents demonstrated specific equilibrium potential like other families of potassium channels. At high concentration, ML297 depressed miniature excitatory postsynaptic currents (mEPSCs) but not their amplitude. The ML297-induced outward currents and suppression of mEPSCs were not inhibited by naloxone, a μ-opioid receptor antagonist. These results demonstrated that intrathecal ML297 showed the antinociceptive effect, which was mediated through direct activation of pre- and post-synaptic GIRK channels. Selective GIRK channel activation is a promising strategy for the development of new agents against chronic pain and opioid tolerance.
Collapse
|
9
|
Hood LE, Leyrer-Jackson JM, Olive MF. Pharmacotherapeutic management of co-morbid alcohol and opioid use. Expert Opin Pharmacother 2020; 21:823-839. [PMID: 32103695 PMCID: PMC7239727 DOI: 10.1080/14656566.2020.1732349] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022]
Abstract
Opioid use disorder (OUD) and alcohol use disorder (AUD) are two highly prevalent substance-related disorders worldwide. Co-use of the substances is also quite prevalent, yet there are no pharmacological treatment approaches specifically designed to treat co-morbid OUD and AUD. Here, the authors critically summarize OUD, AUD and opioid/alcohol co-use and their current pharmacotherapies for treatment. They also review the mechanisms of action of opioids and alcohol within the brain reward circuitry and discuss potential combined mechanisms of action and resulting neuroadaptations. Pharmacotherapies that aim to treat AUD or OUD that may be beneficial in the treatment of co-use are also highlighted. Preclinical models assessing alcohol and opioid co-use remain sparse. Lasting neuroadaptations in brain reward circuits caused by co-use of alcohol and opioids remains largely understudied. In order to fully understand the neurobiological underpinnings of alcohol and opioid co-use and develop efficacious pharmacotherapies, the preclinical field must expand its current experimental paradigms of 'single drug' use to encompass polysubstance use. Such studies will provide insights on the neural alterations induced by opioid and alcohol co-use, and may help develop novel pharmacotherapies for individuals with co-occurring alcohol and opioid use disorders.
Collapse
Affiliation(s)
- Lauren E. Hood
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | | | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
10
|
Zhao P, Pattison LA, Jensen DD, Jimenez-Vargas NN, Latorre R, Lieu T, Jaramillo JO, Lopez-Lopez C, Poole DP, Vanner SJ, Schmidt BL, Bunnett NW. Protein kinase D and Gβγ mediate sustained nociceptive signaling by biased agonists of protease-activated receptor-2. J Biol Chem 2019; 294:10649-10662. [PMID: 31142616 DOI: 10.1074/jbc.ra118.006935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Proteases sustain hyperexcitability and pain by cleaving protease-activated receptor-2 (PAR2) on nociceptors through distinct mechanisms. Whereas trypsin induces PAR2 coupling to Gαq, Gαs, and β-arrestins, cathepsin-S (CS) and neutrophil elastase (NE) cleave PAR2 at distinct sites and activate it by biased mechanisms that induce coupling to Gαs, but not to Gαq or β-arrestins. Because proteases activate PAR2 by irreversible cleavage, and activated PAR2 is degraded in lysosomes, sustained extracellular protease-mediated signaling requires mobilization of intact PAR2 from the Golgi apparatus or de novo synthesis of new receptors by incompletely understood mechanisms. We found here that trypsin, CS, and NE stimulate PAR2-dependent activation of protein kinase D (PKD) in the Golgi of HEK293 cells, in which PKD regulates protein trafficking. The proteases stimulated translocation of the PKD activator Gβγ to the Golgi, coinciding with PAR2 mobilization from the Golgi. Proteases also induced translocation of a photoconverted PAR2-Kaede fusion protein from the Golgi to the plasma membrane of KNRK cells. After incubation of HEK293 cells and dorsal root ganglia neurons with CS, NE, or trypsin, PAR2 responsiveness initially declined, consistent with PAR2 cleavage and desensitization, and then gradually recovered. Inhibitors of PKD, Gβγ, and protein translation inhibited recovery of PAR2 responsiveness. PKD and Gβγ inhibitors also attenuated protease-evoked mechanical allodynia in mice. We conclude that proteases that activate PAR2 by canonical and biased mechanisms stimulate PKD in the Golgi; PAR2 mobilization and de novo synthesis repopulate the cell surface with intact receptors and sustain nociceptive signaling by extracellular proteases.
Collapse
Affiliation(s)
- Peishen Zhao
- From the Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Luke A Pattison
- From the Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Dane D Jensen
- the Departments of Surgery and Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Nestor N Jimenez-Vargas
- the Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, Ontario K7L 3N6, Canada, and
| | - Rocco Latorre
- the Departments of Surgery and Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - TinaMarie Lieu
- From the Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Josue O Jaramillo
- the Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, Ontario K7L 3N6, Canada, and
| | - Cintya Lopez-Lopez
- the Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, Ontario K7L 3N6, Canada, and
| | - Daniel P Poole
- From the Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Stephen J Vanner
- the Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, Ontario K7L 3N6, Canada, and
| | - Brian L Schmidt
- the Bluestone Center for Clinical Research, New York University College of Dentistry, New York, New York 10010
| | - Nigel W Bunnett
- the Departments of Surgery and Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, New York 10032,
| |
Collapse
|
11
|
Obeng S, Wang H, Jali A, Stevens DL, Akbarali HI, Dewey WL, Selley DE, Zhang Y. Structure-Activity Relationship Studies of 6α- and 6β-Indolylacetamidonaltrexamine Derivatives as Bitopic Mu Opioid Receptor Modulators and Elaboration of the "Message-Address Concept" To Comprehend Their Functional Conversion. ACS Chem Neurosci 2019; 10:1075-1090. [PMID: 30156823 PMCID: PMC6405326 DOI: 10.1021/acschemneuro.8b00349] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Structure-activity relationship (SAR) studies of numerous opioid ligands have shown that introduction of a methyl or ethyl group on the tertiary amino group at position 17 of the epoxymorphinan skeleton generally results in a mu opioid receptor (MOR) agonist while introduction of a cyclopropylmethyl group typically leads to an antagonist. Furthermore, it has been shown that introduction of heterocyclic ring systems at position 6 can favor antagonism. However, it was reported that 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-[(2'-indolyl)acetamido]morphinan (INTA), which bears a cyclopropylmethyl group at position 17 and an indole ring at position 6, acted as a MOR agonist. We herein report a SAR study on INTA with a series of its complementary derivatives to understand how introduction of an indole moiety with α or β linkage at position 6 of the epoxymorphinan skeleton may influence ligand function. Interestingly, one of INTA derivatives, compound 15 (NAN) was identified as a MOR antagonist both in vitro and in vivo. Molecular modeling studies revealed that INTA and NAN may interact with different domains of the MOR allosteric binding site. In addition, INTA may interact with W293 and N150 residues found in the orthosteric site to stabilize MOR activation conformation while NAN does not. These results suggest that INTA and NAN may be bitopic ligands and the type of allosteric interactions with the MOR influence their functional activity. These insights along with our enriched comprehension of the "message-address" concept will to benefit future ligand design.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Allosteric Regulation/physiology
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/pharmacology
- Animals
- CHO Cells
- Cricetinae
- Cricetulus
- Dose-Response Relationship, Drug
- Male
- Mice
- Narcotic Antagonists/chemistry
- Narcotic Antagonists/pharmacology
- Protein Binding/drug effects
- Protein Binding/physiology
- Protein Structure, Secondary
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/physiology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Samuel Obeng
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Abdulmajeed Jali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - David L. Stevens
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Hamid I. Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - William L. Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Dana E. Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| |
Collapse
|
12
|
Burns JA, Kroll DS, Feldman DE, Kure Liu C, Manza P, Wiers CE, Volkow ND, Wang GJ. Molecular Imaging of Opioid and Dopamine Systems: Insights Into the Pharmacogenetics of Opioid Use Disorders. Front Psychiatry 2019; 10:626. [PMID: 31620026 PMCID: PMC6759955 DOI: 10.3389/fpsyt.2019.00626] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Opioid use in the United States has steadily risen since the 1990s, along with staggering increases in addiction and overdose fatalities. With this surge in prescription and illicit opioid abuse, it is paramount to understand the genetic risk factors and neuropsychological effects of opioid use disorder (OUD). Polymorphisms disrupting the opioid and dopamine systems have been associated with increased risk for developing substance use disorders. Molecular imaging studies have revealed how these polymorphisms impact the brain and contribute to cognitive and behavioral differences across individuals. Here, we review the current molecular imaging literature to assess how genetic variations in the opioid and dopamine systems affect function in the brain's reward, cognition, and stress pathways, potentially resulting in vulnerabilities to OUD. Continued research of the functional consequences of genetic variants and corresponding alterations in neural mechanisms will inform prevention and treatment of OUD.
Collapse
Affiliation(s)
- Jamie A Burns
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Danielle S Kroll
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Dana E Feldman
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | | | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States.,National Institute on Drug Abuse, Bethesda, MD, United States
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| |
Collapse
|
13
|
Pasternak GW, Childers SR, Pan YX. Emerging Insights into Mu Opioid Pharmacology. Handb Exp Pharmacol 2019; 258:89-125. [PMID: 31598835 DOI: 10.1007/164_2019_270] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Opioid analgesics, most of which act through mu opioid receptors, have long represented valuable therapeutic agents to treat severe pain. Concerted drug development efforts for over a 100 years have resulted in a large variety of opioid analgesics used in the clinic, but all of them continue to exhibit the side effects, especially respiratory depression, that have long plagued the use of morphine. The recent explosion in fatalities resulting from overdose of prescription and synthetic opioids has dramatically increased the need for safer analgesics, but recent developments in mu receptor research have provided new strategies to develop such drugs. This chapter reviews recent advances in developing novel opioid analgesics from an understanding of mu receptor structure and function. This includes a summary of the mechanism of agonist binding deduced from the crystal structure of mu receptors. It will also highlight the development of novel agonist mechanisms, including biased agonists, bivalent ligands, and allosteric modulators of mu receptor function, and describe how receptor phosphorylation modulates these pathways. Finally, it will summarize research on the alternative pre-mRNA splicing mechanisms that produces a multiplicity of mu receptor isoforms. Many of these isoforms exhibit different pharmacological specificities and brain circuitry localization, thus providing an opportunity to develop novel drugs with increased therapeutic windows.
Collapse
Affiliation(s)
- Gavril W Pasternak
- Department of Neurology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Steven R Childers
- Department of Physiology/Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Ying-Xian Pan
- Department of Neurology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
14
|
Koshimizu TA, Honda K, Nagaoka-Uozumi S, Ichimura A, Kimura I, Nakaya M, Sakai N, Shibata K, Ushijima K, Fujimura A, Hirasawa A, Kurose H, Tsujimoto G, Tanoue A, Takano Y. Complex formation between the vasopressin 1b receptor, β-arrestin-2, and the μ-opioid receptor underlies morphine tolerance. Nat Neurosci 2018; 21:820-833. [DOI: 10.1038/s41593-018-0144-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 02/16/2018] [Indexed: 01/06/2023]
|
15
|
IRAS Modulates Opioid Tolerance and Dependence by Regulating μ Opioid Receptor Trafficking. Mol Neurobiol 2015; 53:4918-30. [DOI: 10.1007/s12035-015-9417-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/01/2015] [Indexed: 01/25/2023]
|
16
|
Marcus DJ, Zee M, Hughes A, Yuill MB, Hohmann AG, Mackie K, Guindon J, Morgan DJ. Tolerance to the antinociceptive effects of chronic morphine requires c-Jun N-terminal kinase. Mol Pain 2015; 11:34. [PMID: 26065412 PMCID: PMC4465461 DOI: 10.1186/s12990-015-0031-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 06/01/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Morphine and fentanyl are opioid analgesics in wide clinical use that act through the μ-opioid receptor (MOR). However, one limitation of their long-term effectiveness is the development of tolerance. Receptor desensitization has been proposed as a putative mechanism driving tolerance to G protein-coupled receptor (GPCR) agonists. Recent studies have found that tolerance to morphine is mediated by the c-Jun N-terminal Kinase (JNK) signaling pathway. The goal of the present study was to test the hypotheses that: 1) JNK inhibition will be antinociceptive on its own; 2) JNK inhibition will augment morphine antinociception and; 3) JNK mediates chronic tolerance for the antinociceptive effects of morphine using acute (hotplate and tail-flick), inflammatory (10 μl of formalin 2.5%) and chemotherapy (cisplatin 5 mg/kg ip once weekly)-induced neuropathic pain assays. RESULTS We found that JNK inhibition by SP600125 (3 mg/kg) produces a greater antinociceptive effect than morphine (6 mg/kg) alone in the formalin test. Moreover, co-administration of morphine (6 mg/kg) with SP600125 (3 mg/kg) produced a sub-additive antinociceptive effect in the formalin test. We also show that pre-treatment with SP600125 (3 or 10 mg/kg), attenuates tolerance to the antinociceptive effects of morphine (10 mg/kg), but not fentanyl (0.3 mg/kg), in the tail-flick and hotplate tests. Pre-treatment with SP600125 also attenuates tolerance to the hypothermic effects of both morphine and fentanyl. We also examined the role of JNK in morphine tolerance in a cisplatin-induced model of neuropathic pain. Interestingly, treatment with SP600125 (3 mg/kg) alone attenuated mechanical and cold allodynia in a chemotherapy-induced pain model using cisplatin. Strikingly, SP600125 (3 mg/kg) pre-treatment prolonged the anti-allodynic effect of morphine by several days (5 and 7 days for mechanical and cold, respectively). CONCLUSIONS These results demonstrate that JNK signaling plays a crucial role in mediating antinociception as well as chronic tolerance to the antinociceptive effects of morphine in acute, inflammatory, and neuropathic pain states. Thus, inhibition of JNK signaling pathway, via SP600125, represents an efficacious pharmacological approach to delay tolerance to the antinociceptive effects of chronic morphine in diverse pain models.
Collapse
Affiliation(s)
- David J Marcus
- Department of Anesthesiology, Penn State College of Medicine, 500 University Drive, Room C2850, Mailcode H187, 17033, Hershey, PA, USA.,Department of Psychological and Brain Sciences, Indiana University, 47405, Bloomington, IN, USA.,Gill Center for Biomolecular Science, Indiana University, 47405, Bloomington, IN, USA
| | - Michael Zee
- Department of Anesthesiology, Penn State College of Medicine, 500 University Drive, Room C2850, Mailcode H187, 17033, Hershey, PA, USA.,Department of Psychological and Brain Sciences, Indiana University, 47405, Bloomington, IN, USA.,Gill Center for Biomolecular Science, Indiana University, 47405, Bloomington, IN, USA
| | - Alex Hughes
- Department of Psychological and Brain Sciences, Indiana University, 47405, Bloomington, IN, USA.,Gill Center for Biomolecular Science, Indiana University, 47405, Bloomington, IN, USA
| | - Matthew B Yuill
- Department of Pharmacology, Penn State College of Medicine, 17033, Hershey, PA, USA
| | - Andrea G Hohmann
- Department of Psychological and Brain Sciences, Indiana University, 47405, Bloomington, IN, USA.,Gill Center for Biomolecular Science, Indiana University, 47405, Bloomington, IN, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, 47405, Bloomington, IN, USA.,Gill Center for Biomolecular Science, Indiana University, 47405, Bloomington, IN, USA
| | - Josée Guindon
- Department of Psychological and Brain Sciences, Indiana University, 47405, Bloomington, IN, USA. .,Gill Center for Biomolecular Science, Indiana University, 47405, Bloomington, IN, USA. .,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6592, 79430, Lubbock, TX, USA.
| | - Daniel J Morgan
- Department of Anesthesiology, Penn State College of Medicine, 500 University Drive, Room C2850, Mailcode H187, 17033, Hershey, PA, USA. .,Department of Pharmacology, Penn State College of Medicine, 17033, Hershey, PA, USA. .,Department of Psychological and Brain Sciences, Indiana University, 47405, Bloomington, IN, USA. .,Gill Center for Biomolecular Science, Indiana University, 47405, Bloomington, IN, USA.
| |
Collapse
|
17
|
Trafficking of β-Adrenergic Receptors: Implications in Intracellular Receptor Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:151-88. [PMID: 26055058 DOI: 10.1016/bs.pmbts.2015.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
β-Adrenergic receptors (βARs), prototypical G-protein-coupled receptors, play a pivotal role in regulating neuronal and cardiovascular responses to catecholamines during stress. Agonist-induced receptor endocytosis is traditionally considered as a primary mechanism to turn off the receptor signaling (or receptor desensitization). However, recent progress suggests that intracellular trafficking of βAR presents a mean to translocate receptor signaling machinery to intracellular organelles/compartments while terminating the signaling at the cell surface. Moreover, the apparent multidimensionality of ligand efficacy in space and time in a cell has forecasted exciting pathophysiological implications, which are just beginning to be explored. As we begin to understand how these pathways impact downstream cellular programs, this will have significant implications for a number of pathophysiological conditions in heart and other systems, that in turn open up new therapeutic opportunities.
Collapse
|
18
|
Cooke AE, Oldfield S, Krasel C, Mundell SJ, Henderson G, Kelly E. Morphine-induced internalization of the L83I mutant of the rat μ-opioid receptor. Br J Pharmacol 2014; 172:593-605. [PMID: 24697554 DOI: 10.1111/bph.12709] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/17/2014] [Accepted: 03/26/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Naturally occurring single-nucleotide polymorphisms (SNPs) within GPCRs can result in alterations in various pharmacological parameters. Understanding the regulation and function of endocytic trafficking of the μ-opioid receptor (MOP receptor) is of great importance given its implication in the development of opioid tolerance. This study has compared the agonist-dependent trafficking and signalling of L83I, the rat orthologue of a naturally occurring variant of the MOP receptor. EXPERIMENTAL APPROACH Cell surface elisa, confocal microscopy and immunoprecipitation assays were used to characterize the trafficking properties of the MOP-L83I variant in comparison with the wild-type receptor in HEK 293 cells. Functional assays were used to compare the ability of the L83I variant to signal to several downstream pathways. KEY RESULTS Morphine-induced internalization of the L83I MOP receptor was markedly increased in comparison with the wild-type receptor. The altered trafficking of this variant was found to be specific to morphine and was both G-protein receptor kinase- and dynamin-dependent. The enhanced internalization of L83I variant in response to morphine was not due to increased phosphorylation of serine 375, arrestin association or an increased ability to signal. CONCLUSIONS AND IMPLICATIONS These results suggest that morphine promotes a specific conformation of the L83I variant that makes it more liable to internalize in response to morphine, unlike the wild-type receptor that undergoes significantly less morphine-stimulated internalization, providing an example of a ligand-selective biased receptor. The presence of this SNP within an individual may consequently affect the development of tolerance and analgesic responses. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- A E Cooke
- School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | | | | | | |
Collapse
|
19
|
Mann A, Illing S, Miess E, Schulz S. Different mechanisms of homologous and heterologous μ-opioid receptor phosphorylation. Br J Pharmacol 2014; 172:311-6. [PMID: 24517854 DOI: 10.1111/bph.12627] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/16/2014] [Accepted: 01/19/2014] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED The efficiency of μ-opioid receptor signalling is tightly regulated and ultimately limited by the coordinated phosphorylation of intracellular serine and threonine residues. Here, we review and discuss recent progress in the generation and application of phosphosite-specific μ-opioid receptor antibodies, which have proved to be excellent tools for monitoring the spatial and temporal dynamics of receptor phosphorylation and dephosphorylation. Agonist-induced phosphorylation of μ-opioid receptors occurs at a conserved 10 residue sequence (370) TREHPSTANT(379) in the receptor's carboxyl-terminal cytoplasmic tail. Diverse opioids induce receptor phosphorylation at S375, present in the middle of this sequence, but only high-efficacy opioids have the ability to drive higher order phosphorylation on flanking residues (T370, T376 and T379). S375 is the initiating residue in a hierarchical phosphorylation cascade. In contrast, agonist-independent heterologous μ-opioid receptor phosphorylation occurs primarily at T370. The combination of phosphosite-specific antibodies and siRNA knockdown screening also facilitated the identification of relevant kinases and phosphatases. In fact, morphine induces a selective S375 phosphorylation that is predominantly catalysed by GPCR kinase 5 (GRK5), whereas multisite phosphorylation induced by high-efficacy opioids specifically requires GRK2/3. By contrast, T370 phosphorylation stimulated by phorbol esters or heterologous activation of Gq -coupled receptors is mediated by PKCα. Rapid μ-opioid receptor dephosphorylation occurs at or near the plasma membrane and is catalysed by protein phosphatase 1γ (PP1γ). These findings suggest that there are distinct phosphorylation motifs for homologous and heterologous regulation of μ-opioid receptor phosphorylation. However, it remains to be seen to what extent different μ-opioid receptor phosphorylation patterns contribute to the development of tolerance and dependence in vivo. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- Anika Mann
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | | | | | | |
Collapse
|
20
|
Kapur BM, Lala PK, Shaw JLV. Pharmacogenetics of chronic pain management. Clin Biochem 2014; 47:1169-87. [PMID: 24912048 DOI: 10.1016/j.clinbiochem.2014.05.065] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/25/2014] [Accepted: 05/27/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The experience of chronic pain is one of the commonest reasons individuals seek medical attention, making the management of chronic pain a major issue in clinical practice. Drug metabolism and responses are affected by many factors, with genetic variations offering only a partial explanation of an individual's response. There is a paucity of evidence for the benefits of pharmacogenetic testing in the context of pain management. DESIGN AND METHODS We reviewed the literature between 2000 and 2013, and references cited therein, using various keywords related to pain management, pharmacology and pharmacogenetics. RESULTS Opioids continue to be the mainstay of chronic pain management. Several non-opioid based therapies, such as treatment with cannabinoids, gene therapy and epigenetic-based approaches are now available for these patients. Adjuvant therapies with antidepressants, benzodiazepines or anticonvulsants can also be useful in managing pain. Currently, laboratory monitoring of pain management patients, if performed, is largely through urine drug measurements. CONCLUSIONS Drug half-life calculations can be used as functional markers of the cumulative effect of pharmacogenetics and drug-drug interactions. Assessment of half-life and therapeutic effects may be more useful than genetic testing in preventing adverse drug reactions to pain medications, while ensuring effective analgesia. Definitive, mass spectrometry-based methods, capable of measuring parent drug and metabolite levels, are the most useful assays for this purpose. Urine drug measurements do not necessarily correlate with serum drug concentrations or therapeutic effects. Therefore, they are limited in their use in monitoring efficacy and toxicity.
Collapse
Affiliation(s)
- Bhushan M Kapur
- Department of Clinical Pathology, Sunnybrook Health Sciences Center, Toronto, Canada; Division of Clinical Pharmacology and Toxicology, The Hospital for Sick Children University of Toronto, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Canada.
| | - Prateek K Lala
- Division of Clinical Pharmacology and Toxicology, The Hospital for Sick Children University of Toronto, Canada
| | - Julie L V Shaw
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Canada
| |
Collapse
|
21
|
Jaremko KM, Thompson NL, Reyes BAS, Jin J, Ebersole B, Jenney CB, Grigson PS, Levenson R, Berrettini WH, Van Bockstaele EJ. Morphine-induced trafficking of a mu-opioid receptor interacting protein in rat locus coeruleus neurons. Prog Neuropsychopharmacol Biol Psychiatry 2014; 50:53-65. [PMID: 24333843 PMCID: PMC3928604 DOI: 10.1016/j.pnpbp.2013.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/26/2013] [Accepted: 12/05/2013] [Indexed: 12/14/2022]
Abstract
Opiate addiction is a devastating health problem, with approximately 2million people currently addicted to heroin or non-medical prescription opiates in the United States alone. In neurons, adaptations in cell signaling cascades develop following opioid actions at the mu opioid receptor (MOR). A novel putative target for intervention involves interacting proteins that may regulate trafficking of MOR. Morphine has been shown to induce a re-distribution of a MOR-interacting protein Wntless (WLS, a transport molecule necessary for secretion of neurotrophic Wnt proteins), from cytoplasmic to membrane compartments in rat striatal neurons. Given its opiate-sensitivity and its well-characterized molecular and cellular adaptations to morphine exposure, we investigated the anatomical distribution of WLS and MOR in the rat locus coeruleus (LC)-norepinephrine (NE) system. Dual immunofluorescence microscopy was used to test the hypothesis that WLS is localized to noradrenergic neurons of the LC and that WLS and MOR co-exist in common LC somatodendritic processes, providing an anatomical substrate for their putative interactions. We also hypothesized that morphine would influence WLS distribution in the LC. Rats received saline, morphine or the opiate agonist [d-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO), and tissue sections through the LC were processed for immunogold-silver detection of WLS and MOR. Statistical analysis showed a significant re-distribution of WLS to the plasma membrane following morphine treatment in addition to an increase in the proximity of gold-silver labels for MOR and WLS. Following DAMGO treatment, MOR and WLS were predominantly localized within the cytoplasmic compartment when compared to morphine and control. In a separate cohort of rats, brains were obtained from saline-treated or heroin self-administering male rats for pulldown co-immunoprecipitation studies. Results showed an increased association of WLS and MOR following heroin exposure. As the LC-NE system is important for cognition as well as decisions underlying substance abuse, adaptations in WLS trafficking and expression may play a role in modulating MOR function in the LC and contribute to the negative sequelae of opiate exposure on executive function.
Collapse
Affiliation(s)
- Kellie M Jaremko
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Nicholas L Thompson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Beverly A S Reyes
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States.
| | - Jay Jin
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Brittany Ebersole
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Christopher B Jenney
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Patricia S Grigson
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Robert Levenson
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Wade H Berrettini
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, United States
| | - Elisabeth J Van Bockstaele
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| |
Collapse
|
22
|
Garduño-Gutiérrez R, León-Olea M, Rodríguez-Manzo G. Different amounts of ejaculatory activity, a natural rewarding behavior, induce differential mu and delta opioid receptor internalization in the rat's ventral tegmental area. Brain Res 2013; 1541:22-32. [DOI: 10.1016/j.brainres.2013.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 06/25/2013] [Accepted: 10/09/2013] [Indexed: 01/17/2023]
|
23
|
Banghart MR, Williams JT, Shah RC, Lavis LD, Sabatini BL. Caged naloxone reveals opioid signaling deactivation kinetics. Mol Pharmacol 2013; 84:687-95. [PMID: 23960100 PMCID: PMC3807075 DOI: 10.1124/mol.113.088096] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 08/19/2013] [Indexed: 11/22/2022] Open
Abstract
The spatiotemporal dynamics of opioid signaling in the brain remain poorly defined. Photoactivatable opioid ligands provide a means to quantitatively measure these dynamics and their underlying mechanisms in brain tissue. Although activation kinetics can be assessed using caged agonists, deactivation kinetics are obscured by slow clearance of agonist in tissue. To reveal deactivation kinetics of opioid signaling we developed a caged competitive antagonist that can be quickly photoreleased in sufficient concentrations to render agonist dissociation effectively irreversible. Carboxynitroveratryl-naloxone (CNV-NLX), a caged analog of the competitive opioid antagonist NLX, was readily synthesized from commercially available NLX in good yield and found to be devoid of antagonist activity at heterologously expressed opioid receptors. Photolysis in slices of rat locus coeruleus produced a rapid inhibition of the ionic currents evoked by multiple agonists of the μ-opioid receptor (MOR), but not of α-adrenergic receptors, which activate the same pool of ion channels. Using the high-affinity peptide agonist dermorphin, we established conditions under which light-driven deactivation rates are independent of agonist concentration and thus intrinsic to the agonist-receptor complex. Under these conditions, some MOR agonists yielded deactivation rates that are limited by G protein signaling, whereas others appeared limited by agonist dissociation. Therefore, the choice of agonist determines which feature of receptor signaling is unmasked by CNV-NLX photolysis.
Collapse
Affiliation(s)
- Matthew R Banghart
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (M.R.B., R.C.S., B.L.S.); Vollum Institute, Oregon Health & Science University, Portland, Oregon (J.T.W.); and Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia (L.D.L.)
| | | | | | | | | |
Collapse
|
24
|
Abstract
Opiates are among the oldest medications available to manage a number of medical problems. Although pain is the current focus, early use initially focused upon the treatment of dysentery. Opium contains high concentrations of both morphine and codeine, along with thebaine, which is used in the synthesis of a number of semisynthetic opioid analgesics. Thus, it is not surprising that new agents were initially based upon the morphine scaffold. The concept of multiple opioid receptors was first suggested almost 50 years ago (Martin, 1967), opening the possibility of new classes of drugs, but the morphine-like agents have remained the mainstay in the medical management of pain. Termed mu, our understanding of these morphine-like agents and their receptors has undergone an evolution in thinking over the past 35 years. Early pharmacological studies identified three major classes of receptors, helped by the discovery of endogenous opioid peptides and receptor subtypes-primarily through the synthesis of novel agents. These chemical biologic approaches were then eclipsed by the molecular biology revolution, which now reveals a complexity of the morphine-like agents and their receptors that had not been previously appreciated.
Collapse
Affiliation(s)
- Gavril W Pasternak
- Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065.
| | | |
Collapse
|
25
|
Woller SA, Hook MA. Opioid administration following spinal cord injury: implications for pain and locomotor recovery. Exp Neurol 2013; 247:328-41. [PMID: 23501709 PMCID: PMC3742731 DOI: 10.1016/j.expneurol.2013.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 12/18/2022]
Abstract
Approximately one-third of people with a spinal cord injury (SCI) will experience persistent neuropathic pain following injury. This pain negatively affects quality of life and is difficult to treat. Opioids are among the most effective drug treatments, and are commonly prescribed, but experimental evidence suggests that opioid treatment in the acute phase of injury can attenuate recovery of locomotor function. In fact, spinal cord injury and opioid administration share several common features (e.g. central sensitization, excitotoxicity, aberrant glial activation) that have been linked to impaired recovery of function, as well as the development of pain. Despite these effects, the interactions between opioid use and spinal cord injury have not been fully explored. A review of the literature, described here, suggests that caution is warranted when administering opioids after SCI. Opioid administration may synergistically contribute to the pathology of SCI to increase the development of pain, decrease locomotor recovery, and leave individuals at risk for infection. Considering these negative implications, it is important that guidelines are established for the use of opioids following spinal cord and other central nervous system injuries.
Collapse
Affiliation(s)
- Sarah A Woller
- Texas A&M Institute for Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA.
| | | |
Collapse
|
26
|
MOR is not enough: identification of novel mu-opioid receptor interacting proteins using traditional and modified membrane yeast two-hybrid screens. PLoS One 2013; 8:e67608. [PMID: 23840749 PMCID: PMC3695902 DOI: 10.1371/journal.pone.0067608] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 05/24/2013] [Indexed: 11/21/2022] Open
Abstract
The mu-opioid receptor (MOR) is the G-protein coupled receptor primarily responsible for mediating the analgesic and rewarding properties of opioid agonist drugs such as morphine, fentanyl, and heroin. We have utilized a combination of traditional and modified membrane yeast two-hybrid screening methods to identify a cohort of novel MOR interacting proteins (MORIPs). The interaction between the MOR and a subset of MORIPs was validated in pulldown, co-immunoprecipitation, and co-localization studies using HEK293 cells stably expressing the MOR as well as rodent brain. Additionally, a subset of MORIPs was found capable of interaction with the delta and kappa opioid receptors, suggesting that they may represent general opioid receptor interacting proteins (ORIPS). Expression of several MORIPs was altered in specific mouse brain regions after chronic treatment with morphine, suggesting that these proteins may play a role in response to opioid agonist drugs. Based on the known function of these newly identified MORIPs, the interactions forming the MOR signalplex are hypothesized to be important for MOR signaling and intracellular trafficking. Understanding the molecular complexity of MOR/MORIP interactions provides a conceptual framework for defining the cellular mechanisms of MOR signaling in brain and may be critical for determining the physiological basis of opioid tolerance and addiction.
Collapse
|
27
|
Anselmi L, Jaramillo I, Palacios M, Huynh J, Sternini C. Ligand-induced μ opioid receptor internalization in enteric neurons following chronic treatment with the opiate fentanyl. J Neurosci Res 2013; 91:854-60. [PMID: 23553842 DOI: 10.1002/jnr.23214] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/11/2013] [Accepted: 01/14/2013] [Indexed: 12/19/2022]
Abstract
Morphine differs from most opiates its poor ability to internalize μ opioid receptors (μORs). However, chronic treatment with morphine produces adaptational changes at the dynamin level, which enhance the efficiency of acute morphine stimulation to promote μOR internalization in enteric neurons. This study tested the effect of chronic treatment with fentanyl, a μOR-internalizing agonist, on ligand-induced endocytosis and the expression of the intracellular trafficking proteins, dynamin and β-arrestin, in enteric neurons using organotypic cultures of the guinea pig ileum. In enteric neurons from guinea pigs chronically treated with fentanyl, μOR immunoreactivity was predominantly at the cell surface after acute exposure to morphine with a low level of μOR translocation, slightly higher than in neurons from naïve animals. This internalization was not due to morphine's direct effect, because it was also observed in neurons exposed to medium alone. By contrast, D-Ala2-N-Me-Phe4-Gly-ol5-enkephalin (DAMGO), a potent μOR-internalizing agonist, induced pronounced and rapid μOR endocytosis in enteric neurons from animals chronically treated with fentanyl or from naïve animals. Chronic fentanyl treatment did not alter dynamin or β-arrestin expression. These findings indicate that prolonged activation of μORs with an internalizing agonist such as fentanyl does not enhance the ability of acute morphine to trigger μOR endocytosis or induce changes in intracellular trafficking proteins, as observed with prolonged activation of μORs with a poorly internalizing agonist such as morphine. Cellular adaptations induced by chronic opiate treatment might be ligand dependent and vary with the agonist efficiency to induce receptor internalization.
Collapse
Affiliation(s)
- Laura Anselmi
- CURE Digestive Diseases Research Center, Digestive Diseases Division, Los Angeles, CA 90073, USA
| | | | | | | | | |
Collapse
|
28
|
Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S, Koch T, Evans CJ, Christie MJ. Regulation of μ-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev 2013; 65:223-54. [PMID: 23321159 PMCID: PMC3565916 DOI: 10.1124/pr.112.005942] [Citation(s) in RCA: 619] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Morphine and related µ-opioid receptor (MOR) agonists remain among the most effective drugs known for acute relief of severe pain. A major problem in treating painful conditions is that tolerance limits the long-term utility of opioid agonists. Considerable effort has been expended on developing an understanding of the molecular and cellular processes that underlie acute MOR signaling, short-term receptor regulation, and the progression of events that lead to tolerance for different MOR agonists. Although great progress has been made in the past decade, many points of contention and controversy cloud the realization of this progress. This review attempts to clarify some confusion by clearly defining terms, such as desensitization and tolerance, and addressing optimal pharmacological analyses for discerning relative importance of these cellular mechanisms. Cellular and molecular mechanisms regulating MOR function by phosphorylation relative to receptor desensitization and endocytosis are comprehensively reviewed, with an emphasis on agonist-biased regulation and areas where knowledge is lacking or controversial. The implications of these mechanisms for understanding the substantial contribution of MOR signaling to opioid tolerance are then considered in detail. While some functional MOR regulatory mechanisms contributing to tolerance are clearly understood, there are large gaps in understanding the molecular processes responsible for loss of MOR function after chronic exposure to opioids. Further elucidation of the cellular mechanisms that are regulated by opioids will be necessary for the successful development of MOR-based approaches to new pain therapeutics that limit the development of tolerance.
Collapse
Affiliation(s)
- John T Williams
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Henderson F, May WJ, Gruber RB, Young AP, Palmer LA, Gaston B, Lewis SJ. Low-dose morphine elicits ventilatory excitant and depressant responses in conscious rats: Role of peripheral μ-opioid receptors. ACTA ACUST UNITED AC 2013; 3:111-124. [PMID: 24900948 DOI: 10.4236/ojmip.2013.33017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The systemic administration of morphine affects ventilation via a mixture of central and peripheral actions. The aims of this study were to characterize the ventilatory responses elicited by a low dose of morphine in conscious rats; to determine whether tolerance develops to these responses; and to determine the potential roles of peripheral μ-opioid receptors (μ-ORs) in these responses. Ventilatory parameters were monitored via unrestrained whole-body plethysmography. Conscious male Sprague-Dawley rats received an intravenous injection of vehicle or the peripherally-restricted μ-OR antagonist, naloxone methiodide (NLXmi), and then three successive injections of morphine (1 mg/kg) given 30 min apart. The first injection of morphine in vehicle-treated rats elicited an array of ventilatory excitant (i.e., increases in frequency of breathing, minute volume, respiratory drive, peak inspiratory and expiratory flows, accompanied by decreases in inspiratory time and end inspiratory pause) and inhibitory (i.e., a decrease in tidal volume and an increase in expiratory time) responses. Subsequent injections of morphine elicited progressively and substantially smaller responses. The pattern of ventilatory responses elicited by the first injection of morphine was substantially affected by pretreatment with NLXmi whereas NLXmi minimally affected the development of tolerance to these responses. Low-dose morphine elicits an array of ventilatory excitant and depressant effects in conscious rats that are subject to the development of tolerance. Many of these initial actions of morphine appear to involve activation of peripheral μ-ORs whereas the development of tolerance to these responses does not.
Collapse
Affiliation(s)
- Fraser Henderson
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Walter J May
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ryan B Gruber
- Division of Biology, Galleon Pharmaceuticals, Horsham, PA 19044, USA
| | - Alex P Young
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Lisa A Palmer
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Benjamin Gaston
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Stephen J Lewis
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
30
|
Schattauer SS, Miyatake M, Shankar H, Zietz C, Levin JR, Liu-Chen LY, Gurevich VV, Rieder MJ, Chavkin C. Ligand directed signaling differences between rodent and human κ-opioid receptors. J Biol Chem 2012; 287:41595-41607. [PMID: 23086943 PMCID: PMC3516711 DOI: 10.1074/jbc.m112.381368] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 10/06/2012] [Indexed: 11/06/2022] Open
Abstract
KOR activation of Gβγ dependent signaling results in analgesia, whereas the dysphoric effects of KOR agonists are mediated by a different pathway involving G protein receptor kinase and non-visual arrestin. Based on this distinction, a partial KOR agonist that does not efficiently activate arrestin-dependent biased signaling may produce analgesia without dysphoria. No KOR-selective partial agonists are currently available, and preclinical assessment is complicated by sequence differences between rodent (r) and human (h) KOR. In this study, we compared the signaling initiated by the available partial agonists. Pentazocine was significantly more potent at activating p38 MAPK in hKOR than rKOR expressed in HEK293 cells but equally potent at arrestin-independent activation of ERK1/2 in hKOR and rKOR. Similarly, butorphanol increased phospho-p38-ir in hKOR-expressing cells but did not activate p38 in rKOR-HEK293. Like pentazocine, butorphanol was equally efficacious at activating ERK1/2 in rKOR and hKOR. In contrast, levorphanol, nalorphine, and U50,488 did not distinguish between hKOR and rKOR in p38 MAPK activation. Consistent with its low potency at p38 activation, pentazocine did not produce conditioned place aversion in mice. hKOR lacks the Ser-369 phosphorylation site in rKOR required for G protein receptor kinase/arrestin-dependent p38 activation, but mutation of the Ser-358 to asparagine in hKOR blocked p38 activation without affecting the acute arrestin-independent activation of ERK1/2. This study shows that hKOR activates p38 MAPK through a phosphorylation and arrestin-dependent mechanism; however, activation differs between hKOR and rKOR for some ligands. These functional selectivity differences have important implications for preclinical screening of partial KOR agonists.
Collapse
Affiliation(s)
| | | | | | | | | | - Lee-Yuan Liu-Chen
- the Department of Pharmacology, Temple University, Philadelphia, Pennsylvania 19140, and
| | - Vsevolod V. Gurevich
- the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Mark J. Rieder
- the Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | | |
Collapse
|
31
|
Dang VC, Christie MJ. Mechanisms of rapid opioid receptor desensitization, resensitization and tolerance in brain neurons. Br J Pharmacol 2012; 165:1704-1716. [PMID: 21564086 DOI: 10.1111/j.1476-5381.2011.01482.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Agonists acting on µ-opioid receptors (MOR) are very effective analgesics but cause tolerance during long-term or repeated exposure. Intensive efforts have been made to find novel opioid agonists that are efficacious analgesics but can elude the signalling events that cause tolerance. µ-Opioid agonists differentially couple to downstream signalling mechanisms. Some agonists, such as enkephalins, D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO), methadone and sufentanyl are efficacious at mediating G-protein and effector coupling, as well as triggering MOR regulatory events that include MOR phosphorylation, β-arrestin binding, receptor endocytosis and recycling. By contrast, morphine and closely related alkaloids can mediate efficacious MOR-effector coupling but poorly trigger receptor regulation. Several models have been proposed to relate differential MOR regulation by different opioids with their propensity to cause tolerance. Most are based on dogma that β-arrestin-2 (βarr-2) binding causes MOR desensitization and/or that MOR endocytosis and recycling are required for receptor resensitization. This review will examine some of these notions in light of recent evidence establishing that MOR dephosphorylation and resensitization do not require endocytosis. Recent evidence from opioid-treated animals also suggests that impaired MOR-effector coupling is driven, at least in part, by enhanced desensitization, as well as impaired resensitization that appears to be βarr-2 dependent. Better understanding of how chronic exposure to opioids alters receptor regulatory mechanisms may facilitate the development of effective analgesics that produce limited tolerance.
Collapse
Affiliation(s)
- Vu C Dang
- Department of Psychiatry, University of California, San Francisco, CA, USABrain & Mind Research Institute, University of Sydney, NSW, Australia
| | - MacDonald J Christie
- Department of Psychiatry, University of California, San Francisco, CA, USABrain & Mind Research Institute, University of Sydney, NSW, Australia
| |
Collapse
|
32
|
Atwood BK, Wager-Miller J, Haskins C, Straiker A, Mackie K. Functional selectivity in CB(2) cannabinoid receptor signaling and regulation: implications for the therapeutic potential of CB(2) ligands. Mol Pharmacol 2012; 81:250-63. [PMID: 22064678 PMCID: PMC3263955 DOI: 10.1124/mol.111.074013] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/07/2011] [Indexed: 12/22/2022] Open
Abstract
Receptor internalization increases the flexibility and scope of G protein-coupled receptor (GPCR) signaling. CB(1) and CB(2) cannabinoid receptors undergo internalization after sustained exposure to agonists. However, it is not known whether different agonists internalize CB(2) to different extents. Because CB(2) is a promising therapeutic target, understanding its trafficking in response to different agonists is necessary for a complete understanding of its biology. Here we profile a number of cannabinoid receptor ligands and provide evidence for marked functional selectivity of cannabinoid receptor internalization. Classic, aminoalkylindole, bicyclic, cannabilactone, iminothiazole cannabinoid, and endocannabinoid ligands varied greatly in their effects on CB(1) and CB(2) trafficking. Our most striking finding was that (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo-[1,2,3-d,e]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone (WIN55,212-2) (and other aminoalkylindoles) failed to promote CB(2) receptor internalization, whereas 5-(1,1-dimethylheptyl)-2-(5-hydroxy-2-(3-hydroxypropyl)cyclohexyl)phenol (CP55,940) robustly internalized CB(2) receptors. Furthermore, WIN55,212-2 competitively antagonized CP55,940-induced CB(2) internalization. Despite these differences in internalization, both compounds activated CB(2) receptors as measured by extracellular signal-regulated kinase 1/2 phosphorylation and recruitment of β-arrestin(2) to the membrane. In contrast, whereas CP55,940 inhibited voltage-gated calcium channels via CB(2) receptor activation, WIN55,212-2 was ineffective on its own and antagonized the effects of CP55,940. On the basis of the differences we found between these two ligands, we also tested the effects of other cannabinoids on these signaling pathways and found additional evidence for functional selectivity of CB(2) ligands. These novel data highlight that WIN55,212-2 and other cannabinoids show strong functional selectivity at CB(2) receptors and suggest that different classes of CB(2) ligands may produce diverse physiological effects, emphasizing that each class needs to be separately evaluated for therapeutic efficacy.
Collapse
Affiliation(s)
- Brady K Atwood
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | |
Collapse
|
33
|
Hislop JN, Henry AG, von Zastrow M. Ubiquitination in the first cytoplasmic loop of μ-opioid receptors reveals a hierarchical mechanism of lysosomal down-regulation. J Biol Chem 2011; 286:40193-204. [PMID: 21953467 DOI: 10.1074/jbc.m111.288555] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
μ-Type opioid receptors (MORs) are members of the large seven-transmembrane receptor family which transduce the effects of both endogenous neuropeptides and clinically important opioid drugs. Prolonged activation of MORs promotes their proteolytic degradation by endocytic trafficking to lysosomes. This down-regulation process is known to contribute to homeostatic regulation of cellular opioid responsiveness, but mechanisms that mediate and control MOR down-regulation have not been defined. We show here that lysosomal down-regulation of MORs is ESCRT (endosomal sorting complex required for transport)-dependent and involves ubiquitin-promoted transfer of internalized MORs from the limiting endosome membrane to lumen. We also show that MOR down-regulation measured by conventional radioligand binding assay is determined specifically by ubiquitination in the first cytoplasmic loop. Surprisingly, we were unable to find any role of ubiquitination in determining whether internalized receptors recycle or are delivered to lysosomes. Instead, this decision is dictated specifically by the MOR C-tail and occurs irrespectively of the presence or absence of receptor ubiquitination. Our results support a hierarchical organization of discrete ubiquitin-independent and -dependent sorting operations, which function non-redundantly in the conserved down-regulation pathway to mediate precise endocytic control. Furthermore, they show that this hierarchical mechanism discriminates the endocytic regulation of naturally occurring MOR isoforms. Moreover, they are the first to reveal, we believe, for any seven-transmembrane receptor, a functional role of ubiquitination in the first cytoplasmic loop.
Collapse
Affiliation(s)
- James N Hislop
- Department of Psychiatry, University of California, San Francisco, California 94158, USA
| | | | | |
Collapse
|
34
|
Cellular morphine tolerance produced by βarrestin-2-dependent impairment of μ-opioid receptor resensitization. J Neurosci 2011; 31:7122-30. [PMID: 21562274 DOI: 10.1523/jneurosci.5999-10.2011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic morphine treatment produces behavioral and cellular opioid tolerance that has been proposed to be caused by attenuated μ-opioid receptor (MOR) recovery from desensitization (resensitization). The process of MOR resensitization is thought to require βarrestin-2 (βarr-2)-dependent trafficking of desensitized receptors to endosomal compartments, followed by recycling of resensitized receptors back to the plasma membrane. However, there is little direct evidence for this, particularly in native neurons. This study used whole-cell patch-clamp recording in locus ceruleus (LC) neurons from wild-type (w.t.) and βarr-2 knock-out (k.o.) mice to examine whether βarr-2/dynamin-dependent trafficking is required for MOR resensitization in neurons from opioid-naive and morphine-treated mice. Surprisingly, recovery of MOR from acute desensitization in LC neurons does not require βarr-2- or dynamin-dependent trafficking. To the contrary, MOR resensitization was accelerated by disruption of either βarr-2 or dynamin function. Chronic morphine treatment caused cellular MOR tolerance and concurrently impaired MOR resensitization in neurons from w.t. mice, as expected from previous studies, but neither occurred in neurons from βarr-2 k.o. mice. Moreover, the impairment of MOR resensitization caused by chronic morphine was reversed in w.t. neurons when G-protein-coupled receptor kinase-2 (GRK2) or dynamin function was disrupted. Together, these results establish that βarr-2/dynamin-dependent receptor regulation is not required for MOR resensitization in LC neurons. Furthermore, chronic morphine treatment modifies GRK2-βarr-2-dynamin-dependent MOR trafficking to impair receptor resensitization, thereby contributing to opioid tolerance in LC neurons by reducing the number of functional receptors on the surface membrane.
Collapse
|
35
|
Qiu Y, Wang Y, Law PY, Chen HZ, Loh HH. Cholesterol regulates micro-opioid receptor-induced beta-arrestin 2 translocation to membrane lipid rafts. Mol Pharmacol 2011; 80:210-8. [PMID: 21518774 PMCID: PMC3127540 DOI: 10.1124/mol.110.070870] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 04/25/2011] [Indexed: 01/20/2023] Open
Abstract
μ-Opioid receptor (OPRM1) is mainly localized in lipid raft microdomains but internalizes through clathrin-dependent pathways. Our previous studies demonstrated that disruption of lipid rafts by cholesterol-depletion reagent blocked the agonist-induced internalization of OPRM1 and G protein-dependent signaling. The present study demonstrated that reduction of cholesterol level decreased and culturing cells in excess cholesterol increased the agonist-induced internalization and desensitization of OPRM1, respectively. Further analyses indicated that modulation of cellular cholesterol level did not affect agonist-induced receptor phosphorylation but did affect membrane translocation of β-arrestins. The translocation of β-arrestins was blocked by cholesterol reduction, and the effect could be reversed by incubating with cholesterol. OptiPrep gradient separation of lipid rafts revealed that excess cholesterol retained more receptors in lipid raft domains and facilitated the recruitment of β-arrestins to these microdomains upon agonist activation. Moreover, excess cholesterol could evoke receptor internalization and protein kinase C-independent extracellular signal-regulated kinases activation upon morphine treatment. Therefore, these results suggest that cholesterol not only can influence OPRM1 localization in lipid rafts but also can effectively enhance the recruitment of β-arrestins and thereby affect the agonist-induced trafficking and agonist-dependent signaling of OPRM1.
Collapse
Affiliation(s)
- Yu Qiu
- Department of Pharmacology, University of Minnesota, Minnesota 55455-0217, USA
| | | | | | | | | |
Collapse
|
36
|
Shim J, Coop A, MacKerell AD. Consensus 3D model of μ-opioid receptor ligand efficacy based on a quantitative Conformationally Sampled Pharmacophore. J Phys Chem B 2011; 115:7487-96. [PMID: 21563754 PMCID: PMC3113728 DOI: 10.1021/jp202542g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Despite being studied for over 30 years, a consensus structure-activity relationship (SAR) that encompasses the full range peptidic and nonpeptidic μ-opioid receptor ligands is still not available. To achieve a consensus SAR the Conformationally Sampled Pharmacophore (CSP) method was applied to develop a predictive model of the efficacy of μ-opioid receptor ligands. Emphasis was placed on predicting the efficacy of a wide range of agonists, partial agonists, and antagonists as well as understanding their mode of interaction with the receptor. Inclusion of all accessible conformations of each ligand, a central feature of the CSP method, enabled structural features between diverse μ-opioid receptor ligands that dictate efficacy to be identified. The models were validated against a diverse collection of peptidic and nonpeptidic ligands, including benzomorphans, fentanyl (4-anilinopiperidine), methadone (3,3-diphenylpropylamines), etonitazene (benzimidazole derivatives), funaltrexamine (C6-substituted 4,5-epoxymorphinan), and herkinorin. The model predicts (1) that interactions of ligands with the B site, as with the 19-alkyl substituents of oripavines, modulate the extent of agonism; (2) that agonists with long N-substituents, as with fentanyl and N-phenethylnormorphine, can bind in an orientation such that the N substitutent interacts with the B site that also allows the basic N-receptor Asp interaction essential for agonism; and (3) that the μ agonist herkinorin, that lacks a basic nitrogen, binds to the receptor in a manner similar to the traditional opioids via interactions mediated by water or a ion. Importantly, the proposed CSP model can be reconciled with previously published SAR models for the μ receptor.
Collapse
Affiliation(s)
- Jihyun Shim
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Andrew Coop
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
37
|
Patierno S, Anselmi L, Jaramillo I, Scott D, Garcia R, Sternini C. Morphine induces μ opioid receptor endocytosis in guinea pig enteric neurons following prolonged receptor activation. Gastroenterology 2011; 140:618-26. [PMID: 21070774 PMCID: PMC3033567 DOI: 10.1053/j.gastro.2010.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 10/18/2010] [Accepted: 11/02/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS The μ opioid receptor (μOR) undergoes rapid endocytosis after acute stimulation with opioids and most opiates, but not with morphine. We investigated whether prolonged activation of μOR affects morphine's ability to induce receptor endocytosis in enteric neurons. METHODS We compared the effects of morphine, a poor μOR-internalizing opiate, and (D-Ala2,MePhe4,Gly-ol5) enkephalin (DAMGO), a potent μOR-internalizing agonist, on μOR trafficking in enteric neurons and on the expression of dynamin and β-arrestin immunoreactivity in the ileum of guinea pigs rendered tolerant by chronic administration of morphine. RESULTS Morphine (100 μmol/L) strongly induced endocytosis of μOR in tolerant but not naive neurons (55.7% ± 9.3% vs 24.2% ± 7.3%; P < .001) whereas DAMGO (10 μmol/L) strongly induced internalization of μOR in neurons from tolerant and naive animals (63.6% ± 8.4% and 66.5% ± 3.6%). Morphine- or DAMGO-induced μOR endocytosis resulted from direct interactions between the ligand and the μOR because endocytosis was not affected by tetrodotoxin, a blocker of endogenous neurotransmitter release. Ligand-induced μOR internalization was inhibited by pretreatment with the dynamin inhibitor, dynasore. Chronic morphine administration resulted in a significant increase and translocation of dynamin immunoreactivity from the intracellular pool to the plasma membrane, but did not affect β-arrestin immunoreactivity. CONCLUSIONS Chronic activation of μORs increases the ability of morphine to induce μOR endocytosis in enteric neurons, which depends on the level and cellular localization of dynamin, a regulatory protein that has an important role in receptor-mediated signal transduction in cells.
Collapse
Affiliation(s)
- Simona Patierno
- CURE Digestive Diseases Research Center, Veterans Administration Greater Los Angeles Healthcare System, University of California Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, Digestive Diseases Division, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Laura Anselmi
- CURE Digestive Diseases Research Center, Veterans Administration Greater Los Angeles Healthcare System, University of California Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, Digestive Diseases Division, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Ingrid Jaramillo
- Department of Medicine, Digestive Diseases Division, University of California Los Angeles, Los Angeles, California 90095, USA
| | - David Scott
- CURE Digestive Diseases Research Center, Veterans Administration Greater Los Angeles Healthcare System, University of California Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, Digestive Diseases Division, University of California Los Angeles, Los Angeles, California 90095, USA
- Department of Physiology, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Rachel Garcia
- CURE Digestive Diseases Research Center, Veterans Administration Greater Los Angeles Healthcare System, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Catia Sternini
- CURE Digestive Diseases Research Center, Veterans Administration Greater Los Angeles Healthcare System, University of California Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, Digestive Diseases Division, University of California Los Angeles, Los Angeles, California 90095, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
38
|
Thathiah A, De Strooper B. The role of G protein-coupled receptors in the pathology of Alzheimer's disease. Nat Rev Neurosci 2011; 12:73-87. [DOI: 10.1038/nrn2977] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Jean-Alphonse F, Hanyaloglu AC. Regulation of GPCR signal networks via membrane trafficking. Mol Cell Endocrinol 2011; 331:205-14. [PMID: 20654691 DOI: 10.1016/j.mce.2010.07.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 06/07/2010] [Accepted: 07/13/2010] [Indexed: 01/12/2023]
Abstract
G-protein-coupled receptors (GPCRs) are a superfamily of cell surface signaling proteins that act as central molecular activators and integrators in all endocrine systems. Membrane trafficking of GPCRs is a fundamental process in shaping extensive signaling networks activated by these receptors. Mounting evidence has identified an increasingly complex network of pathways and protein interactions that a GPCR can traverse and associate with, indicating a multi-level system of regulation. This review will discuss the recent developments in how GPCRs are trafficked to the cell surface as newly synthesized receptors, their recruitment to the clathrin-mediated pathway for endocytosis, and their sorting to subsequent divergent post-endocytic fates, focusing primarily on hormone-activated GPCRs. Current models depicting the classic roles membrane trafficking plays in GPCR signaling have evolved to a highly regulated and complex system than previously appreciated. These developments impart key mechanistic information on how spatial and temporal aspects of GPCR signaling may be integrated and could provide pathway-specific targets to be exploited for therapeutic intervention.
Collapse
Affiliation(s)
- F Jean-Alphonse
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
40
|
Abstract
Numerous analgesics are available for use in animals, but only a few have been used or studied in zoologic species. Tramadol is a relatively new analgesic that is available in an inexpensive, oral form, and is not controlled. Studies examining the effect of tramadol in zoologic species suggest that significant differences exist in pharmacokinetics parameters as well as analgesic dynamics. This article reviews the current literature on the use of tramadol in humans, domestic animals, and zoologic species.
Collapse
Affiliation(s)
- Marcy J Souza
- Department of Comparative Medicine, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA.
| | | |
Collapse
|
41
|
Reyes ARS, Levenson R, Berrettini W, Van Bockstaele EJ. Ultrastructural relationship between the mu opioid receptor and its interacting protein, GPR177, in striatal neurons. Brain Res 2010; 1358:71-80. [PMID: 20813097 PMCID: PMC2956578 DOI: 10.1016/j.brainres.2010.08.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/20/2010] [Accepted: 08/24/2010] [Indexed: 11/17/2022]
Abstract
GPR177, the mammalian ortholog of Drosophila Wntless/Evi/Sprinter, was recently identified as a novel mu-opioid receptor (MOR) interacting protein. GPR177 is a trans-membrane protein pivotal to mediating the secretion of Wnt signaling proteins. Wnt proteins, in turn, are essential in regulating neuronal development, a phenomenon inhibited upon chronic exposure to MOR agonists such as morphine and heroin. We previously showed that GPR177 and MOR are co-localized in the mouse dorsolateral striatum; however, the nature of this interaction was not fully elucidated. Therefore, in the present study, we examined cellular substrates for interactions between GPR177 and MOR using a combined immunogold-silver and peroxidase detection approach in coronal sections in the dorsolateral segment of the striatum. Semi-quantitative analysis of the ultrastructural distribution of GPR177 and MOR in striatal somata and in dendritic processes showed that, of the somata and dendritic processes exhibiting GPR177, 32% contained MOR immunolabeling while for profiles exhibiting MOR, 37% also contained GPR177 immunoreactivity. GPR177-labeled particles were localized predominantly along both the plasma membrane and within the cytoplasm of MOR-labeled dendrites. Somata and dendritic processes that contained both GPR177 and MOR more often received symmetric (inhibitory-type) synapses from unlabeled axon terminals. To further define the phenotype of GPR177 and MOR-containing cellular profiles, triple immunofluorescence detection showed that GPR177 and MOR are localized in neurons containing the opioid peptide, enkephalin, within the dorsolateral striatum. The results provide an anatomical substrate for interactions between MOR and its interacting protein, GPR177, in striatal opioid-containing neurons that may underlie the morphological alterations produced in neurons by chronic opiate use.
Collapse
Affiliation(s)
- Arith-Ruth S. Reyes
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Robert Levenson
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033
| | - Wade Berrettini
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Elisabeth J. Van Bockstaele
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
42
|
Macey TA, Ingram SL, Bobeck EN, Hegarty DM, Aicher SA, Arttamangkul S, Morgan MM. Opioid receptor internalization contributes to dermorphin-mediated antinociception. Neuroscience 2010; 168:543-50. [PMID: 20394808 PMCID: PMC3312465 DOI: 10.1016/j.neuroscience.2010.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/31/2010] [Accepted: 04/02/2010] [Indexed: 02/04/2023]
Abstract
Microinjection of opioids into the ventrolateral periaqueductal gray (vlPAG) produces antinociception in part by binding to mu-opioid receptors (MOPrs). Although both high and low efficacy agonists produce antinociception, low efficacy agonists such as morphine produce limited MOPr internalization suggesting that MOPr internalization and signaling leading to antinociception are independent. This hypothesis was tested in awake, behaving rats using DERM-A594, a fluorescently labeled dermorphin analog, and internalization blockers. Microinjection of DERM-A594 into the vlPAG produced both antinociception and internalization of DERM-A594. Administration of the irreversible opioid receptor antagonist beta-chlornaltrexamine (beta-CNA) prior to DERM-A594 microinjection reduced both the antinociceptive effect and the number of DERM-A594 labeled cells demonstrating that both effects are opioid receptor-mediated. Pretreatment with the internalization blockers dynamin dominant-negative inhibitory peptide (dynamin-DN) and concanavalinA (ConA) attenuated both DERM-A594 internalization and antinociception. Microinjection of dynamin-DN and ConA also decreased the antinociceptive potency of the unlabeled opioid agonist dermorphin when microinjected into the vlPAG as demonstrated by rightward shifts in the dose-response curves. In contrast, administration of dynamin-DN had no effect on the antinociceptive effect of microinjecting the GABA(A) receptor antagonist bicuculline into the vlPAG. The finding that dermorphin-induced antinociception is attenuated by blocking receptor internalization indicates that key parts of opioid receptor-mediated signaling depend on internalization.
Collapse
Affiliation(s)
- T A Macey
- Department of Psychology, Washington State University Vancouver, 14204 NE Salmon Creek Avenue, Vancouver, WA 98686, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Wang YH, Sun JF, Tao YM, Xu XJ, Chi ZQ, Liu JG. Paradoxical relationship between RAVE (relative activity versus endocytosis) values of several opioid receptor agonists and their liability to cause dependence. Acta Pharmacol Sin 2010; 31:393-8. [PMID: 20228826 DOI: 10.1038/aps.2010.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM To examine the relationship between the RAVE (relative activity versus endocytosis) values of opiate agonists and their dependence liability by studying several potent analgesics with special profiles in the development of physical and psychological dependence. METHODS The effects of (-)-cis-(3R,4S,2'R) ohmefentanyl (F9202), (+)-cis-(3R,4S,2'S) ohmefentanyl (F9204), dihydroetorphine (DHE) and morphine on [(35)S]GTP gamma S binding, forskolin-stimulated cAMP accumulation, and receptor internalization were studied in CHO cells stably expressing HA-tagged mu-opioid receptors (CHO-HA-MOR). cAMP overshoot in response to the withdrawal of these compound treatments was also tested. RESULTS All four agonists exhibited the same rank order of activity in stimulation of [(35)S]GTP gamma S binding, inhibition of adenylyl cyclase (AC) and induction of receptor internalization: DHE>F9204>F9202>morphine. Based on these findings and the previous in vivo analgesic data obtained from our and other laboratories, the RAVE values of the four agonists were calculated. The rank order of RAVE values was morphine>F9202>F9204>DHE. For the induction of cAMP overshoot, the rank order was F9202>or=morphine>F9204>or=DHE. CONCLUSION Taken in combination with previous findings of these compounds' liability to develop dependence, the present study suggests that the agonist with the highest RAVE value seems to have a relatively greater liability to develop psychological dependence relative to the agonist with the lowest RAVE value. However, the RAVE values of these agonists are not correlated with their probability of developing physical dependence or inducing cAMP overshoot, a cellular hallmark of dependence.
Collapse
|
44
|
Jin J, Kittanakom S, Wong V, Reyes BAS, Van Bockstaele EJ, Stagljar I, Berrettini W, Levenson R. Interaction of the mu-opioid receptor with GPR177 (Wntless) inhibits Wnt secretion: potential implications for opioid dependence. BMC Neurosci 2010; 11:33. [PMID: 20214800 PMCID: PMC2841195 DOI: 10.1186/1471-2202-11-33] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 03/09/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Opioid agonist drugs produce analgesia. However, long-term exposure to opioid agonists may lead to opioid dependence. The analgesic and addictive properties of opioid agonist drugs are mediated primarily via the mu-opioid receptor (MOR). Opioid agonists appear to alter neuronal morphology in key brain regions implicated in the development of opioid dependence. However, the precise role of the MOR in the development of these neuronal alterations remains elusive. We hypothesize that identifying and characterizing novel MOR interacting proteins (MORIPs) may help to elucidate the underlying mechanisms involved in the development of opioid dependence. RESULTS GPR177, the mammalian ortholog of Drosophila Wntless/Evi/Sprinter, was identified as a MORIP in a modified split ubiquitin yeast two-hybrid screen. GPR177 is an evolutionarily conserved protein that plays a critical role in mediating Wnt protein secretion from Wnt producing cells. The MOR/GPR177 interaction was validated in pulldown, coimmunoprecipitation, and colocalization studies using mammalian tissue culture cells. The interaction was also observed in rodent brain, where MOR and GPR177 were coexpressed in close spatial proximity within striatal neurons. At the cellular level, morphine treatment caused a shift in the distribution of GPR177 from cytosol to the cell surface, leading to enhanced MOR/GPR177 complex formation at the cell periphery and the inhibition of Wnt protein secretion. CONCLUSIONS It is known that chronic morphine treatment decreases dendritic arborization and hippocampal neurogenesis, and Wnt proteins are essential for these processes. We therefore propose that the morphine-mediated MOR/GPR177 interaction may result in decreased Wnt secretion in the CNS, resulting in atrophy of dendritic arbors and decreased neurogenesis. Our results demonstrate a previously unrecognized role for GPR177 in regulating cellular response to opioid drugs.
Collapse
Affiliation(s)
- Jay Jin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Saranya Kittanakom
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Department of Biochemistry and Department of Molecular Genetics, University of Toronto, Toronto ON, Canada M5S 3E1 USA
| | - Victoria Wong
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Department of Biochemistry and Department of Molecular Genetics, University of Toronto, Toronto ON, Canada M5S 3E1 USA
| | - Beverly AS Reyes
- Department of Neurosurgery, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Elisabeth J Van Bockstaele
- Department of Neurosurgery, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Igor Stagljar
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Department of Biochemistry and Department of Molecular Genetics, University of Toronto, Toronto ON, Canada M5S 3E1 USA
| | - Wade Berrettini
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
| | - Robert Levenson
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| |
Collapse
|
45
|
Talbot JN, Skifter DA, Bianchi E, Monaghan DT, Toews ML, Murrin LC. Regulation of mu opioid receptor internalization by the scaffold protein RanBPM. Neurosci Lett 2009; 466:154-8. [PMID: 19788913 DOI: 10.1016/j.neulet.2009.09.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 09/24/2009] [Accepted: 09/24/2009] [Indexed: 10/20/2022]
Abstract
Mu opioid receptors (MOP) are transducers of the pharmacological effects of many opioid drugs, including analgesia and tolerance/dependence. Previously, we observed increased MOP signaling during postnatal development that was not associated with increased MOP or G protein expression. A yeast two-hybrid screen of a human brain cDNA library using the MOP C-terminus as bait identified RanBPM as a potential MOP-interacting protein. RanBPM has been recognized as a multi-functional scaffold protein that interacts with a variety of signaling receptors/proteins. Co-immunoprecipitation studies in HEK293 cells indicated that RanBPM constitutively associates with MOP. Functionally, RanBPM had no effect on MOP-mediated inhibition of adenylyl cyclase, yet reduced agonist-induced endocytosis of MOP. Mechanistically, RanBPM interfered with beta arrestin2-GFP translocation stimulated by MOP but not alpha(1B)-adrenergic receptor activation, indicating selectivity of action. Our findings suggest that RanBPM is a novel MOP-interacting protein that negatively regulates receptor internalization without altering MOP signaling through adenylyl cyclase.
Collapse
Affiliation(s)
- Jeffery N Talbot
- Department of Pharmacology and Experimental Neuroscience, 985800 Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | | | | | | | | | | |
Collapse
|
46
|
Xiao H, Zhai DX, Yan BB, Wang JH, Xu WS, Wang GY, Bai SS, Kong QF, Sun B, Wang DD, Jin DJ, Li HL. A role for the parafascicular thalamic nucleus in the development of morphine dependence and withdrawal. Brain Res 2009; 1271:74-82. [PMID: 19332040 DOI: 10.1016/j.brainres.2009.02.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 01/20/2009] [Accepted: 02/27/2009] [Indexed: 11/26/2022]
Abstract
The parafascicular thalamic nucleus (nPf) is a critical relay in the ascending system that mediates motor control in the central nervous system (CNS). Yet, little is known about whether or not the nPf is involved in the development of morphine dependence and withdrawal. In the present study, kainic acid was used to chemically destroy the nPf in Wistar rats, and morphine dependence and withdrawal models were established. Morphine withdrawal symptoms score was evaluated in each group. An electrophysiological method was used to measure the changes in spontaneous discharge of nPf neurons. mu-Opioid receptor (MOR) mRNA level in nPf was detected using semi-quantitative RT-PCR. The ultrastructural alterations were examined by transmission electron microscopy. Results showed that the bilateral lesion of nPf had a marked influence on the development of morphine dependence and withdrawal. In order to address the mechanisms underlying, we found: (1) the average frequency and sum of nPf neurons that exhibited spontaneous discharge were increased in the morphine withdrawal group in comparison with the sham model group (P<0.05); (2) MOR mRNA level in the nPf of the morphine dependence group was decreased in comparison with that of the sham model group (1.45+/-0.38 vs. 5.37+/-0.94, P<0.01). In the morphine withdrawal group, which underwent 40 h withdrawal, the MOR mRNA level was higher than that in the morphine dependence group (2.97+/-0.73 vs. 1.45+/-0.38, P<0.05) but still lower than that in the sham model group (P<0.05); (3) the ultrastructural injuries of nPf neurons, which were in the nucleus, organelles and neuropil, were marked in the morphine dependent and withdrawal groups. Our study indicated that nPf played an important role in the development of morphine dependence and withdrawal. The results suggest that nPf may become a therapeutic target for treating morphine withdrawal syndrome.
Collapse
Affiliation(s)
- Hui Xiao
- Department of Otorhinolaryngology, the Second Affiliated Clinic College of Harbin Medical University, 150081, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang Y, Xiong W, Lin X, Ma X, Yu LC. Receptor trafficking induced by mu-opioid-receptor phosphorylation. Neurosci Biobehav Rev 2009; 33:1192-7. [PMID: 19747597 DOI: 10.1016/j.neubiorev.2009.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 03/10/2009] [Accepted: 03/11/2009] [Indexed: 10/21/2022]
Abstract
Opiates, including morphine, are widely used drugs for antinociception in clinics. Prolonged treatments of opioids induce both tolerance and dependence, which are the major side effects of opioid therapy. One of the mechanisms for the development of tolerance and dependence is implicated to be opioid-receptor trafficking. Here we review the current understandings of opioid-receptor phosphorylation, endocytosis and desensitization after repeated agonist treatments. Also, the role of G-protein coupled receptor kinases in opioid-receptor phosphorylation is discussed. How to associate these observations to physiological and behavioral changes in animal models and clinics is still under investigation.
Collapse
Affiliation(s)
- Yan Zhang
- Laboratory of Neurobiology, College of Life Sciences, Peking University, Beijing 100871, China.
| | | | | | | | | |
Collapse
|
48
|
Scavone JL, Van Bockstaele EJ. Mu-opioid receptor redistribution in the locus coeruleus upon precipitation of withdrawal in opiate-dependent rats. Anat Rec (Hoboken) 2009; 292:401-11. [PMID: 19248160 PMCID: PMC2863286 DOI: 10.1002/ar.20860] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Administration of mu-opioid receptor (MOR) agonists is known to produce adaptive changes within noradrenergic neurons of the rat locus coeruleus (LC). Alterations in the subcellular distribution of MOR have been shown to occur in the LC in response to full agonists and endogenous peptides; however, there is considerable debate in the literature whether trafficking of MOR occurs after chronic exposure to the partial-agonist morphine. In the present study, we examined adaptations in MOR after chronic opioid exposure using immunofluorescence and electron microscopy (EM), using receptor internalization as a functional endpoint. MOR trafficking in LC neurons was characterized in morphine-dependent rats that were given naltrexone at a dose known to precipitate withdrawal. After chronic morphine exposure, a subtle redistribution of MOR immunoreactivity from the membrane to the cytosol was detected within dendrites of LC neurons. Interestingly, an acute injection of naltrexone in rats exposed to chronic morphine produced a robust internalization of MOR, whereas administration of naltrexone failed to do so in naïve animals. These findings provide anatomical evidence for modified regulation of MOR trafficking after chronic morphine treatment in brain noradrenergic neurons. Adaptations in the MOR signaling pathways that regulate internalization may occur as a consequence of chronic treatment and precipitation of withdrawal. Mechanisms underlying this effect might include differential MOR regulation in the LC, or downstream effects of withdrawal-induced enkephalin (ENK) release from afferents to the LC.
Collapse
Affiliation(s)
- Jillian L Scavone
- Department of Neurosurgery, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylania, USA
| | | |
Collapse
|
49
|
Hernández L, Romero A, Almela P, García-Nogales P, Laorden ML, Puig MM. Tolerance to the antinociceptive effects of peripherally administered opioids. Brain Res 2009; 1248:31-9. [DOI: 10.1016/j.brainres.2008.10.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 10/22/2008] [Accepted: 10/24/2008] [Indexed: 10/21/2022]
|
50
|
Yan Zhang, Qiuyue Chen, Yu LC. Morphine: A Protective or Destructive Role in Neurons? Neuroscientist 2008; 14:561-570. [DOI: 10.1177/1073858408314434] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Morphine has received intensive research interest for a long time. However, until recently, the protective versus destructive roles of morphine in the neuronal system have not been studied. There is evidence suggesting that morphine induces apoptotic cell death in neuronal and glial cells, whereas controversial studies support a neuroprotective role for morphine. The exact mechanisms for both protective and destructive pathways are not clear and are still under investigation. Improved understanding of morphine neuroprotection and neurotoxicity will be helpful to control morphine side effects in medical applications and to identify new targets for potential therapies and prevention strategies to opioid addiction. NEUROSCIENTIST 14(6):561-570, 2008. DOI:
Collapse
Affiliation(s)
- Yan Zhang
- Laboratory of Neurobiology and State Key Laboratory of Biomembrane and Membrane Biotechnology College of Life Sciences, Peking University, Beijing, China,
| | - Qiuyue Chen
- Laboratory of Neurobiology and State Key Laboratory of Biomembrane and Membrane Biotechnology College of Life Sciences, Peking University, Beijing, China
| | - Long-Chuan Yu
- Laboratory of Neurobiology and State Key Laboratory of Biomembrane and Membrane Biotechnology College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|