1
|
Chang KH, Chen CM. The Role of NRF2 in Trinucleotide Repeat Expansion Disorders. Antioxidants (Basel) 2024; 13:649. [PMID: 38929088 PMCID: PMC11200942 DOI: 10.3390/antiox13060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Trinucleotide repeat expansion disorders, a diverse group of neurodegenerative diseases, are caused by abnormal expansions within specific genes. These expansions trigger a cascade of cellular damage, including protein aggregation and abnormal RNA binding. A key contributor to this damage is oxidative stress, an imbalance of reactive oxygen species that harms cellular components. This review explores the interplay between oxidative stress and the NRF2 pathway in these disorders. NRF2 acts as the master regulator of the cellular antioxidant response, orchestrating the expression of enzymes that combat oxidative stress. Trinucleotide repeat expansion disorders often exhibit impaired NRF2 signaling, resulting in inadequate responses to excessive ROS production. NRF2 activation has been shown to upregulate antioxidative gene expression, effectively alleviating oxidative stress damage. NRF2 activators, such as omaveloxolone, vatiquinone, curcumin, sulforaphane, dimethyl fumarate, and resveratrol, demonstrate neuroprotective effects by reducing oxidative stress in experimental cell and animal models of these diseases. However, translating these findings into successful clinical applications requires further research. In this article, we review the literature supporting the role of NRF2 in the pathogenesis of these diseases and the potential therapeutics of NRF2 activators.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
2
|
La Rosa P, Petrillo S, Bertini ES, Piemonte F. Oxidative Stress in DNA Repeat Expansion Disorders: A Focus on NRF2 Signaling Involvement. Biomolecules 2020; 10:biom10050702. [PMID: 32369911 PMCID: PMC7277112 DOI: 10.3390/biom10050702] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
DNA repeat expansion disorders are a group of neuromuscular and neurodegenerative diseases that arise from the inheritance of long tracts of nucleotide repetitions, located in the regulatory region, introns, or inside the coding sequence of a gene. Although loss of protein expression and/or the gain of function of its transcribed mRNA or translated product represent the major pathogenic effect of these pathologies, mitochondrial dysfunction and imbalance in redox homeostasis are reported as common features in these disorders, deeply affecting their severity and progression. In this review, we examine the role that the redox imbalance plays in the pathological mechanisms of DNA expansion disorders and the recent advances on antioxidant treatments, particularly focusing on the expression and the activity of the transcription factor NRF2, the main cellular regulator of the antioxidant response.
Collapse
|
3
|
Oxidative Stress: Mechanistic Insights into Inherited Mitochondrial Disorders and Parkinson's Disease. J Clin Med 2017; 6:jcm6110100. [PMID: 29077060 PMCID: PMC5704117 DOI: 10.3390/jcm6110100] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress arises when cellular antioxidant defences become overwhelmed by a surplus generation of reactive oxygen species (ROS). Once this occurs, many cellular biomolecules such as DNA, lipids, and proteins become susceptible to free radical-induced oxidative damage, and this may consequently lead to cellular and ultimately tissue and organ dysfunction. Mitochondria, as well as being a source of ROS, are vulnerable to oxidative stress-induced damage with a number of key biomolecules being the target of oxidative damage by free radicals, including membrane phospholipids, respiratory chain complexes, proteins, and mitochondrial DNA (mt DNA). As a result, a deficit in cellular energy status may occur along with increased electron leakage and partial reduction of oxygen. This in turn may lead to a further increase in ROS production. Oxidative damage to certain mitochondrial biomolecules has been associated with, and implicated in the pathophysiology of a number of diseases. It is the purpose of this review to discuss the impact of such oxidative stress and subsequent damage by reviewing our current knowledge of the pathophysiology of several inherited mitochondrial disorders together with our understanding of perturbations observed in the more commonly acquired neurodegenerative disorders such as Parkinson’s disease (PD). Furthermore, the potential use and feasibility of antioxidant therapies as an adjunct to lower the accumulation of damaging oxidative species and hence slow disease progression will also be discussed.
Collapse
|
4
|
Boz PB, Koç F, Kocatürk Sel S, Güzel Aİ, Kasap H. Determination of Genotypic and Phenotypic Characteristics of Friedreich's Ataxia and Autosomal Dominant Spinocerebellar Ataxia Types 1, 2, 3, and 6. Noro Psikiyatr Ars 2016; 53:115-119. [PMID: 28360782 DOI: 10.5152/npa.2015.9925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 04/01/2015] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION This study aimed to analyze the genotypic characteristics of Friedreich's ataxia (FA) and autosomal dominant ataxias [such as spinocerebellar ataxia (SCA) types 1, 2, 3, and 6] using molecular and biological methods in hereditary cerebellar ataxia considering both clinical and electrophysiological findings. METHODS The study included 129 indexed cases, who applied to the neurology department and were diagnosed with hereditary cerebellar ataxia through clinical, laboratory, and electrophysiological findings, and 15 sibling patients who were diagnosed through family scanning (144 cases in total); their genetic analyses were also performed. Detailed physical and neurological examinations, pedigree analyses, electroneurography, evoked potentials, cerebral-spinal magnetic resonance imaging, and echocardiographic analyses were performed for all cases. Blood samples were collected from patients, and the genotypic characteristics of autosomal dominant SCA types 1, 2, 3, and 6 were investigated. Statistical analyses were performed with the Statistical Package for the Social Sciences (SPSS Inc; Chicago, IL, USA) 17.0. RESULTS Almost 50% of patients were defined as FA. Moreover, two SCA1 cases and one SCA6 case were detected. CONCLUSION In our study, 47.2% of patients with FA had developed hereditary cerebellar ataxia. Ground and autosomal dominant-linked SCA1 and SCA6 were each detected in one family. These data suggest that patients with cerebellar ataxia of hereditary origin should be primarily examined for FA.
Collapse
Affiliation(s)
- Pınar Bengi Boz
- Clinic of Neurology, Adana Numune Training and Research Hospital, Adana, Turkey
| | - Filiz Koç
- Department of Neurology, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Sabriye Kocatürk Sel
- Department of Medical Biology, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Ali İrfan Güzel
- Department of Medical Biology, Recep Tayyip Erdoğan University Faculty of Medicine, Rize, Turkey
| | - Halil Kasap
- Department of Medical Biology, Çukurova University Faculty of Medicine, Adana, Turkey
| |
Collapse
|
5
|
Hayashi G, Cortopassi G. Oxidative stress in inherited mitochondrial diseases. Free Radic Biol Med 2015; 88:10-7. [PMID: 26073122 PMCID: PMC4593728 DOI: 10.1016/j.freeradbiomed.2015.05.039] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/10/2015] [Accepted: 05/26/2015] [Indexed: 12/22/2022]
Abstract
Mitochondria are a source of reactive oxygen species (ROS). Mitochondrial diseases are the result of inherited defects in mitochondrially expressed genes. One potential pathomechanism for mitochondrial disease is oxidative stress. Oxidative stress can occur as the result of increased ROS production or decreased ROS protection. The role of oxidative stress in the five most common inherited mitochondrial diseases, Friedreich ataxia, LHON, MELAS, MERRF, and Leigh syndrome (LS), is discussed. Published reports of oxidative stress involvement in the pathomechanisms of these five mitochondrial diseases are reviewed. The strongest evidence for an oxidative stress pathomechanism among the five diseases was for Friedreich ataxia. In addition, a meta-analysis was carried out to provide an unbiased evaluation of the role of oxidative stress in the five diseases, by searching for "oxidative stress" citation count frequency for each disease. Of the five most common mitochondrial diseases, the strongest support for oxidative stress is for Friedreich ataxia (6.42%), followed by LHON (2.45%), MELAS (2.18%), MERRF (1.71%), and LS (1.03%). The increased frequency of oxidative stress citations was significant relative to the mean of the total pool of five diseases (p<0.01) and the mean of the four non-Friedreich diseases (p<0.0001). Thus there is support for oxidative stress in all five most common mitochondrial diseases, but the strongest, significant support is for Friedreich ataxia.
Collapse
Affiliation(s)
- Genki Hayashi
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA
| | - Gino Cortopassi
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
6
|
Friedreich's Ataxia: A Neuronal Point of View on the Oxidative Stress Hypothesis. Antioxidants (Basel) 2014; 3:592-603. [PMID: 26785073 PMCID: PMC4665420 DOI: 10.3390/antiox3030592] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/06/2014] [Accepted: 05/16/2014] [Indexed: 12/02/2022] Open
Abstract
A prominent feature of Friedreich’s ataxia (FRDA) is the neurodegeneration of the central and peripheral nervous systems, but little information is available about the mechanisms leading to neuronal damage in this pathology. Currently, no treatments delay, prevent, or reverse the inexorable decline that occurs in this condition. Evidence of oxidative damage has been demonstrated in Friedreich’s ataxia, and this damage has been proposed as the origin of the disease. Nevertheless, the role of oxidative stress in FRDA remains debatable. The lack of direct evidence of reactive oxygen species overproduction in FRDA cells and tissues and the failure of exogenous antioxidants to rescue FRDA phenotypes questions the role of oxidative stress in this pathology. For example, the antioxidant “idebenone” ameliorates cardiomyopathy in FRDA patients, but this therapy does not improve neurodegeneration. To date, no known pharmacological treatment with antioxidant properties cures or delays FRDA neuropathology. This review reports and discusses the evidence of oxidative stress in FRDA and focuses on the existing knowledge of the apparent ineffectiveness of antioxidants for the treatment of neuronal damage.
Collapse
|
7
|
Anheim M. [Autosomal recessive cerebellar ataxias]. Rev Neurol (Paris) 2010; 167:372-84. [PMID: 21087783 DOI: 10.1016/j.neurol.2010.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/13/2010] [Accepted: 07/20/2010] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Autosomal recessive cerebellar ataxias (ARCA) are heterogeneous and complex inherited neurodegenerative diseases that may affect the cerebellum and/or the spinocerebellar tract, the posterior column of the spinal cord and the peripheral nerves. Cerebellar ataxia is frequently proeminent and mostly associated with several neurological or extra-neurological signs, leading to a major disability before the age of 30. STATE OF ART Friedreich's ataxia (FRDA) is clearly the most frequent ARCA and several rarer entities have been described during the past fifteen years such as ataxia with oculomotor apraxia type 1 (AOA1) and type 2 (AOA2), ataxia with vitamin E deficiency (AVED) and autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). The ACAR are characterized by both allelic and non-allelic genetic heterogeneity. They may be divided into three groups: spino-cerebellar ataxia with pure sensory neuropathy; cerebellar ataxia with sensori-motor axonal neuropathy; pure cerebellar ataxia (i.e. ataxia of purely cerebellar origin that may be associated with other symptoms). Common physiological pathways are involved in several ARCA, such as DNA repair deficiency (AOA1, ataxia telangiectasia [AT]…), RNA termination disorder (AOA2), mitochondrial defect (FRDA, sensory ataxic neuropathy with dysarthria and ophthalmoplegia [Sando]…), lipoprotein assembly defects (AVED, abetalipoproteinemia [ABL]), chaperon protein disorders (ARSACS, Marinesco-Sjögren syndrome [MSS]) or peroxysomal diseases (Refsum disease [RD]). PERSPECTIVES New nanotechnology methods and high throughput gene analysis as well as bioinformatics should lead to the identification of several new ARCAs in the next few years despite the rarity of these entities. However, the challenge of the next decades will be the discovery of efficient treatments for these disabling neurodegenerative disorders. CONCLUSION Clinicians should be aware of the more frequent ARCAs, especially FRDA, in addition to ARCAs for which treatment is available (FRDA, AVED, ABL and RD for instance).
Collapse
Affiliation(s)
- M Anheim
- Service de neurogénétique, hôpital de la Pitié-Salpêtrière, 75651 Paris, France.
| |
Collapse
|
8
|
Di Donato I, Bianchi S, Federico A. Ataxia with vitamin E deficiency: update of molecular diagnosis. Neurol Sci 2010; 31:511-5. [PMID: 20464573 DOI: 10.1007/s10072-010-0261-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 03/31/2010] [Indexed: 01/13/2023]
Abstract
Ataxia with vitamin E deficiency (AVED) is a rare autosomal recessive neurodegenerative disease, due to mutations in TTPA gene (Arita et al. in Biochem J 306(Pt. 2):437-443, 1995; Hentati et al. in Ann Neurol 39:295-300, 1996), which encodes for alpha-TTP, a cytosolic liver protein that is presumed to function in the intracellular transport of alpha-tocopherol. This disease is characterized clinically by symptoms with often striking resemblance to those of Friedreich ataxia. The neurological symptoms include ataxia, dysarthria, hyporeflexia, and decreased vibration sense, sometimes associated with cardiomyopathy and retinitis pigmentosa (Mariotti et al. in Neurol Sci 25:130-137, 2004). Vitamin E supplementation improves symptoms and prevents disease progress (Doria-Lamba et al. in Eur J Pediatr 165(7):494-495, 2006). Over 20 mutations have been identified in patients with AVED. In the present paper we summarize the recent findings on molecular genetic of this disease including the list of the known mutations.
Collapse
Affiliation(s)
- I Di Donato
- Dipartimento di Scienze Neurologiche, Neurochirurgiche e del Comportamento, Università degli Studi di Siena, Viale Bracci, 53100, Siena, Italy
| | | | | |
Collapse
|
9
|
Abstract
Vitamin E in nature is comprised of a family of tocopherols and tocotrienols. The most studied of these is alpha-tocopherol (alpha-TOH), because this form is retained within the body, and vitamin E deficiency is corrected with this supplement. alpha-TOH is a lipid-soluble antioxidant required for the preservation of cell membranes, and it potentially acts as a defense against oxidative stress. Many studies have investigated the metabolism, transport, and efficacy alpha-TOH in the prevention of sequelae associated with cardiovascular disease (CVD). Supplementation with vitamin E is considered to provide health benefits against CVD through its antioxidant activity, the prevention of lipoprotein oxidation, and the inhibition of platelet aggregation. However, the results from large prospective, randomized, placebo-controlled clinical trials with alpha-TOH have been largely negative. A recent meta-analysis suggests that alpha-TOH supplements may actually increase all-cause mortality; however, the mechanism for this increased risk is unknown. In vitro studies performed in human cell cultures and animal models suggest that vitamin E might increase the hepatic production of cytochrome P450s and MDR1. Induction of CYP3A4 or MDR1 by vitamin E could potentially lower the efficacy of any drug metabolized by CYP3A4 or MDR1. Other possibilities include an adverse effect of alpha-TOH on blood pressure in high-risk populations. Because of the wide popularity and use of vitamin E supplements, further research into potential adverse effects is clearly warranted.
Collapse
Affiliation(s)
- Michael W Clarke
- School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia
| | | | | |
Collapse
|
10
|
Ricciarelli R, Argellati F, Pronzato MA, Domenicotti C. Vitamin E and neurodegenerative diseases. Mol Aspects Med 2007; 28:591-606. [PMID: 17306357 DOI: 10.1016/j.mam.2007.01.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 01/03/2007] [Accepted: 01/03/2007] [Indexed: 01/23/2023]
Abstract
Vitamin E is essential for neurological function. This fact, together with a growing body of evidence indicating that neurodegenerative processes are associated with oxidative stress, lead to the convincing idea that several neurological disorders may be prevented and/or cured by the antioxidant properties of vitamin E. In this review, some aspects related to the role of vitamin E against Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and ataxia with vitamin E deficiency will be presented.
Collapse
Affiliation(s)
- Roberta Ricciarelli
- Department of Experimental Medicine, via L.B. Alberti 2, 16132 Genoa, Italy.
| | | | | | | |
Collapse
|
11
|
Vazzola V, Losa A, Soave C, Murgia I. Knockout of frataxin gene causes embryo lethality in Arabidopsis. FEBS Lett 2007; 581:667-72. [PMID: 17258206 DOI: 10.1016/j.febslet.2007.01.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 12/19/2006] [Accepted: 01/11/2007] [Indexed: 11/17/2022]
Abstract
Frataxin is present in mitochondria of all eukaryotes as well as in the cytoplasm of bacteria. In humans, reduced expression of frataxin is associated with Friedreich's ataxia, a recessive inherited neurodegenerative and cardiac disorder leading to reduced life expectancy. Experimental evidences suggest that frataxin acts as an iron-chaperone protein, donating iron to the proteins involved in [Fe-S] cluster assembly and heme synthesis. It also possibly contributes to the process of iron detoxification and storage. The frataxin homolog from Arabidopsis thaliana (AtFH) is a single nuclear-encoded gene targeted to mitochondria and sharing 65% similarity with animal frataxin. In the present work, we show that the knocking out of AtFH gene causes arrest of Arabidopsis embryo development at the globular stage. Consistently with that, we also show by in situ hybridization that AtFH is expressed, in wt Arabidopsis plants, in ovule primordia as well as in embryos at various stages of development, suggesting a key role of plant frataxin during embryogenesis.
Collapse
Affiliation(s)
- Valentina Vazzola
- Sezione di Fisiologia e Biochimica delle Piante, Dipartimento di Biologia, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | | | | | | |
Collapse
|
12
|
Yilmaz MB, Koç AF, Kasap H, Güzel AI, Sarica Y, Süleymanova D. GAA repeat polymorphism in Turkish Friedreich's ataxia patients. Int J Neurosci 2006; 116:565-74. [PMID: 16644517 DOI: 10.1080/00207450600592099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Friedreich's ataxia (FRDA), the most common subtype of early onset hereditary spinocerebellar ataxia (SCA), is an autosomal recessive neurodegenerative disorder caused by unstable GAA tri-nucleotide expansions in the first intron of FRDA gene located at 9q13-q21.1 position. Results of GAA repeat polymorphism in 80 Turkish SCA patients and 38 family members of 11 typical FRDA patients were reported. GAA triplet repeat size ranged from approximately 7 to 34 in normal alleles and from approximately 66 to 1300 in mutant alleles. Twenty six patients were homozygous for GAA expansion and size of expanded alleles differed from approximately 425 to 1300 repeats. Children 2 and 6 years old (showing no ataxia symptoms) of one family had homozygous GAA expansions reaching approximately 925 repeats. All 11 families studied had at least 1 afflicted child and 9 parents and 2 siblings were carrier (heterozygous) with mutant alleles ranging from 66 to 850 repeats. Family studies confirmed the meiotic instability and stronger effect of expansion in the smaller alleles on phenotype and a negative correlation between GAA repeat expansion size and onset-age of the disease.
Collapse
Affiliation(s)
- M Bertan Yilmaz
- Department of Medical Biology and Genetics Medical School Cukurova University, Adana, Turkey
| | | | | | | | | | | |
Collapse
|
13
|
Marzouki N, Benomar A, Yahyaoui M, Birouk N, Elouazzani M, Chkili T, Benlemlih M. Vitamin E deficiency ataxia with (744 del A) mutation on alpha-TTP gene: genetic and clinical peculiarities in Moroccan patients. Eur J Med Genet 2005; 48:21-8. [PMID: 15953402 DOI: 10.1016/j.ejmg.2005.01.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 10/14/2004] [Indexed: 02/07/2023]
Abstract
Ataxia with vitamin E deficiency (AVED) is an autosomal recessive disease characterized clinically by neurological symptoms with often striking resemblance to those of Friedreich's ataxia (FA). Molecular analysis is needed for an early differential diagnosis, in order to initiate therapeutic vitamin E supplementation before damage develops. We studied 16 patients from seven Moroccan families presenting an autosomal recessive Friedreich-like ataxia with vitamin E deficiency. Our patients were homozygous for 744 del A mutation of alpha-TTP gene. Compilation of clinical records revealed a great phenotypic variability and some features indicating a new possible role of vitamin E in hypothalamo-hypophysial system regulation and cardiomyopathy prevention. Early vitamin E supplementation may provide considerable improvement of neurological signs and other associated abnormalities. Clinical heterogeneity is for involvement of other non-genetic defect and indicated another role of vitamin E, which should be better studied.
Collapse
Affiliation(s)
- Naima Marzouki
- Molecular Genetics Laboratory, Faculty of Sciences, The Department of Neurology, University of Fez Sidi Med Benabdellah, Hospital of Rabat, Morocco.
| | | | | | | | | | | | | |
Collapse
|
14
|
Adinolfi S, Rizzo F, Masino L, Nair M, Martin SR, Pastore A, Temussi PA. Bacterial IscU is a well folded and functional single domain protein. ACTA ACUST UNITED AC 2004; 271:2093-100. [PMID: 15153099 DOI: 10.1111/j.1432-1033.2004.04112.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron-sulfur clusters are widely represented in most organisms, but the mechanism of their formation is not fully understood. Of the two main proteins involved in cluster formation, NifS/IscS and NifU/IscU, only the former has been well studied from a structural point of view. Here we report an extensive structural characterization of Escherichia coli IscU. We show by a variety of physico-chemical techniques that E. coli IscU construct can be expressed to high purity as a monomeric protein, characterized by an alphabeta fold with high alpha-helix content. The high melting temperature and the reversibility of the thermal unfolding curve (as measured by CD spectroscopy) hint at a well ordered stable fold. The excellent dispersion of cross peaks in the (1)H-(15)N correlation spectrum is consistent with these observations. Monomeric E. coli IscU is able to provide a scaffold for Iron-sulfur cluster assembly, but has no direct interaction with either Fe(II) or Fe(III) ions, suggesting the need of further partners to achieve a stable interaction.
Collapse
Affiliation(s)
- Salvatore Adinolfi
- National Institute of Medical Research, The Ridgeway, London NW7 1AA, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Seznec H, Wilson RB, Puccio H. 2003 International Friedreich's Ataxia Research Conference, 14-16 February 2003, Bethesda, MD, USA. Neuromuscul Disord 2004; 14:70-82. [PMID: 14659415 DOI: 10.1016/j.nmd.2003.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Hervé Seznec
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/Université Louis Pasteur, 1 rue Laurent Fries BP 10142, Illkirch cedex 67404, CU de Strasbourg, France
| | | | | |
Collapse
|
16
|
Richardson DR. Friedreich's ataxia: iron chelators that target the mitochondrion as a therapeutic strategy? Expert Opin Investig Drugs 2003; 12:235-45. [PMID: 12556217 DOI: 10.1517/13543784.12.2.235] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Friedreich's ataxia (FA) is a severe inherited spinocerebellar ataxia that primarily affects the nervous system and heart leading to early confinement in a wheelchair and death. The gene defective in FA, FRDA, encodes a mitochondrial protein known as frataxin. A triplet repeat expansion within intron 1 of the FRDA gene results in a marked decrease in frataxin expression. Over the last 5 years it has become clear that this results in mitochondrial iron accumulation that generates oxidative stress and results in damage to critical biological molecules. Drugs that reduce oxidative stress have a limited effect on the progression and pathology of the disease, probably because these agents cannot remove the iron accumulation. In this review, the potential of iron chelators, namely the 2-pyridylcarboxaldehyde isonicotinoyl hydrazone (PCIH) analogues, as agents to remove mitochondrial iron deposits is discussed. These ligands have been specifically designed to enter and target mitochondrial iron pools, which is a property lacking in desferrioxamine, the only chelator in widespread clinical use. This latter drug may not have any beneficial effect in FA patients, probably because of its hydrophilicity that prevents mitochondrial access. Indeed, standard chelation regimens will probably not work in FA, as these patients do not exhibit gross iron-loading. Considering that there is no effective treatment for FA, it is essential that the therapeutic potential of iron chelators that target mitochondrial iron pools is assessed experimentally.
Collapse
Affiliation(s)
- D R Richardson
- Children's Cancer Institute Australia for Medical Research, Iron Metabolism and Chelation Program, High St (PO Box 81), Randwick, Sydney, New South Wales, 2031, Australia.
| |
Collapse
|
17
|
Becker EM, Greer JM, Ponka P, Richardson DR. Erythroid differentiation and protoporphyrin IX down-regulate frataxin expression in Friend cells: characterization of frataxin expression compared to molecules involved in iron metabolism and hemoglobinization. Blood 2002; 99:3813-22. [PMID: 11986241 DOI: 10.1182/blood.v99.10.3813] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Friedreich ataxia (FA) is caused by decreased frataxin expression that results in mitochondrial iron (Fe) overload. However, the role of frataxin in mammalian Fe metabolism remains unclear. In this investigation we examined the function of frataxin in Fe metabolism by implementing a well-characterized model of erythroid differentiation, namely, Friend cells induced using dimethyl sulfoxide (DMSO). We have characterized the changes in frataxin expression compared to molecules that play key roles in Fe metabolism (the transferrin receptor [TfR] and the Fe transporter Nramp2) and hemoglobinization (beta-globin). DMSO induction of hemoglobinization results in a marked decrease in frataxin gene (Frda) expression and protein levels. To a lesser extent, Nramp2 messenger RNA (mRNA) levels were also decreased on erythroid differentiation, whereas TfR and beta-globin mRNA levels increased. Intracellular Fe depletion using desferrioxamine or pyridoxal isonicotinoyl hydrazone, which chelate cytoplasmic or cytoplasmic and mitochondrial Fe pools, respectively, have no effect on frataxin expression. Furthermore, cytoplasmic or mitochondrial Fe loading of induced Friend cells with ferric ammonium citrate, or the heme synthesis inhibitor, succinylacetone, respectively, also had no effect on frataxin expression. Although frataxin has been suggested by others to be a mitochondrial ferritin, the lack of effect of intracellular Fe levels on frataxin expression is not consistent with an Fe storage role. Significantly, protoporphyrin IX down-regulates frataxin protein levels, suggesting a regulatory role of frataxin in Fe or heme metabolism. Because decreased frataxin expression leads to mitochondrial Fe loading in FA, our data suggest that reduced frataxin expression during erythroid differentiation results in mitochondrial Fe sequestration for heme biosynthesis.
Collapse
Affiliation(s)
- Erika M Becker
- Heart Research Institute, Iron Metabolism and Chelation Group, Camperdown, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
18
|
Bowater RP, Wells RD. The intrinsically unstable life of DNA triplet repeats associated with human hereditary disorders. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 66:159-202. [PMID: 11051764 DOI: 10.1016/s0079-6603(00)66029-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Expansions of specific DNA triplet repeats are the cause of an increasing number of hereditary neurological disorders in humans. In some diseases, such as Huntington's and several spinocerebellar ataxias, the repetitive DNA sequences are translated into long tracts of the same amino acid (usually glutamine), which alters interactions with cellular constituents and leads to the development of disease. For other disorders, including common genetic disorders such as myotonic dystrophy and fragile X syndrome, the DNA repeat is located in noncoding regions of transcribed sequences and disease is probably caused by altered gene expression. In studies in lower organisms, mammalian cells, and transgenic mice, high frequencies of length changes (increases and decreases) occur in long DNA triplet repeats. These observations are similar to other types of repetitive DNA sequences, which also undergo frequent length changes at genomic loci. A variety of processes acting on DNA influence the genetic stability of DNA triplet repeats, including replication, recombination, repair, and transcription. It is not yet known how these different multienzyme systems interact to produce the genetic mutation of expanded repeats. In vitro studies have identified that DNA triplet repeats can adopt several unusual DNA structures, including hairpins, triplexes, quadruplexes, slipped structures, and highly flexible and writhed helices. The formation of stable unusual structures within the cell is likely to disturb DNA metabolism and be a critical intermediate in the molecular mechanism(s) leading to genetic instabilities of DNA repeats and, hence, to disease pathogenesis.
Collapse
Affiliation(s)
- R P Bowater
- Molecular Biology Sector, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | | |
Collapse
|
19
|
Abstract
The possible causes of abnormal iron metabolism in patients with Friedreich's ataxia are considered. Reduced expression of a frataxin homologue in yeast is associated with mitochondrial iron accumulation at the expense of cytosolic iron, and the same phenomenon can be demonstrated in these patients. A decrease in cytosolic iron causes the expression of a high-affinity iron-uptake protein, and therefore Friedreich's ataxia can be considered to be a disease of abnormal intracellular iron distribution. Friedreich's ataxia is of autosomal recessive inheritance, and the gene associated with it has been mapped to chromosome 9. This encodes the protein frataxin which regulates mitochondrial iron transport. The commonest mutation causing this disorder is an expanded GAA repeat in the gene for this protein. Different point mutations may account for some of the variations in the phenotypic features that are often found, and these variations are discussed. These findings have raised therapeutic possibilities in a condition for which previously there was no specific treatment. There are intracellular enzymes which are very sensitive to injury by oxygen-free radicals. Treatment has therefore been tried with ibebenone which acts as a free-radical scavenger, with some evidence of improvement. Iron chelating agents, such as deferoxamine, have also been given, but the finding of normal serum iron and ferritin casts doubt on the rationale of this. However the finding that the accumulation of iron in the mitochondria of the cells in patients with this form of ataxia will cause oxidative stress and cell death, gives hope for more effective treatment in the future, possibly with gene therapy.
Collapse
|
20
|
Musco G, Stier G, Kolmerer B, Adinolfi S, Martin S, Frenkiel T, Gibson T, Pastore A. Towards a structural understanding of Friedreich's ataxia: the solution structure of frataxin. Structure 2000; 8:695-707. [PMID: 10903947 DOI: 10.1016/s0969-2126(00)00158-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lesions in the gene for frataxin, a nuclear-encoded mitochondrial protein, cause the recessively inherited condition Friedreich's ataxia. It is thought that the condition arises from disregulation of mitochondrial iron homeostasis, with concomitant oxidative damage leading to neuronal death. Very little is, as yet, known about the biochemical function of frataxin. RESULTS Here, we show that the mature form of recombinant frataxin behaves in solution as a monodisperse species that is composed of a 15-residue-long unstructured N terminus and an evolutionarily conserved C-terminal region that is able to fold independently. The structure of the C-terminal domain consists of a stable seven-stranded antiparallel beta sheet packing against a pair of parallel helices. The structure is compact with neither grooves nor cavities, features that are typical of iron-binding modules. Exposed evolutionarily conserved residues cover a broad area and all cluster on the beta-sheet face of the structure, suggesting that this is a functionally important surface. The effect of two clinically occurring mutations on the fold was checked experimentally. When the mature protein was titrated with iron, no tendency to iron-binding or to aggregation was observed. CONCLUSIONS Knowledge of the frataxin structure provides important guidelines as to the nature of the frataxin binding partner. The absence of all the features expected for an iron-binding activity, the large conserved area on its surface and lack of evidence for iron-binding activity strongly support an indirect involvement of frataxin in iron metabolism. The effects of point mutations associated with Friedreich's ataxia can be rationalised by knowledge of the structure and suggest possible models for the occurrence of the disease in compound heterozygous patients.
Collapse
Affiliation(s)
- G Musco
- NIMR, Mill Hill, NW7 1AA, UK
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Geissler A, Krimmer T, Schönfisch B, Meijer M, Rassow J. Biogenesis of the yeast frataxin homolog Yfh1p. Tim44-dependent transfer to mtHsp70 facilitates folding of newly imported proteins in mitochondria. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3167-80. [PMID: 10824101 DOI: 10.1046/j.1432-1327.2000.01334.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tim44 is an essential component of the mitochondrial inner membrane protein import machinery. In this study we asked if Tim44 is of relevance in intramitochondrial protein folding. We investigated the role of Tim44 in the biogenesis of the authentic mitochondrial protein Yfh1p, the yeast homolog of mammalian frataxin, which was recently implicated in Friedreich ataxia. After inactivation of Tim44, binding of mitochondrial heat shock protein (mtHsp)70 to translocating Yfh1p and subsequent folding to the native state was nearly completely blocked. Residual amounts of imported Yfh1p showed an increased tendency to aggregate. To further characterize the functions of Tim44 in the matrix, we imported dihydrofolate reductase (DHFR) as a model protein. Depletion of Tim44 allowed import of DHFR, although folding of the newly imported DHFR was delayed. Moreover, the depletion of Tim44 caused a strongly reduced binding of mtHsp70 and Mge1 to the translocating polypeptide. Subsequent dissociation of mtHsp70 from imported DHFR was delayed, indicating that mtHsp70-substrate complexes formed independently of Tim44 differ from the complexes that form under the control of Tim44. We conclude that Tim44 not only plays a role in protein translocation but also in the pathways of mitochondrial protein folding.
Collapse
Affiliation(s)
- A Geissler
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Germany
| | | | | | | | | |
Collapse
|
22
|
Copp RP, Wisniewski T, Hentati F, Larnaout A, Ben Hamida M, Kayden HJ. Localization of alpha-tocopherol transfer protein in the brains of patients with ataxia with vitamin E deficiency and other oxidative stress related neurodegenerative disorders. Brain Res 1999; 822:80-7. [PMID: 10082886 DOI: 10.1016/s0006-8993(99)01090-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vitamin E (alpha-tocopherol) is an essential nutrient and an important antioxidant. Its plasma levels are dependent upon oral intake, absorption and transfer of the vitamin to a circulating lipoprotein. The latter step is controlled by alpha-tocopherol transfer protein (alpha-TTP), which is a 278 amino acid protein encoded on chromosome 8, known to be synthesized in the liver. Mutations in alpha-TTP are associated with a neurological syndrome of spinocerebellar ataxia, called ataxia with vitamin E deficiency (AVED). Earlier studies suggested that alpha-TTP is found only in the liver. In order to establish whether alpha-TTP is expressed in the human brain, and what relationship this has to AVED, we studied immunohistochemically the presence of alpha-TTP in the brains of a patient with AVED, normal subjects, and patients with Alzheimer's disease (AD), Down's syndrome (DS), cholestatic liver disease (CLD) and abetalipoproteinemia (ABL). The neuropathology of both AD and DS is thought to be related in part to oxidative stress. The diseases of AVED, of cholestatic liver disease, and of abetalipoproteinemia are thought to be due to lack of circulating tocopherol, leading to inadequate protection against oxidative damage. We demonstrate the presence of alpha-TTP in cerebellar Purkinje cells in patients having vitamin E deficiency states or diseases associated with oxidative stress.
Collapse
Affiliation(s)
- R P Copp
- Department of Medicine, New York University Medical Center, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
The exponential growth of sequence data does not necessarily lead to an increase in knowledge about the functions of genes and their products. Prediction of function using comparative sequence analysis is extremely powerful but, if not performed appropriately, may also lead to the creation and propagation of assignment errors. While current homology detection methods can cope with the data flow, the identification, verification and annotation of functional features need to be drastically improved.
Collapse
Affiliation(s)
- P Bork
- EMBL, Heidelberg, Germany.
| | | |
Collapse
|