1
|
Salinas E, Ruano-Rivadeneira F, Leal JI, Caprile T, Torrejón M, Arriagada C. Polarity and migration of cranial and cardiac neural crest cells: underlying molecular mechanisms and disease implications. Front Cell Dev Biol 2025; 12:1457506. [PMID: 39834387 PMCID: PMC11743681 DOI: 10.3389/fcell.2024.1457506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
The Neural Crest cells are multipotent progenitor cells formed at the neural plate border that differentiate and give rise to a wide range of cell types and organs. Directional migration of NC cells and their correct positioning at target sites are essential during embryonic development, and defects in these processes results in congenital diseases. The NC migration begins with the epithelial-mesenchymal transition and extracellular matrix remodeling. The main cellular mechanisms that sustain this migration include contact inhibition of locomotion, co-attraction, chemotaxis and mechanical cues from the surrounding environment, all regulated by proteins that orchestrate cell polarity and motility. In this review we highlight the molecular mechanisms involved in neural crest cell migration and polarity, focusing on the role of small GTPases, Heterotrimeric G proteins and planar cell polarity complex. Here, we also discuss different congenital diseases caused by altered NC cell migration.
Collapse
Affiliation(s)
- Esteban Salinas
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Francis Ruano-Rivadeneira
- Developmental Biology Laboratory 116, School of Biological Sciences, Faculty of Exact and Natural Sciences, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Juan Ignacio Leal
- Laboratory of Signaling and Development (LSD), Group for the Study of Developmental Processes (GDeP), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Teresa Caprile
- Laboratory of Axonal Guidance, Group for the Study of Developmental Processes (GDeP), Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Marcela Torrejón
- Laboratory of Signaling and Development (LSD), Group for the Study of Developmental Processes (GDeP), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Cecilia Arriagada
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
2
|
Morton AB, Jacobsen NL, Diller AR, Kendra JA, Golpasandi S, Cornelison DDW, Segal SS. Inducible deletion of endothelial cell Efnb2 delays capillary regeneration and attenuates myofibre reinnervation following myotoxin injury in mice. J Physiol 2024; 602:4907-4927. [PMID: 39196901 PMCID: PMC11466691 DOI: 10.1113/jp285402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 07/22/2024] [Indexed: 08/30/2024] Open
Abstract
Acute injury of skeletal muscle disrupts myofibres, microvessels and motor innervation. Myofibre regeneration is well characterized, however its relationship with the regeneration of microvessels and motor nerves is undefined. Endothelial cell (EC) ephrin-B2 (Efnb2) is required for angiogenesis during embryonic development and promotes neurovascular regeneration in the adult. We hypothesized that, following acute injury to skeletal muscle, loss of EC Efnb2 would impair microvascular regeneration and the recovery of neuromuscular junction (NMJ) integrity. Mice (aged 3-6 months) were bred for EC-specific conditional knockout (CKO) of Efnb2 following tamoxifen injection with non-injected CKO mice as controls (CON). The gluteus maximus, tibialis anterior or extensor digitorum longus muscle was then injured with local injection of BaCl2. Intravascular staining with wheat germ agglutinin revealed diminished capillary area in the gluteus maximus of CKO vs. CON at 5 days post-injury (dpi); both recovered to uninjured (0 dpi) level by 10 dpi. At 0 dpi, tibialis anterior isometric force of CKO was less than CON. At 10 dpi, isometric force was reduced by half in both groups. During intermittent contractions (75 Hz, 330 ms s-1, 120 s), isometric force fell during indirect (sciatic nerve) stimulation whereas force was maintained during direct (electrical field) stimulation of myofibres. Neuromuscular transmission failure correlated with perturbed presynaptic (terminal Schwann cells) and postsynaptic (nicotinic acetylcholine receptors) NMJ morphology in CKO. Resident satellite cell number on extensor digitorum longus myofibres did not differ between groups. Following acute injury of skeletal muscle, loss of Efnb2 in ECs delays capillary regeneration and attenuates recovery of NMJ structure and function. KEY POINTS: The relationship between microvascular regeneration and motor nerve regeneration following skeletal muscle injury is undefined. Expression of Efnb2 in endothelial cells (ECs) is essential to vascular development and promotes neurovascular regeneration in the adult. To test the hypothesis that EfnB2 in ECs is required for microvascular regeneration and myofibre reinnervation, we induced conditional knockout of Efnb2 in ECs of mice. Acute injury was then induced by BaCl2 injection into gluteus maximus, tibialis anterior or extensor digitorum longus (EDL) muscle. Capillary regeneration was reduced at 5 days post-injury (dpi) in gluteus maximus of conditional knockout vs. controls; at 10 dpi, neither differed from uninjured. Nerve stimulation revealed neuromuscular transmission failure in tibialis anterior with perturbed neuromuscular junction structure. Resident satellite cell number on EDL myofibres did not differ between groups. Conditional knockout of EC Efnb2 delays capillary regeneration and attenuates recovery of neuromuscular junction structure and function.
Collapse
Affiliation(s)
- Aaron B. Morton
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77845
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212
| | - Nicole L. Jacobsen
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212
| | | | - Jacob A. Kendra
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77845
| | - Shadi Golpasandi
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77845
| | - DDW Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Steven S. Segal
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212
- Dalton Cardiovascular Research Center, Columbia, MO 65211
- Department of Biomedical Sciences, University of Missouri; Columbia, MO 65201
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri; Columbia, MO 65211
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211
| |
Collapse
|
3
|
Li A, Wang S, Nie J, Xiao S, Xie X, Zhang Y, Tong W, Yao G, Liu N, Dan F, Shu Z, Liu J, Liu Z, Yang F. USP3 promotes osteosarcoma progression via deubiquitinating EPHA2 and activating the PI3K/AKT signaling pathway. Cell Death Dis 2024; 15:235. [PMID: 38531846 PMCID: PMC10965993 DOI: 10.1038/s41419-024-06624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Ubiquitin-specific protease 3 (USP3) plays an important role in the progression of various tumors. However, the role of USP3 in osteosarcoma (OS) remains poorly understood. The aim of this study was to explore the biological function of USP3 in OS and the underlying molecular mechanism. We found that OS had higher USP3 expression compared with that of normal bone tissue, and high expression of USP3 was associated with poor prognosis in patients with OS. Overexpression of USP3 significantly increased OS cell proliferation, migration, and invasion. Mechanistically, USP3 led to the activation of the PI3K/AKT signaling pathway in OS by binding to EPHA2 and then reducing its protein degradation. Notably, the truncation mutant USP3-F2 (159-520) interacted with EPHA2, and amino acid 203 was found to play an important role in this process. And knockdown of EPHA2 expression reversed the pro-tumour effects of USP3-upregulating. Thus, our study indicates the USP3/EPHA2 axis may be a novel potential target for OS treatment.
Collapse
Affiliation(s)
- Anan Li
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shijiang Wang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiangbo Nie
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shining Xiao
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xinsheng Xie
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu Zhang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Weilai Tong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Geliang Yao
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ning Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fan Dan
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhiguo Shu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiaming Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhili Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Feng Yang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
4
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 PMCID: PMC10969453 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
5
|
Yoshioka S, Arakawa Y, Hasegawa M, Kato S, Hashimoto H, Mori S, Ueda H, Watanabe M. Twin study: genotype-dependent epigenetic factors affecting free thyroxine levels in the normal range. Epigenomics 2024; 16:147-158. [PMID: 38264851 DOI: 10.2217/epi-2023-0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Aim: To explore the clinical application of DNA methylation affecting thyroid function, we evaluated the association of DNA methylation with free thyroxine (FT4) and TSH measurements in monozygotic twins. Materials & methods: Discordant pairs for FT4 or TSH levels were examined for the relationship between the within-pair difference of each measurement and the DNA methylation levels using epigenome-wide association studies. The contribution of polymorphisms to the methylation sensitivity was also examined. Results: We found two CpG sites significantly associated with FT4 levels, and also some CpG sites showing significant differences in their methylation levels within FT4-discordant pairs depending on the polymorphism in EPHB2. Conclusion: The FT4 level may be associated with a combination of methylation and polymorphisms in the EPHB2 gene.
Collapse
Affiliation(s)
- Saki Yoshioka
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Yuya Arakawa
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
- Center for Twin Research, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Mika Hasegawa
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Shiho Kato
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Hinako Hashimoto
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Saho Mori
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Hiromichi Ueda
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Mikio Watanabe
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
- Center for Twin Research, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
6
|
Ganguly D, Thomas JA, Ali A, Kumar R. Mechanistic and therapeutic implications of EphA-4 receptor tyrosine kinase in the pathogenesis of Alzheimer's disease. Eur J Neurosci 2022; 56:5532-5546. [PMID: 34989046 DOI: 10.1111/ejn.15591] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/14/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022]
Abstract
Erythropoietin-producing hepatoma (Eph) receptors belong to a family of tyrosine kinase receptors that plays a pivotal role in the development of the brain. Eph can be divided broadly into two groups, namely, EphA and EphB, comprising nine and five members, respectively. In recent years, the role of EphA-4 has become increasingly apparent in the onset of Alzheimer's disease (AD). Emerging evidence suggests that EphA-4 results in synaptic dysfunction, which in turn promotes the progression of AD. Moreover, pharmacological or genetic ablation of EphA-4 in the murine model of AD can alleviate the symptoms. The current review summarizes different pathways by which EphA-4 can influence pathogenesis. Since, majority of the studies had reported the protective effect of EphA-4 inhibition during AD, designing therapeutics based on decreasing its enzymatic activity might be necessary for introducing the novel interventions. Therefore, the review described peptide and nanobodies inhibitors of EphA-4 that exhibit the potential to modulate EphA-4 and could be used as lead molecules for the targeted therapy of AD.
Collapse
Affiliation(s)
- Devargya Ganguly
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
| | - Joshua Abby Thomas
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
| | - Abid Ali
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rahul Kumar
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
| |
Collapse
|
7
|
Pedrosa LRR, Coimbra GDS, Corrêa MG, Dias IA, Bahia CP. Time Window of the Critical Period for Neuroplasticity in S1, V1, and A1 Sensory Areas of Small Rodents: A Systematic Review. Front Neuroanat 2022; 16:763245. [PMID: 35370567 PMCID: PMC8970055 DOI: 10.3389/fnana.2022.763245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/04/2022] [Indexed: 12/09/2022] Open
Abstract
The plasticity of the central nervous system (CNS) allows the change of neuronal organization and function after environmental stimuli or adaptation after sensory deprivation. The so-called critical period (CP) for neuroplasticity is the time window when each sensory brain region is more sensitive to changes and adaptations. This time window is usually different for each primary sensory area: somatosensory (S1), visual (V1), and auditory (A1). Several intrinsic mechanisms are also involved in the start and end of the CP for neuroplasticity; however, which is its duration in S1, VI, and A1? This systematic review evaluated studies on the determination of these time windows in small rodents. The careful study selection and methodological quality assessment indicated that the CP for neuroplasticity is different among the sensory areas, and the brain maps are influenced by environmental stimuli. Moreover, there is an overlap between the time windows of some sensory areas. Finally, the time window duration of the CP for neuroplasticity is predominant in S1.
Collapse
|
8
|
Murugan S, Cheng C. Roles of Eph-Ephrin Signaling in the Eye Lens Cataractogenesis, Biomechanics, and Homeostasis. Front Cell Dev Biol 2022; 10:852236. [PMID: 35295853 PMCID: PMC8918484 DOI: 10.3389/fcell.2022.852236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/04/2022] [Indexed: 01/26/2023] Open
Abstract
The eye lens is responsible for fine focusing of light onto the retina, and its function relies on tissue transparency and biomechanical properties. Recent studies have demonstrated the importance of Eph-ephrin signaling for the maintenance of life-long lens homeostasis. The binding of Eph receptor tyrosine kinases to ephrin ligands leads to a bidirectional signaling pathway that controls many cellular processes. In particular, dysfunction of the receptor EphA2 or the ligand ephrin-A5 lead to a variety of congenital and age-related cataracts, defined as any opacity in the lens, in human patients. In addition, a wealth of animal studies reveal the unique and overlapping functions of EphA2 and ephrin-A5 in lens cell shape, cell organization and patterning, and overall tissue optical and biomechanical properties. Significant differences in lens phenotypes of mouse models with disrupted EphA2 or ephrin-A5 signaling indicate that genetic modifiers likely affect cataract phenotypes and progression, suggesting a possible reason for the variability of human cataracts due to Eph-ephrin dysfunction. This review summarizes the roles of EphA2 and ephrin-A5 in the lens and suggests future avenues of study.
Collapse
|
9
|
Duménieu M, Marquèze-Pouey B, Russier M, Debanne D. Mechanisms of Plasticity in Subcortical Visual Areas. Cells 2021; 10:3162. [PMID: 34831385 PMCID: PMC8621502 DOI: 10.3390/cells10113162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/10/2023] Open
Abstract
Visual plasticity is classically considered to occur essentially in the primary and secondary cortical areas. Subcortical visual areas such as the dorsal lateral geniculate nucleus (dLGN) or the superior colliculus (SC) have long been held as basic structures responsible for a stable and defined function. In this model, the dLGN was considered as a relay of visual information travelling from the retina to cortical areas and the SC as a sensory integrator orienting body movements towards visual targets. However, recent findings suggest that both dLGN and SC neurons express functional plasticity, adding unexplored layers of complexity to their previously attributed functions. The existence of neuronal plasticity at the level of visual subcortical areas redefines our approach of the visual system. The aim of this paper is therefore to review the cellular and molecular mechanisms for activity-dependent plasticity of both synaptic transmission and cellular properties in subcortical visual areas.
Collapse
Affiliation(s)
| | | | | | - Dominique Debanne
- INSERM, Aix-Marseille Université, UNIS, 13015 Marseille, France; (M.D.); (B.M.-P.); (M.R.)
| |
Collapse
|
10
|
Ebrahim AS, Hailat Z, Bandyopadhyay S, Neill D, Kandouz M. The Value of EphB2 Receptor and Cognate Ephrin Ligands in Prognostic and Predictive Assessments of Human Breast Cancer. Int J Mol Sci 2021; 22:ijms22158098. [PMID: 34360867 PMCID: PMC8348398 DOI: 10.3390/ijms22158098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 01/01/2023] Open
Abstract
Cell–cell communication proteins Eph and ephrin constitute the largest family of receptor tyrosine kinases (RTKs). They are distinguished by the fact that both receptors and ligands are membrane-bound, and both can drive intracellular signaling in their respective cells. Ever since these RTKs have been found to be involved in cancer development, strategies to target them therapeutically have been actively pursued. However, before this goal can be rationally achieved, the contributions of either Eph receptors or their ephrin ligands to cancer development and progression should be scrutinized in depth. To assess the clinical pertinence of this concern, we performed a systematic review and meta-analysis of the prognostic/predictive value of EphB2 and its multiple cognate ephrin ligands in breast cancer. We found that EphB2 has prognostic value, as indicated by the association of higher EphB2 expression levels with lower distant metastasis-free survival (DMFS), and the association of lower EphB2 expression levels with poorer relapse-free survival (RFS). We also found that higher EphB2 expression could be a prognostic factor for distant metastasis, specifically in the luminal subtypes of breast cancer. EFNB2 showed a marked correlation between higher expression levels and shorter DMFS. EFNA5 or EFNB1 overexpression is correlated with longer RFS. Increased EFNB1 expression is correlated with longer OS in lymph node (LN)-negative patients and the luminal B subtype. Higher levels of EFNB2 or EFNA5 are significantly correlated with shorter RFS, regardless of LN status. However, while this correlation with shorter RFS is true for EFNB2 in all subtypes except basal, it is also true for EFNA5 in all subtypes except HER2+. The analysis also points to possible predictive value for EphB2. In systemically treated patients who have undergone either endocrine therapy or chemotherapy, we found that higher expression of EphB2 is correlated with better rates of RFS. Bearing in mind the limitations inherent to any mRNA-based profiling method, we complemented our analysis with an immunohistochemical assessment of expression levels of both the EphB2 receptor and cognate ephrin ligands. We found that the latter are significantly more expressed in cancers than in normal tissues, and even more so in invasive and metastatic samples than in ductal carcinoma in situ (DCIS). Finally, in an in vitro cellular model of breast cancer progression, based on H-Ras-transformation of the MCF10A benign mammary cell line, we observed dramatic increases in the mRNA expression of EphB2 receptor and EFNB1 and EFNB2 ligands in transformed and invasive cells in comparison with their benign counterparts. Taken together, these data show the clinical validity of a model whereby EphB2, along with its cognate ephrin ligands, have dual anti- and pro-tumor progression effects. In so doing, they reinforce the necessity of further biological investigations into Ephs and ephrins, prior to using them in targeted therapies.
Collapse
Affiliation(s)
- Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Zeyad Hailat
- Department of Computer Science, Wayne State University, Detroit, MI 48201, USA;
| | - Sudeshna Bandyopadhyay
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.B.); (D.N.)
| | - Daniel Neill
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.B.); (D.N.)
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.B.); (D.N.)
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
- Correspondence:
| |
Collapse
|
11
|
Zhang L, Qi Z, Li J, Li M, Du X, Wang S, Zhou G, Xu B, Liu W, Xi S, Xu Z, Deng Y. Roles and Mechanisms of Axon-Guidance Molecules in Alzheimer's Disease. Mol Neurobiol 2021; 58:3290-3307. [PMID: 33675023 DOI: 10.1007/s12035-021-02311-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by progressive memory decline and cognitive dysfunctions. Although the causes of AD have not yet been established, many mechanisms have been proposed. Axon-guidance molecules play the roles in the occurrence and development of AD by participating in different mechanisms. Therefore, what roles do axon-guidance molecules play in AD? This study aimed at elucidating how axon-guidance molecules Netrins, Slits, Semaphorins, and Ephrins regulate the levels of Aβ, hyperphosphorylation of tau protein, Reelin, and other ways through different signaling pathways, in order to show the roles of axon-guidance molecules in the occurrence and development of AD. And it is hoped that this study can provide a theoretical basis and new perspectives in the search for new therapeutic targets for AD.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Zhipeng Qi
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Jiashuo Li
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Minghui Li
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Xianchao Du
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Shuang Wang
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Guoyu Zhou
- Department of Geriatric Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Shuhua Xi
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
12
|
Chatterjee D, Chowdhury UF, Shohan MUS, Mohasin M, Kabir Y. In-silico predictions of deleterious SNPs in human ephrin type-A receptor 3 (EPHA3) gene. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
13
|
EphA4 Is Required for Neural Circuits Controlling Skilled Reaching. J Neurosci 2020; 40:7091-7104. [PMID: 32801149 DOI: 10.1523/jneurosci.2892-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 11/21/2022] Open
Abstract
Skilled forelimb movements are initiated by feedforward motor commands conveyed by supraspinal motor pathways. The accuracy of reaching and grasping relies on internal feedback pathways that update ongoing motor commands. In mice lacking the axon guidance molecule EphA4, axonal misrouting of the corticospinal tract and spinal interneurons is manifested, leading to a hopping gait in hindlimbs. Moreover, mice with a conditional forebrain deletion of EphA4, display forelimb hopping in adaptive locomotion and exploratory reaching movements. However, it remains unclear how loss of EphA4 signaling disrupts function of forelimb motor circuit and skilled reaching and grasping movements. Here we investigated how neural circuits controlling skilled reaching were affected by the loss of EphA4. Both male and female C57BL/6 wild-type, heterozygous EphA4+/-, and homozygous EphA4-/- mice were used in behavioral and in vivo electrophysiological investigations. We found that EphA4 knock-out (-/-) mice displayed impaired goal-directed reaching movements. In vivo intracellular recordings from forelimb motor neurons demonstrated increased corticoreticulospinal excitation, decreased direct reticulospinal excitation, and reduced direct propriospinal excitation in EphA4 knock-out mice. Cerebellar surface recordings showed a functional perturbation of the lateral reticular nucleus-cerebellum internal feedback pathway in EphA4 knock-out mice. Together, our findings provide in vivo evidence at the circuit level that loss of EphA4 disrupts the function of both feedforward and feedback motor pathways, resulting in deficits in skilled reaching.SIGNIFICANCE STATEMENT The central advances of this study are the demonstration that null mutation in the axon guidance molecule EphA4 gene impairs the ability of mice to perform skilled reaching, and identification of how these behavioral deficits correlates with discrete neurophysiological changes in central motor pathways involved in the control of reaching. Our findings provide in vivo evidence at the circuit level that loss of EphA4 disrupts both feedforward and feedback motor pathways, resulting in deficits in skilled reaching. This analysis of motor circuit function may help to understand the pathophysiological mechanisms underlying movement disorders in humans.
Collapse
|
14
|
Zangouei AS, Barjasteh AH, Rahimi HR, Mojarrad M, Moghbeli M. Role of tyrosine kinases in bladder cancer progression: an overview. Cell Commun Signal 2020; 18:127. [PMID: 32795296 PMCID: PMC7427778 DOI: 10.1186/s12964-020-00625-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022] Open
Abstract
Background Bladder cancer (BCa) is a frequent urothelial malignancy with a high ratio of morbidity and mortality. Various genetic and environmental factors are involved in BCa progression. Since, majority of BCa cases are diagnosed after macroscopic clinical symptoms, it is required to find efficient markers for the early detection. Receptor tyrosine-kinases (RTKs) and non-receptor tyrosine-kinases (nRTKs) have pivotal roles in various cellular processes such as growth, migration, differentiation, and metabolism through different signaling pathways. Tyrosine-kinase deregulations are observed during tumor progressions via mutations, amplification, and chromosomal abnormalities which introduces these factors as important candidates of anti-cancer therapies. Main body For the first time in present review we have summarized all of the reported tyrosine-kinases which have been significantly associated with the clinicopathological features of BCa patients. Conclusions This review highlights the importance of tyrosine-kinases as critical markers in early detection and therapeutic purposes among BCa patients and clarifies the molecular biology of tyrosine-kinases during BCa progression and metastasis. Video abstract
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Barjasteh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
EphrinB/EphB Signaling Contributes to the Synaptic Plasticity of Chronic Migraine Through NR2B Phosphorylation. Neuroscience 2020; 428:178-191. [DOI: 10.1016/j.neuroscience.2019.12.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
|
16
|
Wislet S, Vandervelden G, Rogister B. From Neural Crest Development to Cancer and Vice Versa: How p75 NTR and (Pro)neurotrophins Could Act on Cell Migration and Invasion? Front Mol Neurosci 2018; 11:244. [PMID: 30190671 PMCID: PMC6115613 DOI: 10.3389/fnmol.2018.00244] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/25/2018] [Indexed: 12/26/2022] Open
Abstract
The p75 neurotrophin receptor (p75NTR), also known as low-affinity nerve growth factor, belongs to the tumor necrosis factor family of receptors. p75NTR is widely expressed in the nervous system during the development, as well as, in the neural crest population, since p75NTR has been described as ubiquitously expressed and considered as a neural crest marker. Neural crest cells (NCCs) constitute an transient population accurately migrating and invading, with precision, defined sites of the embryo. During migration, NCCs are guided along distinct migratory pathways by specialized molecules present in the extracellular matrix or on the surfaces of those cells. Two main processes direct NCC migration during the development: (1) an epithelial-to-mesenchymal transition and (2) a process known as contact inhibition of locomotion. In adults, p75NTR remains expressed by NCCs and has been identified in an increasing number of cancer cells. Nonetheless, the regulation of the expression of p75NTR and the underlying mechanisms in stem cell biology or cancer cells have not yet been sufficiently addressed. The main objective of this review is therefore to analyze elements of our actual knowledge regarding p75NTR roles during the development (mainly focusing on neural crest development) and see how we can transpose that information from development to cancer (and vice versa) to better understand the link between p75NTR and cell migration and invasion. In this review, we successively analyzed the molecular mechanisms of p75NTR when it interacts with several coreceptors and/or effectors. We then analyzed which signaling pathways are the most activated or linked to NCC migration during the development. Regarding cancer, we analyzed the described molecular pathways underlying cancer cell migration when p75NTR was correlated to cancer cell migration and invasion. From those diverse sources of information, we finally summarized potential molecular mechanisms underlying p75NTR activation in cell migration and invasion that could lead to new research areas to develop new therapeutic protocols.
Collapse
Affiliation(s)
- Sabine Wislet
- GIGA-Neurosciences, University of Liège, Liège, Belgium
| | | | - Bernard Rogister
- GIGA-Neurosciences, University of Liège, Liège, Belgium.,Department of Neurology, University of Liège, Liège, Belgium
| |
Collapse
|
17
|
De novo assembly of a transcriptome for the cricket Gryllus bimaculatus prothoracic ganglion: An invertebrate model for investigating adult central nervous system compensatory plasticity. PLoS One 2018; 13:e0199070. [PMID: 29995882 PMCID: PMC6040699 DOI: 10.1371/journal.pone.0199070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/25/2018] [Indexed: 12/18/2022] Open
Abstract
The auditory system of the cricket, Gryllus bimaculatus, demonstrates an unusual amount of anatomical plasticity in response to injury, even in adults. Unilateral removal of the ear causes deafferented auditory neurons in the prothoracic ganglion to sprout dendrites across the midline, a boundary they typically respect, and become synaptically connected to the auditory afferents of the contralateral ear. The molecular basis of this sprouting and novel synaptogenesis in the adult is not understood. We hypothesize that well-conserved developmental guidance cues may recapitulate their guidance functions in the adult in order to facilitate this compensatory growth. As a first step in testing this hypothesis, we have generated a de novo assembly of a prothoracic ganglion transcriptome derived from control and deafferented adult individuals. We have mined this transcriptome for orthologues of guidance molecules from four well-conserved signaling families: Slit, Netrin, Ephrin, and Semaphorin. Here we report that transcripts encoding putative orthologues of most of the candidate developmental ligands and receptors from these signaling families were present in the assembly, indicating expression in the adult G. bimaculatus prothoracic ganglion.
Collapse
|
18
|
|
19
|
Wan Y, Yang JS, Xu LC, Huang XJ, Wang W, Xie MJ. Roles of Eph/ephrin bidirectional signaling during injury and recovery of the central nervous system. Neural Regen Res 2018; 13:1313-1321. [PMID: 30106032 PMCID: PMC6108204 DOI: 10.4103/1673-5374.235217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple cellular components, including neuronal, glial and endothelial cells, are involved in the sophisticated pathological processes following central nervous system injury. The pathological process cannot reduce damage or improve functional recovery by merely targeting the molecular mechanisms of neuronal cell death after central nerve system injuries. Eph receptors and ephrin ligands have drawn wide attention since the discovery of their extensive distribution and unique bidirectional signaling between astrocytes and neurons. The roles of Eph/ephrin bidirectional signaling in the developmental processes have been reported in previous research. Recent observations suggest that Eph/ephrin bidirectional signaling continues to be expressed in most regions and cell types in the adult central nervous system, playing diverse roles. The Eph/ephrin complex mediates neurogenesis and angiogenesis, promotes glial scar formation, regulates endocrine levels, inhibits myelin formation and aggravates inflammation and nerve pain caused by injury. The interaction between Eph and ephrin is also considered to be the key to angiogenesis. This review focuses on the roles of Eph/ephrin bidirectional signaling in the repair of central nervous system injuries.
Collapse
Affiliation(s)
- Yue Wan
- Department of Neurology, The Third People's Hospital of Hubei Province, Wuhan, Hubei Province, China
| | - Jin-Shan Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province; Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Li-Cai Xu
- Department of Neurological Rehabilitation Center, The Third People's Hospital of Hubei Province, Wuhan, Hubei Province, China
| | - Xiao-Jiang Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Min-Jie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
20
|
Guo H, Huang ZL, Wang W, Zhang SX, Li J, Cheng K, Xu K, He Y, Gui SW, Li PF, Wang HY, Dong ZF, Xie P. iTRAQ-Based Proteomics Suggests Ephb6 as a Potential Regulator of the ERK Pathway in the Prefrontal Cortex of Chronic Social Defeat Stress Model Mice. Proteomics Clin Appl 2017; 11. [PMID: 28967185 DOI: 10.1002/prca.201700115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/03/2017] [Indexed: 01/07/2023]
Abstract
PURPOSE Major depressive disorder (MDD) is a worldwide concern and devastating psychiatric disease. The World Health Organization claims that MDD leads to at least 11.9% of the global burden of disease. However, the underlying pathophysiology mechanisms of MDD remain largely unknown. EXPERIMENTAL DESIGN Herein, we proteomic-based strategy is used to compare the prefrontal cortex (PFC) in chronic social defeat stress (CSDS) model mice with a control group. Based on pooled samples, differential proteins are identified in the PFC proteome using iTRAQ coupled with LC-MS/MS. RESULTS Ingenuity Pathway Analysis (IPA) is then followed to predict relevant pathways, with the ephrin receptor signaling pathway selected for further research. Additionally, as the selected key proteins of the ephrin receptor signaling pathway, ephrin type-B receptor 6 (EphB6) and the ERK pathway are validated by Western blotting. CONCLUSION AND CLINICAL RELEVANT Altogether, increased understanding of the ephrin receptor signaling pathway in MDD is provided, which implicates further investigation of PFC dysfunction induced by CSDS treatment.
Collapse
Affiliation(s)
- Hua Guo
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Zhi-Lin Huang
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Wang
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Shu-Xiao Zhang
- Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Juan Li
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Ke Cheng
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Ke Xu
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Yong He
- Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Si-Wen Gui
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Peng-Fei Li
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Hai-Yang Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Zhi-Fang Dong
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| |
Collapse
|
21
|
Willson CA, Irizarry-Ramírez M, Gaskins HE, Cruz-Orengo L, Figueroa JD, Whittemore SR, Miranda JD. Upregulation of EphA Receptor Expression in the Injured Adult Rat Spinal Cord. Cell Transplant 2017. [DOI: 10.3727/096020198389997] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
After spinal cord injury (SCI), the inability of supraspinal neurons to regenerate or reform functional connections is likely due to proteins in the surrounding microenvironment restricting regeneration. EphAs are a family of receptor tyrosine kinases that are involved in axonal guidance during development. These receptors and their ligands, the Ephrins, act via repulsive mechanisms to guide growing axons towards their appropriate targets and allow for the correct developmental connections to be made. In the present study, we investigated whether EphA receptor expression changed after a thoracic contusion SCI. Our results indicate that several EphA molecules are upregulated after SCI. Using semiquantitative RT-PCR to investigate mRNA expression after SCI, we found that EphA3, A4, and A7 mRNAs were upregulated. EphA3, A4, A6, and A8 receptor immunoreactivity increased in the ventrolateral white matter (VWM) at the injury epicenter. EphA7 had the highest level of immunoreactivity in both control and injured rat spinal cord. EphA receptor expression in the white matter originated from glial cells as coexpression in both astrocytes and oligodendrocytes was observed. In contrast, gray matter expression was localized to neurons of the ventral gray matter (motor neurons) and dorsal horn. After SCI, specific EphA receptor subtypes are upregulated and these increases may create an environment that is unfavorable for neurite outgrowth and functional regeneration.
Collapse
Affiliation(s)
- Christopher A. Willson
- Kentucky Spinal Cord Injury Research Center and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
- Departments of Neurological Surgery and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
| | | | - Hope E. Gaskins
- Kentucky Spinal Cord Injury Research Center and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
- Departments of Neurological Surgery and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Lillian Cruz-Orengo
- Departments of Physiology, University of Puerto Rico Medical Science Campus, San Juan, PR 00936
| | - Johnny D. Figueroa
- Departments of Physiology, University of Puerto Rico Medical Science Campus, San Juan, PR 00936
| | - Scott R. Whittemore
- Kentucky Spinal Cord Injury Research Center and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
- Departments of Neurological Surgery and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
- Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Jorge D. Miranda
- Departments of Physiology, University of Puerto Rico Medical Science Campus, San Juan, PR 00936
| |
Collapse
|
22
|
Park E, Noh H, Park S. Identification of an Enhancer Critical for the ephirn-A5 Gene Expression in the Posterior Region of the Mesencephalon. Mol Cells 2017; 40:426-433. [PMID: 28614915 PMCID: PMC5523019 DOI: 10.14348/molcells.2017.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/01/2017] [Accepted: 05/11/2017] [Indexed: 11/27/2022] Open
Abstract
Ephrin-A5 has been implicated in the regulation of brain morphogenesis and axon pathfinding. In this study, we used bacterial homologous recombination to express a LacZ reporter in various ephrin-A5 BAC clones to identify elements that regulate ephrin-A5 gene expression during mesencephalon development. We found that there is mesencephalon-specific enhancer activity localized to a specific +25.0 kb to +30.5 kb genomic region in the first intron of ephrin-A5. Further comparative genomic analysis indicated that two evolutionary conserved regions, ECR1 and ECR2, were present within this 5.5 kb region. Deletion of ECR1 from the enhancer resulted in disrupted mesencephalon-specific enhancer activity in transgenic embryos. We also found a consensus binding site for basic helix-loop-helix (bHLH) transcription factors (TFs) in a highly conserved region at the 3'-end of ECR1. We further demonstrated that specific deletion of the bHLH TF binding site abrogated the mesencephalon-specific enhancer activity in transgenic embryos. Finally, both electrophoretic mobility shift assay and luciferase-based transactivation assay revealed that the transcription factor Ascl1 bound the bHLH consensus binding site in the mesencephalon-specific ephrin-A5 enhancer in vitro. Together, these results suggest that the bHLH TF binding site in ECR1 is involved in the positive regulation of ephrin-A5 gene expression during the development of the mesencephalon.
Collapse
Affiliation(s)
- Eunjeong Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310,
Korea
| | - Hyuna Noh
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310,
Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310,
Korea
| |
Collapse
|
23
|
Yadav SS, Li J, Stockert JA, Herzog B, O'Connor J, Garzon-Manco L, Parsons R, Tewari AK, Yadav KK. Induction of Neuroendocrine Differentiation in Prostate Cancer Cells by Dovitinib (TKI-258) and its Therapeutic Implications. Transl Oncol 2017; 10:357-366. [PMID: 28342996 PMCID: PMC5369368 DOI: 10.1016/j.tranon.2017.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (PCa) remains the second-leading cause of cancer-related deaths in American men with an estimated mortality of more than 26,000 in 2016 alone. Aggressive and metastatic tumors are treated with androgen deprivation therapies (ADT); however, the tumors acquire resistance and develop into lethal castration resistant prostate cancer (CRPC). With the advent of better therapeutics, the incidences of a more aggressive neuroendocrine prostate cancer (NEPC) variant continue to emerge. Although de novo occurrences of NEPC are rare, more than 25% of the therapy-resistant patients on highly potent new-generation anti-androgen therapies end up with NEPC. This, along with previous observations of an increase in the number of such NE cells in aggressive tumors, has been suggested as a mechanism of resistance development during prostate cancer progression. Dovitinib (TKI-258/CHIR-258) is a pan receptor tyrosine kinase (RTK) inhibitor that targets VEGFR, FGFR, PDGFR, and KIT. It has shown efficacy in mouse-model of PCa bone metastasis, and is presently in clinical trials for several cancers. We observed that both androgen receptor (AR) positive and AR-negative PCa cells differentiate into a NE phenotype upon treatment with Dovitinib. The NE differentiation was also observed when mice harboring PC3-xenografted tumors were systemically treated with Dovitinib. The mechanistic underpinnings of this differentiation are unclear, but seem to be supported through MAPK-, PI3K-, and Wnt-signaling pathways. Further elucidation of the differentiation process will enable the identification of alternative salvage or combination therapies to overcome the potential resistance development.
Collapse
Affiliation(s)
- Shalini S Yadav
- Department of Urology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574
| | - Jinyi Li
- Department of Urology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574
| | - Jennifer A Stockert
- Department of Urology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574
| | - Bryan Herzog
- Department of Urology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574
| | - James O'Connor
- Department of Urology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574
| | - Luis Garzon-Manco
- Department of Urology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574
| | - Ramon Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574
| | - Ashutosh K Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574
| | - Kamlesh K Yadav
- Department of Urology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574.
| |
Collapse
|
24
|
EphrinA5 Signaling Is Required for the Distinctive Targeting of Raphe Serotonin Neurons in the Forebrain. eNeuro 2017; 4:eN-NWR-0327-16. [PMID: 28197551 PMCID: PMC5292598 DOI: 10.1523/eneuro.0327-16.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022] Open
Abstract
Serotonin (5-HT) neurotransmission in the brain relies on a widespread axon terminal network originating from the hindbrain raphe nuclei. These projections are topographically organized such that the dorsal (DR), and median raphe (MnR) nuclei have different brain targets. However, the guidance molecules involved in this selective targeting in development are unknown. Here, we show the implication of ephrinA5 signaling in this process. We find that the EphA5 gene is selectively expressed in a subset of 5-HT neurons during embryonic and postnatal development. Highest coexpression of EphA5 and the 5-HT marker Tph2 is found in the DR, with lower coexpression in the MnR, and hardly any colocalization of the caudal raphe in the medulla. Accordingly, ephrinA induced a dose-dependent collapse response of 5-HT growth cones cultured from rostral but not caudal raphe. Ectopic expression of ephrinA3, after in utero electroporation in the amygdala and piriform cortex, repelled 5-HT raphe fiber ingrowth. Conversely, misplaced DR 5-HT axons were found in ephrin A5 knockout mice in brain regions that are normally only targeted by MnR 5-HT axons. This causes an overall increase in the density of 5-HT innervation in the ventromedial hypothalamus, the suprachiasmatic nucleus, and the olfactory bulb. All these brain areas have high expression of ephrinAs at the time of 5-HT fiber ingrowth. Present results show for the first time the role of a guidance molecule for the region-specific targeting of raphe neurons. This has important implications to understand how functional parsing of central 5-HT neurons is established during development.
Collapse
|
25
|
Regulation of endothelial migration and proliferation by ephrin-A1. Cell Signal 2016; 29:84-95. [PMID: 27742560 DOI: 10.1016/j.cellsig.2016.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/09/2016] [Accepted: 10/10/2016] [Indexed: 11/21/2022]
Abstract
Endothelial migration and proliferation are fundamental processes in angiogenesis and wound healing of injured or inflamed vessels. The present study aimed to investigate the regulation of the Eph/ephrin-system during endothelial proliferation and the impact of the ligand ephrin-A1 on proliferation and migration of human umbilical venous (HUVEC) and arterial endothelial cells (HUAEC). Endothelial cells that underwent contact inhibition showed a massive induction of ephrin-A1. In contrast, an injury to a confluent endothelial layer, associated with induction of migration and proliferation, showed reduced ephrin-A1 levels. In addition, reducing ephrin-A1 expression by siRNA led to increased proliferation, whereas the overexpression of ephrin-A1 led to decreased proliferative activity. Due to the fact that wound healing is a combination of proliferation and migration, migration was investigated in detail. First, classical wound-healing assays showed increased wound closure in both ephrin-A1 silenced and overexpressing cells. Live-cell imaging enlightened the underlying differences. Silencing of ephrin-A1 led to a faster but more disorientated migration. In contrast, ephrin-A1 overexpression did not influence velocity of the cells, but the migration was more directed in comparison to the controls. Additional analysis of EphA2-silenced cells showed similar results in terms of proliferation and migration compared to ephrin-A1 silenced cells. Detailed analysis of EphA2 phosphorylation on ligand-dependent phospho-site (Y588) and autonomous activation site (S897) revealed a distinct phosphorylation pattern. Furthermore, the endothelial cells ceased to migrate when they came in contact with an ephrin-A1 coated surface. Using a baculoviral-mediated expression system, ephrin-A1 silencing and overexpression was shown to modulate the formation of focal adhesions. This implicates that ephrin-A1 is involved in changes of the actin cytoskeleton which explains the alterations in migratory actions, at least in part. In conclusion, ephrin-A1 expression is regulated by cellular density and is itself a critical determinant of endothelial proliferation. According to current knowledge, ephrin-A1 seems to be remarkably involved in elementary processes of endothelial migration like cellular polarization, migratory direction and speed. These data support the notion that ephrin-A1 plays a pivotal role in basal mechanisms of re-endothelialization.
Collapse
|
26
|
Das G, Yu Q, Hui R, Reuhl K, Gale NW, Zhou R. EphA5 and EphA6: regulation of neuronal and spine morphology. Cell Biosci 2016; 6:48. [PMID: 27489614 PMCID: PMC4971699 DOI: 10.1186/s13578-016-0115-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022] Open
Abstract
Background The Eph family of receptor tyrosine kinases plays important roles in neural development. Previous studies have implicated Eph receptors and their ligands, the ephrins, in neuronal migration, axon bundling and guidance to specific targets, dendritic spine formation and neural plasticity. However, specific contributions of EphA5 and EphA6 receptors to the regulation of neuronal cell morphology have not been well studied. Results Here we show that deletion of EphA5 and EphA6 results in abnormal Golgi staining patterns of cells in the brain, and abnormal spine morphology. Conclusion These observations suggest novel functions of these Eph receptors in the regulation of neuronal and spine structure in brain development and function.
Collapse
Affiliation(s)
- Gitanjali Das
- Susan L. Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| | - Qili Yu
- Susan L. Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| | - Ryan Hui
- Susan L. Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| | - Kenneth Reuhl
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| | | | - Renping Zhou
- Susan L. Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| |
Collapse
|
27
|
Receptor tyrosine kinase EphA7 is required for interneuron connectivity at specific subcellular compartments of granule cells. Sci Rep 2016; 6:29710. [PMID: 27405707 PMCID: PMC4942821 DOI: 10.1038/srep29710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/21/2016] [Indexed: 01/12/2023] Open
Abstract
Neuronal transmission is regulated by the local circuitry which is composed of principal neurons targeted at different subcellular compartments by a variety of interneurons. However, mechanisms that contribute to the subcellular localisation and maintenance of GABAergic interneuron terminals are poorly understood. Stabilization of GABAergic synapses depends on clustering of the postsynaptic scaffolding protein gephyrin and its interaction with the guanine nucleotide exchange factor collybistin. Lentiviral knockdown experiments in adult rats indicated that the receptor tyrosine kinase EphA7 is required for the stabilisation of basket cell terminals on proximal dendritic and somatic compartments of granular cells of the dentate gyrus. EphA7 deficiency and concomitant destabilisation of GABAergic synapses correlated with impaired long-term potentiation and reduced hippocampal learning. Reduced GABAergic innervation may be explained by an impact of EphA7 on gephyrin clustering. Overexpression or ephrin stimulation of EphA7 induced gephyrin clustering dependent on the mechanistic target of rapamycin (mTOR) which is an interaction partner of gephyrin. Gephyrin interactions with mTOR become released after mTOR activation while enhanced interaction with the guanine nucleotide exchange factor collybistin was observed in parallel. In conclusion, EphA7 regulates gephyrin clustering and the maintenance of inhibitory synaptic connectivity via mTOR signalling.
Collapse
|
28
|
Trotter J, Klein C, Krämer EM. GPI-Anchored Proteins and Glycosphingolipid-Rich Rafts: Platforms for Adhesion and Signaling. Neuroscientist 2016. [DOI: 10.1177/107385840000600410] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins in mammalian cells play a role in adhesion and signaling. They are sorted in the trans-Golgi network into glycosphingolipid- and cholesterol-rich microdomains termed rafts. Such rafts can be isolated from many cell types including epithelial cells, neural cells, and lymphocytes. In polarized cells, the rafts segregate in distinct regions of the cell. The rafts constitute platforms for signal transduction via raft-associated srcfamily tyrosine kinases. This review compares the sorting, distribution, and signaling of GPI-anchored proteins and rafts in epithelial cells, lymphocytes, and neural cells. A possible involvement of rafts in distinct diseases is also addressed.
Collapse
Affiliation(s)
- Jacqueline Trotter
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany,
| | - Corinna Klein
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - Eva-Maria Krämer
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
29
|
Abstract
The corticospinal system is the principal motor system for controlling movements that require the greatest skill and flexibility. It is the last motor system to develop. The pattern of termination of corticospinal axons, as they grow into the spinal gray matter, bears little resemblance to the pattern later in development and in maturity. Refinement of corticospinal terminations occurs during a protracted postnatal period and includes both elimination of transient terminations and growth to new targets. This refinement is driven by neural activity in the motor cortical areas and by limb motor experience. Developing corticospinal terminals compete with each other for synaptic space on spinal neurons. More active terminals are more competitive and are able to secure more synaptic space than their less active counterparts. Corticospinal terminals can activate spinal neurons from very early in development. The importance of this early synaptic activity appears to be more for refining corticospinal connections than for transmitting signals to spinal motor circuits for movement control. The motor control functions of the corticospinal system are not expressed until development of connectional specificity with spinal cord neurons, a strong capacity for corticospinal synapses to facilitate spinal motor circuits, and the formation of the cortical motor map.
Collapse
Affiliation(s)
- John H Martin
- Center for Neurology and Behavior, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA.
| |
Collapse
|
30
|
Greferath U, Canty AJ, Messenger J, Murphy M. Developmental expression of EphA4-tyrosine kinase receptor in the mouse brain and spinal cord. Mech Dev 2016; 119 Suppl 1:S231-8. [PMID: 14516691 DOI: 10.1016/s0925-4773(03)00122-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Eph receptor tyrosine kinases and their ephrin ligands are involved in some of the most important steps during the development of the central nervous system, including cell migration, axon guidance, topographic mapping and synapse formation. Moreover, in the adult, they have been implicated in plasticity and regulation of neural stem cell function. One member of the Eph family, EphA4, can bind to both classes of ephrins and may have multiple functions in nervous system development. In order to look for potential sites of EphA4 action during central nervous system development, we conducted a spatio-temporal analysis of EphA4 protein expression. We used immunohistochemistry in preference to in situ hybridization because of the high likelihood that EphA4 protein is expressed on axon tracts, long distances from EphA4 mRNA. In the telencephalon, EphA4 was expressed in the developing cortex from embryonic day 11 (E11) and, later, on major cortical tracts including the corpus callosum and cortico-spinal tract. Robust EphA4 expression was also found in the hippocampus and fornix, and cells and tracts in the striatum. In the diencephalon, the thalamus, the hypothalamus and thalamo-cortical projection were strongly positive. In the mesencephalon, a number of different nuclei were weakly positive, most prominently the red nucleus. In the rhombencephalon, many nuclei were strongly positive including the cerebellum and one of its afferent paths, the inferior cerebellar peduncle, as well as the olivary region. In the spinal cord, there was a dynamic pattern of expression through development, with persistent expression in the dorsal funiculus and ventral grey matter.
Collapse
Affiliation(s)
- Ursula Greferath
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
31
|
Son AI, Hashimoto-Torii K, Rakic P, Levitt P, Torii M. EphA4 has distinct functionality from EphA7 in the corticothalamic system during mouse brain development. J Comp Neurol 2015; 524:2080-92. [PMID: 26587807 DOI: 10.1002/cne.23933] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 11/11/2022]
Abstract
Deciphering the molecular basis for guiding specific aspects of neocortical development remains a challenge because of the complexity of histogenic events and the vast array of protein interactions mediating these events. The Eph family of receptor tyrosine kinases is implicated in a number of neurodevelopmental activities. Eph receptors have been known to be capable of responding to several ephrin ligands within their subgroups, often eliciting similar downstream effects. However, several recent studies have indicated specificity between receptor-ligand pairs within each subfamily, the functional relevance of which is not defined. Here we show that a receptor of the EphA subfamily, EphA4, has effects distinct from those of its close relative, EphA7, in the developing brain. Both EphA4 and EphA7 interact similarly with corresponding ligands expressed in the developing neocortex. However, only EphA7 shows strong interaction with ligands in the somatosensory thalamic nuclei; EphA4 affects only cortical neuronal migration, with no visible effects on the guidance of corticothalamic (CT) axons, whereas EphA7 affects both cortical neuronal migration and CT axon guidance. Our data provide new evidence that Eph receptors in the same subfamily are not simply interchangeable but are functionally specified through selective interactions with distinct ligands in vivo. J. Comp. Neurol. 524:2080-2092, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexander I Son
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010.,Department of Pediatrics, Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20010
| | - Pasko Rakic
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut, 06510
| | - Pat Levitt
- Department of Pediatrics, Children's Hospital Los Angeles and Keck School of Medicine of University of Southern California, Los Angeles, California, 90027
| | - Masaaki Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010.,Department of Pediatrics, Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20010
| |
Collapse
|
32
|
Wijeratne DT, Rodger J, Wood FM, Fear MW. The role of Eph receptors and Ephrins in the skin. Int J Dermatol 2015; 55:3-10. [PMID: 26498559 DOI: 10.1111/ijd.12968] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/21/2014] [Accepted: 12/31/2014] [Indexed: 12/01/2022]
Abstract
Eph receptors and Ephrin ligands are widely expressed in the skin. Various studies have been carried out to identify the effects of these molecules on many aspects of skin development. Here we summarize the literature that has identified roles for Eph receptors and Ephrins in the skin, focusing mainly on the epidermis, hair follicles, and cutaneous innervation. This review may help direct and focus further investigations into the role of Eph receptors and Ephrins in the development, maintenance, and repair processes in cutaneous biology.
Collapse
Affiliation(s)
- Dulharie T Wijeratne
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Perth, WA, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Animal Biology, University of Western Australia, Perth, WA, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Perth, WA, Australia.,The Fiona Wood Foundation, Perth, WA, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Perth, WA, Australia.,The Fiona Wood Foundation, Perth, WA, Australia
| |
Collapse
|
33
|
The Acquisition of Target Dependence by Developing Rat Retinal Ganglion Cells. eNeuro 2015; 2:eN-NWR-0044-14. [PMID: 26464991 PMCID: PMC4586937 DOI: 10.1523/eneuro.0044-14.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 11/23/2022] Open
Abstract
Similar to neurons in the peripheral nervous system, immature CNS-derived RGCs become dependent on target-derived neurotrophic support as their axons reach termination sites in the brain. To study the factors that influence this developmental transition we took advantage of the fact that rat RGCs are born, and target innervation occurs, over a protracted period of time. Early-born RGCs have axons in the SC by birth (P0), whereas axons from late-born RGCs do not innervate the SC until P4-P5. Birth dating RGCs using EdU allowed us to identify RGCs (1) with axons still growing toward targets, (2) transitioning to target dependence, and (3) entirely dependent on target-derived support. Using laser-capture microdissection we isolated ∼34,000 EdU+ RGCs and analyzed transcript expression by custom qPCR array. Statistical analyses revealed a difference in gene expression profiles in actively growing RGCs compared with target-dependent RGCs, as well as in transitional versus target-dependent RGCs. Prior to innervation RGCs expressed high levels of BDNF and CNTFR α but lower levels of neurexin 1 mRNA. Analysis also revealed greater expression of transcripts for signaling molecules such as MAPK, Akt, CREB, and STAT. In a supporting in vitro study, purified birth-dated P1 RGCs were cultured for 24-48 h with or without BDNF; lack of BDNF resulted in significant loss of early-born but not late-born RGCs. In summary, we identified several important changes in RGC signaling that may form the basis for the switch from target independence to dependence.
Collapse
|
34
|
Olmez I, Shen W, McDonald H, Ozpolat B. Dedifferentiation of patient-derived glioblastoma multiforme cell lines results in a cancer stem cell-like state with mitogen-independent growth. J Cell Mol Med 2015; 19:1262-72. [PMID: 25787115 PMCID: PMC4459842 DOI: 10.1111/jcmm.12479] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 10/01/2014] [Indexed: 12/28/2022] Open
Abstract
Emerging evidence shows that glioblastoma multiforme (GBM) originates from cancer stem cells (CSCs). Characterization of CSC-specific signalling pathways would help identify new therapeutic targets and perhaps lead to the development of more efficient therapies selectively targeting CSCs. Here; we successfully dedifferentiated two patient-derived GBM cell lines into CSC-like cells (induced glioma stem cells, iGSCs) through expression of Oct4, Sox2 and Nanog transcription factors. Transformed cells exhibited significant suppression of epidermal growth factor receptor and its downstream pathways. Compared with parental GBM cells, iGSCs formed large neurospheres even in the absence of exogenous mitogens; they exhibited significant sensitivity to salinomycin and chemoresistance to temozolomide. Further characterization of iGSCs revealed induction of NOTCH1 and Wnt/β-catenin signalling and expression of CD133, CD44 and ALDH1A1. Our results indicate that iGSCs may help us understand CSC physiology and lead to development of potential therapeutic interventions aimed at differentiating tumour cells to render them more sensitive to chemotherapy or other standard agents.
Collapse
Affiliation(s)
- Inan Olmez
- Department of Neurology, Vanderbilt University, Nashville, TN, USA
| | - Wangzhen Shen
- Department of Neurology, Vanderbilt University, Nashville, TN, USA
| | - Hayes McDonald
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Non-Coding RNA Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
35
|
Azzarelli R, Hardwick LJA, Philpott A. Emergence of neuronal diversity from patterning of telencephalic progenitors. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:197-214. [PMID: 25619507 DOI: 10.1002/wdev.174] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/02/2014] [Accepted: 12/14/2014] [Indexed: 01/03/2023]
Abstract
During central nervous system (CNS) development, hundreds of distinct neuronal subtypes are generated from a single layer of multipotent neuroepithelial progenitor cells. Within the rostral CNS, initial regionalization of the telencephalon marks the territories where the cerebral cortex and the basal ganglia originate. Subsequent refinement of the primary structures determines the formation of domains of differential gene expression, where distinct fate-restricted progenitors are located. To understand how diversification of neural progenitors and neurons is achieved in the telencephalon, it is important to address early and late patterning events in this context. In particular, important questions include: How does the telencephalon become specified and regionalized along the major spatial axes? Within each region, are the differences in neuronal subtypes established at the progenitor level or at the postmitotic stage? If distinct progenitors exist that are committed to subtype-specific neuronal lineages, how does the diversification emerge? What is the contribution of positional and temporal cues and how is this information integrated into the intrinsic programs of cell identity? WIREs For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Roberta Azzarelli
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | | | | |
Collapse
|
36
|
Lefort R. Reversing synapse loss in Alzheimer's disease: Rho-guanosine triphosphatases and insights from other brain disorders. Neurotherapeutics 2015; 12:19-28. [PMID: 25588580 PMCID: PMC4322073 DOI: 10.1007/s13311-014-0328-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Alzheimer's disease (AD) is a monumental public health crisis with no effective cure or treatment. To date, therapeutic strategies have focused almost exclusively on upstream signaling events in the disease, namely on β-amyloid and amyloid precursor protein processing, and have, unfortunately, yielded few, if any, promising results. An alternative approach may be to target signaling events downstream of β-amyloid and even tau. However, with so many pathways already linked to the disease, understanding which ones are "drivers" versus "passengers" in the pathogenesis of the disease remains a tremendous challenge. Given the critical roles of Rho-guanosine triphosphatases (GTPases) in regulating the actin cytoskeleton and spine dynamics, and the strong association between spine abnormalities and cognition, it is not surprising that mutations in a number of genes involved in Rho-GTPase signaling have been implicated in several brain disorders, including schizophrenia and autism. And now, there is mounting literature implicating Rho-GTPase signaling in AD pathogenesis as well. Here, I review this evidence, with a particular emphasis on the regulators of Rho-GTPase signaling, namely guanine nucleotide exchange factors and GTPase-activating proteins. Several of these have been linked to various aspects of AD, and each offers a novel potential therapeutic target for AD.
Collapse
Affiliation(s)
- Roger Lefort
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA,
| |
Collapse
|
37
|
Becerikli M, Merwart B, Lam MC, Suppelna P, Rittig A, Mirmohammedsadegh A, Stricker I, Theiss C, Singer BB, Jacobsen F, Steinstraesser L. EPHB4 tyrosine-kinase receptor expression and biological significance in soft tissue sarcoma. Int J Cancer 2014; 136:1781-91. [PMID: 25274141 DOI: 10.1002/ijc.29244] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 08/09/2014] [Accepted: 08/22/2014] [Indexed: 12/22/2022]
Abstract
Soft tissue sarcomas (STS) are heterogeneous malignant tumors of mesenchymal origin. Due to low incidence and high number of different histological subtypes, their pathogenesis and thus potential targets for their therapy remain barely investigated. Several studies revealed significant higher EPHB4 expression in malignancies such as prostate and colorectal cancer showing survival advantages for these tumor cells. Therefore we studied the expression of EPHB4 in a total of 46 clinical human specimens of different STS and human fibroblasts. EPHB4 mRNA and protein expression were significantly increased in synovial sarcoma. After targeting EPHB4 in fibrosarcoma, synovial sarcoma, liposarcoma and MFH sarcoma cell lines by siRNA or by inhibition of autophosphorylation using the specific EPHB4 kinase inhibitor NVP-BHG712 a decreased proliferation rate/vitality of synovial- and fibrosarcoma cells was observed. Silencing of EPHB4 significantly reduced the transmigration of synovial sarcoma cells towards fibroblasts and endothelial cells. In addition, we assessed the anti-metastatic effect of EPHB4 inhibition in vivo by intraperitoneal administration of the EPHB4 inhibitor in an appropriate sarcoma lung metastasis xenograft model. As result 43% of NVP-BHG712 treated mice (n = 3/7) developed pulmonary metastases whereas all control mice (n = 5) revealed lung metastases. The residual 57% of mice (n = 4/7) showed only small local tumor cell spots. Size measurements of the Vimentin positive area explained significant decrease in lung metastasis formation (p < 0.05) after EPHB4 kinase inhibition. In summary, these data provide first evidence of the importance of EPHB4 in the tumorigenesis of synovial sarcoma and present EPHB4 as a potential target in the therapy of this malignancy.
Collapse
Affiliation(s)
- M Becerikli
- Department of Plastic and Reconstructive Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Garel S, López-Bendito G. Inputs from the thalamocortical system on axon pathfinding mechanisms. Curr Opin Neurobiol 2014; 27:143-50. [DOI: 10.1016/j.conb.2014.03.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/20/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
|
39
|
Tai AX, Kromer LF. Corticofugal projections from medial primary somatosensory cortex avoid EphA7-expressing neurons in striatum and thalamus. Neuroscience 2014; 274:409-18. [PMID: 24909897 DOI: 10.1016/j.neuroscience.2014.05.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/08/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022]
Abstract
Within the first two postnatal weeks, corticostriatal axons from the primary somatosensory cortex (S1) form topographic projections that organize into characteristic bands of axon terminals in the dorsolateral striatum. Molecules regulating the development of these topographically organized projections are currently unknown. Thus, the present study investigated whether EphA receptor tyrosine kinases, which regulate axonal guidance in the visual system via axon repulsion, could participate in the formation of corticostriatal connections during development. Prior studies indicate that EphA7-expressing striatal neurons are organized into banded compartments resembling the matrisome innervation pattern formed by cortical afferents from the S1 cortex and that ephrin-A5, a known EphA7 ligand, is expressed in a medial (high) to lateral (low) gradient in S1. Thus, we hypothesized that the organization of EphA7-expressing striatal neurons in banded domains provides a repulsive barrier preventing corticostriatal axons containing EphA7-ligands from innervating inappropriate regions of the striatum. To evaluate this, we injected the anterograde tracer, biotinylated dextran amine (BDA), into two locations in medial areas of S1 (the anterior and posterior whisker fields), which are reported to express high levels of ephrin-A5 during development. Injections were made in mouse pups on postnatal day 9 (P9) and the animals were processed for immunohistochemistry on P12. Our data demonstrate that projections from both the forelimb/anterior whisker field and the posterior whisker field avoid EphA7-expressing neurons and terminate in a banded pattern in regions with very low EphA7-expression. We also determined that corticothalamic projections from medial S1 also exhibit a restricted distribution in the thalamus and avoid neurons expressing EphA7. Thus, our results support the hypothesis that the anatomical organization of striatal and thalamic neurons expressing EphA7 receptors restricts the topographic distribution of cortical afferents from medial regions of S1 which express high levels of ephrin-A5.
Collapse
Affiliation(s)
- A X Tai
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20007, USA.
| | - L F Kromer
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20007, USA; Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20007, USA.
| |
Collapse
|
40
|
Bennett KM, Afanador MD, Lal CV, Xu H, Persad E, Legan SK, Chenaux G, Dellinger M, Savani RC, Dravis C, Henkemeyer M, Schwarz MA. Ephrin-B2 reverse signaling increases α5β1 integrin-mediated fibronectin deposition and reduces distal lung compliance. Am J Respir Cell Mol Biol 2014; 49:680-7. [PMID: 23742148 DOI: 10.1165/rcmb.2013-0002oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Alveolar growth abnormalities and severe respiratory dysfunction are often fatal. Identifying mechanisms that control epithelial proliferation and enlarged, poorly septated airspaces is essential in developing new therapies for lung disease. The membrane-bound ligand ephrin-B2 is strongly expressed in lung epithelium, and yet in contrast to its known requirement for arteriogenesis, considerably less is known regarding the function of this protein in the epithelium. We hypothesize that the vascular mediator ephrin-B2 governs alveolar growth and mechanics beyond the confines of the endothelium. We used the in vivo manipulation of ephrin-B2 reverse signaling to determine the role of this vascular mediator in the pulmonary epithelium and distal lung mechanics. We determined that the ephrin-B2 gene (EfnB2) is strongly expressed in alveolar Type 2 cells throughout development and into adulthood. The role of ephrin-B2 reverse signaling in the lung was assessed in Efnb2(LacZ/6YFΔV) mutants that coexpress the intracellular truncated ephrin-B2-β-galactosidase fusion and an intracellular point mutant ephrin-B2 protein that is unable to become tyrosine-phosphorylated or to interact with either the SH2 or PDZ domain-containing downstream signaling proteins. In these viable mice, we observed pulmonary hypoplasia and altered pulmonary mechanics, as evidenced by a marked reduction in lung compliance. Associated with the reduction in lung compliance was a significant increase in insoluble fibronectin (FN) basement membrane matrix assembly with FN deposition, and a corresponding increase in the α5 integrin receptor required for FN fibrillogenesis. These experiments indicate that ephrin-B2 reverse signaling mediates distal alveolar formation, fibrillogenesis, and pulmonary compliance.
Collapse
|
41
|
Wei Y, Tsigankov D, Koulakov A. The molecular basis for the development of neural maps. Ann N Y Acad Sci 2014; 1305:44-60. [PMID: 24329485 DOI: 10.1111/nyas.12324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neural development leads to the establishment of precise connectivity in the nervous system. By contrasting the information capacities of cortical connectivity and the genome, we suggest that simplifying rules are necessary in order to create cortical connections from the limited set of instructions contained in the genome. One of these rules may be employed by the visual system, where connections are formed on the basis of the interplay of molecular gradients and activity-dependent synaptic plasticity. We show how a simple model that accounts for such interplay can create both neural topographic maps and more complex patterns of ocular dominance, that is, the segregated binary mixture of projections from two eyes converging in the same visual area. With regard to the ocular dominance patterns, we show that pattern orientation may be instructed by the direction of the gradients of molecular labels. We also show that the periodicity of ocular dominance patterns may result from the interplay of the effects of molecular gradients and correlated neural activity. Overall, we propose that simple mechanisms can account for the formation of apparently complex features of neuronal connections.
Collapse
Affiliation(s)
- Yi Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | | |
Collapse
|
42
|
Lai WB, Wang BJ, Hu MK, Hsu WM, Her GM, Liao YF. Ligand-dependent activation of EphA4 signaling regulates the proteolysis of amyloid precursor protein through a Lyn-mediated pathway. Mol Neurobiol 2013; 49:1055-68. [PMID: 24217950 DOI: 10.1007/s12035-013-8580-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/24/2013] [Indexed: 11/27/2022]
Abstract
Alzheimer's disease is the most common dementia afflicting the elderly in modern society. This disease arises from the neurotoxicity elicited by abnormal aggregates of amyloid-β (Aβ) protein. Such aggregates form through the cleavage of amyloid precursor protein (APP) by β-secretase and the subsequent proteolysis of the APP C-terminal fragment (APP-βCTF or C99) by γ-secretase to yield Aβ and APP intracellular domain (AICD). Recent evidence suggests that C99 and AICD may exert harmful effects on cells, suggesting that the proteolytic products of APP, including Aβ, C99, and AICD, could play a pivotal role in neuronal viability. Here, we demonstrate that ligand-activated EphA4 signaling governs the proteostasis of C99, AICD, and Aβ, without significantly affecting γ-secretase activity. EphA4 induced accumulation of C99 and AICD through a Lyn-dependent pathway; activation of this pathway triggered phosphorylation of EphA4, resulting in positive feedback of C99 and AICD proteostasis. Inhibition of EphA4 by dasatinib, a receptor tyrosine kinase inhibitor, effectively suppressed C99 and AICD accumulation. Furthermore, EphA4 signaling controlled C99 and AICD proteolysis through the ubiquitin-proteasome system. In conclusion, we have identified an EphA4-Lyn pathway that is essential for the metabolism of APP and its proteolytic derivatives, thereby providing novel pharmacological targets for the development of anti-Aβ therapeutics for AD.
Collapse
Affiliation(s)
- Wei-Bin Lai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
43
|
Chukkapalli S, Amessou M, Dilly AK, Dekhil H, Zhao J, Liu Q, Bejna A, Thomas RD, Bandyopadhyay S, Bismar TA, Neill D, Azoulay L, Batist G, Kandouz M. Role of the EphB2 receptor in autophagy, apoptosis and invasion in human breast cancer cells. Exp Cell Res 2013; 320:233-46. [PMID: 24211352 DOI: 10.1016/j.yexcr.2013.10.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 10/26/2022]
Abstract
The Eph and Ephrin proteins, which constitute the largest family of receptor tyrosine kinases, are involved in normal tissue development and cancer progression. Here, we examined the expression and role of the B-type Eph receptor EphB2 in breast cancers. By immunohistochemistry using a progression tissue microarray of human clinical samples, we found EphB2 to be expressed in benign tissues, but strongly increased in cancers particularly in invasive and metastatic carcinomas. Subsequently, we found evidence that EphB2, whose expression varies in established cell breast lines, possesses multiple functions. First, the use of a DOX-inducible system to restore EphB2 function to low expressers resulted in decreased tumor growth in vitro and in vivo, while its siRNA-mediated silencing in high expressers increased growth. This function involves the onset of apoptotic death paralleled by caspases 3 and 9 activation. Second, EphB2 was also found to induce autophagy, as assessed by immunofluorescence and/or immunoblotting examination of the LC3, ATG5 and ATG12 markers. Third, EphB2 also has a pro-invasive function in breast cancer cells that involves the regulation of MMP2 and MMP9 metalloproteases and can be blocked by treatment with respective neutralizing antibodies. Furthermore, EphB2-induced invasion is kinase-dependent and is impeded in cells expressing a kinase-dead mutant EphB2. In summary, we identified a mechanism involving a triple role for EphB2 in breast cancer progression, whereby it regulates apoptosis, autophagy, and invasion.
Collapse
Affiliation(s)
- Sahiti Chukkapalli
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mohamed Amessou
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ashok K Dilly
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hafedh Dekhil
- Obesity Research Center, College of Medicine, King Saud University, Kingdom of Saudi Arabia
| | - Jing Zhao
- Montréal Centre for Experimental Therapeutics in Cancer, Segal cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Qiang Liu
- Montréal Centre for Experimental Therapeutics in Cancer, Segal cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Alex Bejna
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ron D Thomas
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | | | - Tarek A Bismar
- Departments of Pathology & Laboratory Medicine, Oncology, Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Daniel Neill
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Laurent Azoulay
- Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Gerald Batist
- Montréal Centre for Experimental Therapeutics in Cancer, Segal cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada; Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA; Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
44
|
Ephrin-A1 expression induced by S100A8 is mediated by the toll-like receptor 4. Biochem Biophys Res Commun 2013; 440:623-9. [DOI: 10.1016/j.bbrc.2013.09.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 09/24/2013] [Indexed: 11/19/2022]
|
45
|
Puelles L, Harrison M, Paxinos G, Watson C. A developmental ontology for the mammalian brain based on the prosomeric model. Trends Neurosci 2013; 36:570-8. [PMID: 23871546 DOI: 10.1016/j.tins.2013.06.004] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 06/12/2013] [Accepted: 06/20/2013] [Indexed: 12/22/2022]
Abstract
In the past, attempts to create a hierarchical classification of brain structures (an ontology) have been limited by the lack of adequate data on developmental processes. Recent studies on gene expression during brain development have demonstrated the true morphologic interrelations of different parts of the brain. A developmental ontology takes into account the progressive rostrocaudal and dorsoventral differentiation of the neural tube, and the radial migration of derivatives from progenitor areas, using fate mapping and other experimental techniques. In this review, we used the prosomeric model of brain development to build a hierarchical classification of brain structures based chiefly on gene expression. Because genomic control of neural morphogenesis is remarkably conservative, this ontology should prove essentially valid for all vertebrates, aiding terminological unification.
Collapse
Affiliation(s)
- Luis Puelles
- Department of Human Anatomy, University of Murcia, Murcia 30003, Spain
| | | | | | | |
Collapse
|
46
|
THURSTON GAVIN, BALUK PETER, MCDONALD DONALDM. Determinants of Endothelial Cell Phenotype in Venules. Microcirculation 2013. [DOI: 10.1111/j.1549-8719.2000.tb00743.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
ADAM12-cleaved ephrin-A1 contributes to lung metastasis. Oncogene 2013; 33:2179-90. [DOI: 10.1038/onc.2013.180] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 12/22/2022]
|
48
|
Peng YR, Hou ZH, Yu X. The kinase activity of EphA4 mediates homeostatic scaling-down of synaptic strength via activation of Cdk5. Neuropharmacology 2012; 65:232-43. [PMID: 23123677 DOI: 10.1016/j.neuropharm.2012.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 10/17/2012] [Accepted: 10/20/2012] [Indexed: 11/25/2022]
Abstract
Neurons within a network have the ability to homeostatically scale-down their excitatory synaptic strength under conditions of persistent neuronal activity elevation, a process pivotal to neural circuit stability. How this homeostatic regulation is achieved at the molecular level in developing neural circuits, which face gradually elevated neuronal activity as part of circuit wiring, is not well-understood. Using dissociated hippocampal neuronal cultures, we identified a critical and cell autonomous role for the receptor tyrosine kinase EphA4 in mediating activity-induced homeostatic down-regulation of excitatory synaptic strength. Reducing the endogenous level of EphA4 in individual neurons by RNAi effectively blocked activity-induced scaling-down of excitatory synaptic strength, while co-transfection of RNAi resistant EphA4 rescued this effect. Furthermore, interfering with EphA4 forward signaling using EphA4-Fc blocked activity-induced homeostatic synaptic scaling-down, while direct activation of EphA4 with its ligand EphrinA1 weakened excitatory synaptic strength. Up- or down-regulating EphA4 function in individual neurons also did not affect the density of excitatory synapses. The kinase activities of EphA4 and its downstream effector Cdk5 were both required for homeostatic synaptic scaling, as overexpression of EphA4 with constitutively active kinase activity reduced excitatory synaptic strength, while interfering with either the kinase activity of EphA4 or Cdk5 blocked activity-induced synaptic scaling. Consistently, the activities of EphA4 and Cdk5 increased significantly during global and persistent activity elevation. Together, our work demonstrated that the kinase activity of EphA4, via activation of downstream Cdk5 activity, mediates the scaling-down of excitatory synaptic strength under conditions of global activity elevation.
Collapse
Affiliation(s)
- Yi-Rong Peng
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | |
Collapse
|
49
|
EphA/ephrin-A signaling is critically involved in region-specific apoptosis during early brain development. Cell Death Differ 2012; 20:169-80. [PMID: 22976838 DOI: 10.1038/cdd.2012.121] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
EphAs and ephrin-As have been implicated in the morphogenesis of the developing brain. We found that EphA7 and ephrin-A5 are coexpressed in the dorsal midline (DM) of the diencephalon and anterior mesencephalon. Interestingly, programmed cell death (PCD) of the neural epithelial cells normally found in this region was reduced in ephrin-A5/ephrin-A2 dual-deficient embryos. In contrast, in vivo expression of ephrin-A5-Fc or full-length ephrin-A5 strongly induced apoptosis in neural epithelial cells and was accompanied by severe brain malformation during embryonic development. Expression of ephrinA5-Fc correlated with apoptosis of EphA7-expressing cells, whereas null mutation of ephrin-A5 resulted in the converse phenotype. Importantly, null mutation of caspase-3 or endogenous ephrin-A5 attenuated the PCD induced by ectopically overexpressed ephrin-A5. Together, our results suggest that brain region-specific PCD may occur in a region where EphAs cluster with neighboring ephrin-As through cell-cell contact.
Collapse
|
50
|
North HA, Clifford MA, Donoghue MJ. 'Til Eph do us part': intercellular signaling via Eph receptors and ephrin ligands guides cerebral cortical development from birth through maturation. Cereb Cortex 2012; 23:1765-73. [PMID: 22744705 DOI: 10.1093/cercor/bhs183] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Eph receptors, the largest family of surface-bound receptor tyrosine kinases and their ligands, the ephrins, mediate a wide variety of cellular interactions in most organ systems throughout both development and maturity. In the forming cerebral cortex, Eph family members are broadly and dynamically expressed in particular sets of cortical cells at discrete times. Here, we review the known functions of Eph-mediated intercellular signaling in the generation of progenitors, the migration of maturing cells, the differentiation of neurons, the formation of functional connections, and the choice between life and death during corticogenesis. In synthesizing these results, we posit a signaling paradigm in which cortical cells maintain a life history of Eph-mediated intercellular interactions that guides subsequent cellular decision-making.
Collapse
Affiliation(s)
- Hilary A North
- Department of Biology and The Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057, USA
| | | | | |
Collapse
|