1
|
Shen L, Chen Y, Pan J, Yu X, Zhang Y, Guo B, Wang J, Liu Y, Xiao X, Chen S, Bao L. Development of a highly sensitive PbrR-based biosensor via directed evolution and its application for lead detection. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137489. [PMID: 39914342 DOI: 10.1016/j.jhazmat.2025.137489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 03/19/2025]
Abstract
The Whole-cell biosensor (WCB) is a convenient and practical assay that can monitor bioavailable lead (Pb) contamination. However, existing Pb-responsive WCB struggle to meet practical detection needs due to the lack of sensitivity, specificity, and stability. In this study, we developed a Pb WCB using the Pb resistance transcriptional regulatory factor (PbrR) and green fluorescent protein (GFP), and improved its performance by directed evolution in conjunction with fluorescence-activated cell sorting (FACS). After 3 rounds of screening, we acquired a biosensor mutant (PbrR-E3). The evolved biosensor exhibited an approximately 11-fold increase in maximum fluorescence output signal compared to the non-evolved biosensor, resulting in an improvement of its sensitivity and specificity. This biosensor demonstrated a limit of detection (LOD) of 0.045 μg/L. Furthermore, the evolved biosensor showcased outstanding performance in the detection of Pb(II) in tea infusion and also demonstrated good stability in tests with spiked real water samples. These results highlight the potential of the evolved WCB as a viable approach for monitoring Pb.
Collapse
Affiliation(s)
- Liang Shen
- School of Public Health, Wannan Medical College, Wuhu 241002, China; Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yiwen Chen
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Jiajie Pan
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Xin Yu
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Yubo Zhang
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Bingxin Guo
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Jiaqi Wang
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Ying Liu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230039, China
| | - Shaopeng Chen
- School of Public Health, Wannan Medical College, Wuhu 241002, China.
| | - Lingzhi Bao
- School of Public Health, Wannan Medical College, Wuhu 241002, China; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230039, China.
| |
Collapse
|
2
|
Zhai L, Wang Z, Liu F, Xu C, Wang J, Han H, Xie Q, Zhang W, Zheng Y, Buell AK, Dong Y. Semi-rational evolution of a recombinant DNA polymerase for modified nucleotide incorporation efficiency. PLoS One 2025; 20:e0316531. [PMID: 39951433 PMCID: PMC11828419 DOI: 10.1371/journal.pone.0316531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/12/2024] [Indexed: 02/16/2025] Open
Abstract
Engineering improved B-family DNA polymerases to catalyze 3'-O-modified nucleotide reversible terminators is limited by an insufficient understanding of the structural determinants that define polymerization efficiency. To explore the key mechanism for unnatural nucleotide incorporation, we engineered a B-family DNA polymerase from Thermococcus Kodakaraenis (KOD pol) by using semi-rational design strategies. We first scanned the active pocket of KOD pol through site-directed saturation mutagenesis and combinatorial mutations and identified a variant Mut_C2 containing five mutation sites (D141A, E143A, L408I, Y409A, A485E) using a high-throughput microwell-based screening method. Mut_C2 demonstrated high catalytic efficiency in incorporating 3'-O-azidomethyl-dATP labeled with a Cy3 dye, whereas the wild-type KOD pol failed to catalyze it. Computational simulations were then conducted of the DNA binding region of KOD pol to predict additional mutations with enhanced catalytic activity, which were subsequently experimentally verified. By a stepwise combinatorial mutagenesis approach, we obtained an eleven-mutation variant, named Mut_E10 by introducing additional mutations to the Mut_C2 variant. Mut_E10, which carried six specific mutations (S383T, Y384F, V389I, V589H, T676K, and V680M) within the DNA-binding region, demonstrated over 20-fold improvement in enzymatic activity as compared to Mut_C2. In addition, Mut_E10 demonstrated satisfactory performance in two different sequencing platforms (BGISEQ-500 and MGISEQ-2000), indicating its potential for commercialization. Our study demonstrates that a significant enhancement in its catalytic efficiency towards modified nucleotides can be achieved efficiently through combinatorial mutagenesis of residues in the active site and DNA binding region of DNA polymerases. These findings contribute to a comprehensive understanding of the mechanisms that underlie the incorporation of modified nucleotides by DNA polymerase. The sites of beneficial mutations, as well as the nucleotide incorporation mechanism identified in this study, can provide valuable guidance for the engineering of other B-family DNA polymerases.
Collapse
Affiliation(s)
- Lili Zhai
- BGI Research, Shenzhen, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Zi Wang
- BGI Research, Shenzhen, China
| | | | | | | | | | | | | | - Yue Zheng
- BGI Research, Shenzhen, China
- BGI Research, Hangzhou, China
| | - Alexander K. Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
3
|
Mao Y, Huang C, Zhou X, Han R, Deng Y, Zhou S. Genetically Encoded Biosensor Engineering for Application in Directed Evolution. J Microbiol Biotechnol 2023; 33:1257-1267. [PMID: 37449325 PMCID: PMC10619561 DOI: 10.4014/jmb.2304.04031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023]
Abstract
Although rational genetic engineering is nowadays the favored method for microbial strain improvement, building up mutant libraries based on directed evolution for improvement is still in many cases the better option. In this regard, the demand for precise and efficient screening methods for mutants with high performance has stimulated the development of biosensor-based high-throughput screening strategies. Genetically encoded biosensors provide powerful tools to couple the desired phenotype to a detectable signal, such as fluorescence and growth rate. Herein, we review recent advances in engineering several classes of biosensors and their applications in directed evolution. Furthermore, we compare and discuss the screening advantages and limitations of two-component biosensors, transcription-factor-based biosensors, and RNA-based biosensors. Engineering these biosensors has focused mainly on modifying the expression level or structure of the biosensor components to optimize the dynamic range, specificity, and detection range. Finally, the applications of biosensors in the evolution of proteins, metabolic pathways, and genome-scale metabolic networks are described. This review provides potential guidance in the design of biosensors and their applications in improving the bioproduction of microbial cell factories through directed evolution.
Collapse
Affiliation(s)
- Yin Mao
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
| | - Chao Huang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
| | - Xuan Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
| | - Runhua Han
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yu Deng
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
| | - Shenghu Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
4
|
Novel Production Methods of Polyhydroxyalkanoates and Their Innovative Uses in Biomedicine and Industry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238351. [PMID: 36500442 PMCID: PMC9740486 DOI: 10.3390/molecules27238351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Polyhydroxyalkanoate (PHA), a biodegradable polymer obtained from microorganisms and plants, have been widely used in biomedical applications and devices, such as sutures, cardiac valves, bone scaffold, and drug delivery of compounds with pharmaceutical interests, as well as in food packaging. This review focuses on the use of polyhydroxyalkanoates beyond the most common uses, aiming to inform about the potential uses of the biopolymer as a biosensor, cosmetics, drug delivery, flame retardancy, and electrospinning, among other interesting uses. The novel applications are based on the production and composition of the polymer, which can be modified by genetic engineering, a semi-synthetic approach, by changing feeding carbon sources and/or supplement addition, among others. The future of PHA is promising, and despite its production costs being higher than petroleum-based plastics, tools given by synthetic biology, bioinformatics, and machine learning, among others, have allowed for great production yields, monomer and polymer functionalization, stability, and versatility, a key feature to increase the uses of this interesting family of polymers.
Collapse
|
5
|
Insights into the Structures, Inhibitors, and Improvement Strategies of Glucose Oxidase. Int J Mol Sci 2022; 23:ijms23179841. [PMID: 36077243 PMCID: PMC9456440 DOI: 10.3390/ijms23179841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Glucose oxidase, which uses molecular oxygen as an electron acceptor to specifically catalyze the conversion of β-d-glucose to gluconic acid and hydrogen peroxide (H2O2), has been considered an important enzyme in increasing environmental sustainability and food security. However, achieving the high yield, low price and high activity required for commercial viability remains challenging. In this review, we first present a brief introduction, looking at the sources, characteristics, catalytic process, and applications of glucose oxidase. Then, the predictive structures of glucose oxidase from two different sources are comparatively discussed. We summarize the inhibitors of glucose oxidase. Finally, we highlight how the production of glucose oxidase can be improved by optimizing the culture conditions and microbial metabolic engineering.
Collapse
|
6
|
Screening Method for Polyhydroxyalkanoate Synthase Mutants Based on Polyester Degree of Polymerization Using High-Performance Liquid Chromatography. Microorganisms 2021; 9:microorganisms9091949. [PMID: 34576844 PMCID: PMC8469876 DOI: 10.3390/microorganisms9091949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022] Open
Abstract
A high-throughput screening method based on the degree of polymerization (DP) of polyhydroxyalkanoate (PHA) was developed using high-performance liquid chromatography (HPLC). In this method, PHA production was achieved using recombinant Escherichia coli supplemented with benzyl alcohol as a chain terminal compound. The cultured cells containing benzyl alcohol-capped PHA were decomposed by alkaline treatment, and the peaks of the decomposed monomer and benzyl alcohol were detected using HPLC. The DP of PHA could be determined from the peak ratio of the decomposed monomer to terminal benzyl alcohol. The measured DP was validated by other instrumental analyses using purified PHA samples. Using this system, mutants of PHA synthase from Bacillus cereus YB-4 (PhaRCYB4) were screened, and some enzymes capable of producing PHA with higher DP than the wild-type enzyme were obtained. The PHA yields of two of these enzymes were equivalent to the yield of the wild-type enzyme. Therefore, this screening method is suitable for the selection of beneficial mutants that can produce high molecular weight PHAs.
Collapse
|
7
|
Troiano D, Orsat V, Dumont MJ. Status of Biocatalysis in the Production of 2,5-Furandicarboxylic Acid. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02378] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Derek Troiano
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Valérie Orsat
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Marie-Josée Dumont
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
8
|
Zhang H, Chu W, Sun J, Liu Z, Huang WC, Xue C, Mao X. Combining Cell Surface Display and DNA-Shuffling Technology for Directed Evolution of Streptomyces Phospholipase D and Synthesis of Phosphatidylserine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13119-13126. [PMID: 31686506 DOI: 10.1021/acs.jafc.9b05394] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phospholipids have been widely used in food, medicine, cosmetics, and other fields because of their unique chemical structure and healthcare functions. Phospholipase D (PLD) is a key biocatalyst for the biotransformation of phospholipids. Here, an autodisplay expression system was constructed for rapid screening of mutants, and PLD variants were recombined using DNA shuffling technology and three beneficial mutations were obtained. The results of enzymatic performance and sequence information comparison indicated that C-terminal amino acids exerted a greater impact on the correct folding of PLDs, and N-terminal amino acids are more important for catalytic reaction. The best-performing recombinant enzyme in transphosphatidylation reactions was Recom-34, with a phosphatidylserine content accounting for 80.3% of total phospholipids and a 3.24-fold increased conversion rate compared to the parent enzyme. This study demonstrates great significance for screening ideal biocatalysts, facilitating soluble expression of inclusion body proteins, and identifying key amino acids.
Collapse
Affiliation(s)
- Haiyang Zhang
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , Shandong , China
| | - Wenqin Chu
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , Shandong , China
| | - Jianan Sun
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , Shandong , China
| | - Zhen Liu
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , Shandong , China
| | - Wen-Can Huang
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , Shandong , China
| | - Changhu Xue
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , Shandong , China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , Shandong , China
| | - Xiangzhao Mao
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , Shandong , China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , Shandong , China
| |
Collapse
|
9
|
Requirements for Empirical Immunogenicity Trials, Rather than Structure-Based Design, for Developing an Effective HIV Vaccine. HIV/AIDS: IMMUNOCHEMISTRY, REDUCTIONISM AND VACCINE DESIGN 2019. [PMCID: PMC7122000 DOI: 10.1007/978-3-030-32459-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The claim that it is possible to rationally design a structure-based HIV-1 vaccine is based on misconceptions regarding the nature of protein epitopes and of immunological specificity. Attempts to use reverse vaccinology to generate an HIV-1 vaccine on the basis of the structure of viral epitopes bound to monoclonal neutralizing antibodies have failed so far because it was not possible to extrapolate from an observed antigenic structure to the immunogenic structure required in a vaccine. Vaccine immunogenicity depends on numerous extrinsic factors such as the host immunoglobulin gene repertoire, the presence of various cellular and regulatory mechanisms in the immunized host and the process of antibody affinity maturation. All these factors played a role in the appearance of the neutralizing antibody used to select the epitope to be investigated as potential vaccine immunogen, but they cannot be expected to be present in identical form in the host to be vaccinated. It is possible to rationally design and optimize an epitope to fit one particular antibody molecule or to improve the paratope binding efficacy of a monoclonal antibody intended for passive immunotherapy. What is not possible is to rationally design an HIV-1 vaccine immunogen that will elicit a protective polyclonal antibody response of predetermined efficacy. An effective vaccine immunogen can only be discovered by investigating experimentally the immunogenicity of a candidate molecule and demonstrating its ability to induce a protective immune response. It cannot be discovered by determining which epitopes of an engineered antigen molecule are recognized by a neutralizing monoclonal antibody. This means that empirical immunogenicity trials rather than structural analyses of antigens offer the best hope of discovering an HIV-1 vaccine.
Collapse
|
10
|
Kang MK, Tullman-Ercek D. Engineering expression and function of membrane proteins. Methods 2018; 147:66-72. [DOI: 10.1016/j.ymeth.2018.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/03/2018] [Accepted: 04/16/2018] [Indexed: 01/18/2023] Open
|
11
|
Abstract
One of the greatest sources of metabolic and enzymatic diversity are microorganisms. In recent years, emerging recombinant DNA and genomic techniques have facilitated the development of new efficient expression systems, modification of biosynthetic pathways leading to new metabolites by metabolic engineering, and enhancement of catalytic properties of enzymes by directed evolution. Complete sequencing of industrially important microbial genomes is taking place very rapidly, and there are already hundreds of genomes sequenced. Functional genomics and proteomics are major tools used in the search for new molecules and development of higher-producing strains.
Collapse
Affiliation(s)
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| |
Collapse
|
12
|
Vaissier V, Sharma SC, Schaettle K, Zhang T, Head-Gordon T. Computational Optimization of Electric Fields for Improving Catalysis of a Designed Kemp Eliminase. ACS Catal 2017. [DOI: 10.1021/acscatal.7b03151] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Valerie Vaissier
- Chemical
Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| | | | | | | | - Teresa Head-Gordon
- Chemical
Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Kamal S, Rehman S, Iqbal HMN. Biotechnological valorization of proteases: From hyperproduction to industrial exploitation—A review. ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY 2017; 36:511-522. [DOI: 10.1002/ep.12447] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
From the last few years, due to the inadequacies of, in practice, physiochemical methods, growing scientific awareness, increasing ecological/environmental concerns, and legal boundaries, many industries are currently pursuing enzyme‐based approaches for developing green chemistry technologies. Proteases, responsible for proteolysis, are vitally important for life and engaged with vast industrial applications as they are eco‐friendly in nature. According to the bioinformatics, protease constitutes approximately 2% of the total human genome, whereas extracellular protease is a highly exploitable enzyme in various industries due to its robust nature, and commercially available with the trade name of Savinase, subtilisin Carlsberg, and subtilisin BPN′. Genetic modifications and immobilization revealed a novel protease production strategy with superior catalytic efficacy and improved constancy toward pH or temperature. A vast literature exists on biological activities of protease but only a few reports are available on the nutritional effects and the physiochemical parameters for fermentative production of protease, which offers new possibilities and potentials to fulfill the industrial demands of enzymes. This article focuses on the updated tidings on nutritional effects, physiochemical parameters, biochemical aspects, and strain improvement methodologies for hyperproduction of protease. This article also addresses existing challenges and tentative solutions for successful utilization of protease for industrial applications. © 2016 American Institute of Chemical Engineers Environ Prog, 36: 511–522, 2017
Collapse
Affiliation(s)
- Shagufta Kamal
- Department of Applied Chemistry & Biochemistry Government College University Faisalabad 38000 Pakistan
| | - Saima Rehman
- Department of Applied Chemistry & Biochemistry Government College University Faisalabad 38000 Pakistan
| | - Hafiz M. N. Iqbal
- School of Engineering and Science Tecnologico de Monterrey, Campus Monterrey Ave. Eugenio Garza Sada 2501 Monterrey N.L CP 64849 Mexico
| |
Collapse
|
14
|
Enhancing activity and thermostability of lipase A from Serratia marcescens by site-directed mutagenesis. Enzyme Microb Technol 2016; 93-94:18-28. [DOI: 10.1016/j.enzmictec.2016.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/20/2016] [Accepted: 07/15/2016] [Indexed: 11/19/2022]
|
15
|
Takahashi T, Vo Ngo BC, Xiao L, Arya G, Heller MJ. Molecular mechanical properties of short-sequence peptide enzyme mimics. J Biomol Struct Dyn 2015; 34:463-74. [DOI: 10.1080/07391102.2015.1039586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Adrio JL, Demain AL. Microbial enzymes: tools for biotechnological processes. Biomolecules 2014; 4:117-39. [PMID: 24970208 PMCID: PMC4030981 DOI: 10.3390/biom4010117] [Citation(s) in RCA: 313] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/02/2014] [Accepted: 01/02/2014] [Indexed: 11/29/2022] Open
Abstract
Microbial enzymes are of great importance in the development of industrial bioprocesses. Current applications are focused on many different markets including pulp and paper, leather, detergents and textiles, pharmaceuticals, chemical, food and beverages, biofuels, animal feed and personal care, among others. Today there is a need for new, improved or/and more versatile enzymes in order to develop more novel, sustainable and economically competitive production processes. Microbial diversity and modern molecular techniques, such as metagenomics and genomics, are being used to discover new microbial enzymes whose catalytic properties can be improved/modified by different strategies based on rational, semi-rational and random directed evolution. Most industrial enzymes are recombinant forms produced in bacteria and fungi.
Collapse
Affiliation(s)
- Jose L Adrio
- Neol Biosolutions SA, BIC Granada, Granada 18016, Spain.
| | - Arnold L Demain
- Research Institute for Scientists Emeriti (R.I.S.E.), Drew University, Madison, NJ 07940, USA.
| |
Collapse
|
17
|
Fungal Beta-glucosidases: a bottleneck in industrial use of lignocellulosic materials. Biomolecules 2013; 3:612-31. [PMID: 24970184 PMCID: PMC4030957 DOI: 10.3390/biom3030612] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/17/2013] [Accepted: 08/20/2013] [Indexed: 12/16/2022] Open
Abstract
Profitable biomass conversion processes are highly dependent on the use of efficient enzymes for lignocellulose degradation. Among the cellulose degrading enzymes, beta-glucosidases are essential for efficient hydrolysis of cellulosic biomass as they relieve the inhibition of the cellobiohydrolases and endoglucanases by reducing cellobiose accumulation. In this review, we discuss the important role beta-glucosidases play in complex biomass hydrolysis and how they create a bottleneck in industrial use of lignocellulosic materials. An efficient beta-glucosidase facilitates hydrolysis at specified process conditions, and key points to consider in this respect are hydrolysis rate, inhibitors, and stability. Product inhibition impairing yields, thermal inactivation of enzymes, and the high cost of enzyme production are the main obstacles to commercial cellulose hydrolysis. Therefore, this sets the stage in the search for better alternatives to the currently available enzyme preparations either by improving known or screening for new beta-glucosidases.
Collapse
|
18
|
Abstract
Directed evolution, the laboratory process by which biological entities with desired traits are created through iterative rounds of genetic diversification and library screening or selection, has become one of the most useful and widespread tools in basic and applied biology. From its roots in classical strain engineering and adaptive evolution, modern directed evolution came of age twenty years ago with the demonstration of repeated rounds of PCR-driven random mutagenesis and activity screening to improve protein properties. Since then, numerous techniques have been developed that have enabled the evolution of virtually any protein, pathway, network or entire organism of interest. Here we recount some of the major milestones in the history of directed evolution, highlight the most promising recent developments in the field, and discuss the future challenges and opportunities that lie ahead.
Collapse
Affiliation(s)
- Ryan E. Cobb
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| | - Ran Chao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801
- Departments of Chemistry, Biochemistry, and Bioengineering, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| |
Collapse
|
19
|
Abstract
Microorganisms are one of the greatest sources of metabolic and enzymatic diversity. In recent years, emerging recombinant DNA and genomic techniques have facilitated the development of new efficient expression systems, modification of biosynthetic pathways leading to new metabolites by metabolic engineering, and enhancement of catalytic properties of enzymes by directed evolution. Complete sequencing of industrially important microbial genomes is taking place very rapidly and there are already hundreds of genomes sequenced. Functional genomics and proteomics are major tools used in the search for new molecules and development of higher-producing strains.
Collapse
|
20
|
Van Regenmortel MHV. Requirements for empirical immunogenicity trials, rather than structure-based design, for developing an effective HIV vaccine. Arch Virol 2011; 157:1-20. [PMID: 22012269 PMCID: PMC7087187 DOI: 10.1007/s00705-011-1145-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 10/07/2011] [Indexed: 11/29/2022]
Abstract
The claim that it is possible to rationally design a structure-based HIV-1 vaccine is based on misconceptions regarding the nature of protein epitopes and of immunological specificity. Attempts to use reverse vaccinology to generate an HIV-1 vaccine on the basis of the structure of viral epitopes bound to monoclonal neutralizing antibodies have failed so far because it was not possible to extrapolate from an observed antigenic structure to the immunogenic structure required in a vaccine. Vaccine immunogenicity depends on numerous extrinsic factors such as the host immunoglobulin gene repertoire, the presence of various cellular and regulatory mechanisms in the immunized host and the process of antibody affinity maturation. All these factors played a role in the appearance of the neutralizing antibody used to select the epitope to be investigated as potential vaccine immunogen, but they cannot be expected to be present in identical form in the host to be vaccinated. It is possible to rationally design and optimize an epitope to fit one particular antibody molecule or to improve the paratope binding efficacy of a monoclonal antibody intended for passive immunotherapy. What is not possible is to rationally design an HIV-1 vaccine immunogen that will elicit a protective polyclonal antibody response of predetermined efficacy. An effective vaccine immunogen can only be discovered by investigating experimentally the immunogenicity of a candidate molecule and demonstrating its ability to induce a protective immune response. It cannot be discovered by determining which epitopes of an engineered antigen molecule are recognized by a neutralizing monoclonal antibody. This means that empirical immunogenicity trials rather than structural analyses of antigens offer the best hope of discovering an HIV-1 vaccine.
Collapse
Affiliation(s)
- Marc H V Van Regenmortel
- Stellenbosch Institute of Advanced Study, Wallenberg Research Center at Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
21
|
Zhang W, Wang M, Huang Y, Chea S, Zheng Z, Qian X, Shen Y. New and highly efficient methodology for screening high-yield strains of cytotoxic deacetylmycoepoxydiene (DAM). Lett Appl Microbiol 2011; 52:441-7. [DOI: 10.1111/j.1472-765x.2011.03015.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Exploiting models of molecular evolution to efficiently direct protein engineering. J Mol Evol 2010; 72:193-203. [PMID: 21132281 DOI: 10.1007/s00239-010-9415-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
Abstract
Directed evolution and protein engineering approaches used to generate novel or enhanced biomolecular function often use the evolutionary sequence diversity of protein homologs to rationally guide library design. To fully capture this sequence diversity, however, libraries containing millions of variants are often necessary. Screening libraries of this size is often undesirable due to inaccuracies of high-throughput assays, costs, and time constraints. The ability to effectively cull sequence diversity while still generating the functional diversity within a library thus holds considerable value. This is particularly relevant when high-throughput assays are not amenable to select/screen for certain biomolecular properties. Here, we summarize our recent attempts to develop an evolution-guided approach, Reconstructing Evolutionary Adaptive Paths (REAP), for directed evolution and protein engineering that exploits phylogenetic and sequence analyses to identify amino acid substitutions that are likely to alter or enhance function of a protein. To demonstrate the utility of this technique, we highlight our previous work with DNA polymerases in which a REAP-designed small library was used to identify a DNA polymerase capable of accepting non-standard nucleosides. We anticipate that the REAP approach will be used in the future to facilitate the engineering of biopolymers with expanded functions and will thus have a significant impact on the developing field of 'evolutionary synthetic biology'.
Collapse
|
23
|
Omori K, Kikkawa Y, Kanesato M, Hiratani K. Noncyclic Isobutenyl Compounds with Esters and Amides: Effect of Intramolecular Hydrogen Bonds Tuned by Tandem Claisen Rearrangement on the Two-dimensional Structures. CHEM LETT 2010. [DOI: 10.1246/cl.2010.1039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Santos CR, Squina FM, Navarro AM, Ruller R, Prade R, Murakami MT. Cloning, expression, purification, crystallization and preliminary X-ray diffraction studies of the catalytic domain of a hyperthermostable endo-1,4-beta-D-mannanase from Thermotoga petrophila RKU-1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1078-81. [PMID: 20823531 DOI: 10.1107/s1744309110029131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/21/2010] [Indexed: 05/26/2023]
Abstract
Endo-1,4-beta-D-mannanases play key roles in seed germination and fruit ripening and have recently received much attention owing to their potential applications in the food, detergent and kraft pulp industries. In order to delineate their structural determinants for specificity and stability, X-ray crystallographic investigations combined with detailed functional studies are being performed. In this work, crystals of the catalytic domain of a hyperthermostable endo-1,4-beta-D-mannanase from Thermotoga petrophila RKU-1 were obtained from three different conditions, resulting in two crystalline forms. Crystals from conditions with phosphate or citrate salts as precipitant (CryP) belonged to space group P2(1)2(1)2(1), with unit-cell parameters a=58.76, b=87.99, c=97.34 A, while a crystal from a condition with ethanol as precipitant (CryE) belonged to space group I2(1)2(1)2(1), with unit-cell parameters a=91.03, b=89.97, c=97.89 A. CryP and CryE diffracted to resolutions of 1.40 and 1.45 A, respectively.
Collapse
Affiliation(s)
- Camila Ramos Santos
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, 13083-970 Campinas-SP, Brazil
| | | | | | | | | | | |
Collapse
|
25
|
Goettig P, Magdolen V, Brandstetter H. Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Biochimie 2010; 92:1546-67. [PMID: 20615447 PMCID: PMC3014083 DOI: 10.1016/j.biochi.2010.06.022] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 06/29/2010] [Indexed: 01/21/2023]
Abstract
Including the true tissue kallikrein KLK1, kallikrein-related peptidases (KLKs) represent a family of fifteen mammalian serine proteases. While the physiological roles of several KLKs have been at least partially elucidated, their activation and regulation remain largely unclear. This obscurity may be related to the fact that a given KLK fulfills many different tasks in diverse fetal and adult tissues, and consequently, the timescale of some of their physiological actions varies significantly. To date, a variety of endogenous inhibitors that target distinct KLKs have been identified. Among them are the attenuating Zn(2+) ions, active site-directed proteinaceous inhibitors, such as serpins and the Kazal-type inhibitors, or the huge, unspecific compartment forming α(2)-macroglobulin. Failure of these inhibitory systems can lead to certain pathophysiological conditions. One of the most prominent examples is the Netherton syndrome, which is caused by dysfunctional domains of the Kazal-type inhibitor LEKTI-1 which fail to appropriately regulate KLKs in the skin. Small synthetic inhibitory compounds and natural polypeptidic exogenous inhibitors have been widely employed to characterize the activity and substrate specificity of KLKs and to further investigate their structures and biophysical properties. Overall, this knowledge leads not only to a better understanding of the physiological tasks of KLKs, but is also a strong fundament for the synthesis of small compound drugs and engineered biomolecules for pharmaceutical approaches. In several types of cancer, KLKs have been found to be overexpressed, which makes them clinically relevant biomarkers for prognosis and monitoring. Thus, down regulation of excessive KLK activity in cancer and in skin diseases by small inhibitor compounds may represent attractive therapeutical approaches.
Collapse
Affiliation(s)
- Peter Goettig
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria.
| | | | | |
Collapse
|
26
|
Adrio JL, Demain AL. Recombinant organisms for production of industrial products. Bioeng Bugs 2009; 1:116-31. [PMID: 21326937 DOI: 10.4161/bbug.1.2.10484] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/30/2009] [Accepted: 11/02/2009] [Indexed: 11/19/2022] Open
Abstract
A revolution in industrial microbiology was sparked by the discoveries of ther double-stranded structure of DNA and the development of recombinant DNA technology. Traditional industrial microbiology was merged with molecular biology to yield improved recombinant processes for the industrial production of primary and secondary metabolites, protein biopharmaceuticals and industrial enzymes. Novel genetic techniques such as metabolic engineering, combinatorial biosynthesis and molecular breeding techniques and their modifications are contributing greatly to the development of improved industrial processes. In addition, functional genomics, proteomics and metabolomics are being exploited for the discovery of novel valuable small molecules for medicine as well as enzymes for catalysis. The sequencing of industrial microbal genomes is being carried out which bodes well for future process improvement and discovery of new industrial products.
Collapse
Affiliation(s)
- Jose-Luis Adrio
- NeuronBioPharma, S.A., Parque Tecnologico de Ciencias de la Salud, Edificio BIC, Armilla, Granada, Spain
| | | |
Collapse
|
27
|
|
28
|
Abstract
Redox-active enzymes perform many key biological reactions. The electron transfer process is complex, not only because of its versatility, but also because of the intricate and delicate modulation exerted by the protein scaffold on the redox properties of the catalytic sites. Nowadays, there is a wealth of information available about the catalytic mechanisms of redox-active enzymes and the time is propitious for the development of projects based on the protein engineering of redox-active enzymes. In this review, we aim to provide an updated account of the available methods used for protein engineering, including both genetic and chemical tools, which are usually reviewed separately. Specific applications to redox-active enzymes are mentioned within each technology, with emphasis on those cases where the generation of novel functionality was pursued. Finally, we focus on two emerging fields in the protein engineering of redox-active enzymes: the construction of novel nucleic acid-based catalysts and the remodeling of intra-molecular electron transfer networks. We consider that the future development of these areas will represent fine examples of the concurrence of chemical and genetic tools.
Collapse
Affiliation(s)
- Gloria Saab-Rincón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | |
Collapse
|
29
|
Demain AL, Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 2009; 27:297-306. [PMID: 19500547 DOI: 10.1016/j.biotechadv.2009.01.008] [Citation(s) in RCA: 611] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 01/14/2009] [Accepted: 01/21/2009] [Indexed: 02/08/2023]
Abstract
Large proteins are usually expressed in a eukaryotic system while smaller ones are expressed in prokaryotic systems. For proteins that require glycosylation, mammalian cells, fungi or the baculovirus system is chosen. The least expensive, easiest and quickest expression of proteins can be carried out in Escherichia coli. However, this bacterium cannot express very large proteins. Also, for S-S rich proteins, and proteins that require post-translational modifications, E. coli is not the system of choice. The two most utilized yeasts are Saccharomyces cerevisiae and Pichia pastoris. Yeasts can produce high yields of proteins at low cost, proteins larger than 50 kD can be produced, signal sequences can be removed, and glycosylation can be carried out. The baculoviral system can carry out more complex post-translational modifications of proteins. The most popular system for producing recombinant mammalian glycosylated proteins is that of mammalian cells. Genetically modified animals secrete recombinant proteins in their milk, blood or urine. Similarly, transgenic plants such as Arabidopsis thaliana and others can generate many recombinant proteins.
Collapse
Affiliation(s)
- Arnold L Demain
- Research Institute for Scientists Emeriti, Drew University, Madison, NJ 07940, USA
| | | |
Collapse
|
30
|
Abstract
Life on earth is not possible without microorganisms. Microbes have contributed to industrial science for over 100 years. They have given us diversity in enzymatic content and metabolic pathways. The advent of recombinant DNA brought many changes to industrial microbiology. New expression systems have been developed, biosynthetic pathways have been modified by metabolic engineering to give new metabolites, and directed evolution has provided enzymes with modified selectability, improved catalytic activity and stability. More and more genomes of industrial microorganisms are being sequenced giving valuable information about the genetic and enzymatic makeup of these valuable forms of life. Major tools such as functional genomics, proteomics, and metabolomics are being exploited for the discovery of new valuable small molecules for medicine and enzymes for catalysis.
Collapse
Affiliation(s)
- Arnold L Demain
- Research Institute for Scientists Emeriti (R.I.S.E.), Drew University, Madison, NJ 07940, USA.
| | | |
Collapse
|
31
|
PCR-based strategy for construction of multi-site-saturation mutagenic expression library. J Microbiol Methods 2007; 71:225-30. [PMID: 17936385 DOI: 10.1016/j.mimet.2007.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/31/2007] [Accepted: 09/04/2007] [Indexed: 11/23/2022]
Abstract
There is an increasing demand for efficient and effective methods to engineer protein variants for industrial applications, structural biology and drug development. We describe a PCR-based strategy that produces multi-site-saturation mutagenic expression library using a circular plasmid carrying the wild-type gene. This restriction digestion- and ligation-independent method involves three steps: 1) synthesis of the degenerate oligonucleotide primers, 2) incorporation of the mutations through PCR, 3) transformation into the expression host. Our strategy is demonstrated through successful construction of an E. coli K12 malic enzyme expression library that contains members with simultaneous mutations on amino acid residues G311, D345 and G397. This method is in principle compatible with any circular vector that can be propagated with a dam(+)E. coli host to generate protein variant library with multiple changes, including mutation, short sequence deletion and insertion, or any mix of them.
Collapse
|
32
|
Liao J, Warmuth MK, Govindarajan S, Ness JE, Wang RP, Gustafsson C, Minshull J. Engineering proteinase K using machine learning and synthetic genes. BMC Biotechnol 2007; 7:16. [PMID: 17386103 PMCID: PMC1847811 DOI: 10.1186/1472-6750-7-16] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 03/26/2007] [Indexed: 11/10/2022] Open
Abstract
Background Altering a protein's function by changing its sequence allows natural proteins to be converted into useful molecular tools. Current protein engineering methods are limited by a lack of high throughput physical or computational tests that can accurately predict protein activity under conditions relevant to its final application. Here we describe a new synthetic biology approach to protein engineering that avoids these limitations by combining high throughput gene synthesis with machine learning-based design algorithms. Results We selected 24 amino acid substitutions to make in proteinase K from alignments of homologous sequences. We then designed and synthesized 59 specific proteinase K variants containing different combinations of the selected substitutions. The 59 variants were tested for their ability to hydrolyze a tetrapeptide substrate after the enzyme was first heated to 68°C for 5 minutes. Sequence and activity data was analyzed using machine learning algorithms. This analysis was used to design a new set of variants predicted to have increased activity over the training set, that were then synthesized and tested. By performing two cycles of machine learning analysis and variant design we obtained 20-fold improved proteinase K variants while only testing a total of 95 variant enzymes. Conclusion The number of protein variants that must be tested to obtain significant functional improvements determines the type of tests that can be performed. Protein engineers wishing to modify the property of a protein to shrink tumours or catalyze chemical reactions under industrial conditions have until now been forced to accept high throughput surrogate screens to measure protein properties that they hope will correlate with the functionalities that they intend to modify. By reducing the number of variants that must be tested to fewer than 100, machine learning algorithms make it possible to use more complex and expensive tests so that only protein properties that are directly relevant to the desired application need to be measured. Protein design algorithms that only require the testing of a small number of variants represent a significant step towards a generic, resource-optimized protein engineering process.
Collapse
Affiliation(s)
- Jun Liao
- Department of Computer Science, University of California, Santa Cruz, CA 95064 USA
| | - Manfred K Warmuth
- Department of Computer Science, University of California, Santa Cruz, CA 95064 USA
| | | | - Jon E Ness
- DNA 2.0, 1430 O'Brien Drive, Suite E, Menlo Park, CA 94025, USA
| | - Rebecca P Wang
- DNA 2.0, 1430 O'Brien Drive, Suite E, Menlo Park, CA 94025, USA
| | | | - Jeremy Minshull
- DNA 2.0, 1430 O'Brien Drive, Suite E, Menlo Park, CA 94025, USA
| |
Collapse
|
33
|
Frova C. Glutathione transferases in the genomics era: new insights and perspectives. ACTA ACUST UNITED AC 2006; 23:149-69. [PMID: 16839810 DOI: 10.1016/j.bioeng.2006.05.020] [Citation(s) in RCA: 330] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 05/12/2006] [Accepted: 05/12/2006] [Indexed: 11/23/2022]
Abstract
In the last decade the tumultuous development of "omics" greatly improved our ability to understand protein structure, function and evolution, and to define their roles and networks in complex biological processes. This fast accumulating knowledge holds great potential for biotechnological applications, from the development of biomolecules with novel properties of industrial and medical importance, to the creation of transgenic organisms with new, favorable characteristics. This review focuses on glutathione transferases (GSTs), an ancient protein superfamily with multiple roles in all eukaryotic organisms, and attempts to give an overview of the new insights and perspectives provided by omics into the biology of these proteins. Among the aspects considered are the redefinition of GST subfamilies, their evolution in connection with structurally related families, present and future biotechnological outcomes.
Collapse
Affiliation(s)
- Carla Frova
- Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
34
|
Abstract
This review provides an insight into the various opportunities for vaccine intervention, analysis of strategies for vaccine development, vaccine ability to modulate immune responses and resultant rational vaccine design. In addition, wider aspects are considered, such as biotechnological advances, advances in immunological understanding and host–pathogen interactions. The key question addressed here is, with all our research and understanding, have we reached a new echelon in vaccine development, that of rational design?
Collapse
|
35
|
Abstract
The concept of the quasispecies as a society formed from a clone of an asexually reproducing organism is reviewed. A broad spectrum of mutants is generated that compete one with another. Eventually a steady state is formed where each mutant type is represented according to its fitness and its formation by mutation. This quasispecies has a defined wild type sequence, which is the weighted average of all genotypes present. The quasispecies concept has been shown to affect the pathway of evolution and has been studied on RNA viruses which have a particularly high mutation rate. They (and possibly the majority of other species) operate close to the error threshold that allows maximum exploration of sequence space while conserving the information content of the genotype. The consequences of the quasispecies concept for the new 'evolutionary technology' are discussed.
Collapse
Affiliation(s)
- C K Biebricher
- Max Planck Institute for Biophysical Chemistry, Am Fassberg, 37077 Göttingen, Germany.
| | | |
Collapse
|
36
|
Lee SJ, Lee DW, Choe EA, Hong YH, Kim SB, Kim BC, Pyun YR. Characterization of a thermoacidophilic L-arabinose isomerase from Alicyclobacillus acidocaldarius: role of Lys-269 in pH optimum. Appl Environ Microbiol 2006; 71:7888-96. [PMID: 16332764 PMCID: PMC1317409 DOI: 10.1128/aem.71.12.7888-7896.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The araA gene encoding L-arabinose isomerase (AI) from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius was cloned, sequenced, and expressed in Escherichia coli. Analysis of the sequence revealed that the open reading frame of the araA gene consists of 1,491 bp that encodes a protein of 497 amino acid residues with a calculated molecular mass of 56,043 Da. Comparison of the deduced amino acid sequence of A. acidocaldarius AI (AAAI) with other AIs demonstrated that AAAI has 97% and 66% identities (99% and 83% similarities) to Geobacillus stearothermophilus AI (GSAI) and Bacillus halodurans AI (BHAI), respectively. The recombinant AAAI was purified to homogeneity by heat treatment, ion-exchange chromatography, and gel filtration. The purified enzyme showed maximal activity at pH 6.0 to 6.5 and 65 degrees C under the assay conditions used, and it required divalent cations such as Mn2+, Co2+, and Mg2+ for its activity. The isoelectric point (pI) of the enzyme was about 5.0 (calculated pI of 5.5). The apparent Km values of the recombinant AAAI for L-arabinose and D-galactose were 48.0 mM (Vmax, 35.5 U/mg) and 129 mM (Vmax, 7.5 U/mg), respectively, at pH 6 and 65 degrees C. Interestingly, although the biochemical properties of AAAI are quite similar to those of GSAI and BHAI, the three AIs from A. acidocaldarius (pH 6), G. stearothermophilus (pH 7), and B. halodurans (pH 8) exhibited different pH activity profiles. Based on alignment of the amino acid sequences of these homologous AIs, we propose that the Lys-269 residue of AAAI may be responsible for the ability of the enzyme to act at low pH. To verify the role of Lys-269, we prepared the mutants AAAI-K269E and BHAI-E268K by site-directed mutagenesis and compared their kinetic parameters with those of wild-type AIs at various pHs. The pH optima of both AAAI-K269E and BHAI-E268K were rendered by 1.0 units (pH 6 to 7 and 8 to 7, respectively) compared to the wild-type enzymes. In addition, the catalytic efficiency (kcat/Km) of each mutant at different pHs was significantly affected by an increase or decrease in Vmax. From these results, we propose that the position corresponding to the Lys-269 residue of AAAI could play an important role in the determination of the pH optima of homologous AIs.
Collapse
Affiliation(s)
- Sang-Jae Lee
- Department of Biotechnology, Yonsei University, Seodaemun-Gu, Shinchon-Dong 134, Seoul 120-749, Korea
| | | | | | | | | | | | | |
Collapse
|
37
|
Chatterjee R, Yuan L. Directed evolution of metabolic pathways. Trends Biotechnol 2006; 24:28-38. [PMID: 16298446 DOI: 10.1016/j.tibtech.2005.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 09/08/2005] [Accepted: 11/07/2005] [Indexed: 10/25/2022]
Abstract
The modification of cellular metabolism is of biotechnological and commercial significance because naturally occurring metabolic pathways are the source of diverse compounds used in fields ranging from medicine to bioremediation. Directed evolution is the experimental improvement of biocatalysts or cellular properties through iterative genetic diversification and selection procedures. The creation of novel metabolic functions without disrupting the balanced intracellular pool of metabolites is the primary challenge of pathway manipulation. The introduction of coordinated changes across multiple genetic elements, in conjunction with functional selection, presents an integrated approach for the modification of metabolism with benign physiological consequences. Directed evolution formats take advantage of the dynamic structures of genomes and genomic sub-structures and their ability to evolve in multiple directions in response to external stimuli. The elucidation, design and application of genome-restructuring mechanisms are key elements in the directed evolution of cellular metabolic pathways.
Collapse
|
38
|
Raab RM, Tyo K, Stephanopoulos G. Metabolic engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 100:1-17. [PMID: 16270654 DOI: 10.1007/b136411] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Metabolic engineering is a powerful methodology aimed at intelligently designing new biological pathways, systems, and ultimately phenotypes through the use of recombinant DNA technology. Built largely on the theoretical and computational analysis of chemical systems, the field has evolved to incorporate a growing number of genome scale experimental tools. This combination of rigorous analysis and quantitative molecular biology methods has endowed metabolic engineering with an effective synergism that crosses traditional disciplinary bounds. As such, there are a growing number of applications for the effective employment of metabolic engineering, ranging from the initial industrial fermentation applications to more recent medical diagnosis applications. In this review we highlight many of the contributions metabolic engineering has provided through its history, as well as give an overview of new tools and applications that promise to have a large impact on the field's future.
Collapse
Affiliation(s)
- R Michael Raab
- Department of Chemical Engineering, Room 56-459, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
39
|
Abstract
Strategies for gene delivery comprise a diverse range of live and synthetic approaches; DNA delivery for the purposes of immunisation in turn comprises a large part of this research. This review mainly discusses synthetic systems for application in the delivery of plasmid DNA vaccines, outlining polylactide-co-glycolide, liposome, chitosan and complex combination delivery systems. Areas of promise for DNA vaccine candidates include immune modulation of allergic responses and veterinarian application. The potential for realistic consideration of DNA vaccines as an alternative to existing approaches is dependent on the development of efficient DNA vaccine vectors and improved systems for DNA vaccine delivery. DNA vaccine technology may yet prove to be an important asset in an environment where there is a critical need for therapeutic and prophylactic strategies to combat a wide range of disease states.
Collapse
Affiliation(s)
- H Oya Alpar
- University of London, School of Pharmacy, UK.
| | | | | |
Collapse
|
40
|
Eom GT, Song JK, Ahn JH, Seo YS, Rhee JS. Enhancement of the efficiency of secretion of heterologous lipase in Escherichia coli by directed evolution of the ABC transporter system. Appl Environ Microbiol 2005; 71:3468-74. [PMID: 16000750 PMCID: PMC1169004 DOI: 10.1128/aem.71.7.3468-3474.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ABC transporter (TliDEF) from Pseudomonas fluorescens SIK W1, which mediated the secretion of a thermostable lipase (TliA) into the extracellular space in Escherichia coli, was engineered using directed evolution (error-prone PCR) to improve its secretion efficiency. TliD mutants with increased secretion efficiency were identified by coexpressing the mutated tliD library with the wild-type tliA lipase in E. coli and by screening the library with a tributyrin-emulsified indicator plate assay and a microtiter plate-based assay. Four selected mutants from one round of error-prone PCR mutagenesis, T6, T8, T24, and T35, showed 3.2-, 2.6-, 2.9-, and 3.0-fold increases in the level of secretion of TliA lipase, respectively, but had almost the same level of expression of TliD in the membrane as the strain with the wild-type TliDEF transporter. These results indicated that the improved secretion of TliA lipase was mediated by the transporter mutations. Each mutant had a single amino acid change in the predicted cytoplasmic regions in the membrane domain of TliD, implying that the corresponding region of TliD was important for the improved and successful secretion of the target protein. We therefore concluded that the efficiency of secretion of a heterologous protein in E. coli can be enhanced by in vitro engineering of the ABC transporter.
Collapse
Affiliation(s)
- Gyeong Tae Eom
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
| | | | | | | | | |
Collapse
|
41
|
Abstract
Systematic approaches to directed evolution of proteins have been documented since the 1970s. The ability to recruit new protein functions arises from the considerable substrate ambiguity of many proteins. The substrate ambiguity of a protein can be interpreted as the evolutionary potential that allows a protein to acquire new specificities through mutation or to regain function via mutations that differ from the original protein sequence. All organisms have evolutionarily exploited this substrate ambiguity. When exploited in a laboratory under controlled mutagenesis and selection, it enables a protein to "evolve" in desired directions. One of the most effective strategies in directed protein evolution is to gradually accumulate mutations, either sequentially or by recombination, while applying selective pressure. This is typically achieved by the generation of libraries of mutants followed by efficient screening of these libraries for targeted functions and subsequent repetition of the process using improved mutants from the previous screening. Here we review some of the successful strategies in creating protein diversity and the more recent progress in directed protein evolution in a wide range of scientific disciplines and its impacts in chemical, pharmaceutical, and agricultural sciences.
Collapse
Affiliation(s)
- Ling Yuan
- Department of Plant and Soil Sciences, and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA.
| | | | | | | |
Collapse
|
42
|
Locher CP, Paidhungat M, Whalen RG, Punnonen J. DNA shuffling and screening strategies for improving vaccine efficacy. DNA Cell Biol 2005; 24:256-63. [PMID: 15812242 DOI: 10.1089/dna.2005.24.256] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The efficacy of vaccines can be improved by increasing their immunogenicity, broadening their crossprotective range, as well as by developing immunomodulators that can be coadministered with the vaccine antigen. One technology that can be applied to each of these aspects of vaccine development is MolecularBreeding directed molecular evolution. Essentially, this technology is used to evolve genes in vitro through an iterative process consisting of recombinant generation followed by selection of the desired recombinants. We have used DNA shuffling and screening strategies to develop and improve vaccine candidates against several infectious pathogens including Plasmodium falciparum (a common cause of severe and fatal human malaria), dengue virus, encephalitic alphaviruses such as Venezuelan, western and eastern equine encephalitis viruses (VEEV, WEEV, and EEEV, respectively), human immunodeficiency virus-1 (HIV-1), and hepatitis B virus (HBV). By recombining antigen-encoding genes from different serovar isolates, new chimeras are selected for crossreactivity; these vaccine candidates are expected to provide broader crossprotection than vaccines based on a single serovar. Furthermore, the vaccine candidates can be selected for improved immunogenicity, which would also improve their efficacy. In addition to vaccine candidates, we have applied the technology to evolve several immunomodulators that when coadministered with vaccines can improve vaccine efficacy by fine-tuning the T cell response. Thus, DNA shuffling and screening technology is a promising strategy to facilitate vaccine efficacy.
Collapse
Affiliation(s)
- Christopher P Locher
- Division of Infectious Diseases, Maxygen, Inc., Redwood City, California 94063, USA.
| | | | | | | |
Collapse
|
43
|
Abstract
Consensus design is a valuable protein-engineering method that is based on statistical information derived from sequence alignments of homologous proteins. Recently, consensus design was adapted to repeat proteins. We discuss the potential of this novel repeat-based approach for the design of consensus repeat proteins and repeat protein libraries and summarize recent results from such experiments.
Collapse
Affiliation(s)
- Patrik Forrer
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
44
|
Duchateau ALL, Hillemans-Crombach MG, van Duijnhoven A, Reiss R, Sonke T. A colorimetric method for determination of amino amidase activity. Anal Biochem 2004; 330:362-4. [PMID: 15203346 DOI: 10.1016/j.ab.2004.03.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Indexed: 10/26/2022]
|
45
|
Gazzarrini S, Kang M, Van Etten JL, Tayefeh S, Kast SM, DiFrancesco D, Thiel G, Moroni A. Long Distance Interactions within the Potassium Channel Pore Are Revealed by Molecular Diversity of Viral Proteins. J Biol Chem 2004; 279:28443-9. [PMID: 15105432 DOI: 10.1074/jbc.m401184200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kcv is a 94-amino acid protein encoded by chlorella virus PBCV-1 that corresponds to the pore module of K(+) channels. Therefore, Kcv can be a model for studying the protein design of K(+) channel pores. We analyzed the molecular diversity generated by approximately 1 billion years of evolution on kcv genes isolated from 40 additional chlorella viruses. Because the channel is apparently required for virus replication, the Kcv variants are all functional and contain multiple and dispersed substitutions that represent a repertoire of allowed sets of amino acid substitutions (from 4 to 12 amino acids). Correlations between amino acid substitutions and the new properties displayed by these channels guided site-directed mutations that revealed synergistic amino acid interactions within the protein as well as previously unknown interactions between distant channel domains. The effects of these multiple changes were not predictable from a priori structural knowledge of the channel pore.
Collapse
Affiliation(s)
- Sabrina Gazzarrini
- Department of Biology and Consiglio Nazionale delle Ricerche Istituto di Biofisica-Mi, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Emlyn-Jones D, Price GD, Andrews TJ. Nitrogen-regulated hypermutator strain of Synechococcus sp. for use in in vivo artificial evolution. Appl Environ Microbiol 2004; 69:6427-33. [PMID: 14602596 PMCID: PMC262265 DOI: 10.1128/aem.69.11.6427-6433.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Artificially evolved variants of proteins with roles in photosynthesis may be selected most conveniently by using a photosynthetic organism, such as a cyanobacterium, whose growth depends on the function of the target protein. However, the limited transformation efficiency of even the most transformable cyanobacteria wastes much of the diversity of mutant libraries of genes produced in vitro, impairing the coverage of sequence space. This highlights the advantages of an in vivo approach for generating diversity in the selection organism itself. We constructed two different hypermutator strains of Synechococcus sp. strain PCC 7942 by insertionally inactivating or nutritionally repressing the DNA mismatch repair gene, mutS. Inactivation of mutS greatly increases the mutation rate of the cyanobacterium's genes, leading to an up-to-300-fold increase in the frequency of resistance to the antibiotics rifampin and spectinomycin. In order to control the rate of mutation and to limit cellular damage resulting from prolonged hypermutation, we placed the uninterrupted mutS gene in the cyanobacterial chromosome under the transcriptional control of the cyanobacterial nirA promoter, which is repressed in the presence of NH(4)(+) as an N source and derepressed in its absence. By removing or adding this substrate, hypermutation was activated or repressed as required. As expected, hypermutation caused by repression in PnirA-mutS transformants led to an accumulation of spectinomycin resistance mutations during growth.
Collapse
Affiliation(s)
- Daniel Emlyn-Jones
- Molecular Plant Physiology, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | | | | |
Collapse
|
47
|
The Contribution of Optical Biosensors to the Analysis of Structure-Function Relationships in Proteins. METHODS IN PROTEOME AND PROTEIN ANALYSIS 2004. [DOI: 10.1007/978-3-662-08722-0_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
48
|
Gustafsson C, Govindarajan S, Minshull J. Putting engineering back into protein engineering: bioinformatic approaches to catalyst design. Curr Opin Biotechnol 2003; 14:366-70. [PMID: 12943844 DOI: 10.1016/s0958-1669(03)00101-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Complex multivariate engineering problems are commonplace and not unique to protein engineering. Mathematical and data-mining tools developed in other fields of engineering have now been applied to analyze sequence-activity relationships of peptides and proteins and to assist in the design of proteins and peptides with specified properties. Decreasing costs of DNA sequencing in conjunction with methods to quickly synthesize statistically representative sets of proteins allow modern heuristic statistics to be applied to protein engineering. This provides an alternative approach to expensive assays or unreliable high-throughput surrogate screens.
Collapse
|
49
|
Larson SM, England JL, Desjarlais JR, Pande VS. Thoroughly sampling sequence space: large-scale protein design of structural ensembles. Protein Sci 2002; 11:2804-13. [PMID: 12441379 PMCID: PMC2373757 DOI: 10.1110/ps.0203902] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2002] [Revised: 08/16/2002] [Accepted: 09/04/2002] [Indexed: 10/27/2022]
Abstract
Modeling the inherent flexibility of the protein backbone as part of computational protein design is necessary to capture the behavior of real proteins and is a prerequisite for the accurate exploration of protein sequence space. We present the results of a broad exploration of sequence space, with backbone flexibility, through a novel approach: large-scale protein design to structural ensembles. A distributed computing architecture has allowed us to generate hundreds of thousands of diverse sequences for a set of 253 naturally occurring proteins, allowing exciting insights into the nature of protein sequence space. Designing to a structural ensemble produces a much greater diversity of sequences than previous studies have reported, and homology searches using profiles derived from the designed sequences against the Protein Data Bank show that the relevance and quality of the sequences is not diminished. The designed sequences have greater overall diversity than corresponding natural sequence alignments, and no direct correlations are seen between the diversity of natural sequence alignments and the diversity of the corresponding designed sequences. For structures in the same fold, the sequence entropies of the designed sequences cluster together tightly. This tight clustering of sequence entropies within a fold and the separation of sequence entropy distributions for different folds suggest that the diversity of designed sequences is primarily determined by a structure's overall fold, and that the designability principle postulated from studies of simple models holds in real proteins. This has important implications for experimental protein design and engineering, as well as providing insight into protein evolution.
Collapse
Affiliation(s)
- Stefan M Larson
- Chemistry Department and Biophysics Program, Stanford University, California 94305, USA
| | | | | | | |
Collapse
|
50
|
Lazetic S, Leong SR, Chang JCC, Ong R, Dawes G, Punnonen J. Chimeric co-stimulatory molecules that selectively act through CD28 or CTLA-4 on human T cells. J Biol Chem 2002; 277:38660-8. [PMID: 12167647 DOI: 10.1074/jbc.m205808200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD28 and CTLA-4 (CD152) play a pivotal role in the regulation of T cell activation. Upon ligation by CD80 (B7-1) or CD86 (B7-2), CD28 induces T cell proliferation, cytokine production, and effector functions, whereas CTLA-4 signaling inhibits expansion of activated T cells and induces tolerance. Therefore, we hypothesized that co-stimulatory molecules that preferentially bind CD28 or CTLA-4 would have dramatically altered biological properties. We describe directed molecular evolution of CD80 genes derived from human, orangutan, rhesus monkey, baboon, cat, cow, and rabbit by DNA shuffling and screening. In contrast to wild-type CD80, the evolved co-stimulatory molecules, termed CD28-binding protein (CD28BP) and CTLA-4-binding protein (CTLA-4BP), selectively bind to CD28 or CTLA-4, respectively. Furthermore, CD28BP has improved capacity to induce human T cell proliferation and interferon-gamma production compared with wild-type CD80. In contrast, CTLA-4BP inhibited human mixed leukocyte reaction (MLR) and enhanced interleukin 10 production in MLR, supporting a role for CTLA-4BP in inducing T cell anergy and tolerance. In addition, co-stimulation of purified human T cells was significantly suppressed when CTLA-4BP was cotransfected with either CD80 or CD28BP. The amino acid sequences of CD28BP and CTLA-4BP were 61 and 96% identical with that of human CD80 and provide insight into the residues that are critical in the ligand binding. These molecules provide a new approach to characterization of CD28 and CTLA-4 signals and to manipulation of the T cell response.
Collapse
MESH Headings
- Abatacept
- Amino Acid Sequence
- Animals
- Antigens, CD
- Antigens, Differentiation/genetics
- Antigens, Differentiation/immunology
- Antigens, Differentiation/metabolism
- B7-1 Antigen/genetics
- B7-1 Antigen/metabolism
- CD28 Antigens/genetics
- CD28 Antigens/immunology
- CD28 Antigens/metabolism
- CTLA-4 Antigen
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- Carrier Proteins/metabolism
- Cell Line
- Cytokines/metabolism
- DNA Shuffling
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Evolution, Molecular
- Flow Cytometry
- Humans
- Immunoconjugates
- Immunoglobulin Fc Fragments/genetics
- Immunoglobulin Fc Fragments/immunology
- Immunoglobulin Fc Fragments/metabolism
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/radiation effects
- Ligands
- Molecular Sequence Data
- Protein Binding
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Recombinant Proteins
- Sequence Alignment
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Sasha Lazetic
- Department of Vaccines, Maxygen, Inc., Redwood City, California 94063, USA
| | | | | | | | | | | |
Collapse
|