1
|
Li C, Hu J, Li M, Mao Y, Mao Y. Integrated multi-omics analysis and machine learning refine molecular subtypes and clinical outcome for hepatocellular carcinoma. Hereditas 2025; 162:61. [PMID: 40221783 PMCID: PMC11992824 DOI: 10.1186/s41065-025-00431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
The high morbidity and mortality of hepatocellular carcinoma (HCC) impose a substantial economic burden on patients' families and society, and the majority of HCC patients are detected at advanced stages and experience poor therapeutic outcomes, whereas early-stage patients exhibit the most favorable prognosis following radical treatment. In this study, we utilized a computational framework to integrate multi-omics data from HCC patients using the latest 10 different clustering algorithms, which were then employed a diverse set of 101 combinations derived from 10 different machine learning algorithms to develop a consensus machine learning-based signature (CMLBS). Using multi-omics consensus clustering, we distinguished two cancer subtypes (CSs) of HCC, and found that CS2 patients exhibited superior overall survival (OS) outcomes. In TCGA-LIHC, ICGC-LIRI, and multiple immunotherapy cohorts, low-CMLBS patients demonstrated favorable clinical outcomes and enhanced responsiveness to immunotherapy. Encouragingly, we observed that the high-CMLBS patients may exhibit increased sensitivity to Alpelisib, AZD7762, BMS-536,924, Carmustine, and GDC0810, whereas they may demonstrate reduced sensitivity to Axitinib, AZD6482, AZD8055, Entospletinib, GSK269962A, GSK1904529A, and GSK2606414, suggesting that CMLBS may contribute to the selection of chemotherapeutic agents for HCC patients. Therefore, in-depth examination of data from multi-omics data can provide valuable insights and contribute to the refinement of the molecular classification of HCC. In addition, the CMLBS model demonstrates potential as a screening tool for identifying HCC patients who may derive benefit from immunotherapy, and it possesses practical utility in the clinical management of HCC.
Collapse
Affiliation(s)
- Chunhong Li
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, China.
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, China.
| | - Jiahua Hu
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, China
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Mengqin Li
- College of pharmacy, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Yiming Mao
- Department of thoracic surgery, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, 215028, China
| | - Yuhua Mao
- Department of Obstetrics, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, China.
| |
Collapse
|
2
|
Pan H, Jing C. Immune cells mediate the causal pathway linking circulating complements to cancer: A Mendelian randomization study. Inflamm Res 2024; 73:2141-2152. [PMID: 39352488 DOI: 10.1007/s00011-024-01955-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/09/2024] [Accepted: 09/27/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND The role of complement in cancer remains controversial. Whether immune cells and inflammatory factors mediate the pathway from complement to cancer has not been fully elucidated. METHODS We conducted bidirectional Mendelian randomization (MR) analysis to explore the causal association between complement components and cancer. Meta-analysis was conducted to enhance the robustness of the results. We further explored the mediation roles of immune cells and inflammatory factors in these associations. RESULTS Our study identified causal associations between 11 complement components and 12 types of cancer. Furthermore, we identified five immune cells as potential mediators: BAFF-R on IgD + CD38- naive B cell mediated 7.434% of the increased risk for liver cancer from C3; CD4 on CD39 + activated CD4 regulatory T cell mediated 12.384% of the increased risk for biliary tract cancer from CD93; CD25 + + CD45RA + CD4 not regulatory T cell and Basophil %CD33dim HLA DR- CD66b- mediated 7.721% and 7.986% of the increased risk of colorectal cancer from MASP1, respectively; CD45RA on resting CD4 regulatory T cell mediated 11.444% of the increased risk of skin cancer from MASP1. CONCLUSION This study revealed the causal relationships between complement components and certain cancers, with five immune cells as potential mediators.
Collapse
Affiliation(s)
- Hao Pan
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, People's Republic of China
| | - Changqing Jing
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, People's Republic of China.
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China.
| |
Collapse
|
3
|
Chen X, Yuan Q, Guan H, Shi X, Sun J, Wu Z, Ren J, Xia S, Shang D. Identification and characterization of interferon-γ signaling-based personalized heterogeneity and therapeutic strategies in patients with pancreatic cancer. Front Oncol 2023; 13:1227606. [PMID: 37941546 PMCID: PMC10628740 DOI: 10.3389/fonc.2023.1227606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Background Interferon-γ (IFN-γ) is a key cytokine with diverse biological functions, including antiviral defense, antitumor activity, immune regulation, and modulation of cellular processes. Nonetheless, its role in pancreatic cancer (PC) therapy remains debated. Therefore, it is worthwhile to explore the role of Interferon-γ related genes (IFN-γGs) in the progression of PC development. Methodology Transcriptomic data from 930 PC were sourced from TCGA, GEO, ICGC, and ArrayExpress, and 93 IFN-γGs were obtained from the MSigDB. We researched the characteristics of IFN-γGs in pan-cancer. Subsequently, the cohort of 930 PC was stratified into two distinct subgroups using the NMF algorithm. We then examined disparities in the activation of cancer-associated pathways within these subpopulations through GSVA analysis. We scrutinized immune infiltration in both subsets and probed classical molecular target drug sensitivity variations. Finally, we devised and validated a novel IFN-γ related prediction model using LASSO and Cox regression analyses. Furthermore, we conducted RT-qPCR and immunohistochemistry assays to validate the expression of seven target genes included in the prediction model. Results We demonstrated the CNV, SNV, methylation, expression levels, and prognostic characteristics of IFN-γGs in pan-cancers. Notably, Cluster 2 demonstrated superior prognostic outcomes and heightened immune cell infiltration compared to Clusters 1. We also assessed the IC50 values of classical molecular targeted drugs to establish links between IFN-γGs expression levels and drug responsiveness. Additionally, by applying our prediction model, we segregated PC patients into high-risk and low-risk groups, identifying potential benefits of cisplatin, docetaxel, pazopanib, midostaurin, epothilone.B, thapsigargin, bryostatin.1, and AICAR for high-risk PC patients, and metformin, roscovitine, salubrinal, and cyclopamine for those in the low-risk group. The expression levels of these model genes were further verified through HPA website data and qRT-PCR assays in PC cell lines and tissues. Conclusion This study unveils IFN-γGs related molecular subsets in pancreatic cancer for the first time, shedding light on the pivotal role of IFN-γGs in the progression of PC. Furthermore, we establish an IFN-γGs related prognostic model for predicting the survival of PC, offering a theoretical foundation for exploring the precise mechanisms of IFN-γGs in PC.
Collapse
Affiliation(s)
- Xu Chen
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qihang Yuan
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hewen Guan
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xueying Shi
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jiaao Sun
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhiqiang Wu
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jie Ren
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shilin Xia
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Dong Shang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
4
|
Xu BB, Huang Y, Zheng ED, Wang JY, Zhang CJ, Geng XG, Wang YN, Pan WS. Hsa_circ_0072309 is a prognostic biomarker and is correlated with immune infiltration in gastric cancer. Heliyon 2023; 9:e13191. [PMID: 36852074 PMCID: PMC9958299 DOI: 10.1016/j.heliyon.2023.e13191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Background Hsa_circ_0072309 has been identified as a tumor suppressor in several carcinomas. However, its precise role in gastric cancer (GC) remains largely unknown. This study was aimed to explore the precise role of Hsa_circ_0072309 in GC. Methods The transcriptional and clinical data of stomach adenocarcinoma were downloaded using the University of California SantaCruz (UCSC) Xena browser. The circular RNA (circRNA) datasets were obtained from the Gene Expression Omnibus (GEO) database. The expression profile and survival analysis of differentially expressed micro RNAs (DEMIs) and differentially expressed messenger RNAs (DEMs) were performed. Correlations between the expression and immune infiltration of the DEMS were studied. Additionally, the expression of hsa_circ_0072309 in GC tissues and cell lines were validated, and the relationship between its expression and clinical features was investigated. Gain- and loss-of function experiments and molecular interaction experiments were also conducted. Results Overall, 7 differentially expressed circRNAs, 13 DEMIs, and 17 DEMs were screened. Two DEMIs (hsa_miR-34a-3p and hsa_miR-326) and five DEMs (C7, MARCKSL1, UBE2T, OLR1, and HOXC11) showed significant differences in the high- and low-risk groups. The most significantly enriched Gene Ontology terms were the circadian regulation of gene expression and protein binding. The most significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways were the PI3K-Akt and Ras signal pathways. Additionally, six genes were significantly correlated with immune infiltration. The real-time quantitative PCR (RT-qPCR) results revealed a significant downregulation of hsa_circ_0072309 in GC tissues related to tumor size, vascular invasion, and lymph node metastasis. A hsa_circ_0072309 overexpression suppressed whereas a hsa_circ_0072309 knockdown promoted GC cells proliferation and migration in vitro; in addition, hsa_circ_0072309 could directly bind to has-miR-34a-3p and has-miR-330-5p. Conclusions Hsa_circ_0072309 is a potential diagnostic biomarker for GC, and complement component 7 may be a tumor suppressor. These may potentially predict the prognosis of patients with GC and may become new therapeutic targets.
Collapse
Affiliation(s)
- Bei-Bei Xu
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, China.,Department of Gastroenterology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China.,Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, 310000, Zhejiang, China
| | - Yi Huang
- Department of General Surgery, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China
| | - En-Dian Zheng
- Department of Gastroenterology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China
| | - Jing-Ya Wang
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, 310000, Zhejiang, China
| | - Chen-Jing Zhang
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, 310000, Zhejiang, China
| | - Xiao-Ge Geng
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, 310000, Zhejiang, China
| | - Ya-Nan Wang
- Zhejiang University of Technology, Hangzhou, 310000, Zhejiang, China
| | - Wen-Sheng Pan
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, China.,Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, 310000, Zhejiang, China.,People's Hospital of Hangzhou Medical College, Hangzhou, 310000, Zhejiang, China
| |
Collapse
|
5
|
Karmakar S, Purkayastha K, Dhar R, Pethusamy K, Srivastava T, Shankar A, Rath G. The issues and challenges with cancer biomarkers. J Cancer Res Ther 2022; 19:S20-S35. [PMID: 37147979 DOI: 10.4103/jcrt.jcrt_384_22] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A biomarker is a measurable indicator used to distinguish precisely/objectively either normal biological state/pathological condition/response to a specific therapeutic intervention. The use of novel molecular biomarkers within evidence-based medicine may improve the diagnosis/treatment of disease, improve health outcomes, and reduce the disease's socio-economic impact. Presently cancer biomarkers are the backbone of therapy, with greater efficacy and better survival rates. Cancer biomarkers are extensively used to treat cancer and monitor the disease's progress, drug response, relapses, and drug resistance. The highest percent of all biomarkers explored are in the domain of cancer. Extensive research using various methods/tissues is carried out for identifying biomarkers for early detection, which has been mostly unsuccessful. The quantitative/qualitative detection of various biomarkers in different tissues should ideally be done in accordance with qualification rules laid down by the Early Detection Research Network (EDRN), Program for the Assessment of Clinical Cancer Tests (PACCT), and National Academy of Clinical Biochemistry. Many biomarkers are presently under investigation, but lacunae lie in the biomarker's sensitivity and specificity. An ideal biomarker should be quantifiable, reliable, of considerable high/low expression, correlate with the outcome progression, cost-effective, and consistent across gender and ethnic groups. Further, we also highlight that these biomarkers' application remains questionable in childhood malignancies due to the lack of reference values in the pediatric population. The development of a cancer biomarker stands very challenging due to its complexity and sensitivity/resistance to the therapy. In past decades, the cross-talks between molecular pathways have been targeted to study the nature of cancer. To generate sensitive and specific biomarkers representing the pathogenesis of specific cancer, predicting the treatment responses and outcomes would necessitate inclusion of multiple biomarkers.
Collapse
|
6
|
Zhang H, Zhao Y, Liu X, Fu L, Gu F, Ma Y. High Expression of Complement Component C7 Indicates Poor Prognosis of Breast Cancer and Is Insensitive to Taxane-Anthracycline Chemotherapy. Front Oncol 2021; 11:724250. [PMID: 34631552 PMCID: PMC8497743 DOI: 10.3389/fonc.2021.724250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/01/2021] [Indexed: 11/19/2022] Open
Abstract
Background Breast cancer is the most commonly diagnosed cancer worldwide. However, the well-known biomarkers are not enough to meet the needs of precision medicine. Novel targets are desirable and highly valuable for improved patient survival. In this regard, we identified complement component C7 as one of the candidates based on data from the OCOMINE database. Methods C7 expression was examined by immunohistochemistry in 331 cases of invasive ductal carcinoma (IDC), 45 cases of ductal carcinoma in situ (DCIS), and 52 cases of non-neoplastic tissues adjacent to tumor. Then, C7 expression was further confirmed by Western blot analysis based on IDC specimens and non-neoplastic breast specimens. The relationship between the C7 expression and prognosis of breast cancer patients was analyzed in order to investigate the function of C7 in breast cancer patients. Meanwhile, we also analyzed the relationship between the C7 expression and prognosis of 149 patients treated with conventional TE (taxane and anthracycline)-based chemotherapy. Then, a cohort of patients (22 cases) treated with TE neoadjuvant chemotherapy was used to further confirm the relationship between the C7 expression and TE-based chemosensitivity. Results In our present study, we reported for the first time that C7 was an independent prognostic factor of breast cancer and C7 expression of IDC tissues was higher than non-neoplastic tissues adjacent to tumor and DCIS. In a cohort of 331 IDC patients, high expression of C7 indicated poor prognosis especially in the triple negative subtype and luminal B subtype. Furthermore, C7 was also a promoting factor for triple negative subtype patients to develop bone metastasis. Meanwhile, we provided the first evidence that patients with high C7 expression were insensitive to TE (taxane and anthracycline)-based chemotherapy by analyzing a cohort of 149 patients treated with TE-based chemotherapy and another cohort of 22 patients treated with TE neoadjuvant chemotherapy. Conclusions In summary, high expression of C7 may promote breast cancer development and might be insensitive to TE-based chemotherapy. Our present study laid a foundation to help clinicians improve the identification of patients for TE-based chemotherapy by C7 in the era of precision medicine.
Collapse
Affiliation(s)
- Huikun Zhang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yawen Zhao
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xiaoli Liu
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Li Fu
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.,Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Feng Gu
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.,Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yongjie Ma
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| |
Collapse
|
7
|
Jiang Z, Jiang Q, Fang X, Wang P, Que W, Li H, Yu Y, Liu X, Wang C, Zhong L. Recipient C7 rs9292795 genotype and the risk of hepatocellular carcinoma recurrence after orthotopic liver transplantation in a Han Chinese population. BMC Cancer 2021; 21:521. [PMID: 33964921 PMCID: PMC8106183 DOI: 10.1186/s12885-021-08269-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Complement component(C7) gene has been shown to influence the prognosis in Hepatocellular carcinoma (HCC) patients. The association between C7 and HCC recurrence after orthotopic liver transplantation (OLT), however, is still unknown. The purpose of this study was to evaluate whether the donor and recipient C7 gene polymorphisms are related to HCC recurrence after OLT in the Han Chinese population. METHODS A total of 73 consecutive patients with HCC who had undergone OLT, both donors and recipients, were involved in this research. A single nucleotide polymorphism of C7, rs9292795, was genotyped using Sequenom MassARRAY in the cohort. The expression of C7 and the association between C7 gene polymorphisms and HCC recurrence following OLT were analyzed by bioinformatics and statistical analysis, respectively. RESULTS As shown in database, the expression of C7 was higher in HCC tissues than that in normal tissues, and represented a worse prognosis. We also found that recipient C7 rs9292795 polymorphism, rather than the donor, was significantly associated with HCC recurrence after OLT. Multivariate logistic regression analysis confirmed that TNM stage (P = 0.001), Milan criteria (P = 0.000) and recipient rs9292795 genotype (TT vs AA/AT, P = 0.008) were independent risk factors for HCC recurrence. Furthermore, the recipient carrying AA/AT showed higher recurrence-free survival (RFS) and overall survival (OS) than that carrying TT (P < 0.05). In Cox proportional hazards model, TNM stage, recipient rs9292795 genotype, and Milan criteria were identified as independent factors for RFS and OS (P < 0.05) as well as pre-OLT serum alpha fetoprotein (AFP) level was associated with OS (P < 0.05). CONCLUSIONS Recipient C7 rs9292795 gene polymorphism is related to the recurrence of HCC after OLT, which may be a helpful prognostic marker for HCC patients who receive OLT.
Collapse
Affiliation(s)
- Zhongyi Jiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Qianwei Jiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Xu Fang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Pusen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Weitao Que
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Hao Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Yang Yu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Xueni Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Chunguang Wang
- Emergency & Critical Care Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Songjiang District, Shanghai, China.
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
| |
Collapse
|
8
|
Zhu H, Yu X, Zhang S, Shu K. Targeting the Complement Pathway in Malignant Glioma Microenvironments. Front Cell Dev Biol 2021; 9:657472. [PMID: 33869223 PMCID: PMC8047198 DOI: 10.3389/fcell.2021.657472] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Malignant glioma is a highly fatal type of brain tumor, and its reoccurrence is largely due to the ordered interactions among the components present in the complex microenvironment. Besides its role in immune surveillance and clearance under physiological conditions, the complement system is expressed in a variety of tumor types and mediates the interactions within the tumor microenvironments. Recent studies have uncovered the broad expression spectrum of complement signaling molecules in the tumor microenvironment and various tumor cells, in particular, malignant glioma cells. Involvement of the complement system in tumor growth, immunosuppression and phenotype transition have also been elucidated. In this review, we enumerate the expression and function of complement molecules in multiple tumor types reported. Moreover, we elaborate the complement pathways in glioma cells and various components of malignant glioma microenvironments. Finally, we summarize the possibility of the complement molecules as prognostic factors and therapeutic targets in the treatment of malignant glioma. Specific targeting of the complement system maybe of great significance and value in the future treatment of multi-type tumors including malignant glioma.
Collapse
Affiliation(s)
- Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjiang Yu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suojun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Identification of the Sixth Complement Component as Potential Key Genes in Hepatocellular Carcinoma via Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7042124. [PMID: 33083480 PMCID: PMC7556077 DOI: 10.1155/2020/7042124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/17/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022]
Abstract
The present study is designed to determine potential target genes involved in hepatocellular carcinoma (HCC) and provide possible underlying mechanisms of action. Several studies (GSE112790, GSE87630, and GSE56140) from the GEO database looking at molecular characteristics in HCC were screened and analyzed by GEO2R, which led to the identification of a total of 93 differentially expressed genes (DEGs). From the protein–protein interaction (PPI) network, we selected 13 key genes with high degree of variability in expression in HCC. Expression of three key genes (NQO1, CYP2C9, and C6) presented with poor overall survival (OS) in HCC patients by UALCAN. C6, which is a complement component, was found by ONCOMINE and TIMER to have low expression in many solid cancers including HCC. Besides, Kaplan-Meier plotter and UALCAN database analysis to access diseases prognosis suggested that low expression of C6 is significantly related to worse OS in LIHC patients, especially in advanced HCC patients. Finally, the TIMER analysis suggested that the C6 expression showed significant negative correlation with infiltrating levels of six immune cells. The somatic copy number alterations (SCNAs) of C6 were associated with CD4+ T cell infiltration in HCC. Taken together, these results together identified C6 as a potential key gene in the diagnosis and prognosis of HCC.
Collapse
|
10
|
Liu S, Wang W, Zhao Y, Liang K, Huang Y. Identification of Potential Key Genes for Pathogenesis and Prognosis in Prostate Cancer by Integrated Analysis of Gene Expression Profiles and the Cancer Genome Atlas. Front Oncol 2020; 10:809. [PMID: 32547947 PMCID: PMC7277826 DOI: 10.3389/fonc.2020.00809] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Prostate cancer (PCa)is a malignancy of the urinary system with a high incidence, which is the second most common male cancer in the world. There are still huge challenges in the treatment of prostate cancer. It is urgent to screen out potential key biomarkers for the pathogenesis and prognosis of PCa. Methods: Multiple gene differential expression profile datasets of PCa tissues and normal prostate tissues were integrated analysis by R software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the overlapping Differentially Expressed Genes (DEG) were performed. The STRING online database was used in conjunction with Cytospace software for protein-protein interaction (PPI) network analysis to define hub genes. The relative mRNA expression of hub genes was detected in Gene Expression Profiling Interactive Analysis (GEPIA) database. A prognostic gene signature was identified by Univariate and multivariate Cox regression analysis. Results: Three hundred twelve up-regulated genes and 85 down-regulated genes were identified from three gene expression profiles (GSE69223, GSE3325, GSE55945) and The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) dataset. Seven hub genes (FGF2, FLNA, FLNC, VCL, CAV1, ACTC1, and MYLK) further were detected, which related to the pathogenesis of PCa. Seven prognostic genes (BCO1, BAIAP2L2, C7, AP000844.2, ASB9, MKI67P1, and TMEM272) were screened to construct a prognostic gene signature, which shows good predictive power for survival by the ROC curve analysis. Conclusions: We identified a robust set of new potential key genes in PCa, which would provide reliable biomarkers for early diagnosis and prognosis and would promote molecular targeting therapy for PCa.
Collapse
Affiliation(s)
- Shuang Liu
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing, China
| | | | - Yan Zhao
- Xuzhou Central Hospital, Xuzhou, China
| | - Kaige Liang
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing, China
| | - Yaojiang Huang
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing, China
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
11
|
Immunoevolution of mouse pancreatic organoid isografts from preinvasive to metastatic disease. Sci Rep 2019; 9:12286. [PMID: 31439856 PMCID: PMC6706454 DOI: 10.1038/s41598-019-48663-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) has a highly immunosuppressive microenvironment, which is contributed by the complex interaction between cancer cells and a heterogeneous population of stromal cells. Therefore, facile and trackable models are needed for integrative and dynamic interrogation of cancer-stroma interaction. Here, we tracked the immunoevolution of PDA in a genetically-defined transplantable model of mouse pancreatic tumour organoids that recapitulates the progression of the disease from early preinvasive lesions to metastatic carcinomas. We demonstrated that organoid-derived isografts (ODI) can be used as a biological source of biomarkers (NT5E, TGFB1, FN1, and ITGA5) of aggressive molecular subtypes of human PDA. In ODI, infiltration from leukocytes is an early event during progression of the disease as observed for autochthonous models. Neoplastic progression was associated to accumulation of Maf+ macrophages, which inversely correlated with CD8+ T cells infiltration. Consistently, levels of MAF were enriched in human PDA subtypes characterized by abundance of macrophage-related transcripts and indicated poor patients' survival. Density of MAF+ macrophages was higher in human PDA tissues compared to preinvasive lesions. Our results suggest that ODIs represent a suitable system for genotypic-immunophenotypic studies and support the hypothesis of MAF+ macrophages as a prominent immunosuppressive population in PDA.
Collapse
|
12
|
Cao R, Wu Q, Li Q, Yao M, Zhou H. A 3-mRNA-based prognostic signature of survival in oral squamous cell carcinoma. PeerJ 2019; 7:e7360. [PMID: 31396442 PMCID: PMC6679650 DOI: 10.7717/peerj.7360] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/26/2019] [Indexed: 12/28/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is the most common type of head and neck squamous cell carcinoma with an unsatisfactory prognosis. The aim of this study was to identify potential prognostic mRNA biomarkers of OSCC based on analysis of The Cancer Genome Atlas (TCGA). Methods Expression profiles and clinical data of OSCC patients were collected from TCGA database. Univariate Cox analysis and the least absolute shrinkage and selection operator Cox (LASSO Cox) regression were used to primarily screen prognostic biomarkers. Then multivariate Cox analysis was performed to build a prognostic model based on the selected prognostic mRNAs. Nomograms were generated to predict the individual’s overall survival at 3 and 5 years. The model performance was assessed by the time-dependent receiver operating characteristic (ROC) curve and calibration plot in both training cohort and validation cohort (GSE41613 from NCBI GEO databases). In addition, machine learning was used to assess the importance of risk factors of OSCC. Finally, in order to explore the potential mechanisms of OSCC, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was completed. Results Three mRNAs (CLEC3B, C6 and CLCN1) were finally identified as a prognostic biomarker pattern. The risk score was imputed as: (−0.38602 × expression level of CLEC3B) + (−0.20632 × expression level of CLCN1) + (0.31541 × expression level of C6). In the TCGA training cohort, the area under the curve (AUC) was 0.705 and 0.711 for 3- and 5-year survival, respectively. In the validation cohort, AUC was 0.718 and 0.717 for 3- and 5-year survival. A satisfactory agreement between predictive values and observation values was demonstrated by the calibration curve in the probabilities of 3- and 5- year survival in both cohorts. Furthermore, machine learning identified the 3-mRNA signature as the most important risk factor to survival of OSCC. Neuroactive ligand-receptor interaction was most enriched mostly in KEGG pathway analysis. Conclusion A 3-mRNA signature (CLEC3B, C6 and CLCN1) successfully predicted the survival of OSCC patients in both training and test cohort. In addition, this signature was an independent and the most important risk factor of OSCC.
Collapse
Affiliation(s)
- Ruoyan Cao
- Department of Prosthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| | - Qiqi Wu
- Department of Endodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| | - Qiulan Li
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mianfeng Yao
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo Zhou
- Department of Prosthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
13
|
Khadirnaikar S, Kumar P, Shukla SK. Development and validation of an immune prognostic signature for ovarian carcinoma. Cancer Rep (Hoboken) 2019; 3:e1166. [PMID: 32794637 DOI: 10.1002/cnr2.1166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/16/2019] [Accepted: 01/25/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) causes a significant proportion of cancer-related deaths in women. Recently, immunotherapy has emerged as a substantial player in cancer treatment. Lymphocyte infiltration, an important indicator of immune activity and disease aggressiveness, can be identified by gene expression profiling of immune-related genes of tumours which may prove useful in prognosis of patients. AIMS The aim of this study is to identify and validate a novel immune gene-based prognostic signature for OC. METHODS AND RESULTS Here, we extracted the expression of immune-related genes and performed the Cox regression analysis and identified five genes with significant correlation with survival in training cohort of patients (n = 286). We utilised regression coefficient and expression level of five genes to calculate immune prognostic signature (IPS) score for OC patients. In univariate and multivariate Cox regression analysis with other clinicopathological factors, we showed that IPS is an independent predictor of survival (P value <0.01). More importantly, we utilised 404 patients from TCGA dataset as the validation cohort and validated the survival capability of IPS in the univariate and multivariate analysis (P value <0.001). Interestingly, KM analysis showed a significant difference in survival of patients with high and low IPS score in both datasets (training dataset P value <0.01, validation dataset P value <0.01). Further, we showed that all the five genes are differentially expressed and involved in immune modulation among other pathways. Interestingly, GSEA analysis showed that high IPS patients had low immune activity and activated EMT and other oncogenic pathways. CONCLUSION In summary, we have developed and validated robust immune-related gene-based prognostic signature to identify the OC patients with high immune activity who can be taken for immunotherapy.
Collapse
Affiliation(s)
- Seema Khadirnaikar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India.,Department of Electrical Engineering, Indian Institute of Technology Dharwad, Dharwad, India
| | - Pranjal Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
| | - Sudhanshu Kumar Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
| |
Collapse
|
14
|
Chen QY, Hu YL, Wang XY, Harrison TJ, Wang C, Hu LP, Yang QL, Ren CC, Jia HH, Fang AZL. Locus 5p13.1 may be associated with the selection of cancer-related HBV core promoter mutations. Int J Med Sci 2019; 16:990-997. [PMID: 31341412 PMCID: PMC6643130 DOI: 10.7150/ijms.34297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/21/2019] [Indexed: 11/16/2022] Open
Abstract
Background: The basal core promoter (BCP) double mutations (A1762T and G1764A) of hepatitis B virus (HBV) have been reported to be an aetiological factor of hepatocellular carcinoma (HCC). What distinguishes the subset of HBV carriers in whom these mutations are selected? Methods: A genome-wide association study (GWAS) was carried out on 218 asymptomatic HBsAg carriers infected with HBV with BCP double mutations and 191 controls infected with HBV with the wild type BCP. The highest ranking nucleotide polymorphisms (SNPs) were validated with other study subjects, 203 cases and 181 controls. The expression of the gene nearest a SNP found to be significant was examined using RT-PCR. Results: Forty-five candidate SNPs were identified in the GWAS. Three SNPs were found to be associated with the selection of HBV BCP double mutations in the replication stage, including rs7717457 at 5p13.1, rs670011 at 17q21.2, rs2071611 at 6p22.2. Especially, rs7717457 (P= 4.57×10-5 combined P) reached the potential GWAS significance level. The expression of gene complement component 7 (C7), nearest to SNP rs7717457, differed significantly between the case and control groups (t=2.045, P=0.04), suggesting that SNP rs7717457 was associated with the expression of its nearest gene. Conclusions: SNP rs7717457 is associated with the selection of HBV BCP double mutations, providing an important clue to understanding the mechanisms of oncogenesis of HBV BCP double mutations.
Collapse
Affiliation(s)
- Qin-Yan Chen
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, Guangxi 530028, China
| | - Yan-Ling Hu
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 ShuangYong Road, Nanning, Guangxi 530021, China
| | - Xue-Yan Wang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, Guangxi 530028, China
| | | | - Chao Wang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, Guangxi 530028, China
| | - Li-Ping Hu
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, Guangxi 530028, China
| | - Qing-Li Yang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, Guangxi 530028, China
| | - Chuang-Chuang Ren
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, Guangxi 530028, China.,School of Preclinical Medicine, Guangxi Medical University, 22 ShuangYong Road, Nanning, Guangxi 530021, China
| | - Hui-Hua Jia
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, Guangxi 530028, China.,School of Preclinical Medicine, Guangxi Medical University, 22 ShuangYong Road, Nanning, Guangxi 530021, China
| | - And Zhong-Liao Fang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, Guangxi 530028, China
| |
Collapse
|
15
|
de Lima RE, de Holanda Martins CM, do Carmo RF, Aroucha DCBL, Pereira LMMB, Vasconcelos LRS, Moura P. Two sides of a coin: GG genotype of C7 provides protection against fibrosis severity while showing a higher risk for hepatocellular carcinoma in patients with hepatitis C. Hum Immunol 2018; 79:702-707. [PMID: 29966690 DOI: 10.1016/j.humimm.2018.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 12/22/2022]
Abstract
The complement system (CS) is a key element of immunity against pathogens but also seems to influence other events, such as tumorigenesis and tissue repair. Complement component 7 (C7) is a key component of the lytic pathway of CS, leading to the formation of the membrane attack complex (MAC). This study aimed to investigate the existence of the association of a polymorphism in the C7 gene, rs1063499, with hepatic fibrosis and the occurrence of hepatocellular carcinoma (HCC) in patients with hepatitis C. We analyzed 456 samples from patients with chronic hepatitis C. Real-time PCR was used for allelic discrimination. Patients were classified by their METAVIR score as F1 (n = 100), F2 (n = 83), F3 (n = 101) or F4 (n = 66); 106 patients were diagnosed with HCC. Patients carrying the G/G genotype of C7 had a lower chance of developing severe fibrosis in the recessive model (p = 0.042; OR: 0.65 95% CI 0.41-1.02). However, the G/G genotype frequency was higher in patients with HCC (P = 0.01; OR: 2.07 95% CI 1.20-3.53) and in those with larger tumors (p = 0.04). The G/G C7 genotype seems to be a protective factor against advanced fibrosis; however, it was associated with a higher risk of HCC and the occurrence of larger hepatic nodules, suggesting the involvement of C7 in the physiopathogenesis of HCC and fibrosis in patients with hepatitis C virus (HCV).
Collapse
Affiliation(s)
- Raul Emídio de Lima
- Institute of Biological Sciences/ICB-UPE, University of Pernambuco, Brazil; Institute Aggeu Magalhães/IAM-FIOCRUZ-PE, Brazil
| | | | | | - Dayse Celia Barbosa Lins Aroucha
- Institute of Liver and Transplantation of Pernambuco/IFP, Brazil; Faculty of Medical Sciences/FCM-UPE, University of Pernambuco, Brazil
| | | | | | - Patrícia Moura
- Institute of Biological Sciences/ICB-UPE, University of Pernambuco, Brazil
| |
Collapse
|
16
|
Ying L, Zhang F, Pan X, Chen K, Zhang N, Jin J, Wu J, Feng J, Yu H, Jin H, Su D. Complement component 7 (C7), a potential tumor suppressor, is correlated with tumor progression and prognosis. Oncotarget 2018; 7:86536-86546. [PMID: 27852032 PMCID: PMC5349933 DOI: 10.18632/oncotarget.13294] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/29/2016] [Indexed: 11/25/2022] Open
Abstract
Our previous study found copy number variation of chromosome fragment 5p13.1-13.3 might involve in the progression of ovarian cancer. In the current study, the alteration was validated and complement component 7 (C7), located on 5p13.1, was identified. To further explore the clinical value of C7 in tumors, 156 malignant, 22 borderline, 33 benign and 24 normal ovarian tissues, as well as 173 non-small cell lung cancer (NSCLC) tissues along with corresponding adjacent and normal tissues from the tissue bank of Zhejiang Cancer Hospital were collected. The expression of C7 was analyzed using reverse transcriptase quantitative polymerase chain reaction. As a result, the C7 expression displayed a gradual downward trend in normal, benign, borderline and malignant ovarian tissues, and the decreased expression of C7 was correlative to poor differentiation in patients with ovarian cancer. Interestingly, a similar change of expression of C7 was found in normal, adjacent and malignant tissues in patients with NSCLC, and low expression of C7 was associated with worse grade and advanced clinical stage. Both results from this cohort and the public database indicated that NSCLC patients with low expression of C7 had a worse outcome. Furthermore, multivariate cox regression analysis showed NSCLC patients with low C7 had a 3.09 or 5.65-fold higher risk for relapse or death than those with high C7 respectively, suggesting C7 was an independent prognostic predictor for prognoses of patients with NSCLC. Additionally, overexpression of C7 inhibited colony formation of NSCLC cells, which hints C7 might be a potential tumor suppressor.
Collapse
Affiliation(s)
- Lisha Ying
- Laboratory of Cancer Biology, Provincial Key Lab of Biotherapy in Zhejiang, Sir Runrun Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.,Cancer Research Institute, Zhejiang Cancer Hospital & Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, China
| | - Fanrong Zhang
- Cancer Research Institute, Zhejiang Cancer Hospital & Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, China
| | - Xiaodan Pan
- Tissue Bank of Zhejiang Cancer Hospital, Hangzhou, China
| | - Kaiyan Chen
- Cancer Research Institute, Zhejiang Cancer Hospital & Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, China
| | - Nan Zhang
- Cancer Research Institute, Zhejiang Cancer Hospital & Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, China
| | - Jiaoyue Jin
- Cancer Research Institute, Zhejiang Cancer Hospital & Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, China
| | - Junzhou Wu
- Cancer Research Institute, Zhejiang Cancer Hospital & Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, China
| | - Jianguo Feng
- Cancer Research Institute, Zhejiang Cancer Hospital & Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, China
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Hawaii, USA
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Provincial Key Lab of Biotherapy in Zhejiang, Sir Runrun Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Dan Su
- Cancer Research Institute, Zhejiang Cancer Hospital & Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
17
|
Liao JH, Li CC, Wu SH, Fan JW, Gu HT, Wang ZW. Gene Variations of Sixth Complement Component Affecting Tacrolimus Metabolism in Patients with Liver Transplantation for Hepatocellular Carcinoma. Chin Med J (Engl) 2017; 130:1670-1676. [PMID: 28685716 PMCID: PMC5520553 DOI: 10.4103/0366-6999.209886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) improves the prognosis of patients with hepatocellular carcinoma (HCC). Moreover, the complement system is a powerful immune effector that can affect liver function and process of liver cirrhosis. However, studies correlating the complement system with tacrolimus metabolism after OLT are scarce. In this study, the role of single nucleotide polymorphisms (SNPs) associated with the sixth complement component (C6) in tacrolimus metabolism was investigated during the early stages of liver transplantation. METHODS The study enrolled 135 adult patients treated with OLT for HCC between August 2011 and October 2013. Ten SNPs in C6 gene and rs776746 in cytochrome P450 3A5 (CYP3A5) gene were investigated. The tacrolimus levels were monitored daily during 4 weeks after transplantation. RESULTS Both donor and recipient CYP3A5 rs776746 allele A were correlated with decreased concentration/dose (C/D) ratios. Recipient C6 rs9200 allele G and donor C6 rs10052999 homozygotes were correlated with lower C/D ratios. Recipient CYP3A5 rs776746 allele A (yielded median tacrolimus C/D ratios of 225.90 at week 1 and 123.61 at week 2), C6 rs9200 allele G (exhibited median tacrolimus C/D ratios of 211.31 at week 1, 110.23 at week 2, and 99.88 at week 3), and donor CYP3A5 rs776746 allele A (exhibited median C/D ratios of 210.82 at week 1, 111.06 at week 2, 77.49 at week 3, and 85.60 at week 4) and C6 rs10052999 homozygote (exhibited median C/D ratios of 167.59 at week 2, 157.99 at week 3, and 155.36 at week 4) were associated with rapid tacrolimus metabolism. With increasing number of these alleles, patients were found to have lower tacrolimus C/D ratios at various time points during the 4 weeks after transplantation. In multiple linear regression analysis, recipient C6 rs9200 group (AA vs. GG/GA) was found to be related to tacrolimus metabolism at weeks 1, 2, and 3 (P = 0.005, P = 0.045, and P = 0.033, respectively), whereas donor C6 rs10052999 group (CC/TT vs. TC) was demonstrated to be correlated with tacrolimus metabolism only at week 4 (P = 0.001). CONCLUSIONS Recipient C6 gene rs9200 polymorphism and donor C6 gene rs10052999 polymorphism are new genetic loci that affect tacrolimus metabolism in patients with HCC after OLT.
Collapse
Affiliation(s)
- Jian-Hua Liao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chang-Can Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shao-Han Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jun-Wei Fan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hai-Tao Gu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhao-Wen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
18
|
Yu SJ, Kim H, Min H, Sohn A, Cho YY, Yoo JJ, Lee DH, Cho EJ, Lee JH, Gim J, Park T, Kim YJ, Kim CY, Yoon JH, Kim Y. Targeted Proteomics Predicts a Sustained Complete-Response after Transarterial Chemoembolization and Clinical Outcomes in Patients with Hepatocellular Carcinoma: A Prospective Cohort Study. J Proteome Res 2017; 16:1239-1248. [DOI: 10.1021/acs.jproteome.6b00833] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Su Jong Yu
- Department
of Internal Medicine and Liver Research Institute, ‡Department of Biomedical
Engineering, and §Institute of Medical and Biological Engineering, Medical Research
Center, Seoul National University College of Medicine, Yongon-Dong, Seoul 110-799, Korea
- Interdisciplinary
Program in Bioinformatics and ⊥Department of Statistics, Seoul National University, Daehak-dong, Seoul 151-742, Korea
| | - Hyunsoo Kim
- Department
of Internal Medicine and Liver Research Institute, ‡Department of Biomedical
Engineering, and §Institute of Medical and Biological Engineering, Medical Research
Center, Seoul National University College of Medicine, Yongon-Dong, Seoul 110-799, Korea
- Interdisciplinary
Program in Bioinformatics and ⊥Department of Statistics, Seoul National University, Daehak-dong, Seoul 151-742, Korea
| | - Hophil Min
- Department
of Internal Medicine and Liver Research Institute, ‡Department of Biomedical
Engineering, and §Institute of Medical and Biological Engineering, Medical Research
Center, Seoul National University College of Medicine, Yongon-Dong, Seoul 110-799, Korea
- Interdisciplinary
Program in Bioinformatics and ⊥Department of Statistics, Seoul National University, Daehak-dong, Seoul 151-742, Korea
| | - Areum Sohn
- Department
of Internal Medicine and Liver Research Institute, ‡Department of Biomedical
Engineering, and §Institute of Medical and Biological Engineering, Medical Research
Center, Seoul National University College of Medicine, Yongon-Dong, Seoul 110-799, Korea
- Interdisciplinary
Program in Bioinformatics and ⊥Department of Statistics, Seoul National University, Daehak-dong, Seoul 151-742, Korea
| | - Young Youn Cho
- Department
of Internal Medicine and Liver Research Institute, ‡Department of Biomedical
Engineering, and §Institute of Medical and Biological Engineering, Medical Research
Center, Seoul National University College of Medicine, Yongon-Dong, Seoul 110-799, Korea
- Interdisciplinary
Program in Bioinformatics and ⊥Department of Statistics, Seoul National University, Daehak-dong, Seoul 151-742, Korea
| | - Jeong-Ju Yoo
- Department
of Internal Medicine and Liver Research Institute, ‡Department of Biomedical
Engineering, and §Institute of Medical and Biological Engineering, Medical Research
Center, Seoul National University College of Medicine, Yongon-Dong, Seoul 110-799, Korea
- Interdisciplinary
Program in Bioinformatics and ⊥Department of Statistics, Seoul National University, Daehak-dong, Seoul 151-742, Korea
| | - Dong Hyeon Lee
- Department
of Internal Medicine and Liver Research Institute, ‡Department of Biomedical
Engineering, and §Institute of Medical and Biological Engineering, Medical Research
Center, Seoul National University College of Medicine, Yongon-Dong, Seoul 110-799, Korea
- Interdisciplinary
Program in Bioinformatics and ⊥Department of Statistics, Seoul National University, Daehak-dong, Seoul 151-742, Korea
| | - Eun Ju Cho
- Department
of Internal Medicine and Liver Research Institute, ‡Department of Biomedical
Engineering, and §Institute of Medical and Biological Engineering, Medical Research
Center, Seoul National University College of Medicine, Yongon-Dong, Seoul 110-799, Korea
- Interdisciplinary
Program in Bioinformatics and ⊥Department of Statistics, Seoul National University, Daehak-dong, Seoul 151-742, Korea
| | - Jeong-Hoon Lee
- Department
of Internal Medicine and Liver Research Institute, ‡Department of Biomedical
Engineering, and §Institute of Medical and Biological Engineering, Medical Research
Center, Seoul National University College of Medicine, Yongon-Dong, Seoul 110-799, Korea
- Interdisciplinary
Program in Bioinformatics and ⊥Department of Statistics, Seoul National University, Daehak-dong, Seoul 151-742, Korea
| | - Jungsoo Gim
- Department
of Internal Medicine and Liver Research Institute, ‡Department of Biomedical
Engineering, and §Institute of Medical and Biological Engineering, Medical Research
Center, Seoul National University College of Medicine, Yongon-Dong, Seoul 110-799, Korea
- Interdisciplinary
Program in Bioinformatics and ⊥Department of Statistics, Seoul National University, Daehak-dong, Seoul 151-742, Korea
| | - Taesung Park
- Department
of Internal Medicine and Liver Research Institute, ‡Department of Biomedical
Engineering, and §Institute of Medical and Biological Engineering, Medical Research
Center, Seoul National University College of Medicine, Yongon-Dong, Seoul 110-799, Korea
- Interdisciplinary
Program in Bioinformatics and ⊥Department of Statistics, Seoul National University, Daehak-dong, Seoul 151-742, Korea
| | - Yoon Jun Kim
- Department
of Internal Medicine and Liver Research Institute, ‡Department of Biomedical
Engineering, and §Institute of Medical and Biological Engineering, Medical Research
Center, Seoul National University College of Medicine, Yongon-Dong, Seoul 110-799, Korea
- Interdisciplinary
Program in Bioinformatics and ⊥Department of Statistics, Seoul National University, Daehak-dong, Seoul 151-742, Korea
| | - Chung Yong Kim
- Department
of Internal Medicine and Liver Research Institute, ‡Department of Biomedical
Engineering, and §Institute of Medical and Biological Engineering, Medical Research
Center, Seoul National University College of Medicine, Yongon-Dong, Seoul 110-799, Korea
- Interdisciplinary
Program in Bioinformatics and ⊥Department of Statistics, Seoul National University, Daehak-dong, Seoul 151-742, Korea
| | - Jung-Hwan Yoon
- Department
of Internal Medicine and Liver Research Institute, ‡Department of Biomedical
Engineering, and §Institute of Medical and Biological Engineering, Medical Research
Center, Seoul National University College of Medicine, Yongon-Dong, Seoul 110-799, Korea
- Interdisciplinary
Program in Bioinformatics and ⊥Department of Statistics, Seoul National University, Daehak-dong, Seoul 151-742, Korea
| | - Youngsoo Kim
- Department
of Internal Medicine and Liver Research Institute, ‡Department of Biomedical
Engineering, and §Institute of Medical and Biological Engineering, Medical Research
Center, Seoul National University College of Medicine, Yongon-Dong, Seoul 110-799, Korea
- Interdisciplinary
Program in Bioinformatics and ⊥Department of Statistics, Seoul National University, Daehak-dong, Seoul 151-742, Korea
| |
Collapse
|
19
|
Wang Z, Liao J, Wu S, Li C, Fan J, Peng Z. Recipient C6 rs9200 genotype is associated with hepatocellular carcinoma recurrence after orthotopic liver transplantation in a Han Chinese population. Cancer Gene Ther 2016; 23:157-61. [PMID: 27173880 DOI: 10.1038/cgt.2016.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 12/22/2022]
Abstract
Hepatocellular carcinoma (HCC) recurrence is one of the leading causes of death after orthotopic liver transplantation (OLT). The sixth complement component (C6) is a late-acting complement protein that participates in the assembly of the membrane attack complex, which has an indispensable role in innate and acquired immune responses, as well as cancer immune surveillance. However, studies assessing the association between C6 and HCC recurrence after OLT are scarce. This study aimed to evaluate the association of donor and recipient C6 single-nucleotide polymorphisms with the risk for HCC recurrence after OLT. A total of 71 adult patients who underwent primary LT for HCC were enrolled. HCC recurrence was observed in 26 (36.6%) patients. Ten single-nucleotide polymorphisms were genotyped and analyzed in both donor and recipient groups. Patients with the rs9200 heterozygous GA variant presented significantly higher HCC recurrence rates (54.17 vs 27.66%, P=0.028), and lower cumulative tumor-free survival and overall survival (P=0.006 and P=0.013, respectively) compared with those harboring the GG/AA genotype, in multivariate logistic regression and Cox regression analyses. The rs9200 heterozygous GA variant in C6 persisted as a statistically independent prognostic factor (P<0.05) for predicting HCC recurrence after OLT. In conclusion, recipient C6 rs9200 polymorphism is associated with HCC recurrence after OLT, and improves the predictive value of clinical models.
Collapse
Affiliation(s)
- Z Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Liao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - C Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Fan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Z Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Li Y, Krahn JM, Flake GP, Umbach DM, Li L. Toward predicting metastatic progression of melanoma based on gene expression data. Pigment Cell Melanoma Res 2015; 28:453-63. [PMID: 25847062 PMCID: PMC4469521 DOI: 10.1111/pcmr.12374] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/27/2015] [Indexed: 01/20/2023]
Abstract
Primary and metastatic melanoma tumors share the same cell origin, making it challenging to identify genomic biomarkers that can differentiate them. Primary tumors themselves can be heterogeneous, reflecting ongoing genomic changes as they progress toward metastasizing. We developed a computational method to explore this heterogeneity and to predict metastatic progression of the primary tumors. We applied our method separately to gene expression and to microRNA (miRNA) expression data from ~450 primary and metastatic skin cutaneous melanoma (SKCM) samples from the Cancer Genome Atlas (TCGA). Metastatic progression scores from RNA-seq data were significantly associated with clinical staging of patients' lymph nodes, whereas scores from miRNA-seq data were significantly associated with Clark's level. The loss of expression of many characteristic epithelial lineage genes in primary SKCM tumor samples was highly correlated with predicted progression scores. We suggest that those genes/miRNAs might serve as putative biomarkers for SKCM metastatic progression.
Collapse
Affiliation(s)
- Yuanyuan Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Juno M. Krahn
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Gordon P. Flake
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - David M. Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Leping Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| |
Collapse
|
21
|
Genome-scale analysis of DNA methylation in lung adenocarcinoma and integration with mRNA expression. Genome Res 2012; 22:1197-211. [PMID: 22613842 PMCID: PMC3396362 DOI: 10.1101/gr.132662.111] [Citation(s) in RCA: 405] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide, and adenocarcinoma is its most common histological subtype. Clinical and molecular evidence indicates that lung adenocarcinoma is a heterogeneous disease, which has important implications for treatment. Here we performed genome-scale DNA methylation profiling using the Illumina Infinium HumanMethylation27 platform on 59 matched lung adenocarcinoma/non-tumor lung pairs, with genome-scale verification on an independent set of tissues. We identified 766 genes showing altered DNA methylation between tumors and non-tumor lung. By integrating DNA methylation and mRNA expression data, we identified 164 hypermethylated genes showing concurrent down-regulation, and 57 hypomethylated genes showing increased expression. Integrated pathways analysis indicates that these genes are involved in cell differentiation, epithelial to mesenchymal transition, RAS and WNT signaling pathways, and cell cycle regulation, among others. Comparison of DNA methylation profiles between lung adenocarcinomas of current and never-smokers showed modest differences, identifying only LGALS4 as significantly hypermethylated and down-regulated in smokers. LGALS4, encoding a galactoside-binding protein involved in cell–cell and cell–matrix interactions, was recently shown to be a tumor suppressor in colorectal cancer. Unsupervised analysis of the DNA methylation data identified two tumor subgroups, one of which showed increased DNA methylation and was significantly associated with KRAS mutation and to a lesser extent, with smoking. Our analysis lays the groundwork for further molecular studies of lung adenocarcinoma by identifying novel epigenetically deregulated genes potentially involved in lung adenocarcinoma development/progression, and by describing an epigenetic subgroup of lung adenocarcinoma associated with characteristic molecular alterations.
Collapse
|
22
|
Casado-Vela J, Gómez del Pulgar T, Cebrián A, Alvarez-Ayerza N, Lacal JC. Human urine proteomics: building a list of human urine cancer biomarkers. Expert Rev Proteomics 2011; 8:347-60. [PMID: 21679116 DOI: 10.1586/epr.11.26] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the last decade, several reports have focused on the identification and characterization of proteins present in urine. In an effort to build a list of proteins of interest as biomarkers, we reviewed the largest urine proteomes and built two updated lists of proteins of interest (available as supplementary tables). The first table includes a consensus list of 443 proteins found in urine by independent laboratories and reported on the top three largest urine proteomes currently published. This consensus list of proteins could serve as biomarkers to diagnose, monitor and manage a number of diseases. Here, we focus on a reduced list of 35 proteins with potential interest as cancer biomarkers in urine following two criteria: first, proteins previously detected in urine using bottom-up proteomic experiments, and second, those suggested as cancer protein biomarkers in human plasma. In an effort to standardize the information presented and its use in future studies, here we include the updated International Protein Index (v. 3.80) and primary Swiss-Prot accession numbers, official gene symbols and recommended full names. The main variables that influence urine proteomic experiments are also discussed.
Collapse
Affiliation(s)
- Juan Casado-Vela
- Translational Oncology Unit, Instituto de Investigaciones Biomédicas Alberto Sols, Spanish National Research Council (CSIC), 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
23
|
Schlosser RJ, Mulligan RM, Casey SE, Varela JC, Harvey RJ, Atkinson C. Alterations in gene expression of complement components in chronic rhinosinusitis. Am J Rhinol Allergy 2010; 24:21-5. [PMID: 20109314 DOI: 10.2500/ajra.2010.24.3399] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND The complement cascade forms part of the initial innate response to pathogens in the airway. Complement activation is important in the maintenance of host homeostasis, but excessive and uncontrolled activation may lead to inflammation and disease. The role of the complement pathway in the innate response in chronic rhinosinusitis (CRS) is poorly characterized Methods: Sinus mucosa biopsy specimens from the anterior ethmoid or uncinate process of patients with allergic fungal rhinosinusitis (AFRS), CRS without NPs (CRS-NPs), and controls were harvested and gene and protein expression of C3, factor B (fB), C5, and C7 complement proteins were analyzed using quantitative polymerase chain reaction and immunohistochemical techniques. RESULTS fB, C3, and C5 gene expression were increased in both AFRS and CRS-NPs compared with controls (p < 0.05). Transcriptional activity for the terminal pathway protein C7 was not significantly increased when compared with controls, with C7 levels actually reduced in AFRS patients when compared with controls. Immunohistochemistry studies showed the presence of C3 and fB on the mucosal surface and in submucosa of both AFRS and CRS-NPs, but not normal controls. Terminal pathway protein C9 was not found in our specimens. CONCLUSION Both AFRS and CRS-NPs display up-regulation of the complement pathway, in particular, the alternative pathway (fB) and common pathways (C3 and C5). Enhanced innate responses as shown by alterations in complement components may play a pivotal role in the inflammatory response noted in CRS and provide potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Rodney J Schlosser
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Hong Q, Sze CI, Lin SR, Lee MH, He RY, Schultz L, Chang JY, Chen SJ, Boackle RJ, Hsu LJ, Chang NS. Complement C1q activates tumor suppressor WWOX to induce apoptosis in prostate cancer cells. PLoS One 2009; 4:e5755. [PMID: 19484134 PMCID: PMC2685983 DOI: 10.1371/journal.pone.0005755] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Accepted: 05/05/2009] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Tissue exudates contain low levels of serum complement proteins, and their regulatory effects on prostate cancer progression are largely unknown. We examined specific serum complement components in coordinating the activation of tumor suppressors p53 and WWOX (also named FOR or WOX1) and kinases ERK, JNK1 and STAT3 in human prostate DU145 cells. METHODOLOGY/PRINCIPAL FINDINGS DU145 cells were cultured overnight in 1% normal human serum, or in human serum depleted of an indicated complement protein. Under complement C1q- or C6-free conditions, WOX1 and ERK were mainly present in the cytoplasm without phosphorylation, whereas phosphorylated JNK1 was greatly accumulated in the nuclei. Exogenous C1q rapidly restored the WOX1 activation (with Tyr33 phosphorylation) in less than 2 hr. Without serum complement C9, p53 became activated, and hyaluronan (HA) reversed the effect. Under C6-free conditions, HA induced activation of STAT3, an enhancer of metastasis. Notably, exogenous C1q significantly induced apoptosis of WOX1-overexpressing DU145 cells, but not vehicle-expressing cells. A dominant negative and Y33R mutant of WOX1 blocked the apoptotic effect. C1q did not enhance p53-mediated apoptosis. By total internal reflection fluorescence (TIRF) microscopy, it was determined that C1q destabilized adherence of WOX1-expressing DU145 cells by partial detaching and inducing formation of clustered microvilli for focal adhesion particularly in between cells. These cells then underwent shrinkage, membrane blebbing and death. Remarkably, as determined by immunostaining, benign prostatic hyperplasia and prostate cancer were shown to have a significantly reduced expression of tissue C1q, compared to age-matched normal prostate tissues. CONCLUSIONS/SIGNIFICANCE We conclude that complement C1q may induce apoptosis of prostate cancer cells by activating WOX1 and destabilizing cell adhesion. Downregulation of C1q enhances prostate hyperplasia and cancerous formation due to failure of WOX1 activation.
Collapse
Affiliation(s)
- Qunying Hong
- Guthrie Research Institute, Laboratory of Molecular Immunology, Sayre, Pennsylvania, United States of America
| | - Chun-I Sze
- Department of Pathology, National Cheng Kung University Medical College, Tainan, Taiwan, Republic of China
- Department of Anatomy and Cell Biology, National Cheng Kung University Medical College, Tainan, Taiwan, Republic of China
| | - Sing-Ru Lin
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, Republic of China
| | - Ming-Hui Lee
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, Republic of China
| | - Ruei-Yu He
- Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Lori Schultz
- Guthrie Research Institute, Laboratory of Molecular Immunology, Sayre, Pennsylvania, United States of America
| | - Jean-Yun Chang
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, Republic of China
| | - Shean-Jen Chen
- Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Robert J. Boackle
- Section of Oral Biology, Department of Stomatology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Li-Jin Hsu
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, Taiwan, Republic of China
- Center for Gene Regulation and Signal Transduction Research, National Cheng Kung University Medical College, Tainan, Taiwan, Republic of China
| | - Nan-Shan Chang
- Guthrie Research Institute, Laboratory of Molecular Immunology, Sayre, Pennsylvania, United States of America
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, Republic of China
- Center for Gene Regulation and Signal Transduction Research, National Cheng Kung University Medical College, Tainan, Taiwan, Republic of China
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| |
Collapse
|
25
|
C7 is expressed on endothelial cells as a trap for the assembling terminal complement complex and may exert anti-inflammatory function. Blood 2009; 113:3640-8. [DOI: 10.1182/blood-2008-03-146472] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
We describe a novel localization of C7 as a membrane-bound molecule on endothelial cells (ECs). Data obtained by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE), Western blot analysis, Northern blot analysis, and mass spectrometry revealed that membrane-associated C7 (mC7) was indistinguishable from soluble C7 and was associated with vimentin on the cell surface. mC7 interacted with the other late complement components to form membrane-bound TCC (mTCC). Unlike the soluble SC5b-9, mTCC failed to stimulate ECs to express adhesion molecules, to secrete IL-8, and to induce albumin leakage through a monolayer of ECs, and more importantly protected ECs from the proinflammatory effect of SC5b-9. Our data disclose the possibility of a novel role of mC7 that acts as a trap for the late complement components to control excessive inflammation induced by SC5b-9.
Collapse
|
26
|
Son DN, Li L, Katsuyama H, Komatsu N, Saito M, Tanii H, Saijoh K. Abundant expression of Kallikrein 1 gene in human keratinocytes was mediated by GATA3. Gene 2009; 436:121-7. [PMID: 19232384 DOI: 10.1016/j.gene.2009.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 01/27/2009] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
Abstract
Among Tissue kallikrein genes (KLKs), KLK1 is abundantly expressed in human skin. Although its putative promoter is known to have various cis-elements, they have not been functionally tested. In the present study, the regulation mechanism of KLK1 promoter supporting such abundant expression was examined. Luciferase assay targeting the KLK1 promoter (nucleotide -1153/+40 from the major transcriptional start site) was performed on NHEK human keratinocyte. -954/-855, -428/-236, and -100/+40 had the induction activity. The motif search program failed to find unique binding motifs in -428/-236, whereas both -954/-855 and -100/+40 had a unique GATAs binding motif. Electrophoretic mobility shift assay (EMSA) and DNA footprinting confirmed the binding of NHEK nuclear protein to these motifs that were supershifted by anti-GATA3 antibody. Among GATA isoforms, GATA3 alone could be amplified in RNA obtained from NHEK. Moreover, introduction of GATA3 into fibroblastic NIH3T3 cells enhanced the activity of KLK1 promoter containing -954/+40, while that of GATA3 dominant negative mutant to NHEK cells impaired the same promoter's activity. Thus, GATA3 was found to bind the site located at -954/-855 and to be a key regulator of abundant KLK1 expression in human keratinocyte.
Collapse
Affiliation(s)
- Do Ngoc Son
- Department of Hygiene, Kanazawa University School of Medicine, Kanazawa, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Nguyen HX, Galvan MD, Anderson AJ. Characterization of early and terminal complement proteins associated with polymorphonuclear leukocytes in vitro and in vivo after spinal cord injury. J Neuroinflammation 2008; 5:26. [PMID: 18578885 PMCID: PMC2443364 DOI: 10.1186/1742-2094-5-26] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 06/25/2008] [Indexed: 02/01/2023] Open
Abstract
Background The complement system has been suggested to affect injury or disease of the central nervous system (CNS) by regulating numerous physiological events and pathways. The activation of complement following traumatic CNS injury can also result in the formation and deposition of C5b-9 membrane attack complex (C5b-9/MAC), causing cell lysis or sublytic effects on vital CNS cells. Although complement proteins derived from serum/blood-brain barrier breakdown can contribute to injury or disease, infiltrating immune cells may represent an important local source of complement after injury. As the first immune cells to infiltrate the CNS within hours post-injury, polymorphonuclear leukocytes (PMNs) may affect injury through mechanisms associated with complement-mediated events. However, the expression/association of both early and terminal complement proteins by PMNs has not been fully characterized in vitro, and has not observed previously in vivo after traumatic spinal cord injury (SCI). Method We investigated the expression of complement mRNAs using rt-PCR and the presence of complement proteins associated with PMNs using immunofluroescence and quantitative flow cytometry. Results Stimulated or unstimulated PMNs expressed mRNAs encoding for C1q, C3, and C4, but not C5, C6, C7 or C9 in culture. Complement protein C1q or C3 was also detected in less than 30% of cultured PMNs. In contrast, over 70% of PMNs that infiltrated the injured spinal cord were associated with C1q, C3, C7 and C5b-9/MAC 3 days post-SCI. The localization/association of C7 or C5b-9/MAC with infiltrating PMNs in the injured spinal cord suggests the incorporation or internalization of C7 or C5b-9/MAC bound cellular debris by infiltrating PMNs because C7 and C5b-9/MAC were mostly localized to granular vesicles within PMNs at the spinal cord epicenter region. Furthermore, PMN presence in the injured spinal cord was observed for many weeks post-SCI, suggesting that this infiltrating cell population could chronically affect complement-mediated events and SCI pathogenesis after trauma. Conclusion Data presented here provide the first characterization of early and terminal complement proteins associated with PMNs in vitro and in vivo after SCI. Data also suggest a role for PMNs in the local internalization or deliverance of complement and complement activation in the post-SCI environment.
Collapse
Affiliation(s)
- Hal X Nguyen
- Physical Medicine & Rehabilitation, 1105 Gillespie Neuroscience Research Facility, University of California, Irvine, CA 92697-4292, USA.
| | | | | |
Collapse
|
28
|
Timár KK, Dallos A, Kiss M, Husz S, Bos JD, Asghar SS. Expression of terminal complement components by human keratinocytes. Mol Immunol 2007; 44:2578-86. [PMID: 17267037 DOI: 10.1016/j.molimm.2006.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 12/10/2006] [Accepted: 12/14/2006] [Indexed: 11/16/2022]
Abstract
Human keratinocytes are important constituents of the skin immune system. They produce several cytokines, chemokines as well as some complement proteins. As regards soluble complement proteins, so far keratinocytes have been shown to synthesize only C3, factor B, factor H and factor I. Synthesis and regulation of synthesis of other complement proteins has not yet been studied. Here we studied the synthesis of terminal complement components, C5-C9 by human keratinocytes. We also studied the regulation of terminal complement synthesis in keratinocytes by several cytokines, namely, IL-1alpha, IL-2, IL-6, TGF-beta1, TNF-alpha, and IFN-gamma. Human keratinocytes constitutively expressed C5, C7, C8gamma and C9 mRNA but not C6, C8alpha and C8beta mRNA. They released C7 and C9, but not C5, C6 and C8. None of the cytokines tested had any influence on the synthesis of terminal components except TNF-alpha, which strongly upregulated C9 production. In conclusion, we demonstrate that keratinocytes are capable of synthesizing some of the terminal complement components and that the synthesis of C9 is regulated by TNF-alpha.
Collapse
Affiliation(s)
- Krisztina K Timár
- Department of Dermatology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
We have compiled from literature and other sources a list of 1261 proteins believed to be differentially expressed in human cancer. These proteins, only some of which have been detected in plasma to date, represent a population of candidate plasma biomarkers that could be useful in early cancer detection and monitoring given sufficiently sensitive specific assays. We have begun to prioritize these markers for future validation by frequency of literature citations, both total and as a function of time. The candidates include proteins involved in oncogenesis, angiogenesis, development, differentiation, proliferation, apoptosis, hematopoiesis, immune and hormonal responses, cell signaling, nucleotide function, hydrolysis, cellular homing, cell cycle and structure, the acute phase response and hormonal control. Many have been detected in studies of tissue or nuclear components; nevertheless we hypothesize that most if not all should be present in plasma at some level. Of the 1261 candidates only 9 have been approved as "tumor associated antigens" by the FDA. We propose that systematic collection and large-scale validation of candidate biomarkers would fill the gap currently existing between basic research and clinical use of advanced diagnostics.
Collapse
Affiliation(s)
- Malu Polanski
- The Plasma Proteome Institute, P.O. Box: 53450, Washington DC, 20009-3450, USA
| | | |
Collapse
|
30
|
Biade S, Marinucci M, Schick J, Roberts D, Workman G, Sage EH, O'Dwyer PJ, LiVolsi VA, Johnson SW. Gene expression profiling of human ovarian tumours. Br J Cancer 2006; 95:1092-100. [PMID: 16969345 PMCID: PMC2360705 DOI: 10.1038/sj.bjc.6603346] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
There is currently a lack of reliable diagnostic and prognostic markers for ovarian cancer. We established gene expression profiles for 120 human ovarian tumours to identify determinants of histologic subtype, grade and degree of malignancy. Unsupervised cluster analysis of the most variable set of expression data resulted in three major tumour groups. One consisted predominantly of benign tumours, one contained mostly malignant tumours, and one was comprised of a mixture of borderline and malignant tumours. Using two supervised approaches, we identified a set of genes that distinguished the benign, borderline and malignant phenotypes. These algorithms were unable to establish profiles for histologic subtype or grade. To validate these findings, the expression of 21 candidate genes selected from these analyses was measured by quantitative RT–PCR using an independent set of tumour samples. Hierarchical clustering of these data resulted in two major groups, one benign and one malignant, with the borderline tumours interspersed between the two groups. These results indicate that borderline ovarian tumours may be classified as either benign or malignant, and that this classifier could be useful for predicting the clinical course of borderline tumours. Immunohistochemical analysis also demonstrated increased expression of CD24 antigen in malignant versus benign tumour tissue. The data that we have generated will contribute to a growing body of expression data that more accurately define the biologic and clinical characteristics of ovarian cancers.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/genetics
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/pathology
- CD24 Antigen/analysis
- CD24 Antigen/genetics
- Calcium-Binding Proteins/analysis
- Calcium-Binding Proteins/genetics
- Cluster Analysis
- Cystadenocarcinoma, Mucinous/genetics
- Cystadenocarcinoma, Mucinous/metabolism
- Cystadenocarcinoma, Mucinous/pathology
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/metabolism
- Cystadenocarcinoma, Serous/pathology
- Extracellular Matrix Proteins/analysis
- Extracellular Matrix Proteins/genetics
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Immunohistochemistry
- Oligonucleotide Array Sequence Analysis/methods
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Reproducibility of Results
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- S Biade
- Department of Pharmacology, University of Pennsylvania Cancer Center, BRB II/III- Room 1020, 421 Curie Building, Philadelphia, PA, USA
| | - M Marinucci
- Department of Pharmacology, University of Pennsylvania Cancer Center, BRB II/III- Room 1020, 421 Curie Building, Philadelphia, PA, USA
| | - J Schick
- Department of Pharmacology, University of Pennsylvania Cancer Center, BRB II/III- Room 1020, 421 Curie Building, Philadelphia, PA, USA
| | - D Roberts
- Department of Pharmacology, University of Pennsylvania Cancer Center, BRB II/III- Room 1020, 421 Curie Building, Philadelphia, PA, USA
| | - G Workman
- Hope Heart Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - E H Sage
- Hope Heart Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - P J O'Dwyer
- Department of Pharmacology, University of Pennsylvania Cancer Center, BRB II/III- Room 1020, 421 Curie Building, Philadelphia, PA, USA
| | - V A LiVolsi
- Department of Pharmacology, University of Pennsylvania Cancer Center, BRB II/III- Room 1020, 421 Curie Building, Philadelphia, PA, USA
| | - S W Johnson
- Department of Pharmacology, University of Pennsylvania Cancer Center, BRB II/III- Room 1020, 421 Curie Building, Philadelphia, PA, USA
- E-mail:
| |
Collapse
|
31
|
Tilton SC, Gerwick LG, Hendricks JD, Rosato CS, Corley-Smith G, Givan SA, Bailey GS, Bayne CJ, Williams DE. Use of a Rainbow Trout Oligonucleotide Microarray to Determine Transcriptional Patterns in Aflatoxin B1-Induced Hepatocellular Carcinoma Compared to Adjacent Liver. Toxicol Sci 2005; 88:319-30. [PMID: 16141433 DOI: 10.1093/toxsci/kfi309] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, and its occurrence is associated with a number of environmental factors including ingestion of the dietary contaminant aflatoxin B(1) (AFB(1)). Research over the last 40 years has revealed rainbow trout (Oncorhynchus mykiss) to be an excellent research model for study of AFB(1)-induced hepatocarcinogenesis; however, little is known about changes at the molecular level in trout tumors. We have developed a rainbow trout oligonucleotide array containing 1672 elements representing over 1400 genes of known or probable relevance to toxicology, comparative immunology, carcinogenesis, endocrinology, and stress physiology. In this study, we applied microarray technology to examine gene expression of AFB(1)-induced HCC in the rainbow trout tumor model. Carcinogenesis was initiated in trout embryos with 50 ppb AFB(1), and after 13 months control livers, tumors, and tumor-adjacent liver tissues were isolated from juvenile fish. Global gene expression was determined in histologically confirmed HCCs compared to noncancerous adjacent tissue and sham-initiated control liver. We observed distinct gene regulation patterns in HCC compared to noncancerous tissue including upregulation of genes important for cell cycle control, transcription, cytoskeletal formation, and the acute phase response and downregulation of genes involved in drug metabolism, lipid metabolism, and retinol metabolism. Interestingly, the expression profiles observed in trout HCC are similar to the transcriptional signatures found in human and rodent HCC, further supporting the validity of the model. Overall, these findings contribute to a better understanding of the mechanism of AFB(1)-induced hepatocarcinogenesis in trout and identify conserved genes important for carcinogenesis in species separated evolutionarily by more than 400 million years.
Collapse
Affiliation(s)
- Susan C Tilton
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, 97331, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Shah US, Getzenberg RH. Fingerprinting the diseased prostate: associations between BPH and prostate cancer. J Cell Biochem 2004; 91:161-9. [PMID: 14689588 DOI: 10.1002/jcb.10739] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Two of the most common diseases which occur in ageing men relate to their prostate. BPH and prostate cancer are prevalent diseases which have an impact on most men as they age. The advent of gene expression analysis has provided an opportunity to examine these diseases in a novel fashion. These analyses, to date, have revealed associations between these two diseases which have not been previously identified. These commonalities include global genetic changes which occur throughout the prostates in individuals with these diseases. Understanding the fingerprints of these diseases is providing novel markers and treatment strategies for both BPH and prostate cancer.
Collapse
Affiliation(s)
- Uzma S Shah
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, USA
| | | |
Collapse
|
33
|
Sharma R, Samantaray S, Shukla NK, Ralhan R. Transcriptional gene expression profile of human esophageal squamous cell carcinoma. Genomics 2003; 81:481-8. [PMID: 12706106 DOI: 10.1016/s0888-7543(03)00023-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To identify the genes involved in esophageal carcinogenesis, we compared gene expression profiles in esophageal squamous cell carcinoma (ESCC) and matched normal esophageal epithelial tissues. Differential display analysis revealed significant changes in the expression of 26 genes; 21 genes were upregulated and 5 genes were downregulated. The differentially expressed genes included those associated with cellular metabolism, cell structure, transcription, proliferation, apoptosis, signal transduction, complement pathway, and cell-cell adhesion. The differential expression of these genes was confirmed by reverse Northern blot analysis. Reverse transcription PCR analysis of ESCC and matched normal esophageal tissues provided the first evidence that melanoma metastasis clone D (MEMD), a gene similar to oncostatin M receptor beta, and KIAA0471 gene products are upregulated in ESCCs. Intriguingly, KIAA0471, a novel gene product, is upregulated in esophageal tumors showing nodal invasion. Identification of these differentially expressed genes in esophageal tumors adds to the repertoire of genes associated with esophageal carcinogenesis and they may thus serve as potential novel molecular targets for diagnosis and therapy. Further characterization of known and unknown differentially expressed cDNAs identified in this study may provide significant clues for understanding the molecular mechanisms underlying esophageal tumorigenesis.
Collapse
Affiliation(s)
- Rinu Sharma
- Department of Biochemistry, Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | | | |
Collapse
|