1
|
Casertano M, Genovese M, Santi A, Pranzini E, Balestri F, Piazza L, Del Corso A, Avunduk S, Imperatore C, Menna M, Paoli P. Evidence of Insulin-Sensitizing and Mimetic Activity of the Sesquiterpene Quinone Avarone, a Protein Tyrosine Phosphatase 1B and Aldose Reductase Dual Targeting Agent from the Marine Sponge Dysidea avara. Pharmaceutics 2023; 15:pharmaceutics15020528. [PMID: 36839851 PMCID: PMC9964544 DOI: 10.3390/pharmaceutics15020528] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex disease characterized by impaired glucose homeostasis and serious long-term complications. First-line therapeutic options for T2DM treatment are monodrug therapies, often replaced by multidrug therapies to ensure that non-responding patients maintain target glycemia levels. The use of multitarget drugs instead of mono- or multidrug therapies has been emerging as a main strategy to treat multifactorial diseases, including T2DM. Therefore, modern drug discovery in its early stages aims to identify potential modulators for multiple targets; for this purpose, exploration of the chemical space of natural products represents a powerful tool. Our study demonstrates that avarone, a sesquiterpene quinone obtained from the sponge Dysidea avara, is capable of inhibiting in vitro PTP1B, the main negative regulator of the insulin receptor, while it improves insulin sensitivity, and mitochondria activity in C2C12 cells. We observe that when avarone is administered alone, it acts as an insulin-mimetic agent. In addition, we show that avarone acts as a tight binding inhibitor of aldose reductase (AKR1B1), the enzyme involved in the development of diabetic complications. Overall, avarone could be proposed as a novel natural hit to be developed as a multitarget drug for diabetes and its pathological complications.
Collapse
Affiliation(s)
- Marcello Casertano
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Massimo Genovese
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Alice Santi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Francesco Balestri
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno 51, 56123 Pisa, Italy
- Interdepartmental Research Center for Marine Pharmacology, Via Bonanno 6, 56126 Pisa, Italy
| | - Lucia Piazza
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno 51, 56123 Pisa, Italy
| | - Antonella Del Corso
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno 51, 56123 Pisa, Italy
- Interdepartmental Research Center for Marine Pharmacology, Via Bonanno 6, 56126 Pisa, Italy
| | - Sibel Avunduk
- Medical Laboratory Programme, Vocational School of Health Care, Mugla University, Marmaris 48187, Turkey
| | - Concetta Imperatore
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Marialuisa Menna
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
- Correspondence: (M.M.); (P.P.); Tel.: +39-081678518 (M.M.); +39-0552751248 (P.P.)
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
- Correspondence: (M.M.); (P.P.); Tel.: +39-081678518 (M.M.); +39-0552751248 (P.P.)
| |
Collapse
|
2
|
Meroterpenes from marine invertebrates: structures, occurrence, and ecological implications. Mar Drugs 2013; 11:1602-43. [PMID: 23685889 PMCID: PMC3707164 DOI: 10.3390/md11051602] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/07/2013] [Accepted: 05/07/2013] [Indexed: 11/29/2022] Open
Abstract
Meroterpenes are widely distributed among marine organisms; they are particularly abundant within brown algae, but other important sources include microorganisms and invertebrates. In the present review the structures and bioactivities of meroterpenes from marine invertebrates, mainly sponges and tunicates, are summarized. More than 300 molecules, often complex and with unique skeletons originating from intra- and inter-molecular cyclizations, and/or rearrangements, are illustrated. The reported syntheses are mentioned. The issue of a potential microbial link to their biosynthesis is also shortly outlined.
Collapse
|
3
|
Kim BG, Chun TG, Lee HY, Snapper ML. A new structural class of S-adenosylhomocysteine hydrolase inhibitors. Bioorg Med Chem 2009; 17:6707-14. [PMID: 19692248 DOI: 10.1016/j.bmc.2009.07.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 07/21/2009] [Accepted: 07/23/2009] [Indexed: 11/26/2022]
Abstract
Effective inhibitors of S-adenosylhomocysteine hydrolase hold promise towards becoming useful therapeutic agents. Since most efforts have focused on the development of nucleoside analog inhibitors, issues regarding bioavailability and selectivity have been major challenges. Considering the marine sponge metabolite ilimaquinone was found to be a competitive inhibitor of S-adenosylhomocysteine hydrolase, new opportunities for developing selective new inhibitors of this enzyme have become available. Based on the activities of various hybrid analogs, SAR studies, pharmacophore modeling, and computer docking studies have lead to a predictive understanding of ilimaquinone's S-adenosylhomocysteine hydrolase inhibitory activities. These studies have allowed for the design and preparation of simplified structural variants possessing new furanoside bioisosteres with 100-fold greater inhibitory activities than that of the natural product.
Collapse
Affiliation(s)
- Byung Gyu Kim
- Merkert Chemistry Center, Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | |
Collapse
|
4
|
Guizzunti G, Brady TP, Malhotra V, Theodorakis EA. Trifunctional norrisolide probes for the study of Golgi vesiculation. Bioorg Med Chem Lett 2007; 17:320-5. [PMID: 17110104 PMCID: PMC1853282 DOI: 10.1016/j.bmcl.2006.10.101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 10/23/2006] [Indexed: 01/04/2023]
Abstract
Inspired by the effect of norrisolide on the Golgi complex, we synthesized norrisolide probes that contain: the perhydroindane core of the parent natural product for Golgi localization, a crosslinking unit (aryl azide or epoxide) for covalent binding to the target, and a tag (biotin or iodine) for subsequent target purification. We found that biotin-containing probes 14, 20 and 24 induced inefficient Golgi vesiculation. However, the iodinated probe 25 induced extensive and irreversible Golgi fragmentation. This probe can be used for the isolation of the cellular target of norrisolide.
Collapse
Affiliation(s)
- Gianni Guizzunti
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358
| | - Thomas P. Brady
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358
| | - Vivek Malhotra
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358
| | - Emmanuel A. Theodorakis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358
| |
Collapse
|
5
|
Dixon N, Wong LS, Geerlings TH, Micklefield J. Cellular targets of natural products. Nat Prod Rep 2007; 24:1288-310. [DOI: 10.1039/b616808f] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Prokof'eva NG, Utkina NK, Chaikina EL, Makarchenko AE. Biological activities of marine sesquiterpenoid quinones: structure-activity relationships in cytotoxic and hemolytic assays. Comp Biochem Physiol B Biochem Mol Biol 2005; 139:169-73. [PMID: 15465662 DOI: 10.1016/j.cbpc.2004.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 06/28/2004] [Accepted: 06/28/2004] [Indexed: 11/23/2022]
Abstract
Sesquiterpenoid quinones from marine sponges and their semisynthetic derivatives were compared for cytotoxicity on developing eggs of sea urchin Strongylocentrotus nudus and Ehrlich carcinoma cells, and for hemolytic activities on mice red blood cells. Structure-activity studies showed that activities of these compounds with a hydroxyl group at C-20 ((2), (7)) were higher than their methoxyl ((1), (8)) and amino ((4), (5)) derivatives at this position. Sesquiterpenoid quinones containing a dihydropyran ring ((10)-(12)) had lower activity than noncyclic compounds. The structure of the terpenoid moieties of the compounds had no significant influence on biological activity. There was a direct correlation between cytotoxic and hemolytic activities. This report discusses the mechanism of action employed by these compounds against cell membranes.
Collapse
Affiliation(s)
- Nina G Prokof'eva
- Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russian Federation
| | | | | | | |
Collapse
|
7
|
Brady TP, Wallace EK, Kim SH, Guizzunti G, Malhotra V, Theodorakis EA. Fragmentation of Golgi membranes by norrisolide and designed analogues. Bioorg Med Chem Lett 2004; 14:5035-9. [PMID: 15380194 DOI: 10.1016/j.bmcl.2004.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 08/03/2004] [Accepted: 08/04/2004] [Indexed: 10/26/2022]
Abstract
The effect of norrisolide (4) and designed analogues on the Golgi membranes is presented. We found that 4 is the first compound known to induce an irreversible vesiculation of these membranes. To investigate the chemical origins of this new effect we synthesized and evaluated a series of norrisolide analogues in which the chemical functionalities present in the parent structure were altered. Such structure/function studies suggest that the perhydroindane core of 4 is critical for binding to the target protein, while the C21 acetate unit is essential for the irreversible vesiculation of the Golgi membranes.
Collapse
Affiliation(s)
- Thomas P Brady
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | | | | | | | | | | |
Collapse
|
8
|
Cheung AK, Murelli R, Snapper ML. Total Syntheses of (+)- and (−)-Cacospongionolide B, Cacospongionolide E, and Related Analogues. Preliminary Study of Structural Features Required for Phospholipase A2 Inhibition. J Org Chem 2004; 69:5712-9. [PMID: 15307744 DOI: 10.1021/jo049285e] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The total syntheses of the antiinflammatory marine sponge metabolites (+)-cacospongionolide B and E are described. The pivotal steps in the synthetic route include a three-step sequence that couples the two main regions of the natural product, as well as generates the side chain dihydropyran ring. The activity of the synthetic analogues against bee venom phospholipase A2 suggests that the cacospongionolides have enantiospecific interactions with the enzyme that may be independent of the gamma-hydroxybutenolide moiety.
Collapse
Affiliation(s)
- Atwood K Cheung
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, USA
| | | | | |
Collapse
|
9
|
Wu CC, MacCoss MJ, Mardones G, Finnigan C, Mogelsvang S, Yates JR, Howell KE. Organellar proteomics reveals Golgi arginine dimethylation. Mol Biol Cell 2004; 15:2907-19. [PMID: 15047867 PMCID: PMC420113 DOI: 10.1091/mbc.e04-02-0101] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Golgi complex functions to posttranslationally modify newly synthesized proteins and lipids and to sort them to their sites of function. In this study, a stacked Golgi fraction was isolated by classical cell fractionation, and the protein complement (the Golgi proteome) was characterized using multidimensional protein identification technology. Many of the proteins identified are known residents of the Golgi, and 64% of these are predicted transmembrane proteins. Proteins localized to other organelles also were identified, strengthening reports of functional interfacing between the Golgi and the endoplasmic reticulum and cytoskeleton. Importantly, 41 proteins of unknown function were identified. Two were selected for further analysis, and Golgi localization was confirmed. One of these, a putative methyltransferase, was shown to be arginine dimethylated, and upon further proteomic analysis, arginine dimethylation was identified on 18 total proteins in the Golgi proteome. This survey illustrates the utility of proteomics in the discovery of novel organellar functions and resulted in 1) a protein profile of an enriched Golgi fraction; 2) identification of 41 previously uncharacterized proteins, two with confirmed Golgi localization; 3) the identification of arginine dimethylated residues in Golgi proteins; and 4) a confirmation of methyltransferase activity within the Golgi fraction.
Collapse
Affiliation(s)
- Christine C Wu
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Cruciani V, Leithe E, Mikalsen SO. Ilimaquinone inhibits gap-junctional communication prior to Golgi fragmentation and block in protein transport. Exp Cell Res 2003; 287:130-42. [PMID: 12799189 DOI: 10.1016/s0014-4827(03)00124-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brefeldin A and ilimaquinone are compounds known to affect Golgi structure and function. In particular, the transport of proteins is blocked either at the level of exit from endoplasmic reticulum (brefeldin) or at cis-Golgi (ilimaquinone). Brefeldin caused a slow decrease in gap-junctional communication and a slow loss of all phosphorylated forms of connexin43 in hamster and rat fibroblasts, while ilimaquinone caused an abrupt decrease in gap-junctional communication and rapid loss of only the slowest migrating phosphorylated connexin43 band (P2). Ilimaquinone caused these effects prior to any significant Golgi fragmentation, especially in hamster fibroblasts. Concurrently, ilimaquinone minimally affected protein secretion, while brefeldin caused an instantaneous decrease. These results show that ilimaquinone inhibits gap-junctional communication in connexin43-expressing cells by a mechanism not dependent on Golgi fragmentation or block in protein transport.
Collapse
Affiliation(s)
- Véronique Cruciani
- Department of Environmental and Occupational Cancer, Institute for Cancer Research, The Norwegian Radium Hospital, N-0310, Oslo, Norway
| | | | | |
Collapse
|
11
|
Abstract
Chemical genetics is a research approach that uses small molecules as probes to study protein functions in cells or whole organisms. Here, I review the parallels between classical genetic and chemical-genetic approaches and discuss the merits of small molecules to dissect dynamic cellular processes. I then consider the pros and cons of different screening approaches and specify strategies aimed at identifying and validating cellular target proteins. Finally, I highlight the impact of chemical genetics on our current understanding of cell biology and its potential for the future.
Collapse
Affiliation(s)
- Thomas U Mayer
- Max Planck Institute of Biochemistry, Department of Cell Biology, Am Klopfersitz 18a, D-82152 Martinsried, Germany.
| |
Collapse
|
12
|
Ling T, Poupon E, Rueden EJ, Kim SH, Theodorakis EA. Unified synthesis of quinone sesquiterpenes based on a radical decarboxylation and quinone addition reaction. J Am Chem Soc 2002; 124:12261-7. [PMID: 12371868 DOI: 10.1021/ja027517q] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A unified synthesis of several quinone sesquiterpenes is described herein. Essential to this strategy is a novel radical addition reaction that permits the attachment of a fully substituted bicyclic core 16 to a variably substituted quinone 10. The addition product 15 can be further functionalized, giving access to natural products with a high degree of oxygenation at the quinone unit. The quinone addition reaction is characterized by excellent chemoselectivity, taking place only at conjugated and unsubstituted double bonds, and regioselectivity, being strongly influenced by the resonance effect of heteroatoms located on the quinone ring. These features were successfully applied to the synthesis of avarol (1), avarone (2), methoxyavarones (4, 5), ilimaquinone (6), and smenospongidine (7), thereby demonstating the synthetic value of this new method.
Collapse
Affiliation(s)
- Taotao Ling
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, USA
| | | | | | | | | |
Collapse
|
13
|
Andréola ML, De Soultrait VR, Fournier M, Parissi V, Desjobert C, Litvak S. HIV-1 integrase and RNase H activities as therapeutic targets. Expert Opin Ther Targets 2002; 6:433-46. [PMID: 12223059 DOI: 10.1517/14728222.6.4.433] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The retroviruses are a large, diverse family of enveloped RNA viruses defined by their structure, composition and replicative properties. The hallmark of the family is its replicative strategy, essential steps of which include reverse transcription of the viral RNA and the subsequent integration of this DNA into the genome of the cell. These steps are performed by two viral-encoded enzymes, reverse transcriptase (RT), which possesses DNA polymerase and ribonuclease H (RNase H) activities, and integrase (IN). These enzymes are excellent targets for retroviral therapy since they are essential for viral replication. Numerous substances capable of inhibiting the DNA polymerase activity of HIV-1 RT are available, while few specific inhibitors of RNase H activity have been described. IN is absolutely necessary for stable and productive infection of cells. Some IN inhibitors have been recently reported and are available demonstrating the potential of IN as an antiviral target. This paper is an overview of the inhibitors of RNase H and IN and describes the most promising inhibitors.
Collapse
Affiliation(s)
- M L Andréola
- Laboratory of Replication and Expression of Eukaryotic and Retroviral Genomes, UMR 5097, CNRS-Université Victor Segalen Bordeaux 2, France.
| | | | | | | | | | | |
Collapse
|
14
|
Dactyloquinones C, D and E novel sesquiterpenoid quinones, from the Okinawan marine sponge, Dactylospongia elegans. Tetrahedron 2002. [DOI: 10.1016/s0040-4020(02)00078-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|