1
|
Singh P, Singh A, Singh DK, Nath M. Applications of Clauson-Kaas Reaction in Organic Synthesis. CHEM REC 2024; 24:e202400112. [PMID: 39434495 DOI: 10.1002/tcr.202400112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/10/2024] [Indexed: 10/23/2024]
Abstract
Pyrrole-embedded organic molecules received a considerable importance due to their numerous biological and material applications. Hence, several synthetic strategies have been devised for the construction of diverse pyrrole analogues over the years. Among these, the Clauson-Kaas reaction is one of the most widely used protocols for the synthesis of various N-substituted pyrroles. This review briefly describes the Clauson-Kaas reaction along with modifications and a detailed account on its applications in the various sectors of organic synthesis.
Collapse
Affiliation(s)
- Pargat Singh
- Department of Chemistry, Faculty of Science, University of Delhi, Delhi, 110007, India
| | - Abhijeet Singh
- Department of Chemistry, Faculty of Science, University of Delhi, Delhi, 110007, India
| | - Dileep Kumar Singh
- Department of Chemistry, Bipin Bihari College, Bundelkhand University, Jhansi, 284001, Uttar Pradesh, India
| | - Mahendra Nath
- Department of Chemistry, Faculty of Science, University of Delhi, Delhi, 110007, India
| |
Collapse
|
2
|
Manya BS, Kumar MRP, Rajagopal K, Hassan MA, Rab SO, Alshehri MA, Emran TB. Insights into the Biological Activities and Substituent Effects of Pyrrole Derivatives: The Chemistry-Biology Connection. Chem Biodivers 2024; 21:e202400534. [PMID: 38771305 DOI: 10.1002/cbdv.202400534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
Pyrrole, with its versatile heterocyclic ring structure, serves as a valuable template for generating a diverse range of lead compounds with various pharmacophores. Researchers and scientists globally are intrigued by pyrrole and its analogs for their broad pharmacological potential, prompting thorough investigations aimed at advancing human welfare. This comprehensive review delves into the diverse activities exhibited by pyrrole compounds, encompassing their synthesis, reactions, and pharmacological properties alongside their derivatives. In addition to detailing the characteristics of pyrrole and its derivatives within the context of green chemistry, the review also examines microwave-assisted reactions. It provides insights into their chemical structures, natural occurrences, and potential applications across various domains. Furthermore, the article investigates structural alterations of pyrrole compounds and their implications on their functionality, highlighting their versatility as foundational elements for both functional materials and bioactive compounds. The review emphasizes the need for ongoing research and development in the field of pyrrole compounds to discover new activities and benefits.
Collapse
Affiliation(s)
- B S Manya
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Vidyanagar, Hubballi, 580031, India
| | - M R Pradeep Kumar
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Vidyanagar, Hubballi, 580031, India
| | - Kalirajan Rajagopal
- Department of Pharmaceutical chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, 643001, The Nilgiris, Tamil Nadu, India
| | - Md Abul Hassan
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| |
Collapse
|
3
|
Long L, Zhang H, Zhou Z, Duan L, Fan D, Wang R, Xu S, Qiao D, Zhu W. Pyrrole-containing hybrids as potential anticancer agents: An insight into current developments and structure-activity relationships. Eur J Med Chem 2024; 273:116470. [PMID: 38762915 DOI: 10.1016/j.ejmech.2024.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024]
Abstract
Cancer poses a significant threat to human health. Therefore, it is urgent to develop potent anti-cancer drugs with excellent inhibitory activity and no toxic side effects. Pyrrole and its derivatives are privileged heterocyclic compounds with significant diverse pharmacological effects. These compounds can target various aspects of cancer cells and have been applied in clinical settings or are undergoing clinical trials. As a result, pyrrole has emerged as a promising drug scaffold and has been further probed to get novel entities for the treatment of cancer. This article reviews recent research progress on anti-cancer drugs containing pyrrole. It focuses on the mechanism of action, biological activity, and structure-activity relationships of pyrrole derivatives, aiming to assist in designing and synthesizing innovative pyrrole-based anti-cancer compounds.
Collapse
Affiliation(s)
- Li Long
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Han Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - ZhiHui Zhou
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Lei Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Dang Fan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Ran Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| |
Collapse
|
4
|
Barth M, Kleiner I, Nguyen HVL. Coupled internal rotations and 14N quadrupole hyperfine structure of 2,4-dimethylpyrrole investigated by microwave spectroscopy and quantum chemistry. J Chem Phys 2024; 160:244303. [PMID: 38912676 DOI: 10.1063/5.0213319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
The microwave spectrum of 2,4-dimethylpyrrole was investigated using a Fourier-transform microwave spectrometer in a supersonic expansion. Torsional splittings arising from two inequivalent methyl internal rotors in combination with hyperfine splittings due to the nuclear quadrupole coupling of the 14N nucleus were observed. The experiments were accompanied by quantum chemical calculations. A total of 1561 rotational lines were assigned and fitted in global fits using the programs XIAM and BELGI-Cs-2Tops-hyperfine, both achieved the measurement accuracy of 4 kHz. Local separate fits were also performed to verify the correctness of the assignment. Accurate experimental molecular and internal rotation parameters could be deduced and compared to the calculated ones. The barrier to internal rotation of the 2-methyl rotor was determined to be 277.830(26) cm-1, essentially the same as the value of about 280 cm-1 found for 2-methylpyrrole but lower than the value of 317 cm-1 found for 2,5-dimethylpyrrole. The torsional barrier value of the 4-methyl rotor is 262.210(27) cm-1, slightly higher than the value of 246 cm-1 found for 3-methylpyrrole. Benchmarking the rotational constants for 2,4- and 2,5-dimethylpyrrole revealed that the MP2/6-31G(d,p) level could be helpful to guide the assignment of microwave spectra of pyrrole derivatives.
Collapse
Affiliation(s)
- Mike Barth
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
| | - Isabelle Kleiner
- Université Paris Cité and Univ Paris Est Creteil, CNRS, LISA, F-75013 Paris, France
| | - Ha Vinh Lam Nguyen
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
- Institut Universitaire de France (IUF), 1 rue Descartes, F-75231 Paris, France
| |
Collapse
|
5
|
Gogoi NG, Rahman A, Dutta P, Saikia J, Baruah A, Handique JG. Design, Synthesis, Biological Evaluation and in Silico Studies of Curcumin Pyrrole Conjugates. Chem Biodivers 2024; 21:e202301605. [PMID: 38488861 DOI: 10.1002/cbdv.202301605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Curcumin conjugated heterocyclic compounds are potent candidates with drug likeness against various bacterial pathogens. A set of curcumin-based pyrrole conjugates (CPs) were synthesized and characterized by FT-IR, 1H and 13C NMR and HR-MS techniques. The results of free radical scavenging activity of the synthesized CPs, evaluated by FRAP and CUPRAC assays, showed the potency of these compounds as effective antioxidants. CP3 exhibits the highest antioxidant activity amongst the CPs. The bactericidal efficacy of CPs was screened against ESKAP bacterial pathogens, and CPs were found to possess better antibacterial property than curcumin, specifically against staphylococcus aureus bacteria. In addition, serum albumin (BSA and HSA) binding interaction of these CPs were determined by UV-visible and fluorescence spectrophotometric techniques. In-silico molecular docking study was performed to determine the binding patterns of molecular targets against Staphylococcus aureus tyrosyl tRNA synthetase, and serum albumin proteins. The structure-activity relationship showed that the presence of multiple phenolic hydroxyl groups, and electron withdrawing groups on the structure of CP molecule, enhances its antioxidant and antibacterial activity, respectively.
Collapse
Affiliation(s)
- Nishi Gandha Gogoi
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
- Department of Chemistry, Manohari Devi Kanoi Girls College, Dibrugarh, 786001, Assam, India
| | - Aziza Rahman
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Pankaj Dutta
- Department of Physics, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Jiban Saikia
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Anupaul Baruah
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | | |
Collapse
|
6
|
Gao Z, Fan W, Zhang R, Li P, Yang X, Gao X, Ji X, Wei Y, Lai M. Synthesis, Thermal Stability and Antifungal Evaluation of Two New Pyrrole Esters. Chem Biodivers 2024; 21:e202301684. [PMID: 38224313 DOI: 10.1002/cbdv.202301684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/16/2024]
Abstract
To develop new chemicals that are stable at high temperatures with biological activity, a pyrrole intermediate was firstly synthesized using glucosamine hydrochloride as raw materials through cyclization and oxidation. Further, two novel pyrrole ester derivatives were prepared via Steglich esterification from pyrrole intermediate with vanillin and ethyl maltol, respectively. Nuclear magnetic resonance (1 H-NMR, 13 C NMR), infrared spectroscopy (IR) and high resolution mass spectrometry (HRMS) were used to confirm the target compounds. Thermal behavior of the compounds was investigated by thermogravimetry (TG), differential scanning calorimeter (DSC) and the pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) methods. The plausible pyrolytic mechanism was proposed. Additionally, their biological activities against the pathogens Fusarium graminearum, Fusarium oxysporum, Fusarium moniliforme, Phytophthora nicotianae, and Rhizoctonia solani were assessed. These target compounds showed outstanding antifungal activities and the highest inhibitor rates of 62.50 % and 68.75 % against R. solani with EC50 values of 0.0296 and 0.0200 mg mL-1 , respectively. SDHI protein sequence was molecularly docked to identify the binding mechanisms in the active pocket and examine the interactions between both the molecules and the SDHI protein.
Collapse
Affiliation(s)
- Ziting Gao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, P. R. China
| | - Wenpeng Fan
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, P. R. China
- Hubei Zhongyan Industry Co. Ltd., WuHan, 430048, P. R. China
| | - Ruiting Zhang
- Co-construction State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, P. R China
| | - Pengyu Li
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, P. R. China
| | - Xiaopeng Yang
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, P. R. China
| | - Xue Gao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, P. R. China
| | - Xiaoming Ji
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, P. R. China
| | - Yuewei Wei
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, P. R. China
| | - Miao Lai
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, P. R. China
| |
Collapse
|
7
|
Ganesh BH, Raj AG, Aruchamy B, Nanjan P, Drago C, Ramani P. Pyrrole: A Decisive Scaffold for the Development of Therapeutic Agents and Structure-Activity Relationship. ChemMedChem 2024; 19:e202300447. [PMID: 37926686 DOI: 10.1002/cmdc.202300447] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
An overview of pyrroles as distinct scaffolds with therapeutic potential and the significance of pyrrole derivatives for drug development are provided in this article. It lists instances of naturally occurring pyrrole-containing compounds and describes the sources of pyrroles in nature, including plants and microbes. It also explains the many conventional and modern synthetic methods used to produce pyrroles. The key topics are the biological characteristics, pharmacological behavior, and functional alterations displayed by pyrrole derivatives. It also details how pyrroles are used to treat infectious diseases. It describes infectious disorders resistant to standard treatments and discusses the function of compounds containing pyrroles in combating infectious diseases. Furthermore, the review covers the uses of pyrrole derivatives in treating non-infectious diseases and resistance mechanisms in non-infectious illnesses like cancer, diabetes, and Alzheimer's and Parkinson's diseases. The important discoveries and probable avenues for pyrrole research are finally summarized, along with their significance for medicinal chemists and drug development. A reference from the last two decades is included in this review.
Collapse
Affiliation(s)
- Bharathi Hassan Ganesh
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE-AMGT), Amrita School of Engineering, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| | - Anirudh G Raj
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| | - Baladhandapani Aruchamy
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE-AMGT), Amrita School of Engineering, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| | - Pandurangan Nanjan
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
- Amrita School of Engineering, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| | - Carmelo Drago
- Institute of Biomolecular Chemistry CNR, via Paolo Gaifami 18, 95126, Catania, Italy
| | - Prasanna Ramani
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE-AMGT), Amrita School of Engineering, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| |
Collapse
|
8
|
Serdaroğlu G, Uludag N, Üstün E. An efficient new method of ytterbium(III) triflate catalysis approach to the synthesis of substituted pyrroles: DFT, ADMET, and molecular docking investigations. Comput Biol Chem 2023; 106:107930. [PMID: 37542846 DOI: 10.1016/j.compbiolchem.2023.107930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 08/07/2023]
Abstract
In this study, the one-pot synthetic methodology for the preparation of substituted pyrroles with diethyl acetylene-dicarboxylate is reported for the various pyrrole derivatives via the Trifimow synthesis process from oximes. This method also offers the literature as a cyclization pathway using a ytterbium triflate catalyst. Another importance of this study is the use of pyrrole derivatives in pharmaceuticals, biological processes, and agrochemicals. From this point of view, the development of a new catalyst in synthetic organic chemistry and the difference in the method is also important. The syntheses of the target substituted pyrroles are accomplished in high yields. Also, all synthesized structures were confirmed by 1H NMR, 13C NMR, and IR spectra. The DFT computations were leveraged for structural and spectroscopic validation of the compounds. Then, FMO and NBO analyses were subsequently employed to elucidate the reactivity characteristics and intramolecular interactions within these compounds. Also, ADMET indices were ascertained to assess potential pharmacokinetic properties, drug-like qualities, and possible adverse effects of these compounds. Last, optimized molecules were analyzed by molecular docking methods against crystal structures of Bovine Serum Albumin and Leukemia Inhibitory Factor, and their binding affinities, interaction details, and inhibition constants were determined.
Collapse
Affiliation(s)
- Goncagül Serdaroğlu
- Sivas Cumhuriyet University, Faculty of Education, Math. and Sci. Edu., 58140, Sivas, Turkey.
| | - Nesimi Uludag
- Department of Chemistry, Faculty of Arts and Sciences, Namık Kemal University, 59030, Tekirdağ, Turkey
| | - Elvan Üstün
- Department of Chemistry, Faculty of Art and Science, Ordu University, 52200 Ordu, Turkey
| |
Collapse
|
9
|
Bordoni S, Tarroni R, Monari M, Cerini S, Battaglia F, Micheletti G, Boga C, Drius G. Ru-Controlled Thymine Tautomerization Frozen by a k 1(O)-, k 2(N,O)-Metallacycle: An Experimental and Theoretical Approach. Molecules 2023; 28:molecules28103983. [PMID: 37241724 DOI: 10.3390/molecules28103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The reaction of mer-(Ru(H)2(CO)(PPh3)3) (1) with one equivalent of thymine acetic acid (THAcH) unexpectedly produces the macrocyclic dimer k1(O), k2(N,O)-(Ru(CO)(PPh3)2THAc)2 (4) and, concomitantly, the doubly coordinated species k1(O), k2(O,O)-(Ru(CO)(PPh3)2THAc) (5). The reaction promptly forms a complicated mixture of Ru-coordinated mononuclear species. With the aim of shedding some light in this context, two plausible reaction paths were proposed by attributing the isolated or spectroscopically intercepted intermediates on the basis of DFT-calculated energetic considerations. The cleavage of the sterically demanding equatorial phosphine in the mer-species releases enough energy to enable self-aggregation, producing the stable, symmetric 14-membered binuclear macrocycle of 4. The k1-acetate iminol (C=N-OH) unit of the mer-tautomer k1(O)-(Ru(CO)(PPh3)2(THAc)) (2) likely exhibits a stronger nucleophilic aptitude than the prevalent N(H)-C(O) amido species, thus accomplishing extra stabilization through concomitant k2(N,O)-thymine heteroleptic side-chelation. Furthermore, both the ESI-Ms and IR simulation spectra validated the related dimeric arrangement in solution, in agreement with the X-ray determination of the structure. The latter showed tautomerization to the iminol form. The 1H NMR spectra in chlorinated solvents of the kinetic mixture showed the simultaneous presence of 4 and the doubly coordinated 5, in rather similar amounts. THAcH added in excess preferentially reacts with 2 or trans-k2(O,O)-(RuH(CO)(PPh3)2THAc) (3) rather than attacking the starting Complex 1, promptly forming the species of 5. The proposed reaction paths were inferred by spectroscopically monitoring the intermediate species, for which the results were strongly dependent on the of conditions the reaction (stoichiometry, solvent polarity, time, and the concentration of the mixture). The selected mechanism proved to be more reliable, due to the final dimeric product stereochemistry.
Collapse
Affiliation(s)
- Silvia Bordoni
- Department of Industrial Chemistry 'Toso Montanari', Alma Mater Studiorum, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
- Health Sciences and Technologies Interdepartmental Center for Industrial Research (CIRI SDV), University of Bologna, 40126 Bologna, Italy
| | - Riccardo Tarroni
- Department of Industrial Chemistry 'Toso Montanari', Alma Mater Studiorum, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Magda Monari
- Department of Chemistry 'Giacomo Ciamician', Alma Mater Studiorum, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Stefano Cerini
- Department of Industrial Chemistry 'Toso Montanari', Alma Mater Studiorum, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Fabio Battaglia
- Department of Industrial Chemistry 'Toso Montanari', Alma Mater Studiorum, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Gabriele Micheletti
- Department of Industrial Chemistry 'Toso Montanari', Alma Mater Studiorum, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Carla Boga
- Department of Industrial Chemistry 'Toso Montanari', Alma Mater Studiorum, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Giacomo Drius
- Department of Industrial Chemistry 'Toso Montanari', Alma Mater Studiorum, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
10
|
Kaur N, Yadav N, Verma Y. Acetamidine in heterocycle synthesis. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2191204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Navjeet Kaur
- Department of Chemistry & Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Neerja Yadav
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Yamini Verma
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
11
|
Click reaction inspired synthesis, antimicrobial evaluation and in silico docking of some pyrrole-chalcone linked 1,2,3-triazole hybrids. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Fan W, Chu W, Li Y, Han L, Li P, Tian H, Lai M, Ji X. Synthesis, Characterization and Thermal Behavior of N‐Substituted Pyrrole Esters. ChemistrySelect 2022. [DOI: 10.1002/slct.202203722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Wenpeng Fan
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University 95 Wenhua Road Zhengzhou 450002 P. R. China
| | - Wenjuan Chu
- Technology Center of China Tobacco Henan Industry Co., Ltd Zhengzhou 450000 P. R. China
| | - Yaoguang Li
- Technology Center of China Tobacco Henan Industry Co., Ltd Zhengzhou 450000 P. R. China
| | - Lu Han
- Technology Center of China Tobacco Henan Industry Co., Ltd Zhengzhou 450000 P. R. China
| | - Pengyu Li
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University 95 Wenhua Road Zhengzhou 450002 P. R. China
| | - Haiying Tian
- Technology Center of China Tobacco Henan Industry Co., Ltd Zhengzhou 450000 P. R. China
| | - Miao Lai
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University 95 Wenhua Road Zhengzhou 450002 P. R. China
| | - Xiaoming Ji
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University 95 Wenhua Road Zhengzhou 450002 P. R. China
| |
Collapse
|
13
|
Gubaidullin RR, Spivak AY, Maistrenko VN, Parfenova LV. Au(I)‐Catalyzed Synthesis of [3,2‐
b
]pyrrole‐fused Pentacyclic Triterpenoids. ChemistrySelect 2022. [DOI: 10.1002/slct.202202241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rinat R. Gubaidullin
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences 141 Prospekt Oktyabrya Ufa 450075 Russian Federation
| | - Anna Yu. Spivak
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences 141 Prospekt Oktyabrya Ufa 450075 Russian Federation
| | | | - Lyudmila V. Parfenova
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences 141 Prospekt Oktyabrya Ufa 450075 Russian Federation
| |
Collapse
|
14
|
Spirandelli da Costa M, Borges BC, Marques IT, de Oliveira RC, Teixeira TL, de Gouveia Santos J, Silva CVD. Pentachloropseudilin treatment impairs host cell invasion by Trypanosoma cruzi. Chembiochem 2022; 23:e202200349. [PMID: 35839379 DOI: 10.1002/cbic.202200349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/14/2022] [Indexed: 11/08/2022]
Abstract
Pentachloropseudilin (PClP) is a reversible and allosteric inhibitor of type 1 myosin. Here, we addressed the impact of PClP treatment of Trypanosoma cruzi and mammalian host cell on the parasite migration, cell adhesion and invasion. We observed that PClP was not toxic to either T. cruzi or host cell. Moreover, treatment of T. cruzi with PClP inhbited parasite motility, host cell adhesion and invasion. Treatment of host cell with PClP also impaired parasite invasion probably by decreasing lysosome migration to the entry site of the parasite. Therefore, PClP treatment impaired fundamental processes necessary for a successful T. cruzi infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claudio Vieira da Silva
- Universidade Federal de Uberlândia, Imunologia, Rua Piauí, Bloco 2B sala 200, 38400096, Uberlândia, BRAZIL
| |
Collapse
|
15
|
TAŞDEMİR V. Cyclization Reactions of Non-Conjugate Ynones with Propargyl Amine in the Presence of a Catalyst. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1064488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
16
|
Premkumar R, Hussain S, Jayram ND, Koyambo-Konzapa SJ, Revathy M, Mathavan T, Milton Franklin Benial A. Adsorption and orientation characteristics of 1-methylpyrrole-2-carbonyl chloride using SERS and DFT investigations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Hu J, Ji X, Su F, Zhao Q, Zhang G, Zhao M, Lai M. Synthesis, odor characteristics and biological evaluation of N-substituted pyrrolyl chalcones. Org Biomol Chem 2022; 20:8747-8755. [DOI: 10.1039/d2ob01561g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Base-mediated transition-metal free α-functionalization of N-substituted acetylpyrroles with commercial alcohols to generate various pyrrolyl chalcones is reported, and several prominent bioactive and flavor molecules were obtained.
Collapse
Affiliation(s)
- Jingyi Hu
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Xiaoming Ji
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Fangyao Su
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Qianrui Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Ganlin Zhang
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Mingqin Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Miao Lai
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| |
Collapse
|
18
|
Chedupaka R, Papisetti V, Sangolkar AA, Vedula RR. A Facile One-Pot Synthesis of Benzimidazole-Linked Pyrrole Structural Motifs via Multicomponent Approach: Design, Synthesis, and Molecular Docking Studies. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1995010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Raju Chedupaka
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, India
| | - Venkatesham Papisetti
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, India
| | | | - Rajeswar Rao Vedula
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, India
| |
Collapse
|
19
|
Bera A, Ali SA, Saha A, Samanta S. Neat synthesis of c-fused pyrroles and its application to macrolactamization. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1939054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Anirban Bera
- Department of Chemistry, Bidhannagar College, Kolkata, India
- Department of Chemistry, Jadavpur University, Kolkata, India
| | - Sk Asraf Ali
- Department of Chemistry, Bidhannagar College, Kolkata, India
| | - Amit Saha
- Department of Chemistry, Jadavpur University, Kolkata, India
| | | |
Collapse
|
20
|
Wang Y, Zhang C, Li S, Liu L. Iron‐Catalyzed Synthesis of Pyrrole Derivatives and Related Five‐Membered Azacycles. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yeming Wang
- Institute of Chemical and Industrial Bioengineering Jilin Engineering Normal University Kaixuan Road, No. 3050 Changchun 130052 China
| | - Chaoqun Zhang
- Institute of Chemical and Industrial Bioengineering Jilin Engineering Normal University Kaixuan Road, No. 3050 Changchun 130052 China
| | - Shizhe Li
- Institute of Chemical and Industrial Bioengineering Jilin Engineering Normal University Kaixuan Road, No. 3050 Changchun 130052 China
| | - Lihui Liu
- Institute of Chemical and Industrial Bioengineering Jilin Engineering Normal University Kaixuan Road, No. 3050 Changchun 130052 China
| |
Collapse
|
21
|
Premkumar R, Hussain S, Koyambo-Konzapa SJ, Jayram ND, Meera MR, Mathavan T, Benial AMF. SERS and DFT studies of 2-(trichloroacetyl)pyrrole chemisorbed on the surface of silver and gold coated thin films: In perspective of biosensor applications. J Mol Recognit 2021; 34:e2921. [PMID: 34235798 DOI: 10.1002/jmr.2921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 05/25/2021] [Indexed: 11/07/2022]
Abstract
The adsorption and orientations of 2-(trichloroacetyl)pyrrole (TCAP) adsorbed on a fabricated silver-coated thin film (SCF), and gold-coated thin film (GCF) were investigated using surface-enhanced Raman scattering (SERS) studies and compared with the normal Raman scattering (nRs) spectrum of TCAP. The observed nRs and SERS spectra of TCAP were validated theoretically using DFT quantum chemical calculations. Initially, the molecular structure of TCAP, TCAP-Ag3 , and TCAP-Au4 molecular systems were optimized and analyzed. The fabricated SCF and GCF are characterized using FESEM analysis, which confirms that the silver and gold nanoparticles of the corresponding films are spherical in shape. The obtained significant red-shift in UV-visible spectra of TCAP added on SCF and GCF surfaces reveal that the TCAP strongly adsorbed on SCF and GCF surfaces. The frontier molecular orbitals analysis authenticates the charge-transfer interaction from Ag3 and Au4 metal clusters to the TCAP molecule, leading to the adsorption of TCAP molecule on Ag3 and Au4 metal clusters, which validates the UV-vis results. SERS spectral analysis confirms that the TCAP chemisorbed on SCF and GCF surfaces with tilted orientation and the corresponding results were validated theoretically. The calculated SERS enhancement factor values illustrate that the GCF surface exhibits a higher SERS signal enhancement than the SCF surface. Therefore, the present investigation will be useful for the development of active SERS substrates and pyrrole-related biosensors.
Collapse
Affiliation(s)
- R Premkumar
- PG and Research Department of Physics, NMSSVN College, Madurai, Tamil Nadu, India
| | | | | | - Naidu Dhanpal Jayram
- Department of Physics, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| | - M R Meera
- Department of Physics, Sree Ayyappa College for Women, Kanyakumari, Tamil Nadu, India
| | - T Mathavan
- PG and Research Department of Physics, NMSSVN College, Madurai, Tamil Nadu, India
| | | |
Collapse
|
22
|
SERS and DFT investigations of methyl 4‑bromo-1H-pyrrole-2-carboxylate adsorbed on silver and gold substrates: In perspective of biosensor applications. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Makhal PN, Nandi A, Kaki VR. Insights into the Recent Synthetic Advances of Organoselenium Compounds. ChemistrySelect 2021. [DOI: 10.1002/slct.202004029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Priyanka N. Makhal
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Arijit Nandi
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Venkata Rao Kaki
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
24
|
Nathaniel CR, Neetha M, Anilkumar G. Silver‐catalyzed pyrrole synthesis: An overview. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Mohan Neetha
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
- Advanced Molecular Materials Research Centre Mahatma Gandhi University Kottayam India
- Institute for Integrated Programmes and Research in Basic Sciences Mahatma Gandhi University Kottayam India
| |
Collapse
|
25
|
Mai TVT, Nguyen HT, Huynh LK. Ab initio kinetic mechanism of OH-initiated atmospheric oxidation of pyrrole. CHEMOSPHERE 2021; 263:127850. [PMID: 32818845 DOI: 10.1016/j.chemosphere.2020.127850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
The comprehensive kinetic mechanism of the OH-initiated gas-phase oxidation of pyrrole is first theoretically reported in a broad range of conditions (T = 200-2000 K &P = 1-7600 Torr). On the potential energy surface constructed at the M06-2X/aug-cc-pVTZ level, the temperature- and pressure-dependent behaviors of the title reaction were characterized using the stochastic Rice-Ramsperger-Kassel-Marcus based Master Equation (RRKM-ME) rate model. The corrections of the hindered internal rotation and quantum tunneling treatments were included. The calculated results reveal the competition between the two distinct pathways: OH-addition and direct H-abstraction. The former channels are found favorable at low-temperature and high-pressure range (e.g., T < 900 K and P = 760 Torr) where non-Arrhenius and positive pressure-dependent behaviors of the rate constants are noticeably observed, while the latter predominate at temperatures higher than 900 K at atmospheric pressure and no pressure dependence on the rate constant is found. The predicted global rate constants are in excellent agreement with laboratory values; thus, the derived kinetic parameters are recommended for modeling/simulation of N-heterocycle-related applications in atmospheric and even in combustion conditions. Besides, pyrrole should not be considered as a persistent organic pollutant owing to its short atmospheric lifetime (∼1 h) towards OH radicals. The secondary mechanisms of the subsequent reactions of two OH-pyrrole adducts (namely, I1 and I2) with two abundant species, O2/NO, which are relevant to the atmospheric degradation process, were also investigated. It is also revealed by TD-DFT calculations that two OH-pyrrole adducts (I1 &I2), nine intermediates, Ii (i = 3-11) and four products (P1, P2, P3 and P6) can undergo photodissociation under the sunlight.
Collapse
Affiliation(s)
- Tam V-T Mai
- Molecular Science and Nano-Materials Lab, Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Viet Nam; University of Science, 227 Nguyen Van Cu, Ward 4, District 5, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh, Viet Nam.
| | - Hieu T Nguyen
- Molecular Science and Nano-Materials Lab, Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Viet Nam.
| | - Lam K Huynh
- Vietnam National University, Ho Chi Minh, Viet Nam; International University, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
26
|
Zhang S, Tan X, Liang C, Zhang W. Design, synthesis, and antifungal evaluation of novel
coumarin‐pyrrole
hybrids. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Shuguang Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences Nanjing Agricultural University Nanjing China
| | - Xin Tan
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences Nanjing Agricultural University Nanjing China
| | - Chaogen Liang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences Nanjing Agricultural University Nanjing China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences Nanjing Agricultural University Nanjing China
| |
Collapse
|
27
|
Syngaevsky V, Karkhut A, Polovkovych S, Gzella A, Lesyk R, Novikov V. Study of 1,3-dipolar cycloaddition of amino-acid azomethines and Juglone. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1795880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Vadym Syngaevsky
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Polytechnic National University, Lviv, Ukraine
| | - Andrew Karkhut
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Polytechnic National University, Lviv, Ukraine
| | - Sviatoslav Polovkovych
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Polytechnic National University, Lviv, Ukraine
| | - Andrzej Gzella
- Department of Organic Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| | - Volodymyr Novikov
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Polytechnic National University, Lviv, Ukraine
| |
Collapse
|
28
|
Maruthapandi M, Sharma K, Luong JHT, Gedanken A. Antibacterial activities of microwave-assisted synthesized polypyrrole/chitosan and poly (pyrrole-N-(1-naphthyl) ethylenediamine) stimulated by C-dots. Carbohydr Polym 2020; 243:116474. [PMID: 32532398 DOI: 10.1016/j.carbpol.2020.116474] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/10/2020] [Accepted: 05/16/2020] [Indexed: 11/26/2022]
Abstract
Polypyrrole grafted with chitosan (PPy-g-CS) and poly (pyrrole-N-(1-naphthyl) ethylenediamine, a copolymer, (COP) have been synthesized by a one-step microwave procedure with carbon dots(C-Dots) as initiators. The electrostatic interaction between the positively charged polymers and negatively charged microbial cell membranes is widely anticipated to be responsible for cellular lysis. However, Escherichia coli exposed to PPy-g-CS (zeta potential = +46.9 mV) was completely perished after 3 h while COP (zeta potential = +64.1 mV) exhibited no antimicrobial effect. The two polymers were capable of eradicating Staphylococcus aureus, implying the charged effect is the main mechanism of cell death. The two polymers could also chelate calcium and other nutrients as well as form an external barrier to suppress the penetration of essential nutrients to support microbial survival and proliferation. In particular, pyrrole grafted chitosan was reasoned to stack onto the bacterial surface to impede the mass transfer and suppress the bacterial metabolic activity. The binding of chitosan to teichoic acids, essential acids of Gram-positive bacteria, would provoke a sequence of events and lead to bacterial death.
Collapse
Affiliation(s)
- Moorthy Maruthapandi
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Kusha Sharma
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | | | - Aharon Gedanken
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| |
Collapse
|
29
|
Ngameni B, Erdoğan M, Kuete V, Dalkılıç E, Ngadjui BT, Daştan A. Synthesis and structural characterization of novel O-substituted phenolic and chalcone derivatives with antioxidant activity. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820932789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A series of novel 4- O-alkyltriazolylphenolic derivatives is first synthesized with good to excellent yields via the click reaction of 3-methoxy-4- O-propargylbenzaldehyde or 3-allyl-4- O-propargylacetophenone and aromatic azide derivatives. Next, the chalcones are prepared via the Claisen-Schmidt method from 4- O-alkylphenylketone derivatives in the presence of the corresponding (hetero)aromatic aldehydes as electrophiles. The structures of the newly synthesized compounds are confirmed from their infrared, nuclear magnetic resonance spectral data, and by elemental analysis. The main advantages of this procedure are the simplicity of the reaction conditions, easily available starting materials, and simple work-up. The antioxidant activity of several of the products is determined using the DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) radical scavenging assay. 4- O-propargylvanillin (IC50 = 14.54 µg/mL) had moderate antioxidant activity.
Collapse
Affiliation(s)
- Bathélémy Ngameni
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Musa Erdoğan
- Department of Food Engineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Turkey
| | - Victor Kuete
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Erdin Dalkılıç
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Bonaventure T Ngadjui
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Arif Daştan
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
30
|
Vala MM, Bayat M, Bayat Y. One-pot synthesis of dihydro-8H acenaphtho[1',2':4,5]pyrrolo[1,2-a]imidazole-diol derivatives. Mol Divers 2020; 25:925-935. [PMID: 32270375 DOI: 10.1007/s11030-020-10078-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/21/2020] [Indexed: 11/30/2022]
Abstract
A simple and efficient method for the synthesis of dihydro-8H-acenaphtho[1',2':4,5]pyrrolo[1,2-a]imidazole-diol derivatives via one-pot, four-component reaction of 1,1-bis(methylthio)-2-nitroethene, various amines, and acenaphthoquinone was developed. All the reactions were carried out in ethanol at reflux without any catalyst. The main advantages of this method are good to high yields, experimental simplicity, mild reaction conditions, simple workup, and easy purification.
Collapse
Affiliation(s)
- Masoud Mohammadi Vala
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | - Yadollah Bayat
- Department of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
31
|
Cascade process for direct synthesis of indeno[1,2-b]furans and indeno[1,2-b]pyrroles from diketene and ninhydrin. Mol Divers 2019; 24:1313-1325. [PMID: 31576474 DOI: 10.1007/s11030-019-09996-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
Novel and efficient multicomponent reactions (MCRs) involving diketene, ninhydrin (indane-1,2,3-trione) and one primary amine (3CR) or two different primary amines (4CR) were achieved for the successful synthesis of dihydro-4H-indeno[1,2-b]furan-3-carboxamides or tetrahydroindeno[1,2-b]pyrrole-3-carboxamides, respectively. The merits of this method are highlighted by using either commercially available or easily accessible starting materials, operational simplicity, facile workup procedure, efficient usage of all the reactants, tolerance of a variety of functional groups and ability to conduct under un-catalyzed reaction condition. The products were also isolated by just decantation of the solvent, and for the purification column chromatography was non-required.
Collapse
|
32
|
Premkumar R, Hussain S, Mathavan T, Anitha K, Benial AMF. Surface-enhanced Raman scattering and quantum chemical studies of 2-trifluoroacetylpyrrole chemisorbed on colloidal silver and gold nanoparticles: A comparative study. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Peglow TJ, Costa GPD, Duarte LFB, Silva MS, Barcellos T, Perin G, Alves D. Ultrasound-Promoted One-Pot Synthesis of Mono- or Bis-Substituted Organylselanyl Pyrroles. J Org Chem 2019; 84:5471-5482. [DOI: 10.1021/acs.joc.9b00405] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Thiago J. Peglow
- Laboratório de Síntese Orgânica Limpa—LASOL, CCQFA, Universidade Federal de Pelotas—UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Gabriel P. da Costa
- Laboratório de Síntese Orgânica Limpa—LASOL, CCQFA, Universidade Federal de Pelotas—UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Luis Fernando B. Duarte
- Laboratório de Síntese Orgânica Limpa—LASOL, CCQFA, Universidade Federal de Pelotas—UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Márcio S. Silva
- Laboratório de Síntese Orgânica Limpa—LASOL, CCQFA, Universidade Federal de Pelotas—UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Thiago Barcellos
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos, Universidade de Caxias do Sul—UCS, 95070-560 Caxias do Sul, RS, Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa—LASOL, CCQFA, Universidade Federal de Pelotas—UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa—LASOL, CCQFA, Universidade Federal de Pelotas—UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| |
Collapse
|
34
|
Synthesis of Multi-Substituted Pyrrole Derivatives Through [3+2] Cycloaddition with Tosylmethyl Isocyanides (TosMICs) and Electron-Deficient Compounds. Molecules 2018; 23:molecules23102666. [PMID: 30336556 PMCID: PMC6222313 DOI: 10.3390/molecules23102666] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 11/17/2022] Open
Abstract
Pyrrole and its polysubstituted derivatives are important five-membered heterocyclic compounds, which exist alone or as a core framework in many pharmaceutical and natural product structures, some of which have good biological activities. The Van Leusen [3+2] cycloaddition reaction based on tosylmethyl isocyanides (TosMICs) and electron-deficient compounds as a substrate, which has been continuously developed due to its advantages such as operationally simple, easily available starting materials, and broadly range of substrates, is one of the most convenient methods to synthetize pyrrole heterocycles. In this review, we discuss the different types of two carbon synthons in the Van Leusen pyrrole reaction and give a summary of the progress of these synthesis methods in the past two decades.
Collapse
|
35
|
Sadh PK, Kumar S, Chawla P, Duhan JS. Fermentation: A Boon for Production of Bioactive Compounds by Processing of Food Industries Wastes (By-Products). Molecules 2018; 23:E2560. [PMID: 30297619 PMCID: PMC6222923 DOI: 10.3390/molecules23102560] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/27/2022] Open
Abstract
A large number of by-products or wastes are produced worldwide through various food industries. These wastes cause a serious disposable problem with the environment. So, now a day's different approaches are used for alternative use of these wastes because these by-products are an excellent source of various bioactive components such as polyphenols, flavonoids, caffeine, carotenoids, creatine, and polysaccharides etc. which are beneficial for human health. Furthermore, the composition of these wastes depends on the source or type of waste. Approximately half of the waste is lignocellulosic in nature produced from food processing industries. The dissimilar types of waste produced by food industries can be fortified by various processes. Fermentation is one of the oldest approaches and there are three types of fermentation processes that are carried out such as solid state, submerged and liquid fermentation used for product transformation into value added products through microorganisms. Selections of the fermentation process are product specific. Moreover, various studies were performed to obtain or fortified different bioactive compounds that are present in food industries by-products or wastes. Therefore, the current review article discussed various sources, composition and nutritive value (especially bioactive compounds) of these wastes and their management or augmentation of value-added products through fermentation.
Collapse
Affiliation(s)
- Pardeep Kumar Sadh
- Department of Biotechnology, Ch. Devi Lal University, Sirsa 125055, India.
| | - Suresh Kumar
- Department of Biotechnology, Ch. Devi Lal University, Sirsa 125055, India.
| | - Prince Chawla
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, Himachal Pradesh, India.
| | | |
Collapse
|
36
|
Ahmad S, Alam O, Naim MJ, Shaquiquzzaman M, Alam MM, Iqbal M. Pyrrole: An insight into recent pharmacological advances with structure activity relationship. Eur J Med Chem 2018; 157:527-561. [PMID: 30119011 DOI: 10.1016/j.ejmech.2018.08.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/15/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022]
Abstract
Pyrrole is a heterocyclic ring template with multiple pharmacophores that provides a way for the generation of library of enormous lead molecules. Owing to its vast pharmacological profile, pyrrole and its analogues have drawn much attention of the researchers/chemists round the globe to be explored exhaustively for the benefit of mankind. This review focusses on recent advancements; pertaining to pyrrole scaffold, discussing various aspects of structure activity relationship and its bioactivities.
Collapse
Affiliation(s)
- Shujauddin Ahmad
- Medicinal Chemistry and Molecular Modelling Lab, Dept. of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 62, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Dept. of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 62, India.
| | - Mohd Javed Naim
- Medicinal Chemistry and Molecular Modelling Lab, Dept. of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 62, India
| | - Mohammad Shaquiquzzaman
- Medicinal Chemistry and Molecular Modelling Lab, Dept. of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 62, India
| | - M Mumtaz Alam
- Medicinal Chemistry and Molecular Modelling Lab, Dept. of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 62, India
| | - Muzaffar Iqbal
- Dept. of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
37
|
Chaudhary A, Khurana JM, Khanna G, Saroha M. A Catalyst‐Free Domino Protocol for the Chemoselective Synthesis of Multifunctionalised Pyrroles in Aqueous MediaviaNitroketene‐N,S‐Acetal Chemistry. ChemistrySelect 2018. [DOI: 10.1002/slct.201800831] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ankita Chaudhary
- Department of ChemistryMaitreyi CollegeUniversity of DelhiBapu Dham Complex, Chanakyapuri New Delhi-110021
| | | | - Garima Khanna
- Department of ChemistryUniversity of Delhi New Delhi-110007
| | - Mohit Saroha
- Department of ChemistryUniversity of Delhi New Delhi-110007
| |
Collapse
|
38
|
Kaloğlu M, Kaloğlu N, Özdemir İ. Direct C-H Bond Arylation of C2-Blocked Pyrrole with Aryl Halides Using Palladium(II)-N
-Heterocyclic Carbene Catalysts. ChemistrySelect 2018. [DOI: 10.1002/slct.201801045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Murat Kaloğlu
- Department of Chemistry; İnönü University, Faculty of Science and Arts; 44280 Malatya Turkey
- Catalysis Research and Application Center; İnönü University; 44280 Malatya Turkey
| | - Nazan Kaloğlu
- Department of Chemistry; İnönü University, Faculty of Science and Arts; 44280 Malatya Turkey
- Catalysis Research and Application Center; İnönü University; 44280 Malatya Turkey
| | - İsmail Özdemir
- Department of Chemistry; İnönü University, Faculty of Science and Arts; 44280 Malatya Turkey
- Catalysis Research and Application Center; İnönü University; 44280 Malatya Turkey
| |
Collapse
|
39
|
Bayat M, Nasri S. A catalyst-free approach to regioselective synthesis of multi-functional 1 H -pyrrolo[1,2- a ]fused[1,3]diazaheterocycle using ketene dithioacetals in water–ethanol media. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.06.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Mane YD, Surwase SM, Biradar DO, Sarnikar YP, Jawle BH, Shinde VS, Khade BC. Design and Synthesis of Diverse Pyrrole-2-carboxamide Derivatives as a Potent Antibacterial Agents. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yogesh D. Mane
- Shri Chhatrapati Shivaji College; Omerga Dist-Osmanabad, M.S. India
| | | | | | | | - Balaji H. Jawle
- Arts, Science and Commerce College; Makni Dist-Osmanabad, M.S. India
| | - Vishnu S. Shinde
- Shri Chhatrapati Shivaji College; Omerga Dist-Osmanabad, M.S. India
| | | |
Collapse
|
41
|
|
42
|
Synthesis of fluorinated 3-pyrrolines and pyrroles via [3+2] annulation of N-aryl fluorinated imines with allenoates catalyzed by phosphine. J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2016.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Coordination behaviours of perimidine ligands incorporating fused N-donor heterocyclics towards rhenium(I) and -(V). Polyhedron 2016. [DOI: 10.1016/j.poly.2016.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Kumar SV, Muthusaravanan S, Muthusubramanian S, Perumal S. An efficient one pot three-component domino reaction for the synthesis of 1,3,4-trisubstituted pyrroles. ChemistrySelect 2016. [DOI: 10.1002/slct.201600108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sundaravel Vivek Kumar
- Department of Organic Chemistry; School of Chemistry; Madurai Kamaraj University; Madurai 625021 India
| | | | | | - Subbu Perumal
- Department of Organic Chemistry; School of Chemistry; Madurai Kamaraj University; Madurai 625021 India
| |
Collapse
|
45
|
Kaur T, Wadhwa P, Sharma A. Arylsulfonylmethyl isocyanides: a novel paradigm in organic synthesis. RSC Adv 2015. [DOI: 10.1039/c5ra07876h] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
p-Tosylmethyl isocyanide (TosMIC), an α-acidic isocyanide has emerged as a privileged reagent to access biologically relevant fused heterocycles and some natural products like (−)-ushikulide A, variolin B, porphobilinogen and mansouramycin B.
Collapse
Affiliation(s)
- Tanpreet Kaur
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Preeti Wadhwa
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Anuj Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| |
Collapse
|
46
|
Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P. Pyrrole: a resourceful small molecule in key medicinal hetero-aromatics. RSC Adv 2015. [DOI: 10.1039/c4ra15710a] [Citation(s) in RCA: 410] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pyrrole is widely known as a biologically active scaffold which possesses a diverse nature of activities.
Collapse
Affiliation(s)
- Varun Bhardwaj
- Pharmaceutical Chemistry Laboratory
- Department of Biotechnology
- Bioinformatics and Pharmacy
- Jaypee University of Information Technology
- Solan
| | - Divya Gumber
- Department of Pharmaceutical Chemistry
- Banasthali
- India
| | - Vikrant Abbot
- Pharmaceutical Chemistry Laboratory
- Department of Biotechnology
- Bioinformatics and Pharmacy
- Jaypee University of Information Technology
- Solan
| | - Saurabh Dhiman
- Pharmaceutical Chemistry Laboratory
- Department of Biotechnology
- Bioinformatics and Pharmacy
- Jaypee University of Information Technology
- Solan
| | - Poonam Sharma
- Pharmaceutical Chemistry Laboratory
- Department of Biotechnology
- Bioinformatics and Pharmacy
- Jaypee University of Information Technology
- Solan
| |
Collapse
|
47
|
Jang JH, Cho YC, Kim KH, Lee KS, Lee J, Kim DE, Park JS, Jang BC, Kim S, Kwon TK, Park JW. BAI, a novel Cdk inhibitor, enhances farnesyltransferase inhibitor LB42708-mediated apoptosis in renal carcinoma cells through the downregulation of Bcl-2 and c-FLIP (L). Int J Oncol 2014; 45:1680-90. [PMID: 24993441 DOI: 10.3892/ijo.2014.2534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/26/2014] [Indexed: 11/06/2022] Open
Abstract
Previously, we reported the potential of a novel Cdk inhibitor, 2-[1,1'-biphenyl]-4-yl-N-[5-(1,1-dioxo-1λ6-isothiazolidin-2-yl)-1H-indazol-3-yl]acetamide (BAI) as a cancer chemotherapeutic agent. In this study, we investigated mechanisms by which BAI modulates FTI-mediated apoptosis in human renal carcinoma Caki cells. BAI synergizes with FTI to activate DEVDase, cleavage of poly ADP-ribose polymerase (PARP), and degradation of various anti-apoptotic proteins in Caki cells. BAI plus LB42708-induced apoptosis was inhibited by pretreatment with pan-caspase inhibitor, z-VAD-fmk, but not by overexpression of CrmA. The ROS scavenger, N-acetylcysteine (NAC) did not reduce BAI plus LB4270-induced apoptosis. Co-treatment of BAI and LB42708 reduced the mitochondrial membrane potential (MMP, ∆Ψm) in a time-dependent manner, and induced release of AIF and cytochrome c from mitochondria in Caki cells. Furthermore, BAL plus LB42708 induced downregulation of anti-apoptotic proteins [c-FLIP (L), c-FLIP (s), Bcl-2, XIAP, and Mcl-1 (L)]. Especially, we found that BAI plus LB42708-induced apoptosis was significantly attenuated by overexpression of Bcl-2 and partially blocked by overexpression of c-FLIP (L). Taken together, our results show that the activity of BAI plus LB42708 modulate multiple components in apoptotic response of human renal Caki cells, and indicate a potential as combinational therapeutic agents for preventing cancer such as renal carcinoma.
Collapse
Affiliation(s)
- Ji Hoon Jang
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Yoon Chul Cho
- Department of Urology, Dongguk University, College of Medicine, Gyeongju, Republic of Korea
| | - Ki Ho Kim
- Department of Urology, Dongguk University, College of Medicine, Gyeongju, Republic of Korea
| | - Kyung Seop Lee
- Department of Urology, Dongguk University, College of Medicine, Gyeongju, Republic of Korea
| | - Jinho Lee
- Department of Chemistry, Keimyung University, Daegu, Republic of Korea
| | - Dong Eun Kim
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Jun-Soo Park
- Chronic Disease Research Center, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Byeong-Churl Jang
- Chronic Disease Research Center, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Jong-Wook Park
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
48
|
Elassar AZA. Synthesis, Characterisation and Bioactivity of Polysubstituted 1-(4-(1H-Pyrrol-1-yl)Phenyl)-1H-Pyrrole Derivatives. JOURNAL OF CHEMICAL RESEARCH 2012. [DOI: 10.3184/174751912x13353579628083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
1,4-Phenylenediamine reacted readily with chloroacetone to give 1,4-bis[(2-oxopropyl)amino]benzene which was used to prepare 1-(4-(1H-pyrrol-1-yl)phenyl)-1H-pyrrole derivatives in a one pot reaction with dimethylformamide dimethylacetal or triethyl orthoformate and an active methylene nitrile, an active methylene ketone or an ylidene-malononitrile. Reaction of 1,4-bis[(2-oxopropyl)amino]benzene with arene diazonium salts afforded the hydrazone derivatives which readily cyclised when reacted with malononitrile to give bispyrrole derivatives. The antibacterial activity of some of the products was determined.
Collapse
|
49
|
Chang M, Kim HJ, Lee SH, Koh JS, Lee SH, Aeri K. Preclinical metabolism of LB42908, a novel farnesyl transferase inhibitor, and its effects on the cytochrome P450 isozyme activities. Bioorg Med Chem Lett 2012; 22:3067-71. [PMID: 22497764 DOI: 10.1016/j.bmcl.2012.03.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 03/18/2012] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
Abstract
Metabolism of LB42908, a novel farnesyl transferase inhibitor, was investigated for preclinical development. In vitro hepatic metabolism of LB42908 gave rise to at least 9 metabolites via phase I biotransformation pathways, which were characterized by HPLC-UV, LC-MS, and LC-MS/MS analyses. N-Dealkylation was shown to be a major phase I metabolic pathway. Species-specific in vitro metabolism of LB42908 was studied in liver fractions of rat, dog, monkey, and human. Order of metabolic stability is human≈dog>rat≈monkey in both S9 and microsomal fractions. Tissue-specific metabolism of LB42908 in various tissue homogenates of rats demonstrated that the liver was the major organ responsible for phase I metabolism of LB42908. The results from both qualitative and quantitative metabolism studies such as metabolic profiling and metabolic clearance indicated that dog would be the animal model of choice for preclinical toxicology studies. In addition, LB42908 was a potent CYP3A4 inhibitor in human liver microsomes and induced the activities of several CYP isozymes, implying that it has the potential for drug-drug interactions. Repeated dosing of LB42908 in rats did not significantly affect its own metabolism, indicating that long-term administration of LB42908 would not alter its pharmacokinetic profiles.
Collapse
|
50
|
Lee SK, Han YM, Yun J, Lee CW, Shin DS, Ha YR, Kim J, Koh JS, Hong SH, Han DC, Kwon BM. Phosphatase of regenerating liver-3 promotes migration and invasion by upregulating matrix metalloproteinases-7 in human colorectal cancer cells. Int J Cancer 2012; 131:E190-203. [PMID: 22131018 DOI: 10.1002/ijc.27381] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 11/22/2011] [Indexed: 11/09/2022]
Abstract
Phosphatase of regenerating liver (PRL)-3, a member of a subgroup of protein tyrosine phosphatases that can stimulate the degradation of the extracellular matrix, is over-expressed in metastatic colorectal cancer (CRC) relative to primary tumors. To determine whether PRL-3-induced enhancement of migration and invasion is dependent on the expression of matrix metalloproteinases (MMPs), PRL-3 was expressed in DLD-1 human CRC cells. The motility, migration and invasion characteristics of the cells were examined, and metastasis to the lung was confirmed in a nude mouse using PRL-3-overexpressing DLD-1 cells [DLD-1 (PRL-3)]. Migration and invasion of the cells were inhibited by phosphatase and farnesyltransferase inhibitors. Expression of MMPs was enhanced 3- to 10-fold in comparison to control cells, and migration and invasion were partially inhibited by small interfering RNA (siRNA) knockdown of MMP-2, -13 or -14. Importantly, siRNA knockdown of MMP-7 completely inhibited the migration and invasion of DLD-1 (PRL-3) cells, whereas overexpression of MMP-7 increased migration. The expression of MMP-7 was also downregulated by phosphatase and farnesyltransferase inhibitors. It was found that PRL-3 induced MMP-7 through oncogenic pathways including PI3K/AKT and ERK and that there is a relationship between the expression of PRL-3 and MMP-7 in human tumor cell lines. The expression of MMP-13 and -14 was very sensitive to the inhibition of farnesyltransferase; however, the migration and invasion of DLD-1 (PRL-3) cells did not strongly depend on the expression of MMP-13 or -14. These results suggest that the migration and invasion of PRL-3-expressing CRC cells depends primarily on the expression of MMP-7.
Collapse
Affiliation(s)
- Su-Kyung Lee
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Yuseonggu, Daejon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|