1
|
Controlled Synthesis of Luminescent Xanthene Dyes and Use of Ionic Liquid in Thermochromic Reaction. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103092. [PMID: 35630571 PMCID: PMC9143205 DOI: 10.3390/molecules27103092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 01/12/2023]
Abstract
In this study, we demonstrate six novel xanthene derivatives and their spectroscopic and chemical properties. The presented synthesis examination allowed us to obtain two different compounds during one step, with open and closed lactone rings substituted with different length alkyl chains. Increasing the reaction efficiency to 77% was obtained using the microwave-assisted method. Moreover, the modification of O-alkylation synthesis in an ecofriendly way using a ball mill led to achieving exclusively one opened ring product. All of the synthesized compounds showed different spectroscopic behaviors in comparison with the different organic dyes; the typical concentration quenching of luminescence was not observed. The relationship between the length of the alkyl chain and the time of luminescence decay is presented. Synthetized closed forms of dyes turned out to be promising leuco dyes. For the first time, an ionic liquid was used as a developer of synthesized xanthene derivatives (as leuco dyes), which led to obtaining an irreversible thermochromic marker.
Collapse
|
2
|
Mandal S, Bandyopadhyay S, Tyagi K, Roy A. Recent advances in understanding the molecular role of phosphoinositide-specific phospholipase C gamma 1 as an emerging onco-driver and novel therapeutic target in human carcinogenesis. Biochim Biophys Acta Rev Cancer 2021; 1876:188619. [PMID: 34454048 DOI: 10.1016/j.bbcan.2021.188619] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/04/2021] [Accepted: 08/21/2021] [Indexed: 02/07/2023]
Abstract
Phosphoinositide metabolism is crucial intracellular signaling system that regulates a plethora of biological functions including mitogenesis, cell proliferation and division. Phospholipase C gamma 1 (PLCγ1) which belongs to phosphoinositide-specific phospholipase C (PLC) family, is activated by many extracellular stimuli including hormones, neurotransmitters, growth factors and modulates several cellular and physiological functions necessary for tumorigenesis such as cell survival, migration, invasion and angiogenesis by generating inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) via hydrolysis of phosphatidylinositol 4,5-biphosphate (PIP2). Cancer remains as a leading cause of global mortality and aberrant expression and regulation of PLCγ1 is linked to a plethora of deadly human cancers including carcinomas of the breast, lung, pancreas, stomach, prostate and ovary. Although PLCγ1 cross-talks with many onco-drivers and signaling circuits including PI3K, AKT, HIF1-α and RAF/MEK/ERK cascade, its precise role in carcinogenesis is not completely understood. This review comprehensively discussed the status quo of this ubiquitously expressed phospholipase as a tumor driver and highlighted its significance as a novel therapeutic target in cancer. Furthermore, we have highlighted the significance of somatic driver mutations in PLCG1 gene and molecular roles of PLCγ1 in several major human cancers, a knowledgebase that can be utilized to develop novel, isoform-specific small molecule inhibitors of PLCγ1.
Collapse
Affiliation(s)
- Supratim Mandal
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India.
| | - Shrabasti Bandyopadhyay
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Komal Tyagi
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India
| | - Adhiraj Roy
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India.
| |
Collapse
|
3
|
Mostafa GAE, Mahajumi AS, AlRabiah H, Kadi AA, Lu Y, Rahman AFMM. Synthesis and Photophysical Properties of Fluorescein Esters as Potential Organic Semiconductor Materials. J Fluoresc 2021; 31:1489-1502. [PMID: 34287764 DOI: 10.1007/s10895-021-02789-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
Fluorescein (1), a known fluorescent tracer in microscopy with high photophysical properties, was esterified to have fluorescein ethyl ester (2) and O-ethyl-fluorescein ethyl ester (3) in excellent yields. All of them were investigated for the photophysical and electrochemical properties as potential organic semiconductor materials. Absorptions and emission spectra were taken in various solvents, compound 2 showed emission maxima at λmax = 545 and compound 3 showed λmax = 550 nm. Optical band gap energy (Eg) was calculated for 1-3 and the values were found in between 2.34 - 2.39 eV. Possibility of shifting emission maxima was studied in various pH (5-9) buffers, and finally the thermal stability was examined using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Increasing of conjugation system of 2 and 3 were studied by HOMO and LUMO distributions of 1-3. Experimental results showed that compounds 2 and 3 have excellent photophysical and electrochemical properties hence can be used as excellent organic semiconductor materials.
Collapse
Affiliation(s)
- Gamal A E Mostafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.,Micro-Analytical Laboratory, Department of Applied Organic Chemistry, National Research Center, Dokki, 12622, Cairo, Egypt
| | - Abu Syed Mahajumi
- Department of Electronic and Electrical Engineering, Southwest Jiaotong University (SWJTU), University of Leeds UK Joint School, XIPU Campus, Chengdu, China
| | - Haitham AlRabiah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yang Lu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - A F M Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
4
|
Abstract
Mammalian phospholipase C (PLC) isozymes are major signaling nodes that regulate a wide range of cellular processes. Dysregulation of PLC activity has been associated with a growing list of human diseases such as cancer and Alzheimer's disease. However, methods to directly and continuously monitor PLC activity at membranes with high sensitivity and throughput are still lacking. We have developed XY-69, a fluorogenic PIP2 analog, which can be efficiently hydrolyzed by PLC isozymes either in solution or at membranes. Here, we describe the optimized assay conditions and protocol to measure the activity of PLC-γ1 (D1165H) with XY-69 in lipid vesicles. The described protocol also applies to other PLC isozymes.
Collapse
|
5
|
Katan M, Cockcroft S. Phospholipase C families: Common themes and versatility in physiology and pathology. Prog Lipid Res 2020; 80:101065. [PMID: 32966869 DOI: 10.1016/j.plipres.2020.101065] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
Abstract
Phosphoinositide-specific phospholipase Cs (PLCs) are expressed in all mammalian cells and play critical roles in signal transduction. To obtain a comprehensive understanding of these enzymes in physiology and pathology, a detailed structural, biochemical, cell biological and genetic information is required. In this review, we cover all these aspects to summarize current knowledge of the entire superfamily. The families of PLCs have expanded from 13 enzymes to 16 with the identification of the atypical PLCs in the human genome. Recent structural insights highlight the common themes that cover not only the substrate catalysis but also the mechanisms of activation. This involves the release of autoinhibitory interactions that, in the absence of stimulation, maintain classical PLC enzymes in their inactive forms. Studies of individual PLCs provide a rich repertoire of PLC function in different physiologies. Furthermore, the genetic studies discovered numerous mutated and rare variants of PLC enzymes and their link to human disease development, greatly expanding our understanding of their roles in diverse pathologies. Notably, substantial evidence now supports involvement of different PLC isoforms in the development of specific cancer types, immune disorders and neurodegeneration. These advances will stimulate the generation of new drugs that target PLC enzymes, and will therefore open new possibilities for treatment of a number of diseases where current therapies remain ineffective.
Collapse
Affiliation(s)
- Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, 21 University Street, London WC1E 6JJ, UK.
| |
Collapse
|
6
|
Huang W, Wang X, Endo-Streeter S, Barrett M, Waybright J, Wohlfeld C, Hajicek N, Harden TK, Sondek J, Zhang Q. A membrane-associated, fluorogenic reporter for mammalian phospholipase C isozymes. J Biol Chem 2017; 293:1728-1735. [PMID: 29263090 DOI: 10.1074/jbc.ra117.000926] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/05/2017] [Indexed: 11/06/2022] Open
Abstract
A diverse group of cell-surface receptors, including many G protein-coupled receptors and receptor tyrosine kinases, activate phospholipase C (PLC) isozymes to hydrolyze phosphatidylinositol 4,5-bisphosphate into the second messengers diacylglycerol and 1,4,5-inositol trisphosphate. Consequently, PLCs control various cellular processes, and their aberrant regulation contributes to many diseases, including cancer, atherosclerosis, and rheumatoid arthritis. Despite the widespread importance of PLCs in human biology and disease, it has been impossible to directly monitor the real-time activation of these enzymes at membranes. To overcome this limitation, here we describe XY-69, a fluorogenic reporter that preferentially partitions into membranes and provides a selective tool for measuring the real-time activity of PLCs as either purified enzymes or in cellular lysates. Indeed, XY-69 faithfully reported the membrane-dependent activation of PLC-β3 by Gαq Therefore, XY-69 can replace radioactive phosphatidylinositol 4,5-bisphosphate used in conventional PLC assays and will enable high-throughput screens to identify both orthosteric and allosteric PLC inhibitors. In the future, cell-permeable variants of XY-69 represent promising candidates for reporting the activation of PLCs in live cells with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Weigang Huang
- From the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy
| | - Xiaoyang Wang
- From the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy
| | | | | | - Jarod Waybright
- From the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy
| | - Christian Wohlfeld
- From the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy
| | | | | | - John Sondek
- Departments of Pharmacology and.,Biochemistry and Biophysics, School of Medicine, and.,the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Qisheng Zhang
- From the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, .,Departments of Pharmacology and.,the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
7
|
Islam MS, Park S, Song C, Kadi AA, Kwon Y, Rahman AFMM. Fluorescein hydrazones: A series of novel non-intercalative topoisomerase IIα catalytic inhibitors induce G1 arrest and apoptosis in breast and colon cancer cells. Eur J Med Chem 2017; 125:49-67. [PMID: 27654394 DOI: 10.1016/j.ejmech.2016.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 12/25/2022]
Abstract
Fluorescein hydrazones (5 and 7) were synthesized in three/four steps with 82-92% yields. All synthesized compounds were evaluated by topoisomerase I (topo I) and topoisomerase IIα (topo IIα)-mediated relaxation and cell viability assays. Among them, most of the compounds showed topo I & IIα inhibitory activity and nineteen compounds showed strong anti-proliferative activity against various cell lines. In brief, 5e inhibited 53% topo IIα (etoposide 29%) at 20 μM and showed excellent antiproliferative activity against DU145 (1.43 ± 0.04 μM), HCT15 (2.4 ± 0.03 μM) and MCF7 (11.4 ± 0.5 μM) cell lines in comparison with adriamycin, etoposide, and camptothecin. Compounds 5e, 5g and 5h were further evaluated to determine their mode of action. Compounds 5e, 5g and 5h functioned as non-intercalative topo IIα catalytic inhibitor with induction of G1 arrest and activation of apoptotic proteins in dose-dependent manner.
Collapse
Affiliation(s)
- Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Seojeong Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Chanju Song
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea.
| | - A F M Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
8
|
Liu Y, Mihai C, Kubiak RJ, Rebecchi M, Bruzik KS. Phosphorothiolate analogues of phosphatidylinositols as assay substrates for phospholipase C. Chembiochem 2016; 8:1430-9. [PMID: 17659518 DOI: 10.1002/cbic.200700061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Accurate measurement of phosphatidylinositol-specific phospholipase C (PI-PLC) activity is important in view of the key role of this enzyme in signal-transduction pathways. In this work we synthesized enantiomerically pure phosphorothiolate analogues of all natural PI-PLC substrates, including those of phosphatidylinositol 4,5-bisphosphate (PI-4,5-P2), 4-phosphate (PI-4-P), 5-phosphate (PI-5-P) and unphosphorylated PI, in both long- and short-chain versions. The enzymatic cleavage of these substrates produces thiol analogues of diacyl glycerol, which can be quantified by UV absorbance after treatment with dipyridyl disulfide. The monodisperse dihexanoyl derivatives are suitable substrates for PI-PLC assay: they give rise to high enzyme activity, and provide excellent linear kinetic responses. For all substrates, we found a good linear correlation between the reaction rate and the amount of enzyme; this indicated the suitability of this assay for enzyme quantification. The short-chain substrates enable the enzyme specificity with variously phosphorylated inositol head groups to be established--unobstructed by substrate aggregation, "scooting" kinetics on micelles, or surface dilution effects. The kinetic results indicated allosteric behavior of PLC for all substrates tested. We found that substrates phosphorylated at the inositol 4-position (phosphorothiolate analogues of PI-4,5-P2 and PI-4-P) displayed very similar kinetic properties, and were cleaved with approximately 20- to 30-fold higher activity than the 4-nonphosphorylated substrates (analogues of PI-5-P and PI). Hence it appears that interactions between the enzyme and the 4-phosphate group of the substrate, but not its 5-phosphate group, is important for PI-PLC catalysis. In addition, the binding affinities of all four substrate types were found to be quite similar; this indicates that the energy of enzyme interaction with the 4-phosphate group is directed almost entirely to catalysis.
Collapse
Affiliation(s)
- Yinghui Liu
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago IL 60612, USA
| | | | | | | | | |
Collapse
|
9
|
Koss H, Bunney TD, Behjati S, Katan M. Dysfunction of phospholipase Cγ in immune disorders and cancer. Trends Biochem Sci 2014; 39:603-11. [PMID: 25456276 DOI: 10.1016/j.tibs.2014.09.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 12/15/2022]
Abstract
The surge in genetic and genomic investigations over the past 5 years has resulted in many discoveries of causative variants relevant to disease pathophysiology. Although phospholipase C (PLC) enzymes have long been recognized as important components in intracellular signal transmission, it is only recently that this approach highlighted their role in disease development through gain-of-function mutations. In this review we describe the new findings that link the PLCγ family to immune disorders and cancer, and illustrate further efforts to elucidate the molecular mechanisms that underpin their dysfunction.
Collapse
Affiliation(s)
- Hans Koss
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK; Division of Molecular Structure, Medical Research Council (MRC) National Institute for Medical Research, London, UK
| | - Tom D Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK.
| | - Sam Behjati
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK.
| |
Collapse
|
10
|
Rahman AFMM, Park SE, Kadi AA, Kwon Y. Fluorescein hydrazones as novel nonintercalative topoisomerase catalytic inhibitors with low DNA toxicity. J Med Chem 2014; 57:9139-51. [PMID: 25333701 DOI: 10.1021/jm501263m] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fluorescein hydrazones (3a-3l) were synthesized in three steps with 86-91% overall yields. Topo I- and IIα-mediated relaxation and cell viability assay were evaluated. 3d inhibited 47% Topo I (camptothecin, 34%) and 20% Topo II (etoposide 24%) at 20 μM. 3l inhibited 61% Topo II (etoposide 24%) at 20 μM. 3d and 3l were further evaluated to determine their mode of action with diverse methods of kDNA decatenation, DNA-Topo cleavage complex, comet, DNA intercalating/unwinding, and Topo IIα-mediated ATP hydrolysis assays. 3d functioned as a nonintercalative dual inhibitor against the catalytic activities of Topo I and Topo IIα. 3l acted as a Topo IIα specific nonintercalative catalytic inhibitor. 3d activated apoptotic proteins as it increased the level of cleaved capase-3 and cleaved PARP in a dose- and time-dependent manner. The dose- and time-dependent increase of G1 phase population was observed by treatment of 3d along with the increase of p27(kip1) and the decrease of cyclin D1 expression.
Collapse
Affiliation(s)
- A F M Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University , Riyadh 11451, Saudi Arabia
| | | | | | | |
Collapse
|
11
|
Huang W, Barrett M, Hajicek N, Hicks S, Harden TK, Sondek J, Zhang Q. Small molecule inhibitors of phospholipase C from a novel high-throughput screen. J Biol Chem 2013; 288:5840-8. [PMID: 23297405 DOI: 10.1074/jbc.m112.422501] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Phospholipase C (PLC) isozymes are important signaling molecules, but few small molecule modulators are available to pharmacologically regulate their function. With the goal of developing a general approach for identification of novel PLC inhibitors, we developed a high-throughput assay based on the fluorogenic substrate reporter WH-15. The assay is highly sensitive and reproducible: screening a chemical library of 6280 compounds identified three novel PLC inhibitors that exhibited potent activities in two separate assay formats with purified PLC isozymes in vitro. Two of the three inhibitors also inhibited G protein-coupled receptor-stimulated PLC activity in intact cell systems. These results demonstrate the power of the high-throughput assay for screening large collections of small molecules to identify novel PLC modulators. Potent and selective modulators of PLCs will ultimately be useful for dissecting the roles of PLCs in cellular processes, as well as provide lead compounds for the development of drugs to treat diseases arising from aberrant phospholipase activity.
Collapse
Affiliation(s)
- Weigang Huang
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Wang X, Barrett M, Sondek J, Harden TK, Zhang Q. Fluorescent phosphatidylinositol 4,5-bisphosphate derivatives with modified 6-hydroxy group as novel substrates for phospholipase C. Biochemistry 2012; 51:5300-6. [PMID: 22703043 DOI: 10.1021/bi300637h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The capacity to monitor spatiotemporal activity of phospholipase C (PLC) isozymes with a PLC-selective sensor would dramatically enhance understanding of the physiological function and disease relevance of these signaling proteins. Previous structural and biochemical studies defined critical roles for several of the functional groups of the endogenous substrate of PLC isozymes, phosphatidylinositol 4,5-bisphosphate (PIP(2)), indicating that these sites cannot be readily modified without compromising interactions with the lipase active site. However, the role of the 6-hydroxy group of PIP(2) for interaction and hydrolysis by PLC has not been explored, possibly due to challenges in synthesizing 6-hydroxy derivatives. Here, we describe an efficient route for the synthesis of novel, fluorescent PIP(2) derivatives modified at the 6-hydroxy group. Two of these derivatives were used in assays of PLC activity in which the fluorescent PIP(2) substrates were separated from their diacylglycerol products and reaction rates quantified by fluorescence. Both PIP(2) analogues effectively function as substrates of PLC-δ1, and the K(M) and V(max) values obtained with one of these are similar to those observed with native PIP(2) substrate. These results indicate that the 6-hydroxy group can be modified to develop functional substrates for PLC isozymes, thereby serving as the foundation for further development of PLC-selective sensors.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
13
|
Huang W, Hicks SN, Sondek J, Zhang Q. A fluorogenic, small molecule reporter for mammalian phospholipase C isozymes. ACS Chem Biol 2011; 6:223-8. [PMID: 21158426 PMCID: PMC3312000 DOI: 10.1021/cb100308n] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Phospholipase C isozymes (PLCs) catalyze the conversion of the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP(2)) into two second messengers, inositol 1,4,5-trisphosphate and diacylglycerol. This family of enzymes are key signaling proteins that regulate the physiological responses of many extracellular stimuli such as hormones, neurotransmitters, and growth factors. Aberrant regulation of PLCs has been implicated in various diseases including cancer and Alzheimer's disease. How, when, and where PLCs are activated under different cellular contexts are still largely unknown. We have developed a fluorogenic PLC reporter, WH-15, that can be cleaved in a cascade reaction to generate fluorescent 6-aminoquinoline. When applied in enzymatic assays with either pure PLCs or cell lysates, this reporter displays more than a 20-fold fluorescence enhancement in response to PLC activity. Under assay conditions, WH-15 has comparable K(m) and V(max) with the endogenous PIP(2). This novel reporter will likely find broad applications that vary from imaging PLC activity in live cells to high-throughput screening of PLC inhibitors.
Collapse
MESH Headings
- Aminoquinolines/chemistry
- Aminoquinolines/metabolism
- Biocatalysis
- Cell Line
- Cell Membrane/chemistry
- Cell Membrane/metabolism
- Diglycerides/biosynthesis
- Diglycerides/chemistry
- Enzyme Assays/methods
- Fluorescent Dyes/chemistry
- Fluorescent Dyes/metabolism
- Humans
- Inositol 1,4,5-Trisphosphate/analogs & derivatives
- Inositol 1,4,5-Trisphosphate/biosynthesis
- Inositol 1,4,5-Trisphosphate/chemistry
- Inositol 1,4,5-Trisphosphate/metabolism
- Isoenzymes/analysis
- Isoenzymes/antagonists & inhibitors
- Isoenzymes/chemistry
- Isoenzymes/metabolism
- Kinetics
- Molecular Probes/chemistry
- Molecular Probes/metabolism
- Molecular Structure
- Molecular Weight
- Phosphatidylinositol 4,5-Diphosphate/chemistry
- Phosphatidylinositol 4,5-Diphosphate/metabolism
- Stereoisomerism
- Type C Phospholipases/analysis
- Type C Phospholipases/antagonists & inhibitors
- Type C Phospholipases/chemistry
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Weigang Huang
- Division of Medicinal Chemistry and Natural Products, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie N. Hicks
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - John Sondek
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Qisheng Zhang
- Division of Medicinal Chemistry and Natural Products, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
14
|
Schmolke M, Fabian J, Lehr M. High-performance liquid chromatographic assay with ultraviolet spectrometric detection for the evaluation of inhibitors of phosphatidylinositol-specific phospholipase C. Anal Biochem 2008; 375:291-8. [DOI: 10.1016/j.ab.2007.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 12/19/2007] [Accepted: 12/19/2007] [Indexed: 11/30/2022]
|
15
|
Zaikova TO, Rukavishnikov AV, Birrell GB, Griffith OH, Keana JF. Synthesis of fluorogenic substrates for continuous assay of phosphatidylinositol-specific phospholipase C. Bioconjug Chem 2001; 12:307-13. [PMID: 11312693 DOI: 10.1021/bc0001138] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An improved synthesis of fluorogenic substrate analogues for phosphatidylinositol-specific phospholipase C (PI-PLC) is described. The water-soluble substrates, which are derived from fluorescein, are not fluorescent until cleaved by the enzyme, and provide a convenient means to continuously monitor PI-PLC activity. The improvement in the synthesis lies in the method used to protect the hydroxyl groups of the inositol portion of the substrate molecule and allows a milder deprotection procedure to be used. The result is a much more reproducible synthesis of the substrate. The improved procedure has been employed to synthesize a series of fluorogenic substrates, which differ in the length of the aliphatic tail attached to the fluorescein portion of the molecule. The length of the tail was found to have a significant effect on the rate of cleavage of these substrates.
Collapse
Affiliation(s)
- T O Zaikova
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | | | | | | | |
Collapse
|