1
|
Pomeroy J, Borczyk M, Kawalec M, Hajto J, Carlson E, Svärd S, Verma S, Bareke E, Boratyńska-Jasińska A, Dymkowska D, Mellado-Ibáñez A, Laight D, Zabłocki K, Occhipinti A, Majewska L, Angione C, Majewski J, Yegutkin GG, Korostynski M, Zabłocka B, Górecki DC. Spatiotemporal diversity in molecular and functional abnormalities in the mdx dystrophic brain. Mol Med 2025; 31:108. [PMID: 40114059 PMCID: PMC11924731 DOI: 10.1186/s10020-025-01109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/28/2025] [Indexed: 03/22/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive muscle degeneration and neuropsychiatric abnormalities. Loss of full-length dystrophins is both necessary and sufficient to initiate DMD. These isoforms are expressed in the hippocampus, cerebral cortex (Dp427c), and cerebellar Purkinje cells (Dp427p). However, our understanding of the consequences of their absence, which is crucial for developing targeted interventions, remains inadequate. We combined RNA sequencing with genome-scale metabolic modelling (GSMM), immunodetection, and mitochondrial assays to investigate dystrophic alterations in the brains of the mdx mouse model of DMD. The cerebra and cerebella were analysed separately to discern the roles of Dp427c and Dp427p, respectively. Investigating these regions at 10 days (10d) and 10 weeks (10w) followed the evolution of abnormalities from development to early adulthood. These time points also encompass periods before onset and during muscle inflammation, enabling assessment of the potential damage caused by inflammatory mediators crossing the dystrophic blood-brain barrier. For the first time, we demonstrated that transcriptomic and functional dystrophic alterations are unique to the cerebra and cerebella and vary substantially between 10d and 10w. The common anomalies involved altered numbers of retained introns and spliced exons across mdx transcripts, corresponding with alterations in the mRNA processing pathways. Abnormalities in the cerebra were significantly more pronounced in younger mice. The top enriched pathways included those related to metabolism, mRNA processing, and neuronal development. GSMM indicated dysregulation of glucose metabolism, which corresponded with GLUT1 protein downregulation. The cerebellar dystrophic transcriptome, while significantly altered, showed an opposite trajectory to that of the cerebra, with few changes identified at 10 days. These late defects are specific and indicate an impact on the functional maturation of the cerebella that occurs postnatally. Although no classical neuroinflammation markers or microglial activation were detected at 10 weeks, specific differences indicate that inflammation impacts DMD brains. Importantly, some dystrophic alterations occur late and may therefore be amenable to therapeutic intervention, offering potential avenues for mitigating DMD-related neuropsychiatric defects.
Collapse
Affiliation(s)
- Joanna Pomeroy
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Malgorzata Borczyk
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343, Krakow, Poland
| | - Maria Kawalec
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jacek Hajto
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343, Krakow, Poland
| | - Emma Carlson
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Samuel Svärd
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| | - Suraj Verma
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK
| | - Eric Bareke
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Anna Boratyńska-Jasińska
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Dymkowska
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Alvaro Mellado-Ibáñez
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT, UK
| | - David Laight
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Krzysztof Zabłocki
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Annalisa Occhipinti
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK
| | - Loydie Majewska
- Department of Pediatrics, McGill University, McGill Health Centre Glen Site, 1001 Decarie Blvd, EM02210, Montreal, QC, H4A 3J1, Canada
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Gennady G Yegutkin
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| | - Michal Korostynski
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343, Krakow, Poland
| | - Barbara Zabłocka
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Dariusz C Górecki
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
2
|
Alonge P, Gadaleta G, Urbano G, Lupica A, Di Stefano V, Brighina F, Torrente A. The Role of Brain Plasticity in Neuromuscular Disorders: Current Knowledge and Future Prospects. Brain Sci 2024; 14:971. [PMID: 39451985 PMCID: PMC11506792 DOI: 10.3390/brainsci14100971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Increasing evidence shows an involvement of brain plasticity mechanisms in both motor and central manifestations of neuromuscular disorders (NMDs). These mechanisms could be specifically addressed with neuromodulation or rehabilitation protocols. The aim of this scoping review is to summarise the evidence on plasticity mechanisms' involvement in NMDs to encourage future research. Methods: A scoping review was conducted searching the PubMed and Scopus electronic databases. We selected papers addressing brain plasticity and central nervous system (CNS) studies through non-invasive brain stimulation techniques in myopathies, muscular dystrophies, myositis and spinal muscular atrophy. Results: A total of 49 papers were selected for full-text examination. Regardless of the variety of pathogenetic and clinical characteristics of NMDs, studies show widespread changes in intracortical inhibition mechanisms, as well as disruptions in glutamatergic and GABAergic transmission, resulting in altered brain plasticity. Therapeutic interventions with neurostimulation techniques, despite being conducted only anecdotally or on small samples, show promising results; Conclusions: despite challenges posed by the rarity and heterogeneity of NMDs, recent evidence suggests that synaptic plasticity may play a role in the pathogenesis of various muscular diseases, affecting not only central symptoms but also strength and fatigue. Key questions remain unanswered about the role of plasticity and its potential as a therapeutic target. As disease-modifying therapies advance, understanding CNS involvement in NMDs could lead to more tailored treatments.
Collapse
Affiliation(s)
- Paolo Alonge
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (P.A.); (A.L.); (V.D.S.); (A.T.)
| | - Giulio Gadaleta
- Neuromuscular Unit, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.G.); (G.U.)
| | - Guido Urbano
- Neuromuscular Unit, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.G.); (G.U.)
| | - Antonino Lupica
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (P.A.); (A.L.); (V.D.S.); (A.T.)
- U.O.C. Neurologia, Azienda Ospedaliera Papardo, 98121 Messina, Italy
| | - Vincenzo Di Stefano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (P.A.); (A.L.); (V.D.S.); (A.T.)
| | - Filippo Brighina
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (P.A.); (A.L.); (V.D.S.); (A.T.)
| | - Angelo Torrente
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (P.A.); (A.L.); (V.D.S.); (A.T.)
| |
Collapse
|
3
|
Mostosi D, Molinaro M, Saccone S, Torrente Y, Villa C, Farini A. Exploring the Gut Microbiota-Muscle Axis in Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:5589. [PMID: 38891777 PMCID: PMC11171690 DOI: 10.3390/ijms25115589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
The gut microbiota plays a pivotal role in maintaining the dynamic balance of intestinal epithelial and immune cells, crucial for overall organ homeostasis. Dysfunctions in these intricate relationships can lead to inflammation and contribute to the pathogenesis of various diseases. Recent findings uncovered the existence of a gut-muscle axis, revealing how alterations in the gut microbiota can disrupt regulatory mechanisms in muscular and adipose tissues, triggering immune-mediated inflammation. In the context of Duchenne muscular dystrophy (DMD), alterations in intestinal permeability stand as a potential origin of molecules that could trigger muscle degeneration via various pathways. Metabolites produced by gut bacteria, or fragments of bacteria themselves, may have the ability to migrate from the gut into the bloodstream and ultimately infiltrate distant muscle tissues, exacerbating localized pathologies. These insights highlight alternative pathological pathways in DMD beyond the musculoskeletal system, paving the way for nutraceutical supplementation as a potential adjuvant therapy. Understanding the complex interplay between the gut microbiota, immune system, and muscular health offers new perspectives for therapeutic interventions beyond conventional approaches to efficiently counteract the multifaceted nature of DMD.
Collapse
Affiliation(s)
- Debora Mostosi
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (D.M.); (Y.T.); (C.V.)
| | - Monica Molinaro
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.M.); (S.S.)
| | - Sabrina Saccone
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.M.); (S.S.)
| | - Yvan Torrente
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (D.M.); (Y.T.); (C.V.)
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.M.); (S.S.)
| | - Chiara Villa
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (D.M.); (Y.T.); (C.V.)
| | - Andrea Farini
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.M.); (S.S.)
| |
Collapse
|
4
|
Stefano MED, Ferretti V, Mozzetta C. Synaptic alterations as a neurodevelopmental trait of Duchenne muscular dystrophy. Neurobiol Dis 2022; 168:105718. [PMID: 35390481 DOI: 10.1016/j.nbd.2022.105718] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023] Open
Abstract
Dystrophinopaties, e.g., Duchenne muscular dystrophy (DMD), Becker muscular dystrophy and X-linked dilated cardiomyopathy are inherited neuromuscular diseases, characterized by progressive muscular degeneration, which however associate with a significant impact on general system physiology. The more severe is the pathology and its diversified manifestations, the heavier are its effects on organs, systems, and tissues other than muscles (skeletal, cardiac and smooth muscles). All dystrophinopaties are characterized by mutations in a single gene located on the X chromosome encoding dystrophin (Dp427) and its shorter isoforms, but DMD is the most devasting: muscular degenerations manifests within the first 4 years of life, progressively affecting motility and other muscular functions, and leads to a fatal outcome between the 20s and 40s. To date, after years of studies on both DMD patients and animal models of the disease, it has been clearly demonstrated that a significant percentage of DMD patients are also afflicted by cognitive, neurological, and autonomic disorders, of varying degree of severity. The anatomical correlates underlying neural functional damages are established during embryonic development and the early stages of postnatal life, when brain circuits, sensory and motor connections are still maturing. The impact of the absence of Dp427 on the development, differentiation, and consolidation of specific cerebral circuits (hippocampus, cerebellum, prefrontal cortex, amygdala) is significant, and amplified by the frequent lack of one or more of its lower molecular mass isoforms. The most relevant aspect, which characterizes DMD-associated neurological disorders, is based on morpho-functional alterations of selective synaptic connections within the affected brain areas. This pathological feature correlates neurological conditions of DMD to other severe neurological disorders, such as schizophrenia, epilepsy and autistic spectrum disorders, among others. This review discusses the organization and the role of the dystrophin-dystroglycan complex in muscles and neurons, focusing on the neurological aspect of DMD and on the most relevant morphological and functional synaptic alterations, in both central and autonomic nervous systems, described in the pathology and its animal models.
Collapse
Affiliation(s)
- Maria Egle De Stefano
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy; Center for Research in Neurobiology Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy.
| | - Valentina Ferretti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy; Center for Research in Neurobiology Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy
| | - Chiara Mozzetta
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy c/o Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
5
|
Naidoo M, Anthony K. Dystrophin Dp71 and the Neuropathophysiology of Duchenne Muscular Dystrophy. Mol Neurobiol 2020; 57:1748-1767. [PMID: 31836945 PMCID: PMC7060961 DOI: 10.1007/s12035-019-01845-w] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy (DMD) is caused by frameshift mutations in the DMD gene that prevent the body-wide translation of its protein product, dystrophin. Besides a severe muscle phenotype, cognitive impairment and neuropsychiatric symptoms are prevalent. Dystrophin protein 71 (Dp71) is the major DMD gene product expressed in the brain and mutations affecting its expression are associated with the DMD neuropsychiatric syndrome. As with dystrophin in muscle, Dp71 localises to dystrophin-associated protein complexes in the brain. However, unlike in skeletal muscle; in the brain, Dp71 is alternatively spliced to produce many isoforms with differential subcellular localisations and diverse cellular functions. These include neuronal differentiation, adhesion, cell division and excitatory synapse organisation as well as nuclear functions such as nuclear scaffolding and DNA repair. In this review, we first describe brain involvement in DMD and the abnormalities observed in the DMD brain. We then review the gene expression, RNA processing and functions of Dp71. We review genotype-phenotype correlations and discuss emerging cellular/tissue evidence for the involvement of Dp71 in the neuropathophysiology of DMD. The literature suggests changes observed in the DMD brain are neurodevelopmental in origin and that their risk and severity is associated with a cumulative loss of distal DMD gene products such as Dp71. The high risk of neuropsychiatric syndromes in Duchenne patients warrants early intervention to achieve the best possible quality of life. Unravelling the function and pathophysiological significance of dystrophin in the brain has become a high research priority to inform the development of brain-targeting treatments for Duchenne.
Collapse
Affiliation(s)
- Michael Naidoo
- Centre for Physical Activity and Life Sciences, Faculty of Arts, Science and Technology, University of Northampton, University Drive, Northampton, Northamptonshire, NN1 5PH, UK
| | - Karen Anthony
- Centre for Physical Activity and Life Sciences, Faculty of Arts, Science and Technology, University of Northampton, University Drive, Northampton, Northamptonshire, NN1 5PH, UK.
| |
Collapse
|
6
|
Nickolls AR, Bönnemann CG. The roles of dystroglycan in the nervous system: insights from animal models of muscular dystrophy. Dis Model Mech 2018; 11:11/12/dmm035931. [PMID: 30578246 PMCID: PMC6307911 DOI: 10.1242/dmm.035931] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dystroglycan is a cell membrane protein that binds to the extracellular matrix in a variety of mammalian tissues. The α-subunit of dystroglycan (αDG) is heavily glycosylated, including a special O-mannosyl glycoepitope, relying upon this unique glycosylation to bind its matrix ligands. A distinct group of muscular dystrophies results from specific hypoglycosylation of αDG, and they are frequently associated with central nervous system involvement, ranging from profound brain malformation to intellectual disability without evident morphological defects. There is an expanding literature addressing the function of αDG in the nervous system, with recent reports demonstrating important roles in brain development and in the maintenance of neuronal synapses. Much of these data are derived from an increasingly rich array of experimental animal models. This Review aims to synthesize the information from such diverse models, formulating an up-to-date understanding about the various functions of αDG in neurons and glia of the central and peripheral nervous systems. Where possible, we integrate these data with our knowledge of the human disorders to promote translation from basic mechanistic findings to clinical therapies that take the neural phenotypes into account. Summary: Dystroglycan is a ubiquitous matrix receptor linked to brain and muscle disease. Unraveling the functions of this protein will inform basic and translational research on neural development and muscular dystrophies.
Collapse
Affiliation(s)
- Alec R Nickolls
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Lopez JR, Kolster J, Uryash A, Estève E, Altamirano F, Adams JA. Dysregulation of Intracellular Ca 2+ in Dystrophic Cortical and Hippocampal Neurons. Mol Neurobiol 2016; 55:603-618. [PMID: 27975174 DOI: 10.1007/s12035-016-0311-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an inherited X-linked disorder characterized by skeletal muscle wasting, cardiomyopathy, as well as cognitive impairment. Lack of dystrophin in striated muscle produces dyshomeostasis of resting intracellular Ca2+ ([Ca2+]i), Na+ ([Na+]i), and oxidative stress. Here, we test the hypothesis that similar to striated muscle cells, an absence of dystrophin in neurons from mdx mice (a mouse model for DMD) is also associated with dysfunction of [Ca2+]i homeostasis and oxidative stress. [Ca2+]i and [Na+]i in pyramidal cortical and hippocampal neurons from 3 and 6 months mdx mice were elevated compared to WT in an age-dependent manner. Removal of extracellular Ca2+ reduced [Ca2+]i in both WT and mdx neurons, but the decrease was greater and age-dependent in the latter. GsMTx-4 (a blocker of stretch-activated cation channels) significantly decreased [Ca2+]i and [Na+]i in an age-dependent manner in all mdx neurons. Blockade of ryanodine receptors (RyR) or inositol triphosphate receptors (IP3R) reduced [Ca2+]i in mdx. Mdx neurons showed elevated and age-dependent reactive oxygen species (ROS) production and an increase in neuronal damage. In addition, mdx mice showed a spatial learning deficit compared to WT. GsMTx-4 intraperitoneal injection reduced neural [Ca2+]i and improved learning deficit in mdx mice. In summary, mdx neurons show an age-dependent dysregulation in [Ca2+]i and [Na+]i which is mediated by plasmalemmal cation influx and by intracellular Ca2+ release through the RyR and IP3R. Also, mdx neurons have elevated ROS production and more extensive cell damage. Finally, a reduction of [Ca2+]i improved cognitive function in mdx mice.
Collapse
Affiliation(s)
- José R Lopez
- Department of Molecular Biosciences, University of California, Davis, CA, 95616, USA.
| | - Juan Kolster
- Centro de Investigaciones Biomédicas, Mexico, México
| | - Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami, FL, 33140, USA
| | - Eric Estève
- HP2 INSERM 1042 Institut Jean Roget, Université Grenoble Alpes, BP170, 38042, Grenoble Cedex, France
| | - Francisco Altamirano
- Department of Molecular Biosciences, University of California, Davis, CA, 95616, USA.,Department of Internal Medicine - Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - José A Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami, FL, 33140, USA
| |
Collapse
|
8
|
Miranda R, Laroche S, Vaillend C. Reduced neuronal density in the CA1 anterodorsal hippocampus of the mdx mouse. Neuromuscul Disord 2016; 26:775-781. [DOI: 10.1016/j.nmd.2016.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/22/2016] [Accepted: 08/10/2016] [Indexed: 01/05/2023]
|
9
|
Rae MG, O'Malley D. Cognitive dysfunction in Duchenne muscular dystrophy: a possible role for neuromodulatory immune molecules. J Neurophysiol 2016; 116:1304-1315. [PMID: 27385793 PMCID: PMC5023417 DOI: 10.1152/jn.00248.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/29/2016] [Indexed: 11/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X chromosome-linked disease characterized by progressive physical disability, immobility, and premature death in affected boys. Underlying the devastating symptoms of DMD is the loss of dystrophin, a structural protein that connects the extracellular matrix to the cell cytoskeleton and provides protection against contraction-induced damage in muscle cells, leading to chronic peripheral inflammation. However, dystrophin is also expressed in neurons within specific brain regions, including the hippocampus, a structure associated with learning and memory formation. Linked to this, a subset of boys with DMD exhibit nonprogressing cognitive dysfunction, with deficits in verbal, short-term, and working memory. Furthermore, in the genetically comparable dystrophin-deficient mdx mouse model of DMD, some, but not all, types of learning and memory are deficient, and specific deficits in synaptogenesis and channel clustering at synapses has been noted. Little consideration has been devoted to the cognitive deficits associated with DMD compared with the research conducted into the peripheral effects of dystrophin deficiency. Therefore, this review focuses on what is known about the role of full-length dystrophin (Dp427) in hippocampal neurons. The importance of dystrophin in learning and memory is assessed, and the potential importance that inflammatory mediators, which are chronically elevated in dystrophinopathies, may have on hippocampal function is also evaluated.
Collapse
Affiliation(s)
- Mark G Rae
- Department of Physiology, University College Cork, Cork, Ireland; and
| | - Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland; and APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Xu S, Shi D, Pratt SJP, Zhu W, Marshall A, Lovering RM. Abnormalities in brain structure and biochemistry associated with mdx mice measured by in vivo MRI and high resolution localized (1)H MRS. Neuromuscul Disord 2015; 25:764-72. [PMID: 26236031 DOI: 10.1016/j.nmd.2015.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 06/21/2015] [Accepted: 07/06/2015] [Indexed: 01/16/2023]
Abstract
Duchenne muscular dystrophy (DMD), an X-linked disorder caused by the lack of dystrophin, is characterized by the progressive wasting of skeletal muscles. To date, what is known about dystrophin function is derived from studies of dystrophin-deficient animals, with the most common model being the mdx mouse. Most studies on patients with DMD and in mdx mice have focused on skeletal muscle and the development of therapies to reverse, or at least slow, the severe muscle wasting and progressive degeneration. However, dystrophin is also expressed in the CNS. Both mdx mice and patients with DMD can have cognitive and behavioral changes, but studies in the dystrophic brain are limited. We examined the brain structure and metabolites of mature wild type (WT) and mdx mice using magnetic resonance imaging and spectroscopy (MRI/MRS). Both structural and metabolic alterations were observed in the mdx brain. Enlarged lateral ventricles were detected in mdx mice when compared to WT. Diffusion tensor imaging (DTI) revealed elevations in diffusion diffusivities in the prefrontal cortex and a reduction of fractional anisotropy in the hippocampus. Metabolic changes included elevations in phosphocholine and glutathione, and a reduction in γ-aminobutyric acid in the hippocampus. In addition, an elevation in taurine was observed in the prefrontal cortex. Such findings indicate a regional structural change, altered cellular antioxidant defenses, a dysfunction of GABAergic neurotransmission, and a perturbed osmoregulation in the brain lacking dystrophin.
Collapse
Affiliation(s)
- Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Da Shi
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Stephen J P Pratt
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Wenjun Zhu
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Andrew Marshall
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Richard M Lovering
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
11
|
Hendriksen RG, Hoogland G, Schipper S, Hendriksen JG, Vles JS, Aalbers MW. A possible role of dystrophin in neuronal excitability: A review of the current literature. Neurosci Biobehav Rev 2015; 51:255-62. [DOI: 10.1016/j.neubiorev.2015.01.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 01/18/2015] [Accepted: 01/31/2015] [Indexed: 10/24/2022]
|
12
|
Acetylcholine, GABA and neuronal networks: a working hypothesis for compensations in the dystrophic brain. Brain Res Bull 2014; 110:1-13. [PMID: 25445612 DOI: 10.1016/j.brainresbull.2014.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 11/22/2022]
Abstract
Duchenne muscular dystrophy (DMD), a genetic disease arising from a mutation in the dystrophin gene, is characterized by muscle failure and is often associated with cognitive deficits. Studies of the dystrophic brain on the murine mdx model of DMD provide evidence of morphological and functional alterations in the central nervous system (CNS) possibly compatible with the cognitive impairment seen in DMD. However, while some of the alterations reported are a direct consequence of the absence of dystrophin, others seem to be associated only indirectly. In this review we reevaluate the literature in order to formulate a possible explanation for the cognitive impairments associated with DMD. We present a working hypothesis, demonstrated as an integrated neuronal network model, according to which within the cascade of events leading to cognitive impairments there are compensatory mechanisms aimed to maintain functional stability via perpetual adjustments of excitatory and inhibitory components. Such ongoing compensatory response creates continuous perturbations that disrupt neuronal functionality in terms of network efficiency. We have theorized that in this process acetylcholine and network oscillations play a central role. A better understating of these mechanisms could provide a useful diagnostic index of the disease's progression and, perhaps, the correct counterbalance of this process might help to prevent deterioration of the CNS in DMD. Furthermore, the involvement of compensatory mechanisms in the CNS could be extended beyond DMD and possibly help to clarify other physio-pathological processes of the CNS.
Collapse
|
13
|
Altered acetylcholine release in the hippocampus of dystrophin-deficient mice. Neuroscience 2014; 269:173-83. [PMID: 24704431 DOI: 10.1016/j.neuroscience.2014.03.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/22/2014] [Accepted: 03/25/2014] [Indexed: 12/29/2022]
Abstract
Mild cognitive impairments have been described in one-third of patients with Duchenne muscle dystrophy (DMD). DMD is characterized by progressive and irreversible muscle degeneration caused by mutations in the dystrophin gene and lack of the protein expression. Previously, we have reported altered concentrations of α7- and β2-containing nicotinic acetylcholine receptors (nAChRs) in hippocampal membranes of dystrophic (mdx) mice. This suggests that alterations in the central cholinergic synapses are associated with dystrophin deficiency. In this study, we examined the release of acetylcholine (ACh) and the level of the vesicular ACh transporter (VAChT) using synaptosomes isolated from brain regions that normally have a high density of dystrophin (cortex, hippocampus and cerebellum), in control and mdx mice at 4 and 12months of age. ACh release evoked by nicotinic stimulation or K(+) depolarization was measured as the tritium outflow from superfused synaptosomes preloaded with [(3)H]-choline. The results showed that the evoked tritium release was Ca(2+)-dependent and mostly formed by [(3)H]-ACh. β2-containing nAChRs were involved in agonist-evoked [(3)H]-ACh release in control and mdx preparations. In hippocampal synaptosomes from 12-month-old mdx mice, nAChR-evoked [(3)H]-ACh release increased by 57% compared to age-matched controls. Moreover, there was a 98% increase in [(3)H]-ACh release compared to 4-month-old mdx mice. [(3)H]-ACh release evoked by K(+) depolarization was not altered, while the VAChT protein level was decreased (19%) compared to that of age-matched controls. In cortical and cerebellar preparations, there was no difference in nAChR-evoked [(3)H]-ACh release and VAChT levels between mdx and age-matched control groups. Our previous findings and the presynaptic alterations observed in the hippocampi of 12-month-old mdx mice indicate possible dysfunction of nicotinic cholinergic synapses associated with dystrophin deficiency. These changes may contribute to the cognitive and behavioral abnormalities described in dystrophic mice and patients with DMD.
Collapse
|
14
|
Ghedini PC, Avellar MCW, De Lima TCM, Lima-Landman MTR, Lapa AJ, Souccar C. Quantitative changes of nicotinic receptors in the hippocampus of dystrophin-deficient mice. Brain Res 2012; 1483:96-104. [PMID: 22995368 DOI: 10.1016/j.brainres.2012.09.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/09/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
Lack of dystrophin in Duchenne muscle dystrophy (DMD) and in the mutant mdx mouse results in progressive muscle degeneration, structural changes at the neuromuscular junction, and destabilization of the nicotinic acetylcholine receptors (nAChRs). One-third of DMD patients also present non-progressive cognitive impairments. Considering the role of the cholinergic system in cognitive functions, the number of nAChR binding sites and the mRNA levels of α4, β2, and α7 subunits were determined in brain regions normally enriched in dystrophin (cortex, hippocampus and cerebellum) of mdx mice using specific ligands and reverse-transcription polymerase chain reaction assays, respectively. Membrane preparations of these brain regions were obtained from male control and mdx mice at 4 and 12 months of age. The number of [³H]-cytisine (α4β2) and [¹²⁵I]-α-bungarotoxin ([¹²⁵I]-αBGT, α7) binding sites in the cortex and cerebellum was not altered with age or among age-matched control and mdx mice. A significant reduction in [³H]-cytisine (48%) and [¹²⁵I]-αBGT (37%) binding sites was detected in the hippocampus of mdx mice at 12 months of age. When compared with the age-matched control groups, the mdx mice did not have significantly altered [³H]-cytisine binding in the hippocampus, but [¹²⁵I]-αBGT binding in the same brain region was 52% higher at 4 months and 20% lower at 12 months. mRNA transcripts for the nAChR α4, β2, and α7 subunits were not significantly altered in the same brain regions of all animal groups. These results suggest a potential alteration of the nicotinic cholinergic function in the hippocampus of dystrophin-deficient mice, which might contribute to the impairments in cognitive functions, such as learning and memory, that have been reported in the dystrophic murine model and DMD patients.
Collapse
Affiliation(s)
- Paulo César Ghedini
- Department of Pharmacology, Section of Natural Products, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Lv SY, Zou QH, Cui JL, Zhao N, Hu J, Long XY, Sun YC, He J, Zhu CZ, He Y, Zang YF. Decreased gray matter concentration and local synchronization of spontaneous activity in the motor cortex in Duchenne muscular dystrophy. AJNR Am J Neuroradiol 2011; 32:2196-200. [PMID: 21960496 DOI: 10.3174/ajnr.a2718] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE Patients with DMD have demonstrated functional abnormalities in the motor-related brain areas in previous PET, MRS, and TMS studies. We applied structural MR imaging and RS-fMRI in patients with DMD for the first time, and aimed to investigate the GMC and ReHo or local synchronization of spontaneous activity in the motor cortex. MATERIALS AND METHODS Ten boys with DMD (6.4-14.0 years of age) and 15 healthy controls (7.9-15.1 years of age) underwent brain structural MR imaging and RS-fMRI scanning. GMC and local synchronization of spontaneous activity in the motor cortex were analyzed by using VBM and ReHo approaches, respectively. RESULTS Compared with healthy controls, boys with DMD showed decreased GMC in the left PSMC and decreased ReHo in the bilateral PMSC as well as in the supplementary motor area (P < .05, corrected). CONCLUSIONS The current results indicate that boys with DMD have both GMC loss and decreased local synchronization of spontaneous activity in the motor cortex, which might be due to the deficiency of dystrophin in the brain.
Collapse
Affiliation(s)
- S-Y Lv
- Department of Radiology and Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kueh S, Dempster J, Head S, Morley J. Reduced postsynaptic GABAA receptor number and enhanced gaboxadol induced change in holding currents in Purkinje cells of the dystrophin-deficient mdx mouse. Neurobiol Dis 2011; 43:558-64. [DOI: 10.1016/j.nbd.2011.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 04/18/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022] Open
|
17
|
Kreis R, Wingeier K, Vermathen P, Giger E, Joncourt F, Zwygart K, Kaufmann F, Boesch C, Steinlin M. Brain metabolite composition in relation to cognitive function and dystrophin mutations in boys with Duchenne muscular dystrophy. NMR IN BIOMEDICINE 2011; 24:253-262. [PMID: 21404337 DOI: 10.1002/nbm.1582] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/22/2010] [Accepted: 06/01/2010] [Indexed: 05/30/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a hereditary X-linked recessive disorder affecting the synthesis of dystrophin, a protein essential for structural stability in muscle. Dystrophin also occurs in the central nervous system, particularly in the neocortex, hippocampus and cerebellum. Quantitative metabolic analysis by localized (1) H MRS was performed in the cerebellum (12 patients and 15 controls) and a temporo-parietal location (eight patients and 15 controls) in patients with DMD and healthy controls to investigate possible metabolic differences. In addition, the site of individual mutations on the dystrophin gene was analyzed and neuropsychological cognitive functions were examined. Cognitive deficits in the patient group were found in line with earlier investigations, mainly concerning verbal short-term memory, visuo-spatial long-term memory and verbal fluency, but also the full-scale IQ. Causal mutations were identified in all patients with DMD. Quantitative MRS showed consistent choline deficits, in both cerebellar white matter and temporo-parietal cortex, as well as small, but significant, metabolic abnormalities for glutamate and total N-acetyl compounds in the temporo-parietal region. Compartment water analysis did not reveal any abnormalities. In healthy subjects, choline levels were age related in the cerebellum. The choline deficit contrasts with earlier findings in DMD, where a surplus of choline was postulated for the cerebellum. In patients, total N-acetyl compounds in the temporo-parietal region were related to verbal IQ and verbal short-term memory. However, choline, the putative main metabolic abnormality, was not found to be associated with cognitive deficits. Furthermore, in contrast with the cognitive performance, the metabolic brain composition did not depend significantly on whether or not gene mutations concerned the expression of the dystrophin isoform Dp140, leading to the conclusion that the effect of the missing Dp140 isoform on cognitive performance is not mediated through the observed metabolite composition, or is caused by local effects beyond the resolution accessible to MRS investigations.
Collapse
Affiliation(s)
- Roland Kreis
- Department of Clinical Research, Unit for MR-Spectroscopy & Methodology, University of Bern, Bern, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Benabdesselam R, Sene A, Raison D, Benmessaoud-Mesbah O, Ayad G, Mornet D, Yaffe D, Rendon A, Hardin-Pouzet HÃ, Dorbani-Mamine L. A deficit of brain dystrophin 71 impairs hypothalamic osmostat. J Neurosci Res 2010; 88:324-34. [DOI: 10.1002/jnr.22198] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Tuon L, Comim CM, Fraga DB, Scaini G, Rezin GT, Baptista BR, Streck EL, Vainzof M, Quevedo J. Mitochondrial respiratory chain and creatine kinase activities in mdx
mouse brain. Muscle Nerve 2010; 41:257-60. [DOI: 10.1002/mus.21559] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Oxidative variables and antioxidant enzymes activities in the mdx mouse brain. Neurochem Int 2009; 55:802-5. [DOI: 10.1016/j.neuint.2009.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/11/2009] [Accepted: 08/04/2009] [Indexed: 11/23/2022]
|
21
|
Del Tongo C, Carretta D, Fulgenzi G, Catini C, Minciacchi D. Parvalbumin-positive GABAergic interneurons are increased in the dorsal hippocampus of the dystrophic mdx mouse. Acta Neuropathol 2009; 118:803-12. [PMID: 19588159 DOI: 10.1007/s00401-009-0567-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/17/2009] [Accepted: 06/26/2009] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy (DMD) is characterized by variable alterations of the dystrophin gene and by muscle weakness and cognitive impairment. We postulated an association between cognitive impairment and architectural changes of the hippocampal GABAergic system. We investigated a major subpopulation of GABAergic neurons, the parvalbumin-immunopositive (PV-I) cells, in the dorsal hippocampus of the mdx mouse, an acknowledged model of DMD. PV-I neurons were quantified and their distribution was compared in CA1, CA2, CA3, and dentate gyrus in wild-type and mdx mice. The cell morphology and topography of PV-I neurons were maintained. Conversely, the number of PV-I neurons was significantly increased in the mdx mouse. The percent increase of PV-I neurons was from 45% for CA2, up to 125% for the dentate gyrus. In addition, the increased parvalbumin content in the mdx hippocampus was confirmed by Western blot. A change in the hippocampus processing abilities is the expected functional counterpart of the modification displayed by PV-I GABAergic neurons. Altered hippocampal functionality can be responsible for part of the cognitive impairment in DMD.
Collapse
Affiliation(s)
- Claudia Del Tongo
- Department of Anatomy, Histology and Forensic Medicine, University of Florence, Viale Morgagni, 85, 50134 Florence, Italy.
| | | | | | | | | |
Collapse
|
22
|
Abstract
Most molecular and cellular studies of cognitive function have focused on either normal or pathological states, but recent research with transgenic mice has started to address the mechanisms of enhanced cognition. These results point to key synaptic and nuclear signalling events that can be manipulated to facilitate the induction or increase the stability of synaptic plasticity, and therefore enhance the acquisition or retention of information. Here, we review these surprising findings and explore their implications to both mechanisms of learning and memory and to ongoing efforts to develop treatments for cognitive disorders. These findings represent the beginning of a fundamental new approach in the study of enhanced cognition.
Collapse
Affiliation(s)
- Yong-Seok Lee
- Department of Neurobiology, Brain Research Institute, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
23
|
Graciotti L, Minelli A, Minciacchi D, Procopio A, Fulgenzi G. GABAergic miniature spontaneous activity is increased in the CA1 hippocampal region of dystrophic mdx mice. Neuromuscul Disord 2008; 18:220-6. [DOI: 10.1016/j.nmd.2007.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 11/22/2007] [Accepted: 11/28/2007] [Indexed: 10/22/2022]
|
24
|
Cyrulnik SE, Hinton VJ. Duchenne muscular dystrophy: a cerebellar disorder? Neurosci Biobehav Rev 2007; 32:486-96. [PMID: 18022230 DOI: 10.1016/j.neubiorev.2007.09.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 08/28/2007] [Accepted: 09/09/2007] [Indexed: 01/27/2023]
Abstract
Cyrulnik, S.C., and V.J. Hinton. Duchenne muscular dystrophy: A cerebellar disorder? NEUROSCI. BIOBEHAV. REV. Duchenne muscular dystrophy (DMD) is a genetic disorder that is often associated with cognitive deficits. These cognitive deficits have been linked to the absence of dystrophin, a protein product which is normally found in multiple tissues throughout the body. In the current paper, we argue that it is the absence of dystrophin in the cerebellum that is responsible for the cognitive deficits observed. We begin by reviewing data that document structural and functional abnormalities in the brains of individuals with DMD and mdx mice. We briefly review the cognitive deficits associated with DMD, and then present neuroimaging and neuropsychological evidence to indicate that the cerebellum is involved in the same aspects of cognition that are impaired in children with DMD. It is our contention that the development of brain pathways in the cerebellum (e.g., cerebro-cerebellar loops) without dystrophin may result in altered brain function presenting as cognitive deficits in DMD.
Collapse
Affiliation(s)
- Shana E Cyrulnik
- The Graduate Center of the City University of New York, New York, NY 10016, USA.
| | | |
Collapse
|
25
|
Rae C, Moussa CEH, Griffin JL, Bubb WA, Wallis T, Balcar VJ. Group I and II metabotropic glutamate receptors alter brain cortical metabolic and glutamate/glutamine cycle activity: a 13C NMR spectroscopy and metabolomic study. J Neurochem 2005; 92:405-16. [PMID: 15663488 DOI: 10.1111/j.1471-4159.2004.02880.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabotropic glutamate receptors (mGluR) modulate neuronal function. Here, we tested the effect on metabolism of a range of Group I and II mGluR ligands in Guinea pig brain cortical tissue slices, applying 13C NMR spectroscopy and metabolomic analysis using multivariate statistics. The effects of Group I agonists (S)-3,5-dihydroxyphenylglycine (DHPG) and (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) depended upon concentration and were mostly stimulatory, increasing both net metabolic flux through the Krebs cycle and glutamate/glutamine cycle activity. Only the higher (50 microm) concentrations of CHPG had the opposite effect. The Group I antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA), consistent with its neuroprotective role, caused significant decreases in metabolism. With principal components analysis of the metabolic profiles generated by these ligands, the effects could be separated by two principal components. Agonists at Group II mGluR [(2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV) and 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (APDC)] generally stimulated metabolism, including glutamate/glutamine cycling, although this varied with concentration. The antagonist (2S)-alpha-ethylglutamic acid (EGLU) stimulated astrocyte metabolism with minimal impact on glutamate/glutamine cycling. (RS)-1-Aminophosphoindan-1-carboxylic acid (APICA) decreased metabolism at 5 microm but had a stimulatory effect at 50 microm. All ligand effects were separated from control and from each other using two principal components. The ramifications of these findings are discussed.
Collapse
Affiliation(s)
- Caroline Rae
- School of Molecular and Microbial Biosciences, The University of Sydney, New South Wales, Australia.
| | | | | | | | | | | |
Collapse
|
26
|
Lee JS, Pfund Z, Juhász C, Behen ME, Muzik O, Chugani DC, Nigro MA, Chugani HT. Altered regional brain glucose metabolism in Duchenne muscular dystrophy: a pet study. Muscle Nerve 2002; 26:506-12. [PMID: 12362416 DOI: 10.1002/mus.10238] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The basis for cognitive impairment in Duchenne muscular dystrophy (DMD) is not well understood but may be related to abnormal expression of dystrophin in brain. The aim of this study was to determine whether regional brain glucose metabolism is altered in children with DMD and whether such metabolic disturbances are localized to regions shown to be normally rich in dystrophin expression. Ten boys (mean age, 11.8 years) with DMD and 17 normal adults as a control group (mean age, 27.6 years) underwent 2-deoxy-2[(18)F]fluoro-D-glucose positron emission tomography (PET) and neuropsychological evaluation. The PET data were analyzed by statistical parametric mapping (SPM). The SPM analysis showed five clusters of decreased glucose metabolism in children with DMD, including the medial temporal structures and cerebellum bilaterally and the sensorimotor and lateral temporal cortex on the right side. At the voxel level, significant glucose hypometabolism was found in the right postcentral and middle temporal gyri, uncus, and VIIIB cerebellar lobule, as well as in the left hippocampal gyrus and cerebellar lobule. The neuropsychological profile of the DMD group revealed borderline nonverbal intellectual functioning, impaired manual dexterity bilaterally, borderline cognitive functioning, and internalizing behavioral difficulties. Our findings demonstrate region-specific hypometabolism, as well as cognitive and behavioral deficits in DMD children. As the regions showing hypometabolism on PET include those normally rich in dystrophin expression, it will be important to determine whether the hypometabolic regions also show cytoarchitectural abnormalities related to the lack of dystrophin.
Collapse
Affiliation(s)
- Joon Soo Lee
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine, 3901 Beaubien Blvd., Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Duchenne muscular dystrophy (DMD) is the second most commonly occurring genetically inherited disease in humans. It is an X-linked condition that affects approximately one in 3300 live male births. It is caused by the absence or disruption of the protein dystrophin, which is found in a variety of tissues, most notably skeletal muscle and neurones in particular regions of the CNS. Clinically DMD is characterized by a severe pathology of the skeletal musculature that results in the premature death of the individual. An important aspect of DMD that has received less attention is the role played by the absence or disruption of dystrophin on CNS function. In this review we concentrate on insights into this role gained from investigation of boys with DMD and the genetically most relevant animal model of DMD, the dystrophin-deficient mdx mouse. Behavioural studies have shown that DMD boys have a cognitive impairment and a lower IQ (average 85), whilst the mdx mice display an impairment in passive avoidance reflex and in short-term memory. In DMD boys, there is evidence of disordered CNS architecture, abnormalities in dendrites and loss of neurones, all associated with neurones that normally express dystrophin. In the mdx mouse, there have been reports of a 50% decrease in neurone number and neural shrinkage in regions of the cerebral cortex and brainstem. Histological evidence shows that the density of GABA(A) channel clusters is reduced in mdx Purkinje cells and hippocampal CA1 neurones. At the biochemical level, in DMD boys the bioenergetics of the CNS is abnormal and there is an increase in the levels of choline-containing compounds, indicative of CNS pathology. The mdx mice also display abnormal bioenergetics, with an increased level of inorganic phosphate and increased levels of choline-containing compounds. Functionally, DMD boys have EEG abnormalities and there is some preliminary evidence that synaptic function is affected adversely by the absence of dystrophin. Electrophysiological studies of mdx mice have shown that hippocampal neurones have an increased susceptibility to hypoxia. These recent findings on the role of dystrophin in the CNS have implications for the clinical management of boys with DMD.
Collapse
Affiliation(s)
- J L Anderson
- School of Physiology and Pharmacology, University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|