1
|
Weng S, Hayashi M, Inoue Y, Wallingford JB. Planar polarized force propagation integrates cell behavior with tissue shaping during convergent extension. Curr Biol 2025; 35:1-10.e3. [PMID: 39610250 PMCID: PMC11706704 DOI: 10.1016/j.cub.2024.10.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/11/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024]
Abstract
Convergent extension (CE) is an evolutionarily conserved developmental process that elongates tissues and organs via collective cell movements known as cell intercalation. Here, we sought to understand the mechanisms connecting cell behaviors and tissue shaping. We focus on an often-overlooked aspect of cell intercalation, the resolution of 4-cell vertices. Our data reveal that imbalanced cellular forces are involved in a timely vertex resolution, which, in turn, enables the propagation of such cellular forces, facilitating the propagation of tissue-scale CE. Conversely, delayed vertex resolution leads to a subtle but significant change in tissue-wide cell packing and exerts a profound impact by blocking force propagation, resulting in CE propagation defects. Our findings propose a collaborative nature of local cell intercalations in propagating tissue-wide CE. It unveils a multiscale biomechanical synergy underpinning the cellular mechanisms that orchestrate tissue morphogenesis during CE.
Collapse
Affiliation(s)
- Shinuo Weng
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| | - Masaya Hayashi
- Department of Micro Engineering, Kyoto University, Nishikyo, Kyoto 615-8540, Japan
| | - Yasuhiro Inoue
- Department of Micro Engineering, Kyoto University, Nishikyo, Kyoto 615-8540, Japan
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
2
|
Sepaniac LA, Davenport NR, Bement WM. Bring the pain: wounding reveals a transition from cortical excitability to epithelial excitability in Xenopus embryos. Front Cell Dev Biol 2024; 11:1295569. [PMID: 38456169 PMCID: PMC10918254 DOI: 10.3389/fcell.2023.1295569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/08/2023] [Indexed: 03/09/2024] Open
Abstract
The cell cortex plays many critical roles, including interpreting and responding to internal and external signals. One behavior which supports a cell's ability to respond to both internal and externally-derived signaling is cortical excitability, wherein coupled positive and negative feedback loops generate waves of actin polymerization and depolymerization at the cortex. Cortical excitability is a highly conserved behavior, having been demonstrated in many cell types and organisms. One system well-suited to studying cortical excitability is Xenopus laevis, in which cortical excitability is easily monitored for many hours after fertilization. Indeed, recent investigations using X. laevis have furthered our understanding of the circuitry underlying cortical excitability and how it contributes to cytokinesis. Here, we describe the impact of wounding, which represents both a chemical and a physical signal, on cortical excitability. In early embryos (zygotes to early blastulae), we find that wounding results in a transient cessation ("freezing") of wave propagation followed by transport of frozen waves toward the wound site. We also find that wounding near cell-cell junctions results in the formation of an F-actin (actin filament)-based structure that pulls the junction toward the wound; at least part of this structure is based on frozen waves. In later embryos (late blastulae to gastrulae), we find that cortical excitability diminishes and is progressively replaced by epithelial excitability, a process in which wounded cells communicate with other cells via wave-like increases of calcium and apical F-actin. While the F-actin waves closely follow the calcium waves in space and time, under some conditions the actin wave can be uncoupled from the calcium wave, suggesting that they may be independently regulated by a common upstream signal. We conclude that as cortical excitability disappears from the level of the individual cell within the embryo, it is replaced by excitability at the level of the embryonic epithelium itself.
Collapse
Affiliation(s)
- Leslie A. Sepaniac
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, United States
| | - Nicholas R. Davenport
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States
| | - William M. Bement
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, United States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
3
|
Paudel S, Yue M, Nalamalapu R, Saha MS. Deciphering the Calcium Code: A Review of Calcium Activity Analysis Methods Employed to Identify Meaningful Activity in Early Neural Development. Biomolecules 2024; 14:138. [PMID: 38275767 PMCID: PMC10813340 DOI: 10.3390/biom14010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The intracellular and intercellular flux of calcium ions represents an ancient and universal mode of signaling that regulates an extensive array of cellular processes. Evidence for the central role of calcium signaling includes various techniques that allow the visualization of calcium activity in living cells. While extensively investigated in mature cells, calcium activity is equally important in developing cells, particularly the embryonic nervous system where it has been implicated in a wide variety array of determinative events. However, unlike in mature cells, where the calcium dynamics display regular, predictable patterns, calcium activity in developing systems is far more sporadic, irregular, and diverse. This renders the ability to assess calcium activity in a consistent manner extremely challenging, challenges reflected in the diversity of methods employed to analyze calcium activity in neural development. Here we review the wide array of calcium detection and analysis methods used across studies, limiting the extent to which they can be comparatively analyzed. The goal is to provide investigators not only with an overview of calcium activity analysis techniques currently available, but also to offer suggestions for future work and standardization to enable informative comparative evaluations of this fundamental and important process in neural development.
Collapse
Affiliation(s)
- Sudip Paudel
- Wyss Institute, Harvard University, Boston, MA 02215, USA; (S.P.); (M.Y.)
| | - Michelle Yue
- Wyss Institute, Harvard University, Boston, MA 02215, USA; (S.P.); (M.Y.)
| | - Rithvik Nalamalapu
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | | |
Collapse
|
4
|
George LF, Follmer ML, Fontenoy E, Moran HR, Brown JR, Ozekin YH, Bates EA. Endoplasmic Reticulum Calcium Mediates Drosophila Wing Development. Bioelectricity 2023; 5:290-306. [PMID: 38143873 PMCID: PMC10733776 DOI: 10.1089/bioe.2022.0036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023] Open
Abstract
Background The temporal dynamics of morphogen presentation impacts transcriptional responses and tissue patterning. However, the mechanisms controlling morphogen release are far from clear. We found that inwardly rectifying potassium (Irk) channels regulate endogenous transient increases in intracellular calcium and bone morphogenetic protein (BMP/Dpp) release for Drosophila wing development. Inhibition of Irk channels reduces BMP/Dpp signaling, and ultimately disrupts wing morphology. Ion channels impact development of several tissues and organisms in which BMP signaling is essential. In neurons and pancreatic beta cells, Irk channels modulate membrane potential to affect intracellular Ca++ to control secretion of neurotransmitters and insulin. Based on Irk activity in neurons, we hypothesized that electrical activity controls endoplasmic reticulum (ER) Ca++ release into the cytoplasm to regulate the release of BMP. Materials and Methods To test this hypothesis, we reduced expression of four proteins that control ER calcium, Stromal interaction molecule 1 (Stim), Calcium release-activated calcium channel protein 1 (Orai), SarcoEndoplasmic Reticulum Calcium ATPase (SERCA), small conductance calcium-activated potassium channel (SK), and Bestrophin 2 (Best2) using RNAi and documented wing phenotypes. We use live imaging to study calcium and Dpp release within pupal wings and larval wing discs. Additionally, we employed immunohistochemistry to characterize Small Mothers Against Decapentaplegic (SMAD) phosphorylation downstream of the BMP/Dpp pathway following RNAi knockdown. Results We found that reduced Stim and SERCA function decreases amplitude and frequency of endogenous calcium transients in the wing disc and reduced BMP/Dpp release. Conclusion Our results suggest control of ER calcium homeostasis is required for BMP/Dpp release, and Drosophila wing development.
Collapse
Affiliation(s)
- Laura Faith George
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mikaela Lynn Follmer
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily Fontenoy
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hannah Rose Moran
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jeremy Ryan Brown
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yunus H. Ozekin
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily Anne Bates
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
5
|
Sempou E, Kostiuk V, Zhu J, Cecilia Guerra M, Tyan L, Hwang W, Camacho-Aguilar E, Caplan MJ, Zenisek D, Warmflash A, Owens NDL, Khokha MK. Membrane potential drives the exit from pluripotency and cell fate commitment via calcium and mTOR. Nat Commun 2022; 13:6681. [PMID: 36335122 PMCID: PMC9637099 DOI: 10.1038/s41467-022-34363-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/24/2022] [Indexed: 11/08/2022] Open
Abstract
Transitioning from pluripotency to differentiated cell fates is fundamental to both embryonic development and adult tissue homeostasis. Improving our understanding of this transition would facilitate our ability to manipulate pluripotent cells into tissues for therapeutic use. Here, we show that membrane voltage (Vm) regulates the exit from pluripotency and the onset of germ layer differentiation in the embryo, a process that affects both gastrulation and left-right patterning. By examining candidate genes of congenital heart disease and heterotaxy, we identify KCNH6, a member of the ether-a-go-go class of potassium channels that hyperpolarizes the Vm and thus limits the activation of voltage gated calcium channels, lowering intracellular calcium. In pluripotent embryonic cells, depletion of kcnh6 leads to membrane depolarization, elevation of intracellular calcium levels, and the maintenance of a pluripotent state at the expense of differentiation into ectodermal and myogenic lineages. Using high-resolution temporal transcriptome analysis, we identify the gene regulatory networks downstream of membrane depolarization and calcium signaling and discover that inhibition of the mTOR pathway transitions the pluripotent cell to a differentiated fate. By manipulating Vm using a suite of tools, we establish a bioelectric pathway that regulates pluripotency in vertebrates, including human embryonic stem cells.
Collapse
Affiliation(s)
- Emily Sempou
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Valentyna Kostiuk
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Jie Zhu
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - M Cecilia Guerra
- Departments of Biosciences and Bioengineering Rice University, 345 Anderson Biological Labs, Houston, TX, 77005, USA
| | - Leonid Tyan
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Woong Hwang
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Elena Camacho-Aguilar
- Departments of Biosciences and Bioengineering Rice University, 345 Anderson Biological Labs, Houston, TX, 77005, USA
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - David Zenisek
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Aryeh Warmflash
- Departments of Biosciences and Bioengineering Rice University, 345 Anderson Biological Labs, Houston, TX, 77005, USA
| | - Nick D L Owens
- Department of Clinical and Biomedical Sciences, University of Exeter, Barrack Road, Exeter, EX2 5DW, UK
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| |
Collapse
|
6
|
Post-gastrulation transition from whole-body to tissue-specific intercellular calcium signaling in the appendicularian tunicate Oikopleuradioica. Dev Biol 2022; 492:37-46. [PMID: 36162551 DOI: 10.1016/j.ydbio.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/09/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022]
Abstract
We recently described calcium signaling in the appendicularian tunicate Oikopleura dioica during pre-gastrulation stages, and showed that regularly occurring calcium waves progress throughout the embryo in a characteristic spatiotemporal pattern from an initiation site in muscle lineage blastomeres (Mikhaleva et al., 2019). Here, we have extended our observations to the period spanning from gastrulation to post-hatching stages. We find that repetitive Ca2+ waves persist throughout this developmental window, albeit with a gradual increase in frequency. The initiation site of the waves shifts from muscle cells at gastrulation and early tailbud stages, to the central nervous system at late tailbud and post-hatching stages, indicating a transition from muscle-driven to neurally driven events as tail movements emerge. At these later stages, both the voltage gated Na + channel blocker tetrodotoxin (TTX) and the T-type Ca2+ channel blocker and nAChR antagonist mecamylamine eliminate tail movements. At late post-hatching stages, mecamylamine blocks Ca2+ signals in the muscles but not the central nervous system. Post-gastrulation Ca2+ signals also arise in epithelial cells, first in a haphazard pattern in scattered cells during tailbud stages, evolving after hatching into repetitive rostrocaudal waves with a different frequency than the nervous system-to-muscle waves, and insensitive to mecamylamine. The desynchronization of Ca2+ waves arising in different parts of the body indicates a shift from whole-body to tissue/organ-specific Ca2+ signaling dynamics as organogenesis occurs, with neurally driven Ca2+ signaling dominating at the later stages when behavior emerges.
Collapse
|
7
|
Ebnet K, Gerke V. Rho and Rab Family Small GTPases in the Regulation of Membrane Polarity in Epithelial Cells. Front Cell Dev Biol 2022; 10:948013. [PMID: 35859901 PMCID: PMC9289151 DOI: 10.3389/fcell.2022.948013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022] Open
Abstract
Membrane polarity, defined as the asymmetric distribution of lipids and proteins in the plasma membrane, is a critical prerequisite for the development of multicellular tissues, such as epithelia and endothelia. Membrane polarity is regulated by polarized trafficking of membrane components to specific membrane domains and requires the presence of intramembrane diffusion barriers that prevent the intermixing of asymmetrically distributed membrane components. This intramembrane diffusion barrier is localized at the tight junctions (TJs) in these cells. Both the formation of cell-cell junctions and the polarized traffic of membrane proteins and lipids are regulated by Rho and Rab family small GTPases. In this review article, we will summarize the recent developments in the regulation of apico-basal membrane polarity by polarized membrane traffic and the formation of the intramembrane diffusion barrier in epithelial cells with a particular focus on the role of Rho and Rab family small GTPases.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
- *Correspondence: Klaus Ebnet, ; Volker Gerke,
| | - Volker Gerke
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
- *Correspondence: Klaus Ebnet, ; Volker Gerke,
| |
Collapse
|
8
|
Mitchell NP, Cislo DJ, Shankar S, Lin Y, Shraiman BI, Streichan SJ. Visceral organ morphogenesis via calcium-patterned muscle constrictions. eLife 2022; 11:e77355. [PMID: 35593701 PMCID: PMC9275821 DOI: 10.7554/elife.77355] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/08/2022] [Indexed: 11/24/2022] Open
Abstract
Organ architecture is often composed of multiple laminar tissues arranged in concentric layers. During morphogenesis, the initial geometry of visceral organs undergoes a sequence of folding, adopting a complex shape that is vital for function. Genetic signals are known to impact form, yet the dynamic and mechanical interplay of tissue layers giving rise to organs' complex shapes remains elusive. Here, we trace the dynamics and mechanical interactions of a developing visceral organ across tissue layers, from subcellular to organ scale in vivo. Combining deep tissue light-sheet microscopy for in toto live visualization with a novel computational framework for multilayer analysis of evolving complex shapes, we find a dynamic mechanism for organ folding using the embryonic midgut of Drosophila as a model visceral organ. Hox genes, known regulators of organ shape, control the emergence of high-frequency calcium pulses. Spatiotemporally patterned calcium pulses trigger muscle contractions via myosin light chain kinase. Muscle contractions, in turn, induce cell shape change in the adjacent tissue layer. This cell shape change collectively drives a convergent extension pattern. Through tissue incompressibility and initial organ geometry, this in-plane shape change is linked to out-of-plane organ folding. Our analysis follows tissue dynamics during organ shape change in vivo, tracing organ-scale folding to a high-frequency molecular mechanism. These findings offer a mechanical route for gene expression to induce organ shape change: genetic patterning in one layer triggers a physical process in the adjacent layer - revealing post-translational mechanisms that govern shape change.
Collapse
Affiliation(s)
- Noah P Mitchell
- Kavli Institute for Theoretical Physics, University of California, Santa BarbaraSanta BarbaraUnited States
- Department of Physics, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Dillon J Cislo
- Department of Physics, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Suraj Shankar
- Kavli Institute for Theoretical Physics, University of California, Santa BarbaraSanta BarbaraUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
| | - Yuzheng Lin
- Department of Physics, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Boris I Shraiman
- Kavli Institute for Theoretical Physics, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Sebastian J Streichan
- Department of Physics, University of California, Santa BarbaraSanta BarbaraUnited States
- Biomolecular Science and Engineering, University of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
9
|
Varadarajan S, Chumki SA, Stephenson RE, Misterovich ER, Wu JL, Dudley CE, Erofeev IS, Goryachev AB, Miller AL. Mechanosensitive calcium flashes promote sustained RhoA activation during tight junction remodeling. J Cell Biol 2022; 221:213049. [PMID: 35254388 PMCID: PMC8906493 DOI: 10.1083/jcb.202105107] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/03/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022] Open
Abstract
Epithelial cell–cell junctions remodel in response to mechanical stimuli to maintain barrier function. Previously, we found that local leaks in tight junctions (TJs) are rapidly repaired by local, transient RhoA activation, termed “Rho flares,” but how Rho flares are regulated is unknown. Here, we discovered that intracellular calcium flashes and junction elongation are early events in the Rho flare pathway. Both laser-induced and naturally occurring TJ breaks lead to local calcium flashes at the site of leaks. Additionally, junction elongation induced by optogenetics increases Rho flare frequency, suggesting that Rho flares are mechanically triggered. Depletion of intracellular calcium or inhibition of mechanosensitive calcium channels (MSCs) reduces the amplitude of calcium flashes and diminishes the sustained activation of Rho flares. MSC-dependent calcium influx is necessary to maintain global barrier function by regulating reinforcement of local TJ proteins via junction contraction. In all, we uncovered a novel role for MSC-dependent calcium flashes in TJ remodeling, allowing epithelial cells to repair local leaks induced by mechanical stimuli.
Collapse
Affiliation(s)
| | - Shahana A Chumki
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
| | - Rachel E Stephenson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Eileen R Misterovich
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Jessica L Wu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Claire E Dudley
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Ivan S Erofeev
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, Scotland
| | - Andrew B Goryachev
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, Scotland
| | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
| |
Collapse
|
10
|
George LF, Bates EA. Mechanisms Underlying Influence of Bioelectricity in Development. Front Cell Dev Biol 2022; 10:772230. [PMID: 35237593 PMCID: PMC8883286 DOI: 10.3389/fcell.2022.772230] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/07/2022] [Indexed: 12/25/2022] Open
Abstract
To execute the intricate process of development, cells coordinate across tissues and organs to determine where each cell divides and differentiates. This coordination requires complex communication between cells. Growing evidence suggests that bioelectrical signals controlled via ion channels contribute to cell communication during development. Ion channels collectively regulate the transmembrane potential of cells, and their function plays a conserved role in the development of organisms from flies to humans. Spontaneous calcium oscillations can be found in nearly every cell type and tissue, and disruption of these oscillations leads to defects in development. However, the mechanism by which bioelectricity regulates development is still unclear. Ion channels play essential roles in the processes of cell death, proliferation, migration, and in each of the major canonical developmental signaling pathways. Previous reviews focus on evidence for one potential mechanism by which bioelectricity affects morphogenesis, but there is evidence that supports multiple different mechanisms which are not mutually exclusive. Evidence supports bioelectricity contributing to development through multiple different mechanisms. Here, we review evidence for the importance of bioelectricity in morphogenesis and provide a comprehensive review of the evidence for several potential mechanisms by which ion channels may act in developmental processes.
Collapse
Affiliation(s)
- Laura Faith George
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Emily Anne Bates
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
11
|
Abou Azar F, Lim GE. Metabolic Contributions of Wnt Signaling: More Than Controlling Flight. Front Cell Dev Biol 2021; 9:709823. [PMID: 34568323 PMCID: PMC8458764 DOI: 10.3389/fcell.2021.709823] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
The canonical Wnt signaling pathway is ubiquitous throughout the body and influences a diverse array of physiological processes. Following the initial discovery of the Wnt signaling pathway during wing development in Drosophila melanogaster, it is now widely appreciated that active Wnt signaling in mammals is necessary for the development and growth of various tissues involved in whole-body metabolism, such as brain, liver, pancreas, muscle, and adipose. Moreover, elegant gain- and loss-of-function studies have dissected the tissue-specific roles of various downstream effector molecules in the regulation of energy homeostasis. This review attempts to highlight and summarize the contributions of the Wnt signaling pathway and its downstream effectors on whole-body metabolism and their influence on the development of metabolic diseases, such as diabetes and obesity. A better understanding of the Wnt signaling pathway in these tissues may aid in guiding the development of future therapeutics to treat metabolic diseases.
Collapse
Affiliation(s)
- Frederic Abou Azar
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Gareth E Lim
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
12
|
Roy Choudhury A, Großhans J, Kong D. Ion Channels in Epithelial Dynamics and Morphogenesis. Cells 2021; 10:cells10092280. [PMID: 34571929 PMCID: PMC8465836 DOI: 10.3390/cells10092280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/22/2021] [Accepted: 08/30/2021] [Indexed: 01/21/2023] Open
Abstract
Mechanosensitive ion channels mediate the neuronal sensation of mechanical signals such as sound, touch, and pain. Recent studies point to a function of these channel proteins in cell types and tissues in addition to the nervous system, such as epithelia, where they have been little studied, and their role has remained elusive. Dynamic epithelia are intrinsically exposed to mechanical forces. A response to pull and push is assumed to constitute an essential part of morphogenetic movements of epithelial tissues, for example. Mechano-gated channels may participate in sensing and responding to such forces. In this review, focusing on Drosophila, we highlight recent results that will guide further investigations concerned with the mechanistic role of these ion channels in epithelial cells.
Collapse
|
13
|
Abstract
The process of embryonic development is crucial and radically influences preimplantation embryo competence. It involves oocyte maturation, fertilization, cell division and blastulation and is characterized by different key phases that have major influences on embryo quality. Each stage of the process of preimplantation embryonic development is led by important signalling pathways that include very many regulatory molecules, such as primary and secondary messengers. Many studies, both in vivo and in vitro, have shown the importance of the contribution of reactive oxygen species (ROS) as important second messengers in embryo development. ROS may originate from embryo metabolism and/or oocyte/embryo surroundings, and their effect on embryonic development is highly variable, depending on the needs of the embryo at each stage of development and on their environment (in vivo or under in vitro culture conditions). Other studies have also shown the deleterious effects of ROS in embryo development, when cellular tissue production overwhelms antioxidant production, leading to oxidative stress. This stress is known to be the cause of many cellular alterations, such as protein, lipid, and DNA damage. Considering that the same ROS level can have a deleterious effect on the fertilizing oocyte or embryo at certain stages, and a positive effect at another stage of the development process, further studies need to be carried out to determine the rate of ROS that benefits the embryo and from what rate it starts to be harmful, this measured at each key phase of embryonic development.
Collapse
|
14
|
Carreira-Barbosa F, Nunes SC. Wnt Signaling: Paths for Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:189-202. [PMID: 32130700 DOI: 10.1007/978-3-030-34025-4_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Wnt signaling pathways are well known for having several pivotal roles during embryonic development. However, the same developmental signaling pathways also present key roles in cancer initiation and progression. In this chapter, several issues regarding the roles of both canonical and non-canonical Wnt signaling pathways in cancer will be explored, mainly concerning their role in the maintenance of cancer stemness, in the metabolism reprograming of cancer cells and in the modulation of the tumor microenvironment. The role of Wnt signaling cascades in the response of cancer cells to anti-cancer treatments will be also discussed, as well as its potential therapeutic targeting during cancer treatment. Collectively, increasing evidence has been supporting pivotal roles of Wnt signaling in several features of cancer biology, however; a lot is still to be elucidated.
Collapse
Affiliation(s)
| | - Sofia C Nunes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| |
Collapse
|
15
|
Toward Decoding Bioelectric Events in Xenopus Embryogenesis: New Methodology for Tracking Interplay Between Calcium and Resting Potentials In Vivo. J Mol Biol 2019; 432:605-620. [PMID: 31711960 DOI: 10.1016/j.jmb.2019.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
Although chemical signaling during embryogenesis is readily addressed by a plethora of available techniques, the developmental functions of ionic signaling are still poorly understood. It is increasingly realized that bioelectric events in nonneural cells are critical for pattern regulation, but their study has been hampered by difficulties in monitoring and manipulating them in vivo. Recent developments in visualizing electrical signaling dynamics in the field of neuroscience have facilitated functional experiments that reveal instructive developmental bioelectric signals. However, there is a pressing need for additional tools to explore time-dependent ionic signaling to understand complex endogenous dynamics. Here, we present methodological advances, including 4D imaging and data analysis, for improved tracking of calcium flux in the Xenopus laevis embryo, lowering the barrier for in vivo physiology work in this important model system. Using these techniques, we investigated the relationship between bioelectric ion channel activity and calcium, finding that cell hyperpolarization and depolarization both induce persistent static elevation of cytoplasmic calcium levels that fade over developmental time. These calcium changes correlate with increased cell mobility in early embryos and abnormal craniofacial morphology in later embryos. We thus highlight membrane potential modulation as a tractable tool for modulation of signaling cascades that rely on calcium as a transduction mechanism. The methods we describe facilitate the study of important novel aspects of developmental physiology, are extendable to numerous classes of existing and forthcoming fluorescent physiological reporters, and establish highly accessible, inexpensive protocols for their investigation.
Collapse
|
16
|
Webb SE, Miller AL. The Use of Complementary Luminescent and Fluorescent Techniques for Imaging Ca 2+ Signaling Events During the Early Development of Zebrafish (Danio rerio). Methods Mol Biol 2019; 1929:73-93. [PMID: 30710268 DOI: 10.1007/978-1-4939-9030-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
We have visualized many of the Ca2+ signaling events that occur during the early stages of zebrafish development using complementary luminescent and fluorescent imaging techniques. We initially microinject embryos with the luminescent Ca2+ reporter, f-holo-aequorin, and using a custom-designed luminescent imaging system, we can obtain pan-embryonic visual information continually for up to the first ~24 h postfertilization (hpf). Once we know approximately when and where to look for these Ca2+ signaling events within a complex developing embryo, we then repeat the experiment using a fluorescent Ca2+ reporter such as calcium green-1 dextran and use confocal laser scanning microscopy to provide time-lapse series of higher-resolution images. These protocols allow us to identify the specific cell types and even the particular subcellular domain (e.g., nucleus or cytoplasm) generating the Ca2+ signal. Here, we outline the techniques we use to precisely microinject f-holo-aequorin or calcium green-1 dextran into embryos without affecting their viability or development. We also describe how to inject specific regions of early embryos in order to load localized embryonic domains with a particular Ca2+ reporter. These same techniques can also be used to introduce other membrane-impermeable reagents into embryos, including Ca2+ channel antagonists, Ca2+ chelators, fluorescent dyes, RNA, and DNA.
Collapse
Affiliation(s)
- Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, People's Republic of China.
| | - Andrew L Miller
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, People's Republic of China
| |
Collapse
|
17
|
Schneider I, Kreis J, Schweickert A, Blum M, Vick P. A dual function of FGF signaling in Xenopus left-right axis formation. Development 2019; 146:dev.173575. [PMID: 31036544 DOI: 10.1242/dev.173575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/18/2019] [Indexed: 11/20/2022]
Abstract
Organ left-right (LR) asymmetry is a conserved vertebrate feature, which is regulated by left-sided activation of Nodal signaling. Nodal asymmetry is established by a leftward fluid-flow generated at the ciliated LR organizer (LRO). Although the role of fibroblast growth factor (FGF) signaling pathways during mesoderm development is conserved, diverging results from different model organisms suggest a non-conserved function in LR asymmetry. Here, we demonstrate that FGF is required during gastrulation in a dual function at consecutive stages of Xenopus embryonic development. In the early gastrula, FGF is necessary for LRO precursor induction, acting in parallel with FGF-mediated mesoderm induction. During late gastrulation, the FGF/Ca2+-branch is required for specification of the flow-sensing lateral LRO cells, a function related to FGF-mediated mesoderm morphogenesis. This second function in addition requires input from the calcium channel Polycystin-2. Thus, analogous to mesoderm development, FGF activity is required in a dual role for laterality specification; namely, for generating and sensing leftward flow. Moreover, our findings in Xenopus demonstrate that FGF functions in LR development share more conserved features across vertebrate species than previously anticipated.
Collapse
Affiliation(s)
| | - Jennifer Kreis
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Axel Schweickert
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Philipp Vick
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany
| |
Collapse
|
18
|
A simple mechanochemical model for calcium signalling in embryonic epithelial cells. J Math Biol 2019; 78:2059-2092. [PMID: 30826846 PMCID: PMC6560504 DOI: 10.1007/s00285-019-01333-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 11/14/2018] [Indexed: 12/17/2022]
Abstract
Calcium signalling is one of the most important mechanisms of information propagation in the body. In embryogenesis the interplay between calcium signalling and mechanical forces is critical to the healthy development of an embryo but poorly understood. Several types of embryonic cells exhibit calcium-induced contractions and many experiments indicate that calcium signals and contractions are coupled via a two-way mechanochemical feedback mechanism. We present a new analysis of experimental data that supports the existence of this coupling during apical constriction. We then propose a simple mechanochemical model, building on early models that couple calcium dynamics to the cell mechanics and we replace the hypothetical bistable calcium release with modern, experimentally validated calcium dynamics. We assume that the cell is a linear, viscoelastic material and we model the calcium-induced contraction stress with a Hill function, i.e. saturating at high calcium levels. We also express, for the first time, the "stretch-activation" calcium flux in the early mechanochemical models as a bottom-up contribution from stretch-sensitive calcium channels on the cell membrane. We reduce the model to three ordinary differential equations and analyse its bifurcation structure semi-analytically as two bifurcation parameters vary-the [Formula: see text] concentration, and the "strength" of stretch activation, [Formula: see text]. The calcium system ([Formula: see text], no mechanics) exhibits relaxation oscillations for a certain range of [Formula: see text] values. As [Formula: see text] is increased the range of [Formula: see text] values decreases and oscillations eventually vanish at a sufficiently high value of [Formula: see text]. This result agrees with experimental evidence in embryonic cells which also links the loss of calcium oscillations to embryo abnormalities. Furthermore, as [Formula: see text] is increased the oscillation amplitude decreases but the frequency increases. Finally, we also identify the parameter range for oscillations as the mechanical responsiveness factor of the cytosol increases. This work addresses a very important and not well studied question regarding the coupling between chemical and mechanical signalling in embryogenesis.
Collapse
|
19
|
Brodskiy PA, Wu Q, Soundarrajan DK, Huizar FJ, Chen J, Liang P, Narciso C, Levis MK, Arredondo-Walsh N, Chen DZ, Zartman JJ. Decoding Calcium Signaling Dynamics during Drosophila Wing Disc Development. Biophys J 2019; 116:725-740. [PMID: 30704858 PMCID: PMC6382932 DOI: 10.1016/j.bpj.2019.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/04/2018] [Accepted: 01/04/2019] [Indexed: 01/07/2023] Open
Abstract
The robust specification of organ development depends on coordinated cell-cell communication. This process requires signal integration among multiple pathways, relying on second messengers such as calcium ions. Calcium signaling encodes a significant portion of the cellular state by regulating transcription factors, enzymes, and cytoskeletal proteins. However, the relationships between the inputs specifying cell and organ development, calcium signaling dynamics, and final organ morphology are poorly understood. Here, we have designed a quantitative image-analysis pipeline for decoding organ-level calcium signaling. With this pipeline, we extracted spatiotemporal features of calcium signaling dynamics during the development of the Drosophila larval wing disc, a genetic model for organogenesis. We identified specific classes of wing phenotypes that resulted from calcium signaling pathway perturbations, including defects in gross morphology, vein differentiation, and overall size. We found four qualitative classes of calcium signaling activity. These classes can be ordered based on agonist stimulation strength Gαq-mediated signaling. In vivo calcium signaling dynamics depend on both receptor tyrosine kinase/phospholipase C γ and G protein-coupled receptor/phospholipase C β activities. We found that spatially patterned calcium dynamics correlate with known differential growth rates between anterior and posterior compartments. Integrated calcium signaling activity decreases with increasing tissue size, and it responds to morphogenetic perturbations that impact organ growth. Together, these findings define how calcium signaling dynamics integrate upstream inputs to mediate multiple response outputs in developing epithelial organs.
Collapse
Affiliation(s)
- Pavel A Brodskiy
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Qinfeng Wu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Dharsan K Soundarrajan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Francisco J Huizar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Jianxu Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Peixian Liang
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Cody Narciso
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Megan K Levis
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | | | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Jeremiah J Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana.
| |
Collapse
|
20
|
Rho Flares Repair Local Tight Junction Leaks. Dev Cell 2019; 48:445-459.e5. [PMID: 30773490 DOI: 10.1016/j.devcel.2019.01.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/12/2018] [Accepted: 01/17/2019] [Indexed: 12/29/2022]
Abstract
Tight junctions contribute to epithelial barrier function by selectively regulating the quantity and type of molecules that cross the paracellular barrier. Experimental approaches to evaluate the effectiveness of tight junctions are typically global, tissue-scale measures. Here, we introduce Zinc-based Ultrasensitive Microscopic Barrier Assay (ZnUMBA), which we used in Xenopus laevis embryos to visualize short-lived, local breaches in epithelial barrier function. These breaches, or leaks, occur as cell boundaries elongate, correspond to visible breaks in the tight junction, and are followed by transient localized Rho activation, or Rho flares. We discovered that Rho flares restore barrier function by driving concentration of tight junction proteins through actin polymerization and ROCK-mediated localized contraction of the cell boundary. We conclude that Rho flares constitute a damage control mechanism that reinstates barrier function when tight junctions become locally compromised because of normally occurring changes in cell shape and tissue tension.
Collapse
|
21
|
Abstract
Early diagnosis, noninvasive detection, and staging of various diseases, remain one of the major clinical barriers to effective medical treatment and prevention of disease progression toward major clinical consequences. Molecular imaging technologies play an indispensable role in the clinical field in overcoming these major barriers. The increasing application of imaging techniques and agents in early detection of different diseases such as cancer has resulted in improved treatment response and clinical patient management. In this chapter we will first introduce criteria for the design and engineering of calcium-binding protein (CaBP) parvalbumin as a protein Gd-MRI contrast agent (ProCA) with unprecedented metal selectivity for Gd3+ over physiological metal ions. We will then discuss the further development of targeted MRI contrast agent for molecular imaging of PSMA biomarker for early detection of prostate cancer.
Collapse
Affiliation(s)
- Mani Salarian
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Shenghui Xue
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
- Inlighta Biosciences, Atlanta, GA, USA
| | - Oluwatosin Y Ibhagui
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Jenny J Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
22
|
Dong C, Paudel S, Amoh NY, Saha MS. Expression of trpv channels during Xenopus laevis embryogenesis. Gene Expr Patterns 2018; 30:64-70. [PMID: 30326274 PMCID: PMC6319392 DOI: 10.1016/j.gep.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/02/2018] [Accepted: 10/09/2018] [Indexed: 01/26/2023]
Abstract
Transient receptor potential (TRP) cation channel genes code for an extensive family of conserved proteins responsible for a variety of physiological processes, including sensory perception, ion homeostasis, and chemical signal transduction. The TRP superfamily consists of seven subgroups, one of which is the transient receptor potential vanilloid (trpv) channel family. While trpv channels are relatively well studied in adult vertebrate organisms given their role in functions such as nociception, thermoregulation, and osmotic regulation in mature tissues and organ systems, relatively little is known regarding their function during embryonic development. Although there are some reports of the expression of specific trpv channels at particular stages in various organisms, there is currently no comprehensive analysis of trpv channels during embryogenesis. Here, performing in situ hybridization, we examined the spatiotemporal expression of trpv channel mRNA during early Xenopus laevis embryogenesis. Trpv channels exhibited unique patterns of embryonic expression at distinct locations including the trigeminal ganglia, spinal cord, cement gland, otic vesicle, optic vesicle, nasal placode, notochord, tailbud, proctodeum, branchial arches, epithelium, somite and the animal pole during early development. We have also observed the colocalization of trpv channels at the animal pole (trpv 2/4), trigeminal ganglia (trpv 1/2), and epithelium (trpv 5/6). These localization patterns suggest that trpv channels may play diverse roles during early embryonic development.
Collapse
Affiliation(s)
- Chen Dong
- Department of Biology, Integrated Science Center, 540 Landrum Dr., College of William and Mary, Williamsburg, VA, 23185, USA
| | - Sudip Paudel
- Department of Biology, Integrated Science Center, 540 Landrum Dr., College of William and Mary, Williamsburg, VA, 23185, USA
| | - Nana Yaa Amoh
- Department of Biology, Integrated Science Center, 540 Landrum Dr., College of William and Mary, Williamsburg, VA, 23185, USA
| | - Margaret S Saha
- Department of Biology, Integrated Science Center, 540 Landrum Dr., College of William and Mary, Williamsburg, VA, 23185, USA.
| |
Collapse
|
23
|
Paudel S, Sindelar R, Saha M. Calcium Signaling in Vertebrate Development and Its Role in Disease. Int J Mol Sci 2018; 19:E3390. [PMID: 30380695 PMCID: PMC6274931 DOI: 10.3390/ijms19113390] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence over the past three decades suggests that altered calcium signaling during development may be a major driving force for adult pathophysiological events. Well over a hundred human genes encode proteins that are specifically dedicated to calcium homeostasis and calcium signaling, and the majority of these are expressed during embryonic development. Recent advances in molecular techniques have identified impaired calcium signaling during development due to either mutations or dysregulation of these proteins. This impaired signaling has been implicated in various human diseases ranging from cardiac malformations to epilepsy. Although the molecular basis of these and other diseases have been well studied in adult systems, the potential developmental origins of such diseases are less well characterized. In this review, we will discuss the recent evidence that examines different patterns of calcium activity during early development, as well as potential medical conditions associated with its dysregulation. Studies performed using various model organisms, including zebrafish, Xenopus, and mouse, have underscored the critical role of calcium activity in infertility, abortive pregnancy, developmental defects, and a range of diseases which manifest later in life. Understanding the underlying mechanisms by which calcium regulates these diverse developmental processes remains a challenge; however, this knowledge will potentially enable calcium signaling to be used as a therapeutic target in regenerative and personalized medicine.
Collapse
Affiliation(s)
- Sudip Paudel
- College of William and Mary, Williamsburg, VA 23187, USA.
| | - Regan Sindelar
- College of William and Mary, Williamsburg, VA 23187, USA.
| | - Margaret Saha
- College of William and Mary, Williamsburg, VA 23187, USA.
| |
Collapse
|
24
|
Beloussov LV, Troshina TG, Glagoleva NS, Kremnyov SV. Local and global dynamics in collective movements of embryonic cells. Biosystems 2018; 173:36-51. [PMID: 30300678 DOI: 10.1016/j.biosystems.2018.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 10/28/2022]
Abstract
Several important morphogenetic processes belong to the category of collective cell movements (CCM), by which we mean coordinated rearrangements of many neighboring cells. The causes of the dynamic order established during CCM are still unclear. We performed statistical studies of rates and angular orientations of cell rearrangements in two kinds of embryonic tissues, which we categorized as "committed" (in the sense of being capable of autonomous CCM) as opposed to "naïve" tissues, which are those that require external forces in order to exhibit full scale CCM. In addition, we distinguished two types of cell rearrangements: first, those in which mutual cell-cell shifts characterizing the local dynamics (LD); and, second, those which moved in reference to common external coordinates (global dynamics, GD). We observed that in most cases LD rates deviated from normal distributions and do so by creating excesses of extensively converging and moderately diverging cells. In contrast, GD was characterized by nearly random behavior of slowly moving cells, combined with increased angular focusing of the fast cells trajectories as well as bimodal distribution of cell rates. When committed tissues were opposed by external mechanical forces, then they tended to preserve the inherent CCM patterns. On the other hand, the naïve ones reacted by creating two orthogonal cells flows, one of these coinciding with the force direction. We consider CCM as a self-organizing process based on feedbacks between converging and diverging cell shifts, which is able to focus the trajectories imposed by external forces.
Collapse
Affiliation(s)
- Lev V Beloussov
- Laboratory of Developmental Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Tatiana G Troshina
- Laboratory of Developmental Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Nadezhda S Glagoleva
- Laboratory of Developmental Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Stanislav V Kremnyov
- Laboratory of Developmental Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
25
|
Evstifeeva AY, Luchinskaia NN, Beloussov LV. Stress-generating tissue deformations in Xenopus embryos: Long-range gradients and local cell displacements. Biosystems 2018; 173:52-64. [PMID: 30273637 DOI: 10.1016/j.biosystems.2018.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Although the role of endogenous mechanical stresses in regulating morphogenetic movements and cell differentiation is now well established, many aspects of mechanical stress generation and transmission in developing embryos remain unclear and require quantitative studies. RESULTS By measuring stress-bearing linear deformations (caused by differences in cell movement rates) in the outer cell layer of blastula - early tail-bud Xenopus embryos, we revealed a set of long-term tension-generating gradients of cell movement rates, modulated by short-term cell-cell displacements much increasing the rates of local deformations. Experimental relaxation of tensions distorted the gradients but preserved and even enhanced local cell-cell displacements. During development, an incoherent mode of cell behavior, characterized by extensive cell-cell displacements and poorly correlated cell trajectories, was exchanged for a more coherent regime with the opposite characteristics. In particular, cell shifts became more synchronous and acquired a periodicity of several dozen minutes. CONCLUSIONS Morphogenetic movements in Xenopus embryos are mediated by mechanically stressed dynamic structures of two different levels: extended gradients and short-term cell-cell displacements. As development proceeds, the latter component decreases and cell trajectories become more correlated. In particular, they acquire common periodicities, making morphogenesis more coherent.
Collapse
Affiliation(s)
- A Yu Evstifeeva
- Department of Embryology, Faculty of Biology Moscow State University, Moscow, 119899, Russia.
| | - N N Luchinskaia
- Department of Embryology, Faculty of Biology Moscow State University, Moscow, 119899, Russia
| | - L V Beloussov
- Department of Embryology, Faculty of Biology Moscow State University, Moscow, 119899, Russia
| |
Collapse
|
26
|
Goto T, Ito Y, Michiue T. Roles of Xenopus chemokine ligand CXCLh (XCXCLh) in early embryogenesis. Dev Growth Differ 2018; 60:226-238. [PMID: 29700804 DOI: 10.1111/dgd.12432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/08/2018] [Accepted: 03/15/2018] [Indexed: 01/13/2023]
Abstract
Several chemokine molecules control cell movements during early morphogenesis. However, it is unclear whether chemokine molecules affect cell fate. Here, we identified and characterized the CXC-type chemokine ligand in Xenopus laevis, Xenopus CXCLh (XCXCLh), during early embryogenesis. XCXCLh is expressed in the dorsal vegetal region at the gastrula stage. Both overexpression and knockdown of XCXCLh in the dorsal region inhibited gastrulation. XCXCLh contributed to the attraction of mesendodermal cells and accelerated the reassembly of scratched culture cells. Also, XCXCLh contributed to early endodermal induction. Overexpression of VegTmRNA or high concentrations of calcium ions induced XCXCLh expression. XCXCLh may play roles in both cell movements and differentiation during early Xenopus embryogenesis.
Collapse
Affiliation(s)
- Toshiyasu Goto
- Department of Molecular Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuzuru Ito
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Tatsuo Michiue
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| |
Collapse
|
27
|
Vick P, Kreis J, Schneider I, Tingler M, Getwan M, Thumberger T, Beyer T, Schweickert A, Blum M. An Early Function of Polycystin-2 for Left-Right Organizer Induction in Xenopus. iScience 2018; 2:76-85. [PMID: 30428378 PMCID: PMC6136938 DOI: 10.1016/j.isci.2018.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/15/2018] [Accepted: 02/28/2018] [Indexed: 12/03/2022] Open
Abstract
Nodal signaling controls asymmetric organ placement during vertebrate embryogenesis. Nodal is induced by a leftward fluid flow at the ciliated left-right organizer (LRO). The mechanism of flow sensing, however, has remained elusive. pkd2 encodes the calcium channel Polycystin-2, which is required for kidney development and laterality, and may act in flow perception. Here, we have studied the role of Polycystin-2 in Xenopus and show that pkd2 is indispensable for left-right (LR) asymmetry. Knockdown of pkd2 prevented left-asymmetric nodal cascade induction in the lateral plate mesoderm. Defects were due to failure of LRO specification, morphogenesis, and, consequently, absence of leftward flow. Polycystin-2 synergizes with the unconventional nodal-type signaling molecule Xnr3 to induce the LRO precursor tissue before gastrulation, upstream of symmetry breakage. Our data uncover an unknown function of pkd2 in LR axis formation, which we propose represents an ancient role of Polycystin-2 during LRO induction in lower vertebrates. Loss of Polycystin-2 in Xenopus results in LR asymmetry defects upstream of leftward flow LR defects are caused by lack of LR organizer induction Polycystin-2 is required upstream of foxj1 for specification of superficial mesoderm Polycystin-2 and Xnr3 synergistically induce foxj1 in the superficial mesoderm
Collapse
Affiliation(s)
- Philipp Vick
- Institute of Zoology, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Jennifer Kreis
- Institute of Zoology, University of Hohenheim, 70599 Stuttgart, Germany
| | | | - Melanie Tingler
- Institute of Zoology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Maike Getwan
- Institute of Zoology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Thomas Thumberger
- Institute of Zoology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Tina Beyer
- Institute of Zoology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Axel Schweickert
- Institute of Zoology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
28
|
Hayashi K, Yamamoto TS, Ueno N. Intracellular calcium signal at the leading edge regulates mesodermal sheet migration during Xenopus gastrulation. Sci Rep 2018; 8:2433. [PMID: 29402947 PMCID: PMC5799360 DOI: 10.1038/s41598-018-20747-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
During the gastrulation stage in animal embryogenesis, the cells leading the axial mesoderm migrate toward the anterior side of the embryo, vigorously extending cell protrusions such as lamellipodia. It is thought that the leading cells sense gradients of chemoattractants emanating from the ectodermal cells and translate them to initiate and maintain the cell movements necessary for gastrulation. However, it is unclear how the extracellular information is converted to the intracellular chemical reactions that lead to motion. Here we demonstrated that intracellular Ca2+ levels in the protrusion-forming leading cells are markedly higher than those of the following cells and the axial mesoderm cells. We also showed that inhibiting the intracellular Ca2+ significantly retarded the gastrulation cell movements, while increasing the intracellular Ca2+ with an ionophore enhanced the migration. We further found that the ionophore treatment increased the active form of the small GTPase Rac1 in these cells. Our results suggest that transient intracellular Ca2+ signals play an essential role in the active cell migration during gastrulation.
Collapse
Affiliation(s)
- Kentaro Hayashi
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University of Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Takamasa S Yamamoto
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Naoto Ueno
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Department of Basic Biology, School of Life Science, The Graduate University of Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
29
|
Hříbková H, Grabiec M, Klemová D, Slaninová I, Sun YM. Five steps to form neural rosettes: structure and function. J Cell Sci 2018; 131:jcs.206896. [DOI: 10.1242/jcs.206896] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/18/2017] [Indexed: 12/25/2022] Open
Abstract
Neural rosette formation is a critical morphogenetic process during neural development, whereby neural stem cells are enclosed in rosette niches to equipoise proliferation and differentiation. How neural rosettes form and provide a regulatory micro-environment remains to be elucidated. We employed the human embryonic stem cell-based neural rosette system to investigate the structural development and function of neural rosettes. Our study shows that neural rosette formation consists of 5 types of cell movements: intercalation, constriction, polarization, elongation, and lumen formation. Ca2+ signaling plays a pivotal role in the five steps by regulating the actions of the cytoskeletal complexes, ACTIN, MYOSIN II, and TUBULIN during intercalation, constriction, and elongation. These in turn control the polarizing elements, ZO-1, PARD3, and β-CATENIN during polarization and lumen formation in neural rosette formation. We further demonstrated that the dismantlement of neural rosettes, mediated by the destruction of cytoskeletal elements, promoted neurogenesis and astrogenesis prematurely, indicating that an intact rosette structure is essential for orderly neural development.
Collapse
Affiliation(s)
- Hana Hříbková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marta Grabiec
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dobromila Klemová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Iva Slaninová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Yuh-Man Sun
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
30
|
Borodinsky LN. Xenopus laevis as a Model Organism for the Study of Spinal Cord Formation, Development, Function and Regeneration. Front Neural Circuits 2017; 11:90. [PMID: 29218002 PMCID: PMC5704749 DOI: 10.3389/fncir.2017.00090] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/08/2017] [Indexed: 11/13/2022] Open
Abstract
The spinal cord is the first central nervous system structure to develop during vertebrate embryogenesis, underscoring its importance to the organism. Because of its early formation, accessibility to the developing spinal cord in amniotes is challenging, often invasive and the experimental approaches amenable to model systems like mammals are limited. In contrast, amphibians, in general and the African-clawed frog Xenopus laevis, in particular, offer model systems in which the formation of the spinal cord, the differentiation of spinal neurons and glia and the establishment of spinal neuron and neuromuscular synapses can be easily investigated with minimal perturbations to the whole organism. The significant advances on gene editing and microscopy along with the recent completion of the Xenopus laevis genome sequencing have reinvigorated the use of this classic model species to elucidate the mechanisms of spinal cord formation, development, function and regeneration.
Collapse
Affiliation(s)
- Laura N Borodinsky
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
31
|
Akahoshi T, Hotta K, Oka K. Characterization of calcium transients during early embryogenesis in ascidians Ciona robusta (Ciona intestinalis type A) and Ciona savignyi. Dev Biol 2017; 431:205-214. [PMID: 28935526 DOI: 10.1016/j.ydbio.2017.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 11/26/2022]
Abstract
The calcium ion (Ca2+) is an important second messenger, and a rapid increase in Ca2+ level (Ca2+ transient) is involved in various aspects of embryogenesis. Although Ca2+ transients play an important role in early developmental stages, little is known about their dynamics throughout embryogenesis. Here, Ca2+ transients were characterized by visualizing Ca2+ dynamics in developing chordate embryos using a fluorescent protein-based Ca2+ indicator, GCaMP6s in combination with finely tuned microscopy. Ca2+ transients were detected in precursors of muscle cells in the late gastrula stage. In the neurula stage, repetitive Ca2+ transients were observed in left and right neurogenic cells, including visceral ganglion (VG) precursors, and the duration of Ca2+ transients was 39±4s. In the early tailbud stage, Ca2+ transients were observed in differentiating precursors of nerve cord neurons. A small population of VG precursors showed rhythmical Ca2+ transients with a duration of 22±4s, suggesting a central pattern generator (CPG) origin. At the mid tailbud stage, Ca2+transients were observed in a wide area of epidermal cells and named CTECs. The number and frequency of CTECs increased drastically in late tailbud stages, and the timing of the increase coincided with that of the relaxation of the tail bending. The experiment using Ca2+ chelator showed that the CTECs were largely depending on the extracellular Ca2+. The waveform analysis of Ca2+ transients revealed different features according to duration and frequency. The comprehensive characterization of Ca2+ transients during early ascidian embryogenesis will help our understanding of the role of Ca2+ signaling in chordate embryogenesis.
Collapse
Affiliation(s)
- Taichi Akahoshi
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Kohji Hotta
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan.
| | - Kotaro Oka
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
32
|
Chen J, Xia L, Bruchas MR, Solnica-Krezel L. Imaging early embryonic calcium activity with GCaMP6s transgenic zebrafish. Dev Biol 2017; 430:385-396. [PMID: 28322738 PMCID: PMC5835148 DOI: 10.1016/j.ydbio.2017.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/12/2017] [Accepted: 03/11/2017] [Indexed: 12/02/2022]
Abstract
Intracellular Ca2+ signaling regulates cellular activities during embryogenesis and in adult organisms. We generated stable Tg[βactin2:GCaMP6s]stl351 and Tg[ubi:GCaMP6s]stl352 transgenic lines that combine the ubiquitously-expressed Ca2+ indicator GCaMP6s with the transparent characteristics of zebrafish embryos to achieve superior in vivo Ca2+ imaging. Using the Tg[βactin2:GCaMP6s]stl351 line featuring strong GCaMP6s expression from cleavage through gastrula stages, we detected higher frequency of Ca2+ transients in the superficial blastomeres during the blastula stages preceding the midblastula transition. Additionally, GCaMP6s also revealed that dorsal-biased Ca2+ signaling that follows the midblastula transition persisted longer during gastrulation, compared with earlier studies. We observed that dorsal-biased Ca2+ signaling is diminished in ventralized ichabod/β-catenin2 mutant embryos and ectopically induced in embryos dorsalized by excess β-catenin. During gastrulation, we directly visualized Ca2+ signaling in the dorsal forerunner cells, which form in a Nodal signaling dependent manner and later give rise to the laterality organ. We found that excess Nodal increases the number and the duration of Ca2+ transients specifically in the dorsal forerunner cells. The GCaMP6s transgenic lines described here enable unprecedented visualization of dynamic Ca2+ events from embryogenesis through adulthood, augmenting the zebrafish toolbox.
Collapse
Affiliation(s)
- Jiakun Chen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Li Xia
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, 63105, USA
| | - Michael R Bruchas
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, 63105, USA; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
33
|
Calcium spikes, waves and oscillations in a large, patterned epithelial tissue. Sci Rep 2017; 7:42786. [PMID: 28218282 PMCID: PMC5317010 DOI: 10.1038/srep42786] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022] Open
Abstract
While calcium signaling in excitable cells, such as muscle or neurons, is extensively characterized, calcium signaling in epithelial tissues is little understood. Specifically, the range of intercellular calcium signaling patterns elicited by tightly coupled epithelial cells and their function in the regulation of epithelial characteristics are little explored. We found that in Drosophila imaginal discs, a widely studied epithelial model organ, complex spatiotemporal calcium dynamics occur. We describe patterns that include intercellular waves traversing large tissue domains in striking oscillatory patterns as well as spikes confined to local domains of neighboring cells. The spatiotemporal characteristics of intercellular waves and oscillations arise as emergent properties of calcium mobilization within a sheet of gap-junction coupled cells and are influenced by cell size and environmental history. While the in vivo function of spikes, waves and oscillations requires further characterization, our genetic experiments suggest that core calcium signaling components guide actomyosin organization. Our study thus suggests a possible role for calcium signaling in epithelia but importantly, introduces a model epithelium enabling the dissection of cellular mechanisms supporting the initiation, transmission and regeneration of long-range intercellular calcium waves and the emergence of oscillations in a highly coupled multicellular sheet.
Collapse
|
34
|
Suzuki M, Sato M, Koyama H, Hara Y, Hayashi K, Yasue N, Imamura H, Fujimori T, Nagai T, Campbell RE, Ueno N. Distinct intracellular Ca 2+ dynamics regulate apical constriction and differentially contribute to neural tube closure. Development 2017; 144:1307-1316. [PMID: 28219946 DOI: 10.1242/dev.141952] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 02/07/2017] [Indexed: 01/24/2023]
Abstract
Early in the development of the central nervous system, progenitor cells undergo a shape change, called apical constriction, that triggers the neural plate to form a tubular structure. How apical constriction in the neural plate is controlled and how it contributes to tissue morphogenesis are not fully understood. In this study, we show that intracellular calcium ions (Ca2+) are required for Xenopus neural tube formation and that there are two types of Ca2+-concentration changes, a single-cell and a multicellular wave-like fluctuation, in the developing neural plate. Quantitative imaging analyses revealed that transient increases in Ca2+ concentration induced cortical F-actin remodeling, apical constriction and accelerations of the closing movement of the neural plate. We also show that extracellular ATP and N-cadherin (cdh2) participate in the Ca2+-induced apical constriction. Furthermore, our mathematical model suggests that the effect of Ca2+ fluctuations on tissue morphogenesis is independent of fluctuation frequency and that fluctuations affecting individual cells are more efficient than those at the multicellular level. We propose that distinct Ca2+ signaling patterns differentially modulate apical constriction for efficient epithelial folding and that this mechanism has a broad range of physiological outcomes.
Collapse
Affiliation(s)
- Makoto Suzuki
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan .,Department of Basic Biology, School of Life Science, the Graduate University of Advanced Studies, Hayama, Kanagawa 240-0193 Japan
| | - Masanao Sato
- Department of Basic Biology, School of Life Science, the Graduate University of Advanced Studies, Hayama, Kanagawa 240-0193 Japan.,Division of Developmental Genetics, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Department of Biodesign Research, Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hiroshi Koyama
- Department of Basic Biology, School of Life Science, the Graduate University of Advanced Studies, Hayama, Kanagawa 240-0193 Japan.,Division of Embryology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Yusuke Hara
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.,Department of Basic Biology, School of Life Science, the Graduate University of Advanced Studies, Hayama, Kanagawa 240-0193 Japan
| | - Kentaro Hayashi
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.,Department of Basic Biology, School of Life Science, the Graduate University of Advanced Studies, Hayama, Kanagawa 240-0193 Japan
| | - Naoko Yasue
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Hiromi Imamura
- Department of Functional Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toshihiko Fujimori
- Department of Basic Biology, School of Life Science, the Graduate University of Advanced Studies, Hayama, Kanagawa 240-0193 Japan.,Division of Embryology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Naoto Ueno
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan .,Department of Basic Biology, School of Life Science, the Graduate University of Advanced Studies, Hayama, Kanagawa 240-0193 Japan
| |
Collapse
|
35
|
Drosophila wing imaginal discs respond to mechanical injury via slow InsP3R-mediated intercellular calcium waves. Nat Commun 2016; 7:12450. [PMID: 27503836 PMCID: PMC4980486 DOI: 10.1038/ncomms12450] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/05/2016] [Indexed: 11/08/2022] Open
Abstract
Calcium signalling is a highly versatile cellular communication system that modulates basic functions such as cell contractility, essential steps of animal development such as fertilization and higher-order processes such as memory. We probed the function of calcium signalling in Drosophila wing imaginal discs through a combination of ex vivo and in vivo imaging and genetic analysis. Here we discover that wing discs display slow, long-range intercellular calcium waves (ICWs) when mechanically stressed in vivo or cultured ex vivo. These slow imaginal disc intercellular calcium waves (SIDICs) are mediated by the inositol-3-phosphate receptor, the endoplasmic reticulum (ER) calcium pump SERCA and the key gap junction component Inx2. The knockdown of genes required for SIDIC formation and propagation negatively affects wing disc recovery after mechanical injury. Our results reveal a role for ICWs in wing disc homoeostasis and highlight the utility of the wing disc as a model for calcium signalling studies. It is unclear what role calcium signalling plays in the Drosophila wing disc. Here, the authors show that on mechanical stress, slow, long-range intercellular calcium waves are initiated in vivo and ex vivo, mediated by the inositol-3-phosphate receptor, the calcium pump SERCA and gap junction component Inx2.
Collapse
|
36
|
Ramakrishnan L, Uhlinger K, Dale L, Hamdoun A, Patel S. ADP-ribosyl cyclases regulate early development of the sea urchin. MESSENGER (LOS ANGELES, CALIF. : PRINT) 2016; 5:100-106. [PMID: 28529830 PMCID: PMC5435102 DOI: 10.1166/msr.2016.1052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ADP-ribosyl cyclases are multifunctional enzymes involved in the metabolism of nucleotide derivatives necessary for Ca2+ signalling such as cADPR and NAADP. Although Ca2+ signalling is a critical regulator of early development, little is known of the role of ADP-ribosyl cyclases during embryogenesis. Here we analyze the expression, activity and function of ADP-ribosyl cyclases in the embryo of the sea urchin - a key organism for study of both Ca2+ signalling and embryonic development. ADP-ribosyl cyclase isoforms (SpARC1-4) showed unique changes in expression during early development. These changes were associated with an increase in the ratio of cADPR:NAADP production. Over-expression of SpARC4 (a preferential cyclase) disrupted gastrulation. Our data highlight the importance of ADP-ribosyl cyclases during embryogenesis.
Collapse
Affiliation(s)
- Latha Ramakrishnan
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT UK
| | - Kevin Uhlinger
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202 USA
| | - Leslie Dale
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT UK
| | - Amro Hamdoun
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202 USA
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT UK
| |
Collapse
|
37
|
Durand BC. Stem cell-like Xenopus Embryonic Explants to Study Early Neural Developmental Features In Vitro and In Vivo. J Vis Exp 2016:e53474. [PMID: 26863402 DOI: 10.3791/53474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Understanding the genetic programs underlying neural development is an important goal of developmental and stem cell biology. In the amphibian blastula, cells from the roof of the blastocoel are pluripotent. These cells can be isolated, and programmed to generate various tissues through manipulation of genes expression or induction by morphogens. In this manuscript protocols are described for the use of Xenopus laevis blastocoel roof explants as an assay system to investigate key in vivo and in vitro features of early neural development. These protocols allow the investigation of fate acquisition, cell migration behaviors, and cell autonomous and non-autonomous properties. The blastocoel roof explants can be cultured in a serum-free defined medium and grafted into host embryos. This transplantation into an embryo allows the investigation of the long-term lineage commitment, the inductive properties, and the behavior of transplanted cells in vivo. These assays can be exploited to investigate molecular mechanisms, cellular processes and gene regulatory networks underlying neural development. In the context of regenerative medicine, these assays provide a means to generate neural-derived cell types in vitro that could be used in drug screening.
Collapse
Affiliation(s)
- Beatrice C Durand
- Institut Curie; UMR 3387, CNRS; PSL Research University; Université Paris-Sud;
| |
Collapse
|
38
|
Christodoulou N, Skourides P. Cell-Autonomous Ca 2+ Flashes Elicit Pulsed Contractions of an Apical Actin Network to Drive Apical Constriction during Neural Tube Closure. Cell Rep 2015; 13:2189-202. [DOI: 10.1016/j.celrep.2015.11.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/13/2015] [Accepted: 11/03/2015] [Indexed: 01/08/2023] Open
|
39
|
Markova O, Sénatore S, Chardès C, Lenne PF. Calcium Spikes in Epithelium: study on Drosophila early embryos. Sci Rep 2015; 5:11379. [PMID: 26198871 PMCID: PMC4510484 DOI: 10.1038/srep11379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 04/28/2015] [Indexed: 12/13/2022] Open
Abstract
Calcium ion acts in nearly every aspect of cellular life. The versatility and specificity required for such a ubiquitous role is ensured by the spatio-temporal dynamics of calcium concentration variations. While calcium signal dynamics has been extensively studied in cell cultures and adult tissues, little is known about calcium activity during early tissue morphogenesis. We monitored intracellular calcium concentration in Drosophila gastrula and revealed single cell calcium spikes that were short-lived, rare and showed strong variability among embryos. We quantitatively described the spatio-temporal dynamics of these spikes and analyzed their potential origins and nature by introducing physical and chemical perturbations. Our data highlight the inter- and intra-tissue variability of calcium activity during tissue morphogenesis.
Collapse
Affiliation(s)
- Olga Markova
- Aix Marseille Université, CNRS, IBDM UMR 7288, 13288, Marseille, France
| | | | - Claire Chardès
- Aix Marseille Université, CNRS, IBDM UMR 7288, 13288, Marseille, France
| | | |
Collapse
|
40
|
Néant I, Mellström B, Gonzalez P, Naranjo JR, Moreau M, Leclerc C. Kcnip1 a Ca²⁺-dependent transcriptional repressor regulates the size of the neural plate in Xenopus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:2077-85. [PMID: 25499267 DOI: 10.1016/j.bbamcr.2014.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/28/2014] [Accepted: 12/03/2014] [Indexed: 12/30/2022]
Abstract
In amphibian embryos, our previous work has demonstrated that calcium transients occurring in the dorsal ectoderm at the onset of gastrulation are necessary and sufficient to engage the ectodermal cells into a neural fate by inducing neural specific genes. Some of these genes are direct targets of calcium. Here we search for a direct transcriptional mechanism by which calcium signals are acting. The only known mechanism responsible for a direct action of calcium on gene transcription involves an EF-hand Ca²⁺ binding protein which belongs to a group of four proteins (Kcnip1 to 4). Kcnip protein can act in a Ca²⁺-dependent manner as a transcriptional repressor by binding to a specific DNA sequence, the Downstream Regulatory Element (DRE) site. In Xenopus, among the four kcnips, we show that only kcnip1 is timely and spatially present in the presumptive neural territories and is able to bind DRE sites in a Ca²⁺-dependent manner. The loss of function of kcnip1 results in the expansion of the neural plate through an increased proliferation of neural progenitors. Later on, this leads to an impairment in the development of anterior neural structures. We propose that, in the embryo, at the onset of neurogenesis Kcnip1 is the Ca²⁺-dependent transcriptional repressor that controls the size of the neural plate. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- Isabelle Néant
- Université Toulouse 3, Centre de Biologie du Développement, 118 routes de Narbonne, F31062 Toulouse, Cedex 04, France; CNRS UMR5547, Toulouse F31062 France; GDRE CNRS, n° 731, Toulouse, France; Centro Nacional de Biotechnología, CSIC, Madrid, Spain; CIBERNED, Madrid, Spain
| | - Britt Mellström
- Centro Nacional de Biotechnología, CSIC, Madrid, Spain; CIBERNED, Madrid, Spain
| | - Paz Gonzalez
- Centro Nacional de Biotechnología, CSIC, Madrid, Spain; CIBERNED, Madrid, Spain
| | - Jose R Naranjo
- GDRE CNRS, n° 731, Toulouse, France; Centro Nacional de Biotechnología, CSIC, Madrid, Spain; CIBERNED, Madrid, Spain
| | - Marc Moreau
- Université Toulouse 3, Centre de Biologie du Développement, 118 routes de Narbonne, F31062 Toulouse, Cedex 04, France; CNRS UMR5547, Toulouse F31062 France; GDRE CNRS, n° 731, Toulouse, France
| | - Catherine Leclerc
- Université Toulouse 3, Centre de Biologie du Développement, 118 routes de Narbonne, F31062 Toulouse, Cedex 04, France; CNRS UMR5547, Toulouse F31062 France; GDRE CNRS, n° 731, Toulouse, France.
| |
Collapse
|
41
|
Herrgen L, Voss OP, Akerman CJ. Calcium-dependent neuroepithelial contractions expel damaged cells from the developing brain. Dev Cell 2014; 31:599-613. [PMID: 25468753 DOI: 10.1016/j.devcel.2014.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 09/12/2014] [Accepted: 10/21/2014] [Indexed: 12/14/2022]
Abstract
Both developing and adult organisms need efficient strategies for wound repair. In adult mammals, wounding triggers an inflammatory response that can exacerbate tissue injury and lead to scarring. In contrast, embryonic wounds heal quickly and with minimal inflammation, but how this is achieved remains incompletely understood. Using in vivo imaging in the developing brain of Xenopus laevis, we show that ATP release from damaged cells and subsequent activation of purinergic receptors induce long-range calcium waves in neural progenitor cells. Cytoskeletal reorganization and activation of the actomyosin contractile machinery in a Rho kinase-dependent manner then lead to rapid and pronounced apical-basal contractions of the neuroepithelium. These contractions drive the expulsion of damaged cells into the brain ventricle within seconds. Successful cell expulsion prevents the death of nearby cells and an exacerbation of the injury. Cell expulsion through neuroepithelial contraction represents a mechanism for rapid wound healing in the developing brain.
Collapse
Affiliation(s)
- Leah Herrgen
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Oliver P Voss
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Colin J Akerman
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
42
|
Land SC, Scott CL, Walker D. mTOR signalling, embryogenesis and the control of lung development. Semin Cell Dev Biol 2014; 36:68-78. [PMID: 25289569 DOI: 10.1016/j.semcdb.2014.09.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/07/2014] [Accepted: 09/11/2014] [Indexed: 12/15/2022]
Abstract
The existence of a nutrient sensitive "autocatakinetic" regulator of embryonic tissue growth has been hypothesised since the early 20th century, beginning with pioneering work on the determinants of foetal size by the Australian physiologist, Thorburn Brailsford-Robertson. We now know that the mammalian target of rapamycin complexes (mTORC1 and 2) perform this essential function in all eukaryotic tissues by balancing nutrient and energy supply during the first stages of embryonic cleavage, the formation of embryonic stem cell layers and niches, the highly specified programmes of tissue growth during organogenesis and, at birth, paving the way for the first few breaths of life. This review provides a synopsis of the role of the mTOR complexes in each of these events, culminating in an analysis of lung branching morphogenesis as a way of demonstrating the central role mTOR in defining organ structural complexity. We conclude that the mTOR complexes satisfy the key requirements of a nutrient sensitive growth controller and can therefore be considered as Brailsford-Robertson's autocatakinetic centre that drives tissue growth programmes during foetal development.
Collapse
Affiliation(s)
- Stephen C Land
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
| | - Claire L Scott
- Prostrakan Pharmaceuticals, Galabank Business Park, Galashiels TD1 1PR, UK
| | - David Walker
- School of Psychology & Neuroscience, Westburn Lane, St Andrews KY16 9JP, UK
| |
Collapse
|
43
|
Mechanochemical actuators of embryonic epithelial contractility. Proc Natl Acad Sci U S A 2014; 111:14366-71. [PMID: 25246549 DOI: 10.1073/pnas.1405209111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spatiotemporal regulation of cell contractility coordinates cell shape change to construct tissue architecture and ultimately directs the morphology and function of the organism. Here we show that contractility responses to spatially and temporally controlled chemical stimuli depend much more strongly on intercellular mechanical connections than on biochemical cues in both stimulated tissues and adjacent cells. We investigate how the cell contractility is triggered within an embryonic epithelial sheet by local ligand stimulation and coordinates a long-range contraction response. Our custom microfluidic control system allows spatiotemporally controlled stimulation with extracellular ATP, which results in locally distinct contractility followed by mechanical strain pattern formation. The stimulation-response circuit exposed here provides a better understanding of how morphogenetic processes integrate responses to stimulation and how intercellular responses are transmitted across multiple cells. These findings may enable one to create a biological actuator that actively drives morphogenesis.
Collapse
|
44
|
Prudent J, Popgeorgiev N, Bonneau B, Thibaut J, Gadet R, Lopez J, Gonzalo P, Rimokh R, Manon S, Houart C, Herbomel P, Aouacheria A, Gillet G. Bcl-wav and the mitochondrial calcium uniporter drive gastrula morphogenesis in zebrafish. Nat Commun 2014; 4:2330. [PMID: 23942336 DOI: 10.1038/ncomms3330] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/18/2013] [Indexed: 02/07/2023] Open
Abstract
Bcl-2 proteins are acknowledged as key regulators of programmed cell death. However, increasing data suggest additional roles, including regulation of the cell cycle, metabolism and cytoskeletal dynamics. Here we report the discovery and characterization of a new Bcl-2-related multidomain apoptosis accelerator, Bcl-wav, found in fish and frogs. Genetic and molecular studies in zebrafish indicate that Bcl-wav and the recently identified mitochondrial calcium uniporter (MCU) contribute to the formation of the notochord axis by controlling blastomere convergence and extension movements during gastrulation. Furthermore, we found that Bcl-wav controls intracellular Ca(2+) trafficking by acting on the mitochondrial voltage-dependent anion channel, and possibly on MCU, with direct consequences on actin microfilament dynamics and blastomere migration guidance. Thus, from an evolutionary point of view, the original function of Bcl-2 proteins might have been to contribute in controlling the global positioning system of blastomeres during gastrulation, a critical step in metazoan development.
Collapse
Affiliation(s)
- Julien Prudent
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMS 3453 CNRS, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, Lyon 69008, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Leal MA, Fickel SR, Sabillo A, Ramirez J, Vergara HM, Nave C, Saw D, Domingo CR. The Role of Sdf-1α signaling in Xenopus laevis somite morphogenesis. Dev Dyn 2013; 243:509-26. [PMID: 24357195 DOI: 10.1002/dvdy.24092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 10/14/2013] [Accepted: 10/28/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Stromal derived factor-1α (sdf-1α), a chemoattractant chemokine, plays a major role in tumor growth, angiogenesis, metastasis, and in embryogenesis. The sdf-1α signaling pathway has also been shown to be important for somite rotation in zebrafish (Hollway et al., 2007). Given the known similarities and differences between zebrafish and Xenopus laevis somitogenesis, we sought to determine whether the role of sdf-1α is conserved in Xenopus laevis. RESULTS Using a morpholino approach, we demonstrate that knockdown of sdf-1α or its receptor, cxcr4, leads to a significant disruption in somite rotation and myotome alignment. We further show that depletion of sdf-1α or cxcr4 leads to the near absence of β-dystroglycan and laminin expression at the intersomitic boundaries. Finally, knockdown of sdf-1α decreases the level of activated RhoA, a small GTPase known to regulate cell shape and movement. CONCLUSION Our results show that sdf-1α signaling regulates somite cell migration, rotation, and myotome alignment by directly or indirectly regulating dystroglycan expression and RhoA activation. These findings support the conservation of sdf-1α signaling in vertebrate somite morphogenesis; however, the precise mechanism by which this signaling pathway influences somite morphogenesis is different between the fish and the frog.
Collapse
Affiliation(s)
- Marisa A Leal
- Department of Biology, San Francisco State University, San Francisco, California
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Calpain2 protease: A new member of the Wnt/Ca(2+) pathway modulating convergent extension movements in Xenopus. Dev Biol 2013; 384:83-100. [PMID: 24076278 DOI: 10.1016/j.ydbio.2013.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/06/2013] [Accepted: 09/11/2013] [Indexed: 12/06/2022]
Abstract
Calpains are a family of calcium-dependent intracellular cysteine proteases that regulate several physiological processes by limited cleavage of different substrates. The role of Calpain2 in embryogenesis is not clear with conflicting evidence from a number of mouse knockouts. Here we report the temporal and spatial expression of Calpain2 in Xenopus laevis embryos and address its role in Xenopus development. We show that Calpain2 is expressed maternally with elevated expression in neural tissues and that Calpain2 activity is spatially and temporally regulated. Using a Calpain inhibitor, a dominant negative and a morpholino oligonoucleotide we demonstrate that impaired Calpain2 activity results in defective convergent extension both in mesodermal and neural tissues. Specifically, Calpain2 downregulation results in loss of tissue polarity and blockage of mediolateral intercalation in Keller explants without affecting adherens junction turnover. We further show that Calpain2 is activated in response to Wnt5a and that the inhibitory effect of Wnt5a expression on animal cap elongation can be rescued by blocking Calpain2 function. This suggests that Calpain2 activity needs to be tightly regulated during convergent extension. Finally we show that expression of Xdd1 blocks the membrane translocation of Calpain2 suggesting that Calpain2 activation is downstream of Dishevelled. Overall our data show that Calpain2 activation through the Wnt/Ca(2+) pathway and Dishevelled can modulate convergent extension movements.
Collapse
|
47
|
Hara Y, Nagayama K, Yamamoto TS, Matsumoto T, Suzuki M, Ueno N. Directional migration of leading-edge mesoderm generates physical forces: Implication in Xenopus notochord formation during gastrulation. Dev Biol 2013; 382:482-95. [PMID: 23933171 DOI: 10.1016/j.ydbio.2013.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/15/2013] [Accepted: 07/27/2013] [Indexed: 12/17/2022]
Abstract
Gastrulation is a dynamic tissue-remodeling process occurring during early development and fundamental to the later organogenesis. It involves both chemical signals and physical factors. Although much is known about the molecular pathways involved, the roles of physical forces in regulating cellular behavior and tissue remodeling during gastrulation have just begun to be explored. Here, we characterized the force generated by the leading edge mesoderm (LEM) that migrates preceding axial mesoderm (AM), and investigated the contribution of LEM during Xenopus gastrulation. First, we constructed an assay system using micro-needle which could measure physical forces generated by the anterior migration of LEM, and estimated the absolute magnitude of the force to be 20-80nN. Second, laser ablation experiments showed that LEM could affect the force distribution in the AM (i.e. LEM adds stretch force on axial mesoderm along anterior-posterior axis). Third, migrating LEM was found to be necessary for the proper gastrulation cell movements and the establishment of organized notochord structure; a reduction of LEM migratory activity resulted in the disruption of mediolateral cell orientation and convergence in AM. Finally, we found that LEM migration cooperates with Wnt/PCP to form proper notochord. These results suggest that the force generated by the directional migration of LEM is transmitted to AM and assists the tissue organization of notochord in vivo independently of the regulation by Wnt/PCP. We propose that the LEM may have a mechanical role in aiding the AM elongation through the rearrangement of force distribution in the dorsal marginal zone.
Collapse
Affiliation(s)
- Yusuke Hara
- Division for Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, School of Life Science, The Graduate University of Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Markova O, Lenne PF. Calcium signaling in developing embryos: focus on the regulation of cell shape changes and collective movements. Semin Cell Dev Biol 2012; 23:298-307. [PMID: 22414534 DOI: 10.1016/j.semcdb.2012.03.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/31/2012] [Accepted: 03/04/2012] [Indexed: 10/28/2022]
Abstract
During morphogenesis tissues significantly remodel by coordinated cell migrations and cell rearrangements. Central to this problem are cell shape changes that are driven by distinct cytoskeletal reorganization responsible for force generation. Calcium is a versatile and universal messenger that is implicated in the regulation of embryonic development. Although calcium transients accrue clearly and more intensely in tissues undergoing rearrangement/migration, it is far from clear what the role of these calcium signals is. Here we summarize the evidence implicating calcium participation in tissue movements, cell shape changes and the reorganization of contractile cytoskeletal elements in developing embryos. We also discuss a novel hypothesis that short-lived calcium spikes are required in cells and tissues undergoing migration and rearrangements as a fine tuning response mechanism to prevent local, abnormally high fluctuations in cytoskeletal activities.
Collapse
Affiliation(s)
- Olga Markova
- IBDML, UMR7288 CNRS-Aix-Marseille Université, Campus de Luminy, Marseille, France.
| | | |
Collapse
|
49
|
Cast AE, Gao C, Amack JD, Ware SM. An essential and highly conserved role for Zic3 in left-right patterning, gastrulation and convergent extension morphogenesis. Dev Biol 2012; 364:22-31. [PMID: 22285814 DOI: 10.1016/j.ydbio.2012.01.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 11/28/2022]
Abstract
Mutations in ZIC3 result in X-linked heterotaxy in humans, a syndrome consisting of left-right (L-R) patterning defects, midline abnormalities, and cardiac malformations. Similarly, loss of function of Zic3 in mouse results in abnormal L-R patterning and cardiac development. However, Zic3 null mice also exhibit defects in gastrulation, neural tube closure, and axial patterning, suggesting the hypothesis that Zic3 is necessary for proper convergent extension (C-E) morphogenesis. To further investigate the role of Zic3 in early embryonic development, we utilized two model systems, Xenopus laevis and zebrafish, and performed loss of function analysis using antisense morpholino-mediated gene knockdown. Both Xenopus and zebrafish demonstrated significant impairment of C-E in Zic3 morphants. L-R patterning was also disrupted, indicating that the role of Zic3 in L-R axis development is conserved across species. Correlation of L-R patterning and C-E defects in Xenopus suggests that early C-E defects may underlie L-R patterning defects at later stages, since Zic3 morphants with moderate to severe C-E defects exhibited an increase in laterality defects. Taken together, these results demonstrate a functional conservation of Zic3 in L-R patterning and uncover a previously unrecognized role for Zic3 in C-E morphogenesis during early vertebrate development.
Collapse
Affiliation(s)
- Ashley E Cast
- Division of Molecular Cardiovascular Biology, the Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, MLC 7020, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|
50
|
Kikuchi A, Yamamoto H, Sato A, Matsumoto S. Wnt5a: its signalling, functions and implication in diseases. Acta Physiol (Oxf) 2012; 204:17-33. [PMID: 21518267 DOI: 10.1111/j.1748-1716.2011.02294.x] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Wnt5a is a representative ligand that activates the β-catenin-independent pathways. Because the β-catenin-independent pathway includes multiple signalling cascades in addition to the planar cell polarity and Ca(2+) pathway, Wnt5a regulates a variety of cellular functions, such as proliferation, differentiation, migration, adhesion and polarity. Consistent with the multiple functions of Wnt5a signalling, Wnt5a knockout mice show various phenotypes, including an inability to extend the embryonic anterior-posterior and proximal-distal axes in outgrowth tissues. Thus, many important roles of Wnt5a in developmental processes have been demonstrated. Moreover, recent reports suggest that the postnatal abnormalities in the Wnt5a signalling are involved in various diseases, such as cancer, inflammatory diseases and metabolic disorders. Therefore, Wnt5a and its signalling pathways could be important targets for the diagnosis and therapy for human diseases.
Collapse
Affiliation(s)
- A Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan.
| | | | | | | |
Collapse
|