1
|
Islam KN, Ajao A, Venkataramani K, Rivera J, Pathania S, Henke K, Siegfried KR. The RNA-binding protein Adad1 is necessary for germ cell maintenance and meiosis in zebrafish. PLoS Genet 2023; 19:e1010589. [PMID: 37552671 PMCID: PMC10437952 DOI: 10.1371/journal.pgen.1010589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/18/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
The double stranded RNA binding protein Adad1 (adenosine deaminase domain containing 1) is a member of the adenosine deaminase acting on RNAs (Adar) protein family with germ cell-specific expression. In mice, Adad1 is necessary for sperm differentiation, however its function outside of mammals has not been investigated. Here, through an N-ethyl-N-nitrosourea (ENU) based forward genetic screen, we identified an adad1 mutant zebrafish line that develops as sterile males. Further histological examination revealed complete lack of germ cells in adult mutant fish, however germ cells populated the gonad, proliferated, and entered meiosis in larval and juvenile fish. Although meiosis was initiated in adad1 mutant testes, the spermatocytes failed to progress beyond the zygotene stage. Thus, Adad1 is essential for meiosis and germline maintenance in zebrafish. We tested if spermatogonial stem cells were affected using nanos2 RNA FISH and a label retaining cell (LRC) assay, and found that the mutant testes had fewer LRCs and nanos2-expressing cells compared to wild-type siblings, suggesting that failure to maintain the spermatogonial stem cells resulted in germ cell loss by adulthood. To identify potential molecular processes regulated by Adad1, we sequenced bulk mRNA from mutants and wild-type testes and found mis-regulation of genes involved in RNA stability and modification, pointing to a potential broader role in post-transcriptional regulation. Our findings suggest that the RNA regulatory protein Adad1 is required for fertility through regulation of spermatogonial stem cell maintenance in zebrafish.
Collapse
Affiliation(s)
- Kazi Nazrul Islam
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Anuoluwapo Ajao
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Kavita Venkataramani
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Joshua Rivera
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Shailja Pathania
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kellee Renee Siegfried
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
Dalla Costa I, Buchanan CN, Zdradzinski MD, Sahoo PK, Smith TP, Thames E, Kar AN, Twiss JL. The functional organization of axonal mRNA transport and translation. Nat Rev Neurosci 2021; 22:77-91. [PMID: 33288912 PMCID: PMC8161363 DOI: 10.1038/s41583-020-00407-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Axons extend for tremendously long distances from the neuronal soma and make use of localized mRNA translation to rapidly respond to different extracellular stimuli and physiological states. The locally synthesized proteins support many different functions in both developing and mature axons, raising questions about the mechanisms by which local translation is organized to ensure the appropriate responses to specific stimuli. Publications over the past few years have uncovered new mechanisms for regulating the axonal transport and localized translation of mRNAs, with several of these pathways converging on the regulation of cohorts of functionally related mRNAs - known as RNA regulons - that drive axon growth, axon guidance, injury responses, axon survival and even axonal mitochondrial function. Recent advances point to these different regulatory pathways as organizing platforms that allow the axon's proteome to be modulated to meet its physiological needs.
Collapse
Affiliation(s)
- Irene Dalla Costa
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Courtney N Buchanan
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | | | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Terika P Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Elizabeth Thames
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
3
|
Leung KM, Lu B, Wong HHW, Lin JQ, Turner-Bridger B, Holt CE. Cue-Polarized Transport of β-actin mRNA Depends on 3'UTR and Microtubules in Live Growth Cones. Front Cell Neurosci 2018; 12:300. [PMID: 30250426 PMCID: PMC6139529 DOI: 10.3389/fncel.2018.00300] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/17/2018] [Indexed: 11/13/2022] Open
Abstract
Guidance cues trigger fast responses in axonal growth cones such as directional turning and collapse that require local protein synthesis. An attractive cue-gradient, such as Netrin-1, triggers de novo synthesis of β-actin localized to the near-side compartment of the growth cone that promotes F-actin assembly and attractive steering. How this precise spatial asymmetry in mRNA translation arises across the small expanse of the growth cone is poorly understood. Pre-localized mRNAs in the vicinity of activated receptors could be selectively translated and/or new mRNAs could be trafficked into the area. Here we have performed live imaging of fluorescent-tagged β-actin mRNA to investigate mRNA trafficking dynamics in Xenopus retinal ganglion cell (RGC) axons and growth cones in response to Netrin-1. A Netrin-1 gradient was found to elicit the transport of β-actin mRNA granules to the near-side of growth cones within a 4-7 min window. This polarized mRNA trafficking depended on the 3' untranslated region (UTR) since mRNA-Δ3'UTR mutant failed to exhibit cue-induced localization. Global application of Netrin-1 significantly increased the anterograde movement of β-actin mRNA along axons and also promoted microtubule-dependent mRNA excursions from the central domain of the growth cone into the periphery (filopodia and lamellipodia). Dual channel imaging revealed β-actin mRNA riding behind the microtubule plus-end tracking protein, EB1, in movements along dynamic microtubules into filopodia. The mRNA-EB1 movements were unchanged by a Netrin-1 gradient indicating the dynamic microtubules themselves do not underlie the cue-induced polarity of RNA movement. Finally, fast-moving elongated "worm-like" trains of Cy3-RNA, distinct from mitochondria, were seen transporting RNA along axons in vitro and in vivo suggesting the existence of a novel transport organelle. Overall, the results provide evidence that the axonal trafficking of β-actin mRNA can be regulated by the guidance cue Netrin-1 to transduce the polarity of an extracellular stimulus and that the 3'UTR is essential for this cue-induced regulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Christine E. Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Tefferi A. Genomics Basics: DNA Structure, Gene Expression, Cloning, Genetic Mapping, and Molecular Tests. Semin Cardiothorac Vasc Anesth 2016; 10:282-90. [PMID: 17200086 DOI: 10.1177/1089253206294343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Genomics is the study of the structure and function of the human genome including genes and their surrounding DNA sequences. The over 3 billion base pairs of the human genome have now been sequenced and approximately 25 000 genes acknowledged. However, only 1% of the entire genome has been assigned to protein coding and decades more work is anticipated to define the functional relevance of noncoding DNA as well as the basis and consequences of sequence variations among individuals. For medical scientists, the focus remains on discovering both disease-causing and disease-susceptibility genes. For pharmaceutical companies, the opportunity to develop molecularly targeted therapy is not going unnoticed. For the practicing physician, the prospect of genomic medicine that incorporates molecular diagnosis and pathogenesis-targeted therapy requires basic understanding of terminology and concepts in molecular biology and the corresponding laboratory tests.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
5
|
Björk P, Persson JO, Wieslander L. Intranuclear binding in space and time of exon junction complex and NXF1 to premRNPs/mRNPs in vivo. J Cell Biol 2016; 211:63-75. [PMID: 26459599 PMCID: PMC4602041 DOI: 10.1083/jcb.201412017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The exon junction core complex associates with Balbiani ring (BR) premRNPs during transcription and in relation to splicing, whereas the export factor NXF1 is recruited in the interchromatin, and BR mRNPs become export competent only after passage through the interchromatin. Eukaryotic gene expression requires the ordered association of numerous factors with precursor messenger RNAs (premRNAs)/messenger RNAs (mRNAs) to achieve efficiency and regulation. Here, we use the Balbiani ring (BR) genes to demonstrate the temporal and spatial association of the exon junction complex (EJC) core with gene-specific endogenous premRNAs and mRNAs. The EJC core components bind cotranscriptionally to BR premRNAs during or very rapidly after splicing. The EJC core does not recruit the nonsense-mediated decay mediaters UPF2 and UPF3 until the BR messenger RNA protein complexes (mRNPs) enter the interchromatin. Even though several known adapters for the export factor NXF1 become part of BR mRNPs already at the gene, NXF1 binds to BR mRNPs only in the interchromatin. In steady state, a subset of the BR mRNPs in the interchromatin binds NXF1, UPF2, and UPF3. This binding appears to occur stochastically, and the efficiency approximately equals synthesis and export of the BR mRNPs. Our data provide unique in vivo information on how export competent eukaryotic mRNPs are formed.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jan-Olov Persson
- Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Lars Wieslander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
6
|
Sotelo JR, Canclini L, Kun A, Sotelo-Silveira JR, Calliari A, Cal K, Bresque M, DiPaolo A, Farias J, Mercer JA. Glia to axon RNA transfer. Dev Neurobiol 2013; 74:292-302. [DOI: 10.1002/dneu.22125] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 11/10/2022]
Affiliation(s)
- José Roberto Sotelo
- Department of Proteins and Nucleic Acids; Instituto de Investigaciones Biológicas Clemente Estable; Montevideo Uruguay
| | - Lucía Canclini
- Department of Proteins and Nucleic Acids; Instituto de Investigaciones Biológicas Clemente Estable; Montevideo Uruguay
| | - Alejandra Kun
- Department of Proteins and Nucleic Acids; Instituto de Investigaciones Biológicas Clemente Estable; Montevideo Uruguay
- Biochemistry Section; School of Sciences, Universidad de la Republica; Montevideo Uruguay
| | - José Roberto Sotelo-Silveira
- Department of Genetics; Instituto de Investigaciones Biológicas Clemente Estable; Montevideo Uruguay
- Department of Cell Biology; School of Sciences, Universidad de la Republica; Montevideo Uruguay
| | - Aldo Calliari
- Department of Biochemistry; Biophysics Area; Molecular and Cell Biology; School of Veterinary, Universidad de la República; Montevideo Uruguay
| | - Karina Cal
- Department of Proteins and Nucleic Acids; Instituto de Investigaciones Biológicas Clemente Estable; Montevideo Uruguay
| | - Mariana Bresque
- Department of Proteins and Nucleic Acids; Instituto de Investigaciones Biológicas Clemente Estable; Montevideo Uruguay
| | - Andrés DiPaolo
- Department of Proteins and Nucleic Acids; Instituto de Investigaciones Biológicas Clemente Estable; Montevideo Uruguay
| | - Joaquina Farias
- Biochemistry Section; School of Sciences, Universidad de la Republica; Montevideo Uruguay
| | - John A. Mercer
- Professor, McLaughlin Research Institute, Great Falls; Montana 59405-4900
- Cardiovascular Biology and Disease; Cardiomyopathies; Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, Tata Institute for Fundamental Research; Bangalore 560065 India
| |
Collapse
|
7
|
Togi S, Shiga K, Muromoto R, Kato M, Souma Y, Sekine Y, Kon S, Oritani K, Matsuda T. Y14 positively regulates TNF-α-induced NF-κB transcriptional activity via interacting RIP1 and TRADD beyond an exon junction complex protein. THE JOURNAL OF IMMUNOLOGY 2013; 191:1436-44. [PMID: 23817415 DOI: 10.4049/jimmunol.1300501] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Although Y14 is known to be a component of the exon junction complex, we previously reported that Y14 regulates IL-6-induced STAT3 activation. In this study, we showed that endogenous Y14 positively regulated TNF-α-induced IL-6 expression in HeLa cells. Small interfering RNA-mediated Y14-knockdown reduced TNF-α-induced and NF-κB-mediated transcriptional activity, phosphorylation/degradation of IκBα, and nuclear localization of NF-κB/p65. As in the case of IL-6 stimuli, Y14 enhanced TNF-α-induced STAT3 phosphorylation, which is important for its nuclear retention. However, our manipulation of Y14 expression indicated that it is involved in TNF-α-induced IL-6 expression via both STAT3-dependent and -independent mechanisms. We screened signaling molecules in the TNF-α-NF-κB pathway and found that Y14 endogenously associated with receptor-interacting protein 1 (RIP1) and TNFR-associated death domain (TRADD). Overexpression of RIP1, but not TRADD, restored TNF-α-induced NF-κB activation in Y14-knockdown cells, and Y14 overexpression restored TNF-α-induced NF-κB activation in TRADD-knockdown cells, but not in RIP1-knockdown cells, indicating that Y14 lies downstream of TRADD and upstream of RIP1. Of importance, Y14 significantly enhanced the binding between RIP1 and TRADD, and this is a possible new mechanism for Y14-mediated modification of TNF-α signals. Although Y14 associates with MAGOH in the exon junction complex, Y14's actions in the TNF-α-NF-κB pathway are unlikely to require MAGOH. Therefore, Y14 positively regulates signals for TNF-α-induced IL-6 production at multiple steps beyond an exon junction complex protein.
Collapse
Affiliation(s)
- Sumihito Togi
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Noatynska A, Gotta M, Meraldi P. Mitotic spindle (DIS)orientation and DISease: cause or consequence? ACTA ACUST UNITED AC 2013; 199:1025-35. [PMID: 23266953 PMCID: PMC3529530 DOI: 10.1083/jcb.201209015] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Correct alignment of the mitotic spindle during cell division is crucial for cell fate determination, tissue organization, and development. Mutations causing brain diseases and cancer in humans and mice have been associated with spindle orientation defects. These defects are thought to lead to an imbalance between symmetric and asymmetric divisions, causing reduced or excessive cell proliferation. However, most of these disease-linked genes encode proteins that carry out multiple cellular functions. Here, we discuss whether spindle orientation defects are the direct cause for these diseases, or just a correlative side effect.
Collapse
Affiliation(s)
- Anna Noatynska
- Department of Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
| | | | | |
Collapse
|
9
|
Pancaldi V, Bähler J. In silico characterization and prediction of global protein-mRNA interactions in yeast. Nucleic Acids Res 2011; 39:5826-36. [PMID: 21459850 PMCID: PMC3152324 DOI: 10.1093/nar/gkr160] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Post-transcriptional gene regulation is mediated through complex networks of protein-RNA interactions. The targets of only a few RNA binding proteins (RBPs) are known, even in the well-characterized budding yeast. In silico prediction of protein-RNA interactions is therefore useful to guide experiments and to provide insight into regulatory networks. Computational approaches have identified RBP targets based on sequence binding preferences. We investigate here to what extent RBP-RNA interactions can be predicted based on RBP and mRNA features other than sequence motifs. We analyze global relationships between gene and protein properties in general and between selected RBPs and known mRNA targets in particular. Highly translated RBPs tend to bind to shorter transcripts, and transcripts bound by the same RBP show high expression correlation across different biological conditions. Surprisingly, a given RBP preferentially binds to mRNAs that encode interaction partners for this RBP, suggesting coordinated post-transcriptional auto-regulation of protein complexes. We apply a machine-learning approach to predict specific RBP targets in yeast. Although this approach performs well for RBPs with known targets, predictions for uncharacterized RBPs remain challenging due to limiting experimental data. We also predict targets of fission yeast RBPs, indicating that the suggested framework could be applied to other species once more experimental data are available.
Collapse
Affiliation(s)
- Vera Pancaldi
- Department of Genetics, Evolution & Environment and UCL Cancer Institute, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
10
|
Yasuda K, Kotani T, Ota R, Yamashita M. Transgenic zebrafish reveals novel mechanisms of translational control of cyclin B1 mRNA in oocytes. Dev Biol 2010; 348:76-86. [DOI: 10.1016/j.ydbio.2010.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/16/2010] [Accepted: 09/17/2010] [Indexed: 12/21/2022]
|
11
|
Racca C, Gardiol A, Eom T, Ule J, Triller A, Darnell RB. The Neuronal Splicing Factor Nova Co-Localizes with Target RNAs in the Dendrite. Front Neural Circuits 2010; 4:5. [PMID: 20407637 PMCID: PMC2856630 DOI: 10.3389/neuro.04.005.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 02/01/2010] [Indexed: 01/10/2023] Open
Abstract
Nova proteins are neuron-specific RNA binding proteins targeted by autoantibodies in a disorder manifest by failure of motor inhibition, and they regulate splicing and alternative 3' processing. Nova regulates splicing of RNAs encoding synaptic proteins, including the inhibitory glycine receptor alpha2 subunit (GlyRalpha2), and binds to others, including the GIRK2 channel. We found that Nova harbors functional NES and NLS elements, shuttles between the nucleus and cytoplasm, and that 50% of the protein localizes to the soma-dendritic compartment. Immunofluoresence and EM analysis of spinal cord motor neurons demonstrated that Nova co-localizes beneath synaptic contacts in dendrites with the same RNA, GlyRalpha2, whose splicing it regulates in the nucleus. HITS-CLIP identified intronic and 3' UTR sites where Nova binds to GlyRalpha2 and GIRK2 transcripts in the brain. This led directly to the identification of a 3' UTR localization element that mediates Nova-dependent localization of GIRK2 in primary neurons. These data demonstrate that HITS-CLIP can identify functional RNA localization elements, and they suggest new links between the regulation of nuclear RNA processing and mRNA localization.
Collapse
Affiliation(s)
- Claudia Racca
- Biologie Cellulaire de la Synapse Normale et Pathologique, Institut National de la Santé et de la Recherche Médicale, Ecole Normale SupérieureParis, France
- Institute of Neuroscience, Newcastle UniversityNewcastle upon Tyne, UK
| | - Alejandra Gardiol
- Biologie Cellulaire de la Synapse Normale et Pathologique, Institut National de la Santé et de la Recherche Médicale, Ecole Normale SupérieureParis, France
- The Wellcome Trust CR UK Gurdon Institute, University of CambridgeCambridge, UK
| | - Taesun Eom
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller UniversityNew York, NY, USA
| | - Jernej Ule
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller UniversityNew York, NY, USA
- Medical Research Council Laboratory of Molecular BiologyCambridge, UK
| | - Antoine Triller
- Biologie Cellulaire de la Synapse Normale et Pathologique, Institut National de la Santé et de la Recherche Médicale, Ecole Normale SupérieureParis, France
| | - Robert B. Darnell
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller UniversityNew York, NY, USA
| |
Collapse
|
12
|
Mhlanga MM, Bratu DP, Genovesio A, Rybarska A, Chenouard N, Nehrbass U, Olivo-Marin JC. In vivo colocalisation of oskar mRNA and trans-acting proteins revealed by quantitative imaging of the Drosophila oocyte. PLoS One 2009; 4:e6241. [PMID: 19597554 PMCID: PMC2705681 DOI: 10.1371/journal.pone.0006241] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 03/24/2009] [Indexed: 11/18/2022] Open
Abstract
Efficient mRNA transport in eukaryotes requires highly orchestrated relationships between nuclear and cytoplasmic proteins. For oskar mRNA, the Drosophila posterior determinant, these spatio-temporal requirements remain opaque during its multi-step transport process. By in vivo covisualization of oskar mRNA with Staufen, its putative trafficking protein, we find oskar mRNA to be present in particles distinct from Staufen for part of its transport. oskar mRNA stably associated with Staufen near the posterior pole. We observe oskar mRNA to oligomerize as hundreds of copies forming large particles which are necessary for its long range transport and localization. We show the formation of these particles occurs in the nurse cell nucleus in an Hrp48-dependent manner. We present a more refined model of oskar mRNA transport in the Drosophila oocyte.
Collapse
Affiliation(s)
- Musa M Mhlanga
- Unité de Biologie Cellulaire du Noyau, Département de Biologie Cellulaire et Infection, Institut Pasteur, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
13
|
Moore MJ, Proudfoot NJ. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 2009; 136:688-700. [PMID: 19239889 DOI: 10.1016/j.cell.2009.02.001] [Citation(s) in RCA: 652] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The pathway from gene activation in the nucleus to mRNA translation and decay at specific locations in the cytoplasm is both streamlined and highly interconnected. This review discusses how pre-mRNA processing, including 5' cap addition, splicing, and polyadenylation, contributes to both the efficiency and fidelity of gene expression. The connections of pre-mRNA processing to upstream events in transcription and downstream events, including translation and mRNA decay, are elaborate, extensive, and remarkably interwoven.
Collapse
Affiliation(s)
- Melissa J Moore
- Howard Hughes Medical Institute, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | | |
Collapse
|
14
|
Muromoto R, Taira N, Ikeda O, Shiga K, Kamitani S, Togi S, Kawakami S, Sekine Y, Nanbo A, Oritani K, Matsuda T. The exon-junction complex proteins, Y14 and MAGOH regulate STAT3 activation. Biochem Biophys Res Commun 2009; 382:63-8. [PMID: 19254694 DOI: 10.1016/j.bbrc.2009.02.127] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 02/23/2009] [Indexed: 01/18/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3), which is activated by cytokines and growth factors, mediates biological actions in many physiological processes. In a previous study, we found that Y14, a core component of the exon-junction complex (EJC) bound to STAT3 and upregulated the transcriptional activity of STAT3 by influencing its DNA-binding activity. In the present study, we demonstrate that STAT3 endogenously interacts with Y14. In addition, we found that MAGOH, a Y14 partner in the EJC, inhibits the STAT3-Y14 complex formation. Furthermore, small-interfering RNA-mediated reduction of MAGOH expression enhanced interleukin-6-induced gene expression. These results indicate that MAGOH regulates the transcriptional activation of STAT3 by interfering complex formation between STAT3 and Y14.
Collapse
Affiliation(s)
- Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences Hokkaido University, Kita-Ku Kita 12 Nishi 6, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Schwann cell to axon transfer of ribosomes: toward a novel understanding of the role of glia in the nervous system. J Neurosci 2008; 28:11024-9. [PMID: 18945910 DOI: 10.1523/jneurosci.2429-08.2008] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Schwann cells play pivotal roles in the development and maintenance of the peripheral nervous system. Here, we show that intact sciatic nerve axons of mice contain a small population of ribosomes, which increases by several orders of magnitude when axons are desomatized (severed from their cell bodies). We furthermore demonstrate, using the Wallerian degeneration slow mouse as a model, that Schwann cells transfer polyribosomes to desomatized axons. These data indicate that Schwann cells have the propensity to control axonal protein synthesis by supplying ribosomes on local basis.
Collapse
|
16
|
Sánchez-Carbente MDR, Desgroseillers L. Understanding the importance of mRNA transport in memory. PROGRESS IN BRAIN RESEARCH 2008; 169:41-58. [PMID: 18394467 DOI: 10.1016/s0079-6123(07)00003-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
RNA localization is an important mechanism to sort proteins to specific subcellular domains. In neurons, several mRNAs are localized in dendrites and their presence allows autonomous control of local translation in response to stimulation of specific synapses. Active constitutive and activity-induced mechanisms of mRNA transport have been described that represent critical steps in the establishment and maintenance of synaptic plasticity. In recent years, the molecular composition of different transporting units has been reported and the identification of proteins and mRNAs in these RNA granules contributes to our understanding of the key steps that regulate mRNA transport and translation. Although RNA granules are heterogeneous, several proteins are common to different RNA granule populations, suggesting that they play important roles in the formation of the granules and/or their regulation during transport and translation. About 1-4% of the neuron transcriptome is found in RNA granules and the characterization of bound mRNAs reveal that they encode proteins of the cytoskeleton, the translation machinery, vesicle trafficking, and/or proteins involved in synaptic plasticity. Non-coding RNAs and microRNAs are also found in dendrites and likely regulate RNA translation. These mechanisms of mRNA transport and local translation are critical for synaptic plasticity mediated by activity or experience and memory.
Collapse
|
17
|
Ohbayashi N, Taira N, Kawakami S, Togi S, Sato N, Ikeda O, Kamitani S, Muromoto R, Sekine Y, Matsuda T. An RNA biding protein, Y14 interacts with and modulates STAT3 activation. Biochem Biophys Res Commun 2008; 372:475-9. [PMID: 18503751 DOI: 10.1016/j.bbrc.2008.05.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 05/15/2008] [Indexed: 01/14/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3), which mediates biological actions in many physiological processes, is activated by cytokines and growth factors via specific tyrosine-phosphorylation, dimerization, and nuclear translocation. To clarify the molecular mechanisms underlying the regulation of STAT3 activation, we performed yeast two-hybrid screening. We identified Y14, an RNA-binding protein, as a novel STAT3 binding partner. Y14 bound to STAT3 through the C-terminal region of STAT3 in vivo. Importantly, small-interfering RNA-mediated reduction of endogenous Y14 expression decreased IL-6-induced tyrosine-phosphorylation, nuclear accumulation, and DNA-binding activity of STAT3, as well as IL-6/STAT3-dependent gene expression. These results indicate that Y14 interacts with STAT3 and regulates the transcriptional activation of STAT3 by influencing the tyrosine-phosphorylation of STAT3.
Collapse
Affiliation(s)
- Norihiko Ohbayashi
- Department of Immunology, Graduate School of Pharmaceutical Sciences Hokkaido University, Kita-ku Kita 12 Nishi 6, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kaplow ME, Mannava LJ, Pimentel AC, Fermin HA, Hyatt VJ, Lee JJ, Venkatesh TR. A genetic modifier screen identifies multiple genes that interact with Drosophila Rap/Fzr and suggests novel cellular roles. J Neurogenet 2008; 21:105-51. [PMID: 17849284 DOI: 10.1080/01677060701503140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the developing Drosophila eye, Rap/Fzr plays a critical role in neural patterning by regulating the timely exit of precursor cells. Rap/Fzr (Retina aberrant in pattern/Fizzy related) is an activator of the E3 Ubiquitin ligase, the APC (Anaphase Promoting Complex-cyclosome) that facilitates the stage specific proteolytic destruction of mitotic regulators, such as cyclins and cyclin-dependent kinases. To identify novel functional roles of Rap/Fzr, we conducted an F(1) genetic modifier screen to identify genes which interact with the partial-loss-function mutations in rap/fzr. We screened 2741 single P-element, lethal insertion lines and piggyBac lines on the second and third chromosome for dominant enhancers and suppressors of the rough eye phenotype of rap/fzr. From this screen, we have identified 40 genes that exhibit dosage-sensitive interactions with rap/fzr; of these, 31 have previously characterized cellular functions. Seven of the modifiers identified in this study are regulators of cell cycle progression with previously known interactions with rap/fzr. Among the remaining modifiers, 27 encode proteins involved in other cellular functions not directly related to cell-cycle progression. The newly identified variants fall into at least three groups based on their previously known cellular functions: transcriptional regulation, regulated proteolysis, and signal transduction. These results suggest that, in addition to cell cycle regulation, rap/fzr regulates ubiquitin-ligase-mediated protein degradation in the developing nervous system as well as in other tissues.
Collapse
Affiliation(s)
- Margarita E Kaplow
- Department of Biology, City College and The Graduate Center, City University of New York, New York, NY 10031, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Meignin C, Davis I. UAP56 RNA helicase is required for axis specification and cytoplasmic mRNA localization in Drosophila. Dev Biol 2008; 315:89-98. [PMID: 18237727 DOI: 10.1016/j.ydbio.2007.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 11/30/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
Abstract
mRNA export from the nucleus requires the RNA helicase UAP56 and involves remodeling of ribonucleo-protein complexes in the nucleus. Here, we show that UAP56 is required for bulk mRNA export from the nurse cell nuclei that supply most of the material to the growing Drosophila oocyte and for the organization of chromatin in the oocyte nucleus. Loss of UAP56 function leads to patterning defects that identify uap56 as a spindle-class gene similar to the RNA helicase Vasa. UAP56 is required for the localization of gurken, bicoid and oskar mRNA as well as post-translational modification of Osk protein. By injecting grk RNA into the oocyte cytoplasm, we show that UAP56 plays a role in cytoplasmic mRNA localization. We propose that UAP56 has two independent functions in the remodeling of ribonucleo-protein complexes. The first is in the nucleus for mRNA export of most transcripts from the nucleus. The second is in the cytoplasm for remodeling the transacting factors that decorate mRNA and dictate its cytoplasmic destination.
Collapse
Affiliation(s)
- Carine Meignin
- Department of Biochemistry, The University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|
20
|
Abstract
From yeast to mammals, evidence has emerged in recent years highlighting the essential role played by the nuclear "history" of a messenger RNA in determining its cytoplasmic fate. mRNA localization, translation and stability in the cytoplasm are often pre-destined in the nucleus, and directed by the composition and architecture of nuclear assembled mRNA-protein complexes. In this review we focus on nuclear-acquired RNA-binding proteins and complexes that participate in determining the journey of localized mRNAs.
Collapse
Affiliation(s)
- Corinna Giorgi
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|
21
|
Wiens M, Belikov SI, Kaluzhnaya OV, Krasko A, Schröder HC, Perovic-Ottstadt S, Müller WEG. Molecular control of serial module formation along the apical-basal axis in the sponge Lubomirskia baicalensis: silicateins, mannose-binding lectin and mago nashi. Dev Genes Evol 2006; 216:229-42. [PMID: 16380844 DOI: 10.1007/s00427-005-0047-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2005] [Accepted: 11/21/2005] [Indexed: 10/25/2022]
Abstract
The freshwater sponge Lubomirskia baicalensis (from Lake Baikal) is characterized by a body plan composed of serial modules which are arranged along an apical-basal axis. In shallow water, the sponge occurs only encrusting, while in deeper environment (>3 m), this species forms branches and grows in an arborescent manner. Each module is stabilized by bundles of spined oxeas (amphioxeae spicules). The spicules are surrounded by an organic matrix. cDNAs for structural proteins (silicatein and mannose-binding lectin (MBL)) as well as for one regulatory protein (mago nashi) were isolated from L. baicalensis. Surprisingly the silicatein alpha molecule exists in several, at least four, isoforms (a1 to a4). Expression studies revealed that the steady-state levels of transcripts for the silicateins, the mannose-binding lectin, and mago nashi are highest at the top of the branches, while only very low levels are found in cells at the base. Based on in situ hybridization studies, evidence is presented that the spicule formation (1) starts and is completed inside of the bundles, and (2) occurs together with the mannose-binding lectin from the surfaces of the bundles. The data suggest that the modules are sequentially formed. It is speculated that the expression of the silicateins and the mannose-binding lectin might be (partially) controlled by mago nashi.
Collapse
Affiliation(s)
- Matthias Wiens
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Shibuya T, Tange TØ, Stroupe ME, Moore MJ. Mutational analysis of human eIF4AIII identifies regions necessary for exon junction complex formation and nonsense-mediated mRNA decay. RNA (NEW YORK, N.Y.) 2006; 12:360-74. [PMID: 16495234 PMCID: PMC1383576 DOI: 10.1261/rna.2190706] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The exon junction complex (EJC) is deposited on mRNAs by the process of pre-mRNA splicing and is a key effector of downstream mRNA metabolism. We previously demonstrated that human eIF4AIII, which is essential for nonsense-mediated mRNA decay (NMD), constitutes at least part of the RNA-binding platform anchoring other EJC components to the spliced mRNA. To determine the regions of eIF4AIII that are functionally important for EJC formation, for binding to other EJC components, and for NMD, we now report results of an extensive mutational analysis of human eIF4AIII. Using GFP-, GST- or Flag-fusions of eIF4AIII versions containing site-specific mutations or truncations, we analyzed subcellular localizations, protein-protein interactions, and EJC formation in vivo and in vitro. We also tested whether mutant proteins could rescue NMD inhibition resulting from RNAi depletion of endogenous eIF4AIII. Motifs Ia and VI, which are conserved among the eIF4A family of RNA helicases (DEAD-box proteins), are crucial for EJC formation and NMD, as is one eIF4AIII-specific region. An additional eIF4AIII-specific motif forms part of the binding site for MLN51, another EJC core component. Mutations in the canonical Walker A and B motifs that eliminate RNA-dependent ATP hydrolysis by eIF4AIII in vitro are of no detectable consequence for EJC formation and NMD activation. Implications of these findings are discussed in the context of other recent results and a new structural model for human eIF4AIII based on the known crystal structure of Saccharomyces cerevisiae eIF4AI.
Collapse
Affiliation(s)
- Toshiharu Shibuya
- Howard Hughes Medical Institute, Department of Biochemistry, MS009, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
23
|
Tange TØ, Shibuya T, Jurica MS, Moore MJ. Biochemical analysis of the EJC reveals two new factors and a stable tetrameric protein core. RNA (NEW YORK, N.Y.) 2005; 11:1869-83. [PMID: 16314458 PMCID: PMC1370875 DOI: 10.1261/rna.2155905] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The multiprotein exon junction complex (EJC) is deposited on mRNAs upstream of exon-exon junctions as a consequence of pre-mRNA splicing. In mammalian cells, this complex serves as a key modulator of spliced mRNA metabolism. To date, neither the complete composition nor the exact assembly pathway of the EJC has been entirely elucidated. Using in vitro splicing and a two-step chromatography procedure, we have purified the EJC and analyzed its components by mass spectrometry. In addition to finding most of the known EJC factors, we identified two novel EJC components, Acinus and SAP18. Heterokaryon analysis revealed that SAP18 is a shuttling protein whereas Acinus is restricted to the nucleus. In MS2 tethering assays Acinus stimulated gene expression at the RNA level, while MLN51, another EJC factor, stimulated mRNA translational efficiency. Using tandem affinity purification (TAP) of proteins overexpressed in HeLa cells, we demonstrated that Acinus binds directly to another EJC component, RNPS1, while stable association of SAP18 to form the trimeric apoptosis and splicing associated protein (ASAP) complex requires both Acinus and RNPS1. Using the same methodology, we further identified what appears to be the minimal stable EJC core, a heterotetrameric complex consisting of eIF4AIII, Magoh, Y14, and MLN51.
Collapse
Affiliation(s)
- Thomas Ø Tange
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
24
|
Huang CS, Shi SH, Ule J, Ruggiu M, Barker LA, Darnell RB, Jan YN, Jan LY. Common molecular pathways mediate long-term potentiation of synaptic excitation and slow synaptic inhibition. Cell 2005; 123:105-18. [PMID: 16213216 DOI: 10.1016/j.cell.2005.07.033] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Revised: 07/03/2005] [Accepted: 07/28/2005] [Indexed: 01/22/2023]
Abstract
Synaptic plasticity, the cellular correlate for learning and memory, involves signaling cascades in the dendritic spine. Extensive studies have shown that long-term potentiation (LTP) of the excitatory postsynaptic current (EPSC) through glutamate receptors is induced by activation of N-methyl-D-asparate receptor (NMDA-R)--the coincidence detector--and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Here we report that the same signaling pathway in the postsynaptic CA1 pyramidal neuron also causes LTP of the slow inhibitory postsynaptic current (sIPSC) mediated by metabotropic GABA(B) receptors (GABA(B)-Rs) and G protein-activated inwardly rectifying K(+) (GIRK) channels, both residing in dendritic spines as well as shafts. Indicative of intriguing differences in the regulatory mechanisms for excitatory and inhibitory synaptic plasticity, LTP of sIPSC but not EPSC was abolished in mice lacking Nova-2, a neuronal-specific RNA binding protein that is an autoimmune target in paraneoplastic opsoclonus myoclonus ataxia (POMA) patients with latent cancer, reduced inhibitory control of movements, and dementia.
Collapse
Affiliation(s)
- Cindy Shen Huang
- Howard Hughes Medical Institute and Departments of Physiology and Biochemistry, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Johnson MA, von Besser K, Zhou Q, Smith E, Aux G, Patton D, Levin JZ, Preuss D. Arabidopsis hapless mutations define essential gametophytic functions. Genetics 2004; 168:971-82. [PMID: 15514068 PMCID: PMC1448849 DOI: 10.1534/genetics.104.029447] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 06/17/2004] [Indexed: 11/18/2022] Open
Abstract
In flowering plants, the egg develops within a haploid embryo sac (female gametophyte) that is encased within the pistil. The haploid pollen grain (male gametophyte) extends a pollen tube that carries two sperm cells within its cytoplasm to the embryo sac. This feat requires rapid, precisely guided, and highly polarized growth through, between, and on the surface of the cells of the stigma, style, and ovary. Pollen tube migration depends on a series of long-range signals from diploid female cells as well as a short-range attractant emitted by the embryo sac that guides the final stage of tube growth. We developed a genetic screen in Arabidopsis thaliana that tags mutant pollen with a cell-autonomous marker carried on an insertion element. We found 32 haploid-disrupting (hapless) mutations that define genes required for pollen grain development, pollen tube growth in the stigma and style, or pollen tube growth and guidance in the ovary. We also identified genomic DNA flanking the insertion element for eleven hap mutants and showed that hap1 disrupts AtMago, a gene whose ortholog is important for Drosophila cell polarity.
Collapse
Affiliation(s)
- Mark A Johnson
- Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kenwrick S, Amaya E, Papalopulu N. Pilot morpholino screen in Xenopus tropicalis identifies a novel gene involved in head development. Dev Dyn 2004; 229:289-99. [PMID: 14745953 DOI: 10.1002/dvdy.10440] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The diploid frog X. tropicalis has recently been adopted as a model genetic system, but loss-of-function screens in Xenopus have not yet been performed. We have undertaken a pilot functional knockdown screen in X. tropicalis for genes involved in nervous system development by injecting antisense morpholino (MO) oligos directed against X. tropicalis mRNAs. Twenty-six genes with primary expression in the nervous system were selected as targets based on an expression screen previously conducted in X. laevis. Reproducible phenotypes were observed for six and for four of these, a second MO gave a similar result. One of these genes encodes a novel protein with previously unknown function. Knocking down this gene, designated pinhead, results in severe microcephaly, whereas, overexpression results in macrocephaly. Together with the early embryonic expression in the anterior neural plate, these data indicate that pinhead is a novel gene involved in controlling head development.
Collapse
Affiliation(s)
- Sue Kenwrick
- Cambridge Institute for Medical Research, Hills Road, Cambridge United Kingdom
| | | | | |
Collapse
|
27
|
Chuong SDX, Good AG, Taylor GJ, Freeman MC, Moorhead GBG, Muench DG. Large-scale identification of tubulin-binding proteins provides insight on subcellular trafficking, metabolic channeling, and signaling in plant cells. Mol Cell Proteomics 2004; 3:970-83. [PMID: 15249590 DOI: 10.1074/mcp.m400053-mcp200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microtubules play an essential role in the growth and development of plants and are known to be involved in regulating many cellular processes ranging from translation to signaling. In this article, we describe the proteomic characterization of Arabidopsis tubulin-binding proteins that were purified using tubulin affinity chromatography. Microtubule co-sedimentation assays indicated that most, if not all, of the proteins in the tubulin-binding protein fraction possessed microtubule-binding activity. Two-dimensional gel electrophoresis of the tubulin-binding protein fraction was performed, and 86 protein spots were excised and analyzed for protein identification. A total of 122 proteins were identified with high confidence using LC-MS/MS. These proteins were grouped into six categories based on their predicted functions: microtubule-associated proteins, translation factors, RNA-binding proteins, signaling proteins, metabolic enzymes, and proteins with other functions. Almost one-half of the proteins identified in this fraction were related to proteins that have previously been reported to interact with microtubules. This study represents the first large-scale proteomic identification of eukaryotic cytoskeleton-binding proteins, and provides insight on subcellular trafficking, metabolic channeling, and signaling in plant cells.
Collapse
Affiliation(s)
- Simon D X Chuong
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Over the past decade many studies have revealed a complex web of interconnections between the numerous steps required for eukaryotic gene expression. One set of interconnections link nuclear pre-mRNA splicing and the subsequent metabolism of the spliced mRNAs. It is now apparent that the means of connection is a set of proteins, collectively called the exon junction complex, which are deposited as a consequence of splicing upstream of mRNA exon-exon junctions.
Collapse
Affiliation(s)
- Thomas Ø Tange
- Howard Hughes Medical Institute, Department of Biochemistry, MS009, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
29
|
Abstract
Recent advances in techniques for visualising mRNA movement in living cells have led to rapid progress in understanding the mechanism of mRNA localisation in the cytoplasm. There is an emerging consensus that in many cases the mRNA signals that determine intracellular destination are more complex and difficult to define than was first anticipated. Furthermore, the transacting factors that interpret the mRNA signals are numerous and their combinations change during the life of an mRNA, perhaps allowing the selection of many sub-destinations in the cell. Lastly, an emerging theme over the past few years is that many proteins that determine the destinations of mRNAs are recruited on nascent transcripts in the nucleus. They often function in many different processes in the biogenesis of mRNA and probably act in concert to provide specificity.
Collapse
Affiliation(s)
- Veronique Van de Bor
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland, UK
| | | |
Collapse
|
30
|
Abstract
Cytoplasmic localization of mRNAs is a widespread mechanism for generating cell polarity and can provide the basis for patterning during embryonic development. A prominent example of this is localization of maternal mRNAs in Xenopus oocytes, a process requiring recognition of essential RNA sequences by protein components of the localization machinery. However, it is not yet clear how and when such protein factors associate with localized RNAs to carry out RNA transport. To trace the RNA-protein interactions that mediate RNA localization, we analyzed RNP complexes from the nucleus and cytoplasm. We find that an early step in the localization pathway is recognition of localized RNAs by specific RNA-binding proteins in the nucleus. After transport into the cytoplasm, the RNP complex is remodeled and additional transport factors are recruited. These results suggest that cytoplasmic RNA localization initiates in the nucleus and that binding of specific RNA-binding proteins in the nucleus may act to target RNAs to their appropriate destinations in the cytoplasm.
Collapse
Affiliation(s)
- Tracy L Kress
- Box G-J2, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
31
|
Sardet C, Prodon F, Prulière G, Chenevert J. Polarisation des oeufs et des embryons : principes communs. Med Sci (Paris) 2004; 20:414-23. [PMID: 15124113 DOI: 10.1051/medsci/2004204414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Embryonic development depends on the establishment of polarities which define the axial characteristics of the body. In a small number of cases such as the embryo of the fly drosophila, developmental axes are established well before fertilization while in other organisms such as the nematode worm C. elegans these axes are set up only after fertilization. In most organisms the egg posesses a primary (A-V, Animal-Vegetal) axis acquired during oogenesis which participates in the establishment of the embryonic axes. Such is the case for the eggs of ascidians or the frog Xenopus whose AV axes are remodelled by sperm entry to yield the embryonic axes. Embryos of different species thus acquire an anterior end and a posterior end (Antero-Posterior, A-P axis), dorsal and ventral sides (D-V axis) and then a left and a right side.
Collapse
Affiliation(s)
- Christian Sardet
- BioMarCell, Laboratoire de biologie du développement, UMR 7009 CNRS-UPMC, Station zoologique, 06230 Villefranche-sur-Mer, France.
| | | | | | | |
Collapse
|
32
|
|
33
|
Shibuya T, Tange TØ, Sonenberg N, Moore MJ. eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nat Struct Mol Biol 2004; 11:346-51. [PMID: 15034551 DOI: 10.1038/nsmb750] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 03/03/2004] [Indexed: 11/09/2022]
Abstract
The exon junction complex (EJC), a set of proteins deposited on mRNAs as a consequence of pre-mRNA splicing, is a key effector of downstream mRNA metabolism. We have identified eIF4AIII, a member of the eukaryotic translation initiation factor 4A family of RNA helicases (also known as DExH/D box proteins), as a novel EJC core component. Crosslinking and antibody inhibition studies suggest that eIF4AIII constitutes at least part of the platform anchoring other EJC components to spliced mRNAs. A nucleocytoplasmic shuttling protein, eIF4AIII associates in vitro and in vivo with two other EJC core factors, Y14 and Magoh. In mammalian cells, eIF4AIII is essential for nonsense-mediated mRNA decay (NMD). Finally, a model is proposed by which eIF4AIII represents a new functional class of DExH/D box proteins that act as RNA clamps or 'place holders' for the sequence-independent attachment of additional factors to RNAs.
Collapse
Affiliation(s)
- Toshiharu Shibuya
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Alternative pre-mRNA splicing is a central mode of genetic regulation in higher eukaryotes. Variability in splicing patterns is a major source of protein diversity from the genome. In this review, I describe what is currently known of the molecular mechanisms that control changes in splice site choice. I start with the best-characterized systems from the Drosophila sex determination pathway, and then describe the regulators of other systems about whose mechanisms there is some data. How these regulators are combined into complex systems of tissue-specific splicing is discussed. In conclusion, very recent studies are presented that point to new directions for understanding alternative splicing and its mechanisms.
Collapse
Affiliation(s)
- Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, Howard Hughes Medical Institute, University of California-Los Angeles, Los Angeles, California 90095-1662, USA.
| |
Collapse
|
35
|
Sardet C, Nishida H, Prodon F, Sawada K. Maternal mRNAs of PEM and macho 1, the ascidian muscle determinant, associate and move with a rough endoplasmic reticulum network in the egg cortex. Development 2003; 130:5839-49. [PMID: 14573512 DOI: 10.1242/dev.00805] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Localization of maternal mRNAs in the egg cortex is an essential feature of polarity in embryos of Drosophila, Xenopus and ascidians. In ascidians, maternal mRNAs such as macho 1, a determinant of primary muscle-cell fate, belong to a class of postplasmic RNAs that are located along the animal-vegetal gradient in the egg cortex. Between fertilization and cleavage, these postplasmic RNAs relocate in two main phases. They further concentrate and segregate in small posterior blastomeres into a cortical structure, the centrosome-attracting body (CAB), which is responsible for unequal cleavages.
By using high-resolution, fluorescent, in situ hybridization in eggs,zygotes and embryos of Halocynthia roretzi, we showed that macho 1 and HrPEM are localized on a reticulated structure situated within 2 μm of the surface of the unfertilized egg, and within 8 μm of the surface the vegetal region and then posterior region of the zygote. By isolating cortices from eggs and zygotes we demonstrated that this reticulated structure is a network of cortical rough endoplasmic reticulum (cER) that is tethered to the plasma membrane. The postplasmic RNAs macho 1 and HrPEM were located on the cER network and could be detached from it. We also show that macho 1 and HrPEM accumulated in the CAB and the cER network. We propose that these postplasmic RNAs relocalized after fertilization by following the microfilament- and microtubule-driven translocations of the cER network to the poles of the zygote. We also suggest that the RNAs segregate and concentrate in posterior blastomeres through compaction of the cER to form the CAB. A multimedia BioClip `Polarity inside the egg cortex' tells the story and can be downloaded at www.bioclips.com/bioclip.html
Collapse
Affiliation(s)
- Christian Sardet
- BioMarCell, UMR 7009, CNRS/UPMC, Station Zoologique, Observatoire Océanologique, Villefranche sur Mer, 06230, France.
| | | | | | | |
Collapse
|
36
|
Bjork P, Baurén G, Gelius B, Wrange O, Wieslander L. The Chironomus tentans translation initiation factor eIF4H is present in the nucleus but does not bind to mRNA until the mRNA reaches the cytoplasmic perinuclear region. J Cell Sci 2003; 116:4521-32. [PMID: 14576346 DOI: 10.1242/jcs.00766] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the cell nucleus, precursors to mRNA, pre-mRNAs, associate with a large number of proteins and are processed to mRNA-protein complexes, mRNPs. The mRNPs are then exported to the cytoplasm and the mRNAs are translated into proteins. The mRNAs containing in-frame premature stop codons are recognized and degraded in the nonsense-mediated mRNA decay process. This mRNA surveillence may also occur in the nucleus and presumably involves components of the translation machinery. Several translation factors have been detected in the nucleus, but their functional relationship to the dynamic protein composition of pre-mRNPs and mRNPs in the nucleus is still unclear.
Here, we have identified and characterized the translation initiation factor eIF4H in the dipteran Chironomus tentans. In the cytoplasm, Ct-eIF4H is associated with poly(A+) RNA in polysomes. We show that a minor fraction of Ct-eIF4H enters the nucleus. This fraction is independent on the level of transcription. CteIF4H could not be detected in gene-specific pre-mRNPs or mRNPs, nor in bulk mRNPs in the nucleus. Our immunoelectron microscopy data suggest that Ct-eIF4H associates with mRNP in the cytoplasmic perinuclear region, immediately as the mRNP exits from the nuclear pore complex.
Collapse
Affiliation(s)
- Petra Bjork
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
37
|
Abstract
BACKGROUND Splicing of pre-mRNA in eukaryotes imprints the resulting mRNA with a specific multiprotein complex, the exon-exon junction complex (EJC), at the sites of intron removal. The proteins of the EJC, Y14, Magoh, Aly/REF, RNPS1, Srm160, and Upf3, play critical roles in postsplicing processing, including nuclear export and cytoplasmic localization of the mRNA, and the nonsense-mediated mRNA decay (NMD) surveillance process. Y14 and Magoh are of particular interest because they remain associated with the mRNA in the same position after its export to the cytoplasm and require translation of the mRNA for removal. This tenacious, persistent, splicing-dependent, yet RNA sequence-independent, association suggests an important signaling function and must require distinct structural features for these proteins. RESULTS We describe the high-resolution structure and biochemical properties of the highly conserved human Y14 and Magoh proteins. Magoh has an unusual structure comprised of an extremely flat, six-stranded anti-parallel beta sheet packed against two helices. Surprisingly, Magoh binds with high affinity to the RNP motif RNA binding domain (RBD) of Y14 and completely masks its RNA binding surface. CONCLUSIONS The structure and properties of the Y14-Magoh complex suggest how the pre-mRNA splicing machinery might control the formation of a stable EJC-mRNA complex at splice junctions.
Collapse
Affiliation(s)
- Chi-Kong Lau
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA
| | | | | | | |
Collapse
|
38
|
Forler D, Köcher T, Rode M, Gentzel M, Izaurralde E, Wilm M. An efficient protein complex purification method for functional proteomics in higher eukaryotes. Nat Biotechnol 2003; 21:89-92. [PMID: 12483225 DOI: 10.1038/nbt773] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2002] [Accepted: 11/12/2002] [Indexed: 11/09/2022]
Abstract
The ensemble of expressed proteins in a given cell is organized in multiprotein complexes. The identification of the individual components of these complexes is essential for their functional characterization. The introduction of the 'tandem affinity purification' (TAP) methodology substantially improved the purification and systematic genome-wide characterization of protein complexes in yeast. The use of this approach in higher eukaryotic cells has lagged behind its use in yeast because the tagged proteins are normally expressed in the presence of the untagged endogenous version, which may compete for incorporation into multiprotein complexes. Here we describe a strategy in which the TAP approach is combined with double-stranded RNA interference (RNAi) to avoid competition from corresponding endogenous proteins while isolating and characterizing protein complexes from higher eukaryotic cells. This strategy allows the determination of the functionality of the tagged protein and increases the specificity and the efficiency of the purification.
Collapse
Affiliation(s)
- Daniel Forler
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Intracellular mRNA localization is a common mechanism of post-transcriptional regulation of gene expression. In a wide range of organisms, mRNA localization coupled with translational regulation target the proteins to their site of function. Here, we describe recent exciting evidence that some mRNAs are transported as particles along the cytoskeleton by the molecular motors dynein, kinesin or myosin. We discuss the key questions of how localized mRNAs might be linked to motors and what determines their cytoplasmic destinations.
Collapse
Affiliation(s)
- Hildegard Tekotte
- Wellcome Trust Centre for Cell Biology, ICMB, King's Buildings, The University of Edinburgh, Mayfield Road, EH9 3JR, Edinburgh, UK
| | | |
Collapse
|
40
|
Tefferi A, Wieben ED, Dewald GW, Whiteman DAH, Bernard ME, Spelsberg TC. Primer on medical genomics part II: Background principles and methods in molecular genetics. Mayo Clin Proc 2002; 77:785-808. [PMID: 12173714 DOI: 10.4065/77.8.785] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The nucleus of every human cell contains the full complement of the human genome, which consists of approximately 30,000 to 70,000 named and unnamed genes and many intergenic DNA sequences. The double-helical DNA molecule in a human cell, associated with special proteins, is highly compacted into 22 pairs of autosomal chromosomes and an additional pair of sex chromosomes. The entire cellular DNA consists of approximately 3 billion base pairs, of which only 1% is thought to encode a functional protein or a polypeptide. Genetic information is expressed and regulated through a complex system of DNA transcription, RNA processing, RNA translation, and posttranslational and cotranslational modification of proteins. Advances in molecular biology techniques have allowed accurate and rapid characterization of DNA sequences as well as identification and quantification of cellular RNA and protein. Global analytic methods and human genetic mapping are expected to accelerate the process of identification and localization of disease genes. In this second part of an educational series in medical genomics, selected principles and methods in molecular biology are recapped, with the intent to prepare the reader for forthcoming articles with a more direct focus on aspects of the subject matter.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, Minn 55905, USA
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Efficient eukaryotic gene expression hinges on the ability of mRNA to travel from the nucleus to its cytoplasmic destination. Recent work lends insight into features that allow diverse mRNAs to be recognized by shared export machinery.
Collapse
Affiliation(s)
- Katharine S Ullman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City 84112, USA.
| |
Collapse
|