1
|
Fung HYJ, Jiou J, Niesman AB, Bernardes NE, Chook YM. Nap1 and Kap114 co-chaperone H2A-H2B and facilitate targeted histone release in the nucleus. J Cell Biol 2025; 224:e202408193. [PMID: 39601790 PMCID: PMC11602657 DOI: 10.1083/jcb.202408193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Core histones, synthesized and processed in the cytoplasm, must be chaperoned as they are transported into the nucleus for nucleosome assembly. The importin Kap114 transports H2A-H2B into the yeast nucleus, where RanGTP facilitates histone release. Kap114 and H2A-H2B also bind the histone chaperone Nap1, but how Nap1 and Kap114 cooperate in transport and nucleosome assembly remains unclear. Here, biochemical and structural analyses show that Kap114, H2A-H2B, and a Nap1 dimer (Nap12) associate in the absence and presence of RanGTP to form equimolar complexes. A previous study had shown that RanGTP reduces Kap114's ability to chaperone H2A-H2B, but a new cryo-EM structure of the Nap12•H2A-H2B•Kap114•RanGTP complex explains how both Kap114 and Nap12 interact with H2A-H2B, restoring its chaperoning within the assembly while effectively depositing it into nucleosomes. Together, our results suggest that Kap114 and Nap12 provide a sheltered path that facilitates the transfer of H2A-H2B from Kap114 to Nap12, ultimately directing its specific deposition into nucleosomes.
Collapse
Affiliation(s)
- Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jenny Jiou
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ashley B. Niesman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Natalia E. Bernardes
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Mukhwana N, Garg R, Azad A, Mitchell AR, Williamson M. B-type Plexins Regulate Mitosis via RanGTPase. Mol Cancer Res 2025; 23:8-19. [PMID: 39136653 DOI: 10.1158/1541-7786.mcr-23-0836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/05/2024] [Accepted: 08/08/2024] [Indexed: 01/03/2025]
Abstract
Aberrant mitosis can result in aneuploidy and cancer. The small GTPase, Ras-related nuclear protein (Ran), is a key regulator of mitosis. B-type plexins regulate Ran activity by acting as RanGTPase-activating proteins and have been implicated in cancer progression. However, whether B-type plexins have a role in mitosis has not so far been investigated. We show here that Plexin B1 functions in the control of mitosis. Depletion of Plexin B1 affects mitotic spindle assembly, significantly delaying anaphase. This leads to mitotic catastrophe in some cells and prolonged application of the spindle assembly checkpoint. Plexin B1 depletion also promoted acentrosomal microtubule nucleation and defects in spindle pole refocusing and increased the number of cells with multipolar or aberrant mitotic spindles. An increase in lagging chromosomes or chromosomal bridges at anaphase was also found upon Plexin B1 depletion. Plexin B1 localizes to the mitotic spindle in dividing cells. The mitotic defects observed upon Plexin B1 depletion were rescued by an RCC1 inhibitor, indicating that Plexin B1 signals, via Ran, to affect mitosis. These errors in mitosis generated multinucleate cells and nuclei of altered morphology and abnormal karyotype. Furthermore, semaphorin 4D treatment increased the percentage of cells with micronuclei, precursors of chromothripsis. Implications: Defects in B-type plexins may contribute to the well-established role of plexins in cancer progression by inducing chromosomal instability.
Collapse
Affiliation(s)
- Nicholus Mukhwana
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Ritu Garg
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Abul Azad
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Alexandria R Mitchell
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Magali Williamson
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
3
|
Morstein J, Bowcut V, Fernando M, Yang Y, Zhu L, Jenkins ML, Evans JT, Guiley KZ, Peacock DM, Krahnke S, Lin Z, Taran KA, Huang BJ, Stephen AG, Burke JE, Lightstone FC, Shokat KM. Targeting Ras-, Rho-, and Rab-family GTPases via a conserved cryptic pocket. Cell 2024; 187:6379-6392.e17. [PMID: 39255801 PMCID: PMC11531380 DOI: 10.1016/j.cell.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 05/07/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024]
Abstract
The family of Ras-like GTPases consists of over 150 different members, regulated by an even larger number of guanine exchange factors (GEFs) and GTPase-activating proteins (GAPs) that comprise cellular switch networks that govern cell motility, growth, polarity, protein trafficking, and gene expression. Efforts to develop selective small molecule probes and drugs for these proteins have been hampered by the high affinity of guanosine triphosphate (GTP) and lack of allosteric regulatory sites. This paradigm was recently challenged by the discovery of a cryptic allosteric pocket in the switch II region of K-Ras. Here, we ask whether similar pockets are present in GTPases beyond K-Ras. We systematically surveyed members of the Ras, Rho, and Rab family of GTPases and found that many GTPases exhibit targetable switch II pockets. Notable differences in the composition and conservation of key residues offer potential for the development of optimized inhibitors for many members of this previously undruggable family.
Collapse
Affiliation(s)
- Johannes Morstein
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Victoria Bowcut
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Micah Fernando
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Yue Yang
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Lab, Livermore, CA 94550, USA
| | - Lawrence Zhu
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - John T Evans
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Keelan Z Guiley
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - D Matthew Peacock
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Sophie Krahnke
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Zhi Lin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Katrine A Taran
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA
| | - Benjamin J Huang
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Felice C Lightstone
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Lab, Livermore, CA 94550, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
4
|
Bannoura SF, Khan HY, Uddin MH, Mohammad RM, Pasche BC, Azmi AS. Targeting guanine nucleotide exchange factors for novel cancer drug discovery. Expert Opin Drug Discov 2024; 19:949-959. [PMID: 38884380 PMCID: PMC11380440 DOI: 10.1080/17460441.2024.2368242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION Guanine nucleotide exchange factors (GEFs) regulate the activation of small GTPases (G proteins) of the Ras superfamily proteins controlling cellular functions. Ras superfamily proteins act as 'molecular switches' that are turned 'ON' by guanine exchange. There are five major groups of Ras family GTPases: Ras, Ran, Rho, Rab and Arf, with a variety of different GEFs regulating their GTP loading. GEFs have been implicated in various diseases including cancer. This makes GEFs attractive targets to modulate signaling networks controlled by small GTPases. AREAS COVERED In this review, the roles and mechanisms of GEFs in malignancy are outlined. The mechanism of guanine exchange activity by GEFs on a small GTPase is illustrated. Then, some examples of GEFs that are significant in cancer are presented with a discussion on recent progress in therapeutic targeting efforts using a variety of approaches. EXPERT OPINION Recently, GEFs have emerged as potential therapeutic targets for novel cancer drug development. Targeting small GTPases is challenging; thus, targeting their activation by GEFs is a promising strategy. Most GEF-targeted drugs are still in preclinical development. A deeper biological understanding of the underlying mechanisms of GEF activity and utilizing advanced technology are necessary to enhance drug discovery for GEFs in cancer.
Collapse
Affiliation(s)
- Sahar F Bannoura
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Husain Yar Khan
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Md Hafiz Uddin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ramzi M Mohammad
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Boris C Pasche
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
5
|
Wu H, Lu A, Yuan J, Yu Y, Lv C, Lu J. Mono-ADP-ribosylation, a MARylationmultifaced modification of protein, DNA and RNA: characterizations, functions and mechanisms. Cell Death Discov 2024; 10:226. [PMID: 38734665 PMCID: PMC11088682 DOI: 10.1038/s41420-024-01994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The functional alterations of proteins and nucleic acids mainly rely on their modifications. ADP-ribosylation is a NAD+-dependent modification of proteins and, in some cases, of nucleic acids. This modification is broadly categorized as Mono(ADP-ribosyl)ation (MARylation) or poly(ADP-ribosyl)ation (PARylation). MARylation catalyzed by mono(ADP-ribosyl) transferases (MARTs) is more common in cells and the number of MARTs is much larger than poly(ADP-ribosyl) transferases. Unlike PARylation is well-characterized, research on MARylation is at the starting stage. However, growing evidence demonstrate the cellular functions of MARylation, supporting its potential roles in human health and diseases. In this review, we outlined MARylation-associated proteins including MARTs, the ADP-ribosyl hydrolyses and ADP-ribose binding domains. We summarized up-to-date findings about MARylation onto newly identified substrates including protein, DNA and RNA, and focused on the functions of these reactions in pathophysiological conditions as well as speculated the potential mechanisms. Furthermore, new strategies of MARylation detection and the current state of MARTs inhibitors were discussed. We also provided an outlook for future study, aiming to revealing the unknown biological properties of MARylation and its relevant mechanisms, and establish a novel therapeutic perspective in human diseases.
Collapse
Affiliation(s)
- Hao Wu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Anqi Lu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiuzhi Yuan
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Yu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Chongning Lv
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Jincai Lu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
6
|
Cicardi ME, Kankate V, Sriramoji S, Krishnamurthy K, Markandaiah SS, Verdone BM, Girdhar A, Nelson A, Rivas LB, Boehringer A, Haeusler AR, Pasinelli P, Guo L, Trotti D. The nuclear import receptor Kapβ2 modifies neurotoxicity mediated by poly(GR) in C9orf72-linked ALS/FTD. Commun Biol 2024; 7:376. [PMID: 38548902 PMCID: PMC10978903 DOI: 10.1038/s42003-024-06071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
Expanded intronic G4C2 repeats in the C9ORF72 gene cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). These intronic repeats are translated through a non-AUG-dependent mechanism into five different dipeptide repeat proteins (DPRs), including poly-glycine-arginine (GR), which is aggregation-prone and neurotoxic. Here, we report that Kapβ2 and GR interact, co-aggregating, in cultured neurons in-vitro and CNS tissue in-vivo. Importantly, this interaction significantly decreased the risk of death of cultured GR-expressing neurons. Downregulation of Kapβ2 is detrimental to their survival, whereas increased Kapβ2 levels mitigated GR-mediated neurotoxicity. As expected, GR-expressing neurons displayed TDP-43 nuclear loss. Raising Kapβ2 levels did not restore TDP-43 into the nucleus, nor did alter the dynamic properties of GR aggregates. Overall, our findings support the design of therapeutic strategies aimed at up-regulating Kapβ2 expression levels as a potential new avenue for contrasting neurodegeneration in C9orf72-ALS/FTD.
Collapse
Affiliation(s)
- M E Cicardi
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - V Kankate
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - S Sriramoji
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - K Krishnamurthy
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - S S Markandaiah
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - B M Verdone
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - A Girdhar
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - A Nelson
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - L B Rivas
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - A Boehringer
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - A R Haeusler
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - P Pasinelli
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - L Guo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - D Trotti
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Abstract
Recent advances in the study of virus-cell interactions have improved our understanding of how viruses that replicate their genomes in the nucleus (e.g., retroviruses, hepadnaviruses, herpesviruses, and a subset of RNA viruses) hijack cellular pathways to export these genomes to the cytoplasm where they access virion egress pathways. These findings shed light on novel aspects of viral life cycles relevant to the development of new antiviral strategies and can yield new tractable, virus-based tools for exposing additional secrets of the cell. The goal of this review is to summarize defined and emerging modes of virus-host interactions that drive the transit of viral genomes out of the nucleus across the nuclear envelope barrier, with an emphasis on retroviruses that are most extensively studied. In this context, we prioritize discussion of recent progress in understanding the trafficking and function of the human immunodeficiency virus type 1 Rev protein, exemplifying a relatively refined example of stepwise, cooperativity-driven viral subversion of multi-subunit host transport receptor complexes.
Collapse
Affiliation(s)
- Ryan T. Behrens
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Nathan M. Sherer
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Lin X, Ma Q, Chen L, Guo W, Huang Z, Huang T, Cai YD. Identifying genes associated with resistance to KRAS G12C inhibitors via machine learning methods. Biochim Biophys Acta Gen Subj 2023; 1867:130484. [PMID: 37805078 DOI: 10.1016/j.bbagen.2023.130484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Targeted therapy has revolutionized cancer treatment, greatly improving patient outcomes and quality of life. Lung cancer, specifically non-small cell lung cancer, is frequently driven by the G12C mutation at the KRAS locus. The development of KRAS inhibitors has been a breakthrough in the field of cancer research, given the crucial role of KRAS mutations in driving tumor growth and progression. However, over half of patients with cancer bypass inhibition show limited response to treatment. The mechanisms underlying tumor cell resistance to this treatment remain poorly understood. METHODS To address above gap in knowledge, we conducted a study aimed to elucidate the differences between tumor cells that respond positively to KRAS (G12C) inhibitor therapy and those that do not. Specifically, we analyzed single-cell gene expression profiles from KRAS G12C-mutant tumor cell models (H358, H2122, and SW1573) treated with KRAS G12C (ARS-1620) inhibitor, which contained 4297 cells that continued to proliferate under treatment and 3315 cells that became quiescent. Each cell was represented by the expression levels on 8687 genes. We then designed an innovative machine learning based framework, incorporating seven feature ranking algorithms and four classification algorithms to identify essential genes and establish quantitative rules. RESULTS Our analysis identified some top-ranked genes, including H2AFZ, CKS1B, TUBA1B, RRM2, and BIRC5, that are known to be associated with the progression of multiple cancers. CONCLUSION Above genes were relevant to tumor cell resistance to targeted therapy. This study provides important insights into the molecular mechanisms underlying tumor cell resistance to KRAS inhibitor treatment.
Collapse
Affiliation(s)
- Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University and Fujian Cancer Hospital, Fuzhou 350014, China.
| | - QingLan Ma
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200030, China
| | - Zhiyi Huang
- College of Chemistry, Fuzhou University, Fuzhou 350000, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
9
|
Yang Y, Guo L, Chen L, Gong B, Jia D, Sun Q. Nuclear transport proteins: structure, function, and disease relevance. Signal Transduct Target Ther 2023; 8:425. [PMID: 37945593 PMCID: PMC10636164 DOI: 10.1038/s41392-023-01649-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023] Open
Abstract
Proper subcellular localization is crucial for the functioning of biomacromolecules, including proteins and RNAs. Nuclear transport is a fundamental cellular process that regulates the localization of many macromolecules within the nuclear or cytoplasmic compartments. In humans, approximately 60 proteins are involved in nuclear transport, including nucleoporins that form membrane-embedded nuclear pore complexes, karyopherins that transport cargoes through these complexes, and Ran system proteins that ensure directed and rapid transport. Many of these nuclear transport proteins play additional and essential roles in mitosis, biomolecular condensation, and gene transcription. Dysregulation of nuclear transport is linked to major human diseases such as cancer, neurodegenerative diseases, and viral infections. Selinexor (KPT-330), an inhibitor targeting the nuclear export factor XPO1 (also known as CRM1), was approved in 2019 to treat two types of blood cancers, and dozens of clinical trials of are ongoing. This review summarizes approximately three decades of research data in this field but focuses on the structure and function of individual nuclear transport proteins from recent studies, providing a cutting-edge and holistic view on the role of nuclear transport proteins in health and disease. In-depth knowledge of this rapidly evolving field has the potential to bring new insights into fundamental biology, pathogenic mechanisms, and therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| | - Qingxiang Sun
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, China.
| |
Collapse
|
10
|
Damizia M, Altieri L, Costanzo V, Lavia P. Distinct Mitotic Functions of Nucleolar and Spindle-Associated Protein 1 (NuSAP1) Are Controlled by Two Consensus SUMOylation Sites. Cells 2023; 12:2545. [PMID: 37947624 PMCID: PMC10650578 DOI: 10.3390/cells12212545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Nucleolar and Spindle-Associated Protein 1 (NuSAP1) is an important mitotic regulator, implicated in control of mitotic microtubule stability and chromosome segregation. NuSAP1 regulates these processes by interacting with several protein partners. Its abundance, activity and interactions are therefore tightly regulated during mitosis. Protein conjugation with SUMO (Small Ubiquitin-like MOdifier peptide) is a reversible post-translational modification that modulates rapid changes in the structure, interaction(s) and localization of proteins. NuSAP1 was previously found to interact with RANBP2, a nucleoporin with SUMO ligase and SUMO-stabilizing activity, but how this interaction affects NuSAP1 activity has remained elusive. Here, we show that NuSAP1 interacts with RANBP2 and forms proximity ligation products with SUMO2/3 peptides in a RANBP2-dependent manner at key mitotic sites. A bioinformatic search identified two putative SUMO consensus sites in NuSAP1, within the DNA-binding and the microtubule-binding domains, respectively. Site-specific mutagenesis, and mitotic phenotyping in cell lines expressing each NuSAP1 mutant version, revealed selective roles of each individual site in control of NuSAP1 localization and in generation of specific mitotic defects and distinct fates in daughter cells. These results identify therefore two new regulatory sites for NuSAP1 functions and implicate RANBP2 in control of NuSAP1 activity.
Collapse
Affiliation(s)
- Michela Damizia
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, 00185 Rome, Italy; (M.D.); (L.A.); (V.C.)
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
- Department of Cellular, Computational and Integrated Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Ludovica Altieri
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, 00185 Rome, Italy; (M.D.); (L.A.); (V.C.)
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Vincenzo Costanzo
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, 00185 Rome, Italy; (M.D.); (L.A.); (V.C.)
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, 00185 Rome, Italy; (M.D.); (L.A.); (V.C.)
| |
Collapse
|
11
|
Kahm YJ, Kim IG, Kim RK. RanBP1: A Potential Therapeutic Target for Cancer Stem Cells in Lung Cancer and Glioma. Int J Mol Sci 2023; 24:ijms24076855. [PMID: 37047826 PMCID: PMC10095367 DOI: 10.3390/ijms24076855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Cancer stem cells (CSCs) are known to be one of the factors that make cancer treatment difficult. Many researchers are thus conducting research to efficiently destroy CSCs. Therefore, we sought to suggest a new target that can efficiently suppress CSCs. In this study, we observed a high expression of Ran-binding protein 1 (RanBP1) in lung cancer stem cells (LCSCs) and glioma stem cells (GSCs). Upregulated RanBP1 expression is strongly associated with the expression of CSC marker proteins and CSC regulators. In addition, an elevated RanBP1 expression is strongly associated with a poor patient prognosis. CSCs have the ability to resist radiation, and RanBP1 regulates this ability. RanBP1 also affects the metastasis-associated epithelial–mesenchymal transition (EMT) phenomenon. EMT marker proteins and regulatory proteins are affected by RanBP1 expression, and cell motility was regulated according to RanBP1 expression. The cancer microenvironment influences cancer growth, metastasis, and cancer treatment. RanBP1 can modulate the cancer microenvironment by regulating the cytokine IL-18. Secreted IL-18 acts on cancer cells and promotes cancer malignancy. Our results reveal, for the first time, that RanBP1 is an important regulator in LCSCs and GSCs, suggesting that it holds potential for use as a potential therapeutic target.
Collapse
Affiliation(s)
- Yeon-Jee Kahm
- Department of Radiation Biology, Environmental Safety Assessment Research Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon 34057, Republic of Korea
- Department of Radiation Science and Technology, Korea University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - In-Gyu Kim
- Department of Radiation Biology, Environmental Safety Assessment Research Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon 34057, Republic of Korea
- Department of Radiation Science and Technology, Korea University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Rae-Kwon Kim
- Department of Radiation Biology, Environmental Safety Assessment Research Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon 34057, Republic of Korea
- Department of Radiation Science and Technology, Korea University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
12
|
Loss of RanGAP1 drives chromosome instability and rapid tumorigenesis of osteosarcoma. Dev Cell 2023; 58:192-210.e11. [PMID: 36696903 DOI: 10.1016/j.devcel.2022.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/27/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023]
Abstract
Chromothripsis is a catastrophic event of chromosomal instability that involves intensive fragmentation and rearrangements within localized chromosomal regions. However, its cause remains unclear. Here, we show that reduction and inactivation of Ran GTPase-activating protein 1 (RanGAP1) commonly occur in human osteosarcoma, which is associated with a high rate of chromothripsis. In rapidly expanding mouse osteoprogenitors, RanGAP1 deficiency causes chromothripsis in chr1q, instant inactivation of Rb1 and degradation of p53, consequent failure in DNA damage repair, and ultrafast osteosarcoma tumorigenesis. During mitosis, RanGAP1 anchors to the kinetochore, where it recruits PP1-γ to counteract the activity of the spindle-assembly checkpoint (SAC) and prevents TOP2A degradation, thus safeguarding chromatid decatenation. Loss of RanGAP1 causes SAC hyperactivation and chromatid decatenation failure. These findings demonstrate that RanGAP1 maintains mitotic chromosome integrity and that RanGAP1 loss drives tumorigenesis through its direct effects on SAC and decatenation and secondary effects on DNA damage surveillance.
Collapse
|
13
|
El-Tanani M, Nsairat H, Mishra V, Mishra Y, Aljabali AAA, Serrano-Aroca Á, Tambuwala MM. Ran GTPase and Its Importance in Cellular Signaling and Malignant Phenotype. Int J Mol Sci 2023; 24:3065. [PMID: 36834476 PMCID: PMC9968026 DOI: 10.3390/ijms24043065] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 02/08/2023] Open
Abstract
Ran is a member of the Ras superfamily of proteins, which primarily regulates nucleocytoplasmic trafficking and mediates mitosis by regulating spindle formation and nuclear envelope (NE) reassembly. Therefore, Ran is an integral cell fate determinant. It has been demonstrated that aberrant Ran expression in cancer is a result of upstream dysregulation of the expression of various factors, such as osteopontin (OPN), and aberrant activation of various signaling pathways, including the extracellular-regulated kinase/mitogen-activated protein kinase (ERK/MEK) and phosphatidylinositol 3-kinase/Protein kinase B (PI3K/Akt) pathways. In vitro, Ran overexpression has severe effects on the cell phenotype, altering proliferation, adhesion, colony density, and invasion. Therefore, Ran overexpression has been identified in numerous types of cancer and has been shown to correlate with tumor grade and the degree of metastasis present in various cancers. The increased malignancy and invasiveness have been attributed to multiple mechanisms. Increased dependence on Ran for spindle formation and mitosis is a consequence of the upregulation of these pathways and the ensuing overexpression of Ran, which increases cellular dependence on Ran for survival. This increases the sensitivity of cells to changes in Ran concentration, with ablation being associated with aneuploidy, cell cycle arrest, and ultimately, cell death. It has also been demonstrated that Ran dysregulation influences nucleocytoplasmic transport, leading to transcription factor misallocation. Consequently, patients with tumors that overexpress Ran have been shown to have a higher malignancy rate and a shorter survival time compared to their counterparts.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain
| | - Murtaza M. Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
| |
Collapse
|
14
|
Cellular Stress Induces Nucleocytoplasmic Transport Deficits Independent of Stress Granules. Biomedicines 2022; 10:biomedicines10051057. [PMID: 35625794 PMCID: PMC9138870 DOI: 10.3390/biomedicines10051057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
Stress granules are non-membrane bound granules temporarily forming in the cytoplasm in response to stress. Proteins of the nucleocytoplasmic transport machinery were found in these stress granules and it was suggested that stress granules contribute to the nucleocytoplasmic transport defects in several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). The aim of this study was to investigate whether there is a causal link between stress granule formation and nucleocytoplasmic transport deficits. Therefore, we uncoupled stress granule formation from cellular stress while studying nuclear import. This was carried out by preventing cells from assembling stress granules despite being subjected to cellular stress either by knocking down both G3BP1 and G3BP2 or by pharmacologically inhibiting stress granule formation. Conversely, we induced stress granules by overexpressing G3BP1 in the absence of cellular stress. In both conditions, nuclear import was not affected demonstrating that stress granule formation is not a direct cause of stress-induced nucleocytoplasmic transport deficits.
Collapse
|
15
|
Dultz E, Wojtynek M, Medalia O, Onischenko E. The Nuclear Pore Complex: Birth, Life, and Death of a Cellular Behemoth. Cells 2022; 11:1456. [PMID: 35563762 PMCID: PMC9100368 DOI: 10.3390/cells11091456] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/01/2023] Open
Abstract
Nuclear pore complexes (NPCs) are the only transport channels that cross the nuclear envelope. Constructed from ~500-1000 nucleoporin proteins each, they are among the largest macromolecular assemblies in eukaryotic cells. Thanks to advances in structural analysis approaches, the construction principles and architecture of the NPC have recently been revealed at submolecular resolution. Although the overall structure and inventory of nucleoporins are conserved, NPCs exhibit significant compositional and functional plasticity even within single cells and surprising variability in their assembly pathways. Once assembled, NPCs remain seemingly unexchangeable in post-mitotic cells. There are a number of as yet unresolved questions about how the versatility of NPC assembly and composition is established, how cells monitor the functional state of NPCs or how they could be renewed. Here, we review current progress in our understanding of the key aspects of NPC architecture and lifecycle.
Collapse
Affiliation(s)
- Elisa Dultz
- Institute of Biochemistry, Department of Biology, ETHZ Zurich, 8093 Zurich, Switzerland;
| | - Matthias Wojtynek
- Institute of Biochemistry, Department of Biology, ETHZ Zurich, 8093 Zurich, Switzerland;
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| | - Evgeny Onischenko
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
16
|
Functional diversity in the RAS subfamily of small GTPases. Biochem Soc Trans 2022; 50:921-933. [PMID: 35356965 DOI: 10.1042/bst20211166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
RAS small GTPases regulate important signalling pathways and are notorious drivers of cancer development and progression. While most research to date has focused on understanding and addressing the oncogenic potential of three RAS oncogenes: HRAS, KRAS, and NRAS; the full RAS subfamily is composed of 35 related GTPases with diverse cellular functions. Most remain deeply understudied despite strong evolutionary conservation. Here, we highlight a group of 17 poorly characterized RAS GTPases that are frequently down-regulated in cancer and evidence suggests may function not as oncogenes, but as tumour suppressors. These GTPases remain largely enigmatic in terms of their cellular function, regulation, and interaction with effector proteins. They cluster within two families we designate as 'distal-RAS' (D-RAS; comprised of DIRAS, RASD, and RASL10) and 'CaaX-Less RAS' (CL-RAS; comprised of RGK, NKIRAS, RERG, and RASL11/12 GTPases). Evidence of a tumour suppressive role for many of these GTPases supports the premise that RAS subfamily proteins may collectively regulate cellular proliferation.
Collapse
|
17
|
Nan G, Zhao SH, Wang T, Chao D, Tian RF, Wang WJ, Fu X, Lin P, Guo T, Wang B, Sun XX, Chen X, Chen ZN, Wang SJ, Cui HY. CD147 supports paclitaxel resistance via interacting with RanBP1. Oncogene 2022; 41:983-996. [PMID: 34974521 PMCID: PMC8837534 DOI: 10.1038/s41388-021-02143-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 01/17/2023]
Abstract
Though the great success of paclitaxel, the variable response of patients to the drug limits its clinical utility and the precise mechanisms underlying the variable response to paclitaxel remain largely unknown. This study aims to verify the role and the underlying mechanisms of CD147 in paclitaxel resistance. Immunostaining was used to analyze human non-small-cell lung cancer (NSCLC) and ovarian cancer tissues. RNA-sequencing was used to identify downstream effectors. Annexin V-FITC/propidium iodide and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were used to detect apoptosis. Co-immunoprecipitation (Co-IP), fluorescence resonance energy transfer (FRET) and surface plasmon resonance (SPR) were performed to determine protein interactions. Fluorescence recovery after photobleaching (FRAP) was performed to measure the speed of microtubule turnover. Xenograft tumor model was established to evaluate sensitivity of cancer cells to paclitaxel in vivo. In vitro and in vivo assays showed that silencing CD147 sensitized the cancer cells to paclitaxel treatment. CD147 protected cancer cells from paclitaxel-induced caspase-3 mediated apoptosis regardless of p53 status. Truncation analysis showed that the intracellular domain of CD147 (CD147ICD) was indispensable for CD147-regulated sensitivity to paclitaxel. Via screening the interacting proteins of CD147ICD, Ran binding protein 1 (RanBP1) was identified to interact with CD147ICD via its C-terminal tail. Furthermore, we showed that RanBP1 mediated CD147-regulated microtubule stability and dynamics as well as response to paclitaxel treatment. These results demonstrated that CD147 regulated paclitaxel response by interacting with the C-terminal tail of RanBP1 and targeting CD147 may be a promising strategy for preventing paclitaxel resistant.
Collapse
Affiliation(s)
- Gang Nan
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 710032, Xi'an, China
| | - Shu-Hua Zhao
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - Ting Wang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032, Xi'an, China
| | - Dong Chao
- Department of Thoracic Surgery, the 940th hospital of joint logistics support force of Chinese People's Liberation Army, 730050, Lanzhou, China
| | - Ruo-Fei Tian
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 710032, Xi'an, China
| | - Wen-Jing Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 710032, Xi'an, China
| | - Xin Fu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 710032, Xi'an, China
| | - Peng Lin
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 710032, Xi'an, China
| | - Ting Guo
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 710032, Xi'an, China
| | - Bin Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 710032, Xi'an, China
| | - Xiu-Xuan Sun
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 710032, Xi'an, China
| | - Xi Chen
- College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 710032, Xi'an, China.
| | - Shi-Jie Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 710032, Xi'an, China.
| | - Hong-Yong Cui
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 710032, Xi'an, China.
| |
Collapse
|
18
|
Wu Y, Pegoraro AF, Weitz DA, Janmey P, Sun SX. The correlation between cell and nucleus size is explained by an eukaryotic cell growth model. PLoS Comput Biol 2022; 18:e1009400. [PMID: 35180215 PMCID: PMC8893647 DOI: 10.1371/journal.pcbi.1009400] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 03/03/2022] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
In eukaryotes, the cell volume is observed to be strongly correlated with the nuclear volume. The slope of this correlation depends on the cell type, growth condition, and the physical environment of the cell. We develop a computational model of cell growth and proteome increase, incorporating the kinetics of amino acid import, protein/ribosome synthesis and degradation, and active transport of proteins between the cytoplasm and the nucleoplasm. We also include a simple model of ribosome biogenesis and assembly. Results show that the cell volume is tightly correlated with the nuclear volume, and the cytoplasm-nucleoplasm transport rates strongly influence the cell growth rate as well as the cell/nucleus volume ratio (C/N ratio). Ribosome assembly and the ratio of ribosomal proteins to mature ribosomes also influence the cell volume and the cell growth rate. We find that in order to regulate the cell growth rate and the cell/nucleus volume ratio, the cell must optimally control groups of kinetic and transport parameters together, which could explain the quantitative roles of canonical growth pathways. Finally, although not explicitly demonstrated in this work, we point out that it is possible to construct a detailed proteome distribution using our model and RNAseq data, provided that a quantitative cell division mechanism is known.
Collapse
Affiliation(s)
- Yufei Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - David A. Weitz
- Department of Physics, Harvard University, Boston, Massachusetts, United States of America
| | - Paul Janmey
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sean X. Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
19
|
Cevik M, Caker S, Deliorman G, Cagatay P, Gunduz MK, Susleyici B. The effects of glipizide on DNA damage and nuclear transport in differentiated 3T3-L1 adipocytes. Mol Biol Rep 2022; 49:1151-1159. [PMID: 35013863 DOI: 10.1007/s11033-021-06942-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Despite commonly use for treatment of type II diabetes, possible effects of glipizide on nuclear transport and DNA damage in cells are unknown. Since clinical response of glipizide may change with aging, the aim of the study was to investigate the effect of glipizide by comparing mature and senescent adipocytes. METHODS AND RESULTS The effects of glipizide were investigated in 3T3-L1 adipocytes. Effective and lethal doses were determined by real-time monitoring iCELLigence system. Comet assay was performed to determine DNA damage and quantitative PCR was conducted to detect gene expression levels. RAN expressions were found to be up regulated in mature 180 µM glipizide treated adipocytes compared to control group (p < 0.05); whereas down regulated in senescent 180 µM glipizide treated adipocytes compared to their control adipocytes (p < 0.05). Olive Tail Moment values were significantly higher in mature 180 µM glipizide treated adipocytes (MTG) and senescent 180 µM glipizide treated adipocytes (STG) comparing their untreated controls (p < 0.001 and p < 0.001 respectively). Also class 5 comets that shows severe DNA damage were found to be higher in both MTG and STG groups than their controls (p < 0.001 and p < 0.001, respectively). OTM values were higher in STG than MTG (p < 0.001). CONCLUSIONS This is the first study that reports glipizide caused DNA damage increasing with senescence in adipocytes. As a response to glipizide treatment Ran gene expression increased in mature; and decreased in senescent adipocytes. Further studies are needed to reveal the effect of glipizide on DNA and nuclear interactions in molecular level.
Collapse
Affiliation(s)
- Mehtap Cevik
- Division of Biology, Department of Molecular Biology, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| | - Selen Caker
- Division of Biology, Department of Molecular Biology, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| | - Gokce Deliorman
- Department of Software Engineering, Faculty of Engineering and Architecture, Beykoz University, Istanbul, Turkey
| | - Penbe Cagatay
- Department of Medical Services and Technics, Vocational School of Health Service, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | | | - Belgin Susleyici
- Division of Biology, Department of Molecular Biology, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey.
| |
Collapse
|
20
|
Aksenova V, Dasso M. Mapping paths through the nuclear pore complex. Nat Cell Biol 2022; 24:6-7. [PMID: 35013557 PMCID: PMC11166263 DOI: 10.1038/s41556-021-00823-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nuclear pore complexes (NPCs) facilitate the fast, yet highly selective, nucleocytoplasmic transport of molecules. A recent study describes a multicolour imaging approach to chart the paths for cargo molecules through the human NPC with real-time 3D visualization of nucleocytoplasmic transport events with high spatial and temporal precision.
Collapse
Affiliation(s)
- Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Hirsch AG, Becker D, Lamping JP, Krebber H. Unraveling the stepwise maturation of the yeast telomerase including a Cse1 and Mtr10 mediated quality control checkpoint. Sci Rep 2021; 11:22174. [PMID: 34773052 PMCID: PMC8590012 DOI: 10.1038/s41598-021-01599-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/29/2021] [Indexed: 01/17/2023] Open
Abstract
Telomerases elongate the ends of chromosomes required for cell immortality through their reverse transcriptase activity. By using the model organism Saccharomyces cerevisiae we defined the order in which the holoenzyme matures. First, a longer precursor of the telomerase RNA, TLC1 is transcribed and exported into the cytoplasm, where it associates with the protecting Sm-ring, the Est and the Pop proteins. This partly matured telomerase is re-imported into the nucleus via Mtr10 and a novel TLC1-import factor, the karyopherin Cse1. Remarkably, while mutations in all known transport factors result in short telomere ends, mutation in CSE1 leads to the amplification of Y′ elements in the terminal chromosome regions and thus elongated telomere ends. Cse1 does not only support TLC1 import, but also the Sm-ring stabilization on the RNA enableling Mtr10 contact and nuclear import. Thus, Sm-ring formation and import factor contact resembles a quality control step in the maturation process of the telomerase. The re-imported immature TLC1 is finally trimmed into the 1158 nucleotides long mature form via the nuclear exosome. TMG-capping of TLC1 finalizes maturation, leading to mature telomerase.
Collapse
Affiliation(s)
- Anna Greta Hirsch
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie Und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Daniel Becker
- Philipps-Universität Marburg, Klinik für Dermatologie Und Allergologie, Baldingerstraße, 35043, Marburg, Germany
| | - Jan-Philipp Lamping
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie Und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie Und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
22
|
Vanneste J, Van Den Bosch L. The Role of Nucleocytoplasmic Transport Defects in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:12175. [PMID: 34830069 PMCID: PMC8620263 DOI: 10.3390/ijms222212175] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
There is ample evidence that nucleocytoplasmic-transport deficits could play an important role in the pathology of amyotrophic lateral sclerosis (ALS). However, the currently available data are often circumstantial and do not fully clarify the exact causal and temporal role of nucleocytoplasmic transport deficits in ALS patients. Gaining this knowledge will be of great significance in order to be able to target therapeutically nucleocytoplasmic transport and/or the proteins involved in this process. The availability of good model systems to study the nucleocytoplasmic transport process in detail will be especially crucial in investigating the effect of different mutations, as well as of other forms of stress. In this review, we discuss the evidence for the involvement of nucleocytoplasmic transport defects in ALS and the methods used to obtain these data. In addition, we provide an overview of the therapeutic strategies which could potentially counteract these defects.
Collapse
Affiliation(s)
- Joni Vanneste
- Experimental Neurology, Department of Neurosciences and Leuven Brain Institute (LBI), KU Leuven–University of Leuven, B-3000 Leuven, Belgium;
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, B-3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- Experimental Neurology, Department of Neurosciences and Leuven Brain Institute (LBI), KU Leuven–University of Leuven, B-3000 Leuven, Belgium;
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, B-3000 Leuven, Belgium
| |
Collapse
|
23
|
Perica T, Mathy CJP, Xu J, Jang GM, Zhang Y, Kaake R, Ollikainen N, Braberg H, Swaney DL, Lambright DG, Kelly MJS, Krogan NJ, Kortemme T. Systems-level effects of allosteric perturbations to a model molecular switch. Nature 2021; 599:152-157. [PMID: 34646016 PMCID: PMC8571063 DOI: 10.1038/s41586-021-03982-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 09/01/2021] [Indexed: 11/10/2022]
Abstract
Molecular switch proteins whose cycling between states is controlled by opposing regulators1,2 are central to biological signal transduction. As switch proteins function within highly connected interaction networks3, the fundamental question arises of how functional specificity is achieved when different processes share common regulators. Here we show that functional specificity of the small GTPase switch protein Gsp1 in Saccharomyces cerevisiae (the homologue of the human protein RAN)4 is linked to differential sensitivity of biological processes to different kinetics of the Gsp1 (RAN) switch cycle. We make 55 targeted point mutations to individual protein interaction interfaces of Gsp1 (RAN) and show through quantitative genetic5 and physical interaction mapping that Gsp1 (RAN) interface perturbations have widespread cellular consequences. Contrary to expectation, the cellular effects of the interface mutations group by their biophysical effects on kinetic parameters of the GTPase switch cycle and not by the targeted interfaces. Instead, we show that interface mutations allosterically tune the GTPase cycle kinetics. These results suggest a model in which protein partner binding, or post-translational modifications at distal sites, could act as allosteric regulators of GTPase switching. Similar mechanisms may underlie regulation by other GTPases, and other biological switches. Furthermore, our integrative platform to determine the quantitative consequences of molecular perturbations may help to explain the effects of disease mutations that target central molecular switches.
Collapse
Affiliation(s)
- Tina Perica
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA,European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK,These authors contributed equally
| | - Christopher J. P. Mathy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA,The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA,These authors contributed equally
| | - Jiewei Xu
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA,The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Gwendolyn M. Jang
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA,The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Yang Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
| | - Robyn Kaake
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA,The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Noah Ollikainen
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA,Graduate Program in Bioinformatics, University of California San Francisco, San Francisco, California, United States of America
| | - Hannes Braberg
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA,The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Danielle L. Swaney
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA,The J. David Gladstone Institutes, San Francisco, CA, USA
| | - David G. Lambright
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mark J. S. Kelly
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nevan J. Krogan
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA,The J. David Gladstone Institutes, San Francisco, CA, USA,Correspondence and Requests for Materials should be addressed to: Tanja Kortemme () and Nevan Krogan ()
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA. .,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA. .,The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA. .,Graduate Program in Bioinformatics, University of California San Francisco, San Francisco, California, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
24
|
Dautt-Castro M, Rosendo-Vargas M, Casas-Flores S. The Small GTPases in Fungal Signaling Conservation and Function. Cells 2021; 10:cells10051039. [PMID: 33924947 PMCID: PMC8146680 DOI: 10.3390/cells10051039] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
Monomeric GTPases, which belong to the Ras superfamily, are small proteins involved in many biological processes. They are fine-tuned regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Several families have been identified in organisms from different kingdoms. Overall, the most studied families are Ras, Rho, Rab, Ran, Arf, and Miro. Recently, a new family named Big Ras GTPases was reported. As a general rule, the proteins of all families have five characteristic motifs (G1–G5), and some specific features for each family have been described. Here, we present an exhaustive analysis of these small GTPase families in fungi, using 56 different genomes belonging to different phyla. For this purpose, we used distinct approaches such as phylogenetics and sequences analysis. The main functions described for monomeric GTPases in fungi include morphogenesis, secondary metabolism, vesicle trafficking, and virulence, which are discussed here. Their participation during fungus–plant interactions is reviewed as well.
Collapse
|
25
|
Ross BT, Zidack NK, Flenniken ML. Extreme Resistance to Viruses in Potato and Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:658981. [PMID: 33889169 PMCID: PMC8056081 DOI: 10.3389/fpls.2021.658981] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 05/31/2023]
Abstract
Plant pathogens, including viruses, negatively impact global crop production. Plants have evolved complex immune responses to pathogens. These responses are often controlled by nucleotide-binding leucine-rich repeat proteins (NLRs), which recognize intracellular, pathogen-derived proteins. Genetic resistance to plant viruses is often phenotypically characterized by programmed cell death at or near the infection site; a reaction termed the hypersensitive response. Although visualization of the hypersensitive response is often used as a hallmark of resistance, the molecular mechanisms leading to the hypersensitive response and associated cell death vary. Plants with extreme resistance to viruses rarely exhibit symptoms and have little to no detectable virus replication or spread beyond the infection site. Both extreme resistance and the hypersensitive response can be activated by the same NLR genes. In many cases, genes that normally provide an extreme resistance phenotype can be stimulated to cause a hypersensitive response by experimentally increasing cellular levels of pathogen-derived elicitor protein(s). The molecular mechanisms of extreme resistance and its relationship to the hypersensitive response are largely uncharacterized. Studies on potato and soybean cultivars that are resistant to strains of Potato virus Y (PVY), Potato virus X (PVX), and Soybean mosaic virus (SMV) indicate that abscisic acid (ABA)-mediated signaling and NLR nuclear translocation are important for the extreme resistance response. Recent research also indicates that some of the same proteins are involved in both extreme resistance and the hypersensitive response. Herein, we review and synthesize published studies on extreme resistance in potato and soybean, and describe studies in additional species, including model plant species, to highlight future research avenues that may bridge the gaps in our knowledge of plant antiviral defense mechanisms.
Collapse
Affiliation(s)
- Brian T. Ross
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Nina K. Zidack
- Montana State Seed Potato Certification Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
- Montana State Seed Potato Certification Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
26
|
Mboukou A, Rajendra V, Kleinova R, Tisné C, Jantsch MF, Barraud P. Transportin-1: A Nuclear Import Receptor with Moonlighting Functions. Front Mol Biosci 2021; 8:638149. [PMID: 33681296 PMCID: PMC7930572 DOI: 10.3389/fmolb.2021.638149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Transportin-1 (Trn1), also known as karyopherin-β2 (Kapβ2), is probably the best-characterized nuclear import receptor of the karyopherin-β family after Importin-β, but certain aspects of its functions in cells are still puzzling or are just recently emerging. Since the initial identification of Trn1 as the nuclear import receptor of hnRNP A1 ∼25 years ago, several molecular and structural studies have unveiled and refined our understanding of Trn1-mediated nuclear import. In particular, the understanding at a molecular level of the NLS recognition by Trn1 made a decisive step forward with the identification of a new class of NLSs called PY-NLSs, which constitute the best-characterized substrates of Trn1. Besides PY-NLSs, many Trn1 cargoes harbour NLSs that do not resemble the archetypical PY-NLS, which complicates the global understanding of cargo recognition by Trn1. Although PY-NLS recognition is well established and supported by several structures, the recognition of non-PY-NLSs by Trn1 is far less understood, but recent reports have started to shed light on the recognition of this type of NLSs. Aside from its principal and long-established activity as a nuclear import receptor, Trn1 was shown more recently to moonlight outside nuclear import. Trn1 has for instance been caught in participating in virus uncoating, ciliary transport and in modulating the phase separation properties of aggregation-prone proteins. Here, we focus on the structural and functional aspects of Trn1-mediated nuclear import, as well as on the moonlighting activities of Trn1.
Collapse
Affiliation(s)
- Allegra Mboukou
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique (IBPC), UMR 8261, CNRS, Université de Paris, Paris, France
| | - Vinod Rajendra
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Renata Kleinova
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Carine Tisné
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique (IBPC), UMR 8261, CNRS, Université de Paris, Paris, France
| | - Michael F. Jantsch
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Pierre Barraud
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique (IBPC), UMR 8261, CNRS, Université de Paris, Paris, France
| |
Collapse
|
27
|
Migliori AD, Patel LA, Neale C. The RIT1 C-terminus associates with lipid bilayers via charge complementarity. Comput Biol Chem 2021; 91:107437. [PMID: 33517146 DOI: 10.1016/j.compbiolchem.2021.107437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/30/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022]
Abstract
RIT1 is a member of the Ras superfamily of small GTPases involved in regulation of cellular signaling. Mutations to RIT1 are involved in cancer and developmental disorders. Like many Ras subfamily members, RIT1 is localized to the plasma membrane. However, RIT1 lacks the C-terminal prenylation that helps many other subfamily members adhere to cellular membranes. We used molecular dynamics simulations to examine the mechanisms by which the C-terminal peptide (CTP) of RIT1 associates with lipid bilayers. We show that the CTP is unstructured and that its membrane interactions depend on lipid composition. While a 12-residue region of the CTP binds strongly to anionic bilayers containing phosphatidylserine lipids, the CTP termini fray from the membrane allowing for accommodation of the RIT1 globular domain at the membrane-water interface.
Collapse
Affiliation(s)
- Amy D Migliori
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States; Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States
| | - Lara A Patel
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States; Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States
| | - Chris Neale
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States.
| |
Collapse
|
28
|
Ge M, Zhang T, Zhang M, Cheng L. Ran participates in deltamethrin stress through regulating the nuclear import of Nrf2. Gene 2020; 769:145213. [PMID: 33069802 DOI: 10.1016/j.gene.2020.145213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
Abstract
The small GTPase Ran has a variety of biological functions, one of the most prominent of which is to regulate nucleocytoplasmic transport. In our previous study, it was suggested that Ran is involved in the deltamethrin (DM) stress. In addition, Keap1-Nrf2-ARE pathway was also confirmed to be associated with DM stress. We report here that under DM stress, interfering Ran or nuclear transport factor Ntf2 by RNAi could suppress the nuclear import of nuclear transcription factor Nrf2 which then down-regulates the expressions of detoxification enzyme genes (Cyp4d20, Cyp4ae1, GstD5, Sod3, etc.), ultimately resulting in a significant apoptosis of Drosophila Kc cells. In contrast, after overexpressing Ran in Kc cells, Nrf2 has a higher concentration in the nucleus, and the expressions of detoxification enzyme genes are up-regulated, while the DM-induced apoptosis is significantly lower than that of the control group. Additionally, we preliminary found silencing Ntf2 or Ran could prevent the nuclear import of transcription factor Dif under DM stress, subsequently decreased expressions of antimicrobial peptide genes (Drsl1). In summary, our data mainly indicates that Ran may participate in DM stress through regulating the nuclear import of Nrf2, which could help to study the mechanism of deltamethrin resistance.
Collapse
Affiliation(s)
- Mengying Ge
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Tingting Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Man Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Luogen Cheng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
29
|
Yau KC, Arnaoutov A, Aksenova V, Kaufhold R, Chen S, Dasso M. RanBP1 controls the Ran pathway in mammalian cells through regulation of mitotic RCC1 dynamics. Cell Cycle 2020; 19:1899-1916. [PMID: 32594833 PMCID: PMC7469662 DOI: 10.1080/15384101.2020.1782036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Ran GTPase plays critical roles in multiple cellular processes including interphase nucleocytoplasmic transport and mitotic spindle assembly. During mitosis in mammalian cells, GTP-bound Ran (Ran-GTP) is concentrated near mitotic chromatin while GDP-bound Ran (Ran-GDP) is more abundant distal to chromosomes. This pattern spatially controls spindle formation because Ran-GTP locally releases spindle assembly factors (SAFs), such as Hepatoma Up-Regulated Protein (HURP), from inhibitory interactions near chromosomes. Regulator of Chromatin Condensation 1 (RCC1) is Ran’s chromatin-bound exchange factor, and RanBP1 is a conserved Ran-GTP-binding protein that has been implicated as a mitotic regulator of RCC1 in embryonic systems. Here, we show that RanBP1 controls mitotic RCC1 dynamics in human somatic tissue culture cells. In addition, we observed the re-localization of HURP in metaphase cells after RanBP1 degradation, consistent with the idea that altered RCC1 dynamics functionally modulate SAF activities. Together, our findings reveal an important mitotic role for RanBP1 in human somatic cells, controlling the spatial distribution and magnitude of mitotic Ran-GTP production and thereby ensuring the accurate execution of Ran-dependent mitotic events. Abbreviations AID: Auxin-induced degron; FLIP: Fluorescence loss in photobleaching; FRAP: Fluorescence recovery after photobleaching; GDP: guanosine diphosphate; GTP: guanosine triphosphate; HURP: Hepatoma Up-Regulated Protein; NE: nuclear envelope; NEBD: Nuclear Envelope Breakdown; RanBP1: Ran-binding protein 1; RanGAP1: Ran GTPase-Activating Protein 1; RCC1: Regulator of Chromatin Condensation 1; RRR complex: RCC1/Ran/RanBP1 heterotrimeric complex; SAF: Spindle Assembly Factor; TIR1: Transport Inhibitor Response 1 protein; XEE: Xenopus egg extract.
Collapse
Affiliation(s)
- Ka Chun Yau
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health , Bethesda, MD 20892, USA
| | - Alexei Arnaoutov
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health , Bethesda, MD 20892, USA
| | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health , Bethesda, MD 20892, USA
| | - Ross Kaufhold
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health , Bethesda, MD 20892, USA
| | - Shane Chen
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health , Bethesda, MD 20892, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health , Bethesda, MD 20892, USA
| |
Collapse
|
30
|
Zhong Y, Cao L, Ma H, Wang Q, Wei P, Yang J, Mo Y, Cao L, Shuai C, Peng S. Lin28A Regulates Stem-like Properties of Ovarian Cancer Cells by Enriching RAN and HSBP1 mRNA and Up-regulating its Protein Expression. Int J Biol Sci 2020; 16:1941-1953. [PMID: 32398961 PMCID: PMC7211169 DOI: 10.7150/ijbs.43504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/15/2020] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer (OC) is one of the malignant tumors that seriously threaten women's health, with the highest mortality rate in gynecological malignancies. The prognosis of patients with advanced OC is still poor, and the 5-year survival rate is only 20-30%. Therefore, how to improve the early diagnosis rate and therapeutic effect are urgent for patients with OC. In this research, we found that Lin28A can promote the expression of stem cell marker molecules CD133, CD44, OCT4 and Nanog. We later confirmed that Lin28A can enrich the mRNA of ras-related nuclear protein (RAN) and heat shock factor binding protein 1 (HSBP1) through RIP assay, and that Lin28A can regulate their protein expression. We also identified that RAN and HSBP1 are highly expressed in OC tissues, and that they are significantly positively correlated with the expression of Lin28A and negatively correlated with the survival prognosis of OC patients. After stable knockdown of RAN or HSBP1 in OC cells with high expression of Lin28A, the expression of the stem cell marker molecules such as OCT4, CD44 and Nanog are reduced. And after knocking down of RAN or HSBP1 in Lin28A highly expressed OC cells, the survival and invasion of OC cells and tumor size of OC xenograft in nude mice were markedly inhibited and apoptosis was increased. Our data also showed that knock down of RAN or HSBP1 can inhibit the invasion ability of OC cells by decreasing the expression of N-cadherin, Vimentin and promoting the expression of E-cadherin. Meanwhile, knockdown of RAN or HSBP1 induced cell apoptosis by inhibiting the expression of PARP. Our results indicated that Lin28A could regulate the biological behaviors in OC cells through RAN/HSBP1. These findings suggest that Lin28A/RAN/HSBP1 can be used as a marker for diagnosis and prognosis of OC patients, and RAN/HSBP1 may be a potential new target for gene therapy of OC.
Collapse
Affiliation(s)
- Yancheng Zhong
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Lanqin Cao
- The department of gynecology of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haotian Ma
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Qian Wang
- The department of gynecology of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pingpin Wei
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Juan Yang
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Yuqing Mo
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Lihua Cao
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Cijun Shuai
- Jiangxi University of Science and Technology, Ganzhou, 341000, China; State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, 410083, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| |
Collapse
|
31
|
Zhang C, Zhao X, Du W, Shen J, Li S, Li Z, Wang Z, Liu F. Ran promotes the proliferation and migration ability of head and neck squamous cell carcinoma cells. Pathol Res Pract 2020; 216:152951. [PMID: 32334891 DOI: 10.1016/j.prp.2020.152951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/15/2020] [Accepted: 03/29/2020] [Indexed: 11/17/2022]
Abstract
HNSCC is an aggressive tumor that often recurrence and metastasis. Although the treatment of HNSCC has improved over the past few decades, it is easy to recurrence even after comprehensive treatment. Ran is a small Ras-related GTPase belonging to the Ras superfamily. Recently, Ran has been proven to be an important oncogene involved in the metastatic progression of many human cancers. But there is seldom research on HNSCC about Ran. This study revealed the relationship between Ran expression and HNSCC characteristics, investigated the expression and role of Ran in HNSCC tissues and cells by means of immunohistochemistry, qRT-PCR, CCK-8, FCM and transwell migration assays. The results indicated that HNSCC tissues had significantly higher Ran expression than adjacent non-tumor tissues. The overall survival rate was significantly lower in patients with Ran-positive tumors than in those with Ran-negative tumors. Moreover, Ran was positively correlated with tumor grade, lymph node metastasis and recurrence. Ran was also high expressed in the HNSCC cell lines (PCI-37B and SCC9) and down regulated of Ran could evidently inhibit their proliferation, migration and down-regulate of Met protein. In conclusion, our findings suggested Ran could promote the proliferation and migration ability of HNSCC cells. Ran may play an important role in the development of HNSCC and may serve as a novel prognostic indicator of HNSCC.
Collapse
Affiliation(s)
- Chong Zhang
- Center for Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Xida Zhao
- Department of Periodontics and Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Weidong Du
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Jing Shen
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Siqi Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Zijia Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Zengxu Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Fayu Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China.
| |
Collapse
|
32
|
Sleiman S, Dragon F. Recent Advances on the Structure and Function of RNA Acetyltransferase Kre33/NAT10. Cells 2019; 8:cells8091035. [PMID: 31491951 PMCID: PMC6770127 DOI: 10.3390/cells8091035] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 02/07/2023] Open
Abstract
Ribosome biogenesis is one of the most energy demanding processes in the cell. In eukaryotes, the main steps of this process occur in the nucleolus and include pre-ribosomal RNA (pre-rRNA) processing, post-transcriptional modifications, and assembly of many non-ribosomal factors and ribosomal proteins in order to form mature and functional ribosomes. In yeast and humans, the nucleolar RNA acetyltransferase Kre33/NAT10 participates in different maturation events, such as acetylation and processing of 18S rRNA, and assembly of the 40S ribosomal subunit. Here, we review the structural and functional features of Kre33/NAT10 RNA acetyltransferase, and we underscore the importance of this enzyme in ribosome biogenesis, as well as in acetylation of non-ribosomal targets. We also report on the role of human NAT10 in Hutchinson-Gilford progeria syndrome.
Collapse
Affiliation(s)
- Sophie Sleiman
- Département des Sciences Biologiques and Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada.
| | - Francois Dragon
- Département des Sciences Biologiques and Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada.
| |
Collapse
|
33
|
Bo Q, Chen L, Liu Y, Chang C, Ying X, Li F, Cheng L. Analysis of Ran related to pesticide resistance in Drosophila Kc cells. Gene 2018; 663:131-137. [DOI: 10.1016/j.gene.2018.04.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 03/30/2018] [Accepted: 04/12/2018] [Indexed: 12/31/2022]
|
34
|
Sheng C, Qiu J, Wang Y, He Z, Wang H, Wang Q, Huang Y, Zhu L, Shi F, Chen Y, Xiong S, Xu Z, Ni Q. Knockdown of Ran GTPase expression inhibits the proliferation and migration of breast cancer cells. Mol Med Rep 2018; 18:157-168. [PMID: 29750309 PMCID: PMC6059664 DOI: 10.3892/mmr.2018.8952] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/16/2018] [Indexed: 01/04/2023] Open
Abstract
Breast cancer is the second leading cause of cancer-associated mortality in women worldwide. Strong evidence has suggested that Ran, which is a small GTP binding protein involved in the transport of RNA and protein across the nucleus, may be a key cellular protein involved in the metastatic progression of cancer. The present study investigated Ran gene expression in breast cancer tissue samples obtained from 140 patients who had undergone surgical resection for breast cancer. Western blot analysis of Ran in breast cancer tissues and paired adjacent normal tissues showed that expression of Ran was significantly increased in breast cancer tissues. Immunohistochemistry analyses conducted on formalin-fixed paraffin-embedded breast cancer tissue sections revealed that Ran expression was associated with tumor histological grade, nerve invasion and metastasis, vascular metastasis and Ki-67 expression (a marker of cell proliferation). Kaplan-Meier survival analysis showed that increased Ran expression in patients with breast cancer was positively associated with a poor survival prognosis. Furthermore, in vitro experiments demonstrated that highly migratory MDA-MB-231 cancer cells treated with Ran-si-RNA (si-Ran), which knocked down expression of Ran, exhibited decreased motility in trans-well migration and wound healing assays. Cell cycle analysis of Ran knocked down MDA-MB-231 cells implicated Ran in cell cycle arrest and the inhibition of proliferation. Furthermore, a starvation and re-feeding (CCK-8) assay was performed, which indicated that Ran regulated breast cancer cell proliferation. Taken together, the results provide strong in vitro evidence of the involvement of Ran in the progression of breast cancer and suggest that it could have high potential as a therapeutic target and/or marker of disease.
Collapse
Affiliation(s)
- Chenyi Sheng
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jian Qiu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yingying Wang
- Surgical Comprehensive Laboratory, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhixian He
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hua Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qingqing Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yeqing Huang
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Lianxin Zhu
- Department of Surgical Oncology, Lu'an People's Hospital Tumor Center, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, Anhui 237000, P.R. China
| | - Feng Shi
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yingying Chen
- Surgical Comprehensive Laboratory, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shiyao Xiong
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhen Xu
- Surgical Comprehensive Laboratory, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qichao Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
35
|
Decker F, Oriola D, Dalton B, Brugués J. Autocatalytic microtubule nucleation determines the size and mass of Xenopus laevis egg extract spindles. eLife 2018; 7:31149. [PMID: 29323637 PMCID: PMC5814149 DOI: 10.7554/elife.31149] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/09/2018] [Indexed: 01/27/2023] Open
Abstract
Regulation of size and growth is a fundamental problem in biology. A prominent example is the formation of the mitotic spindle, where protein concentration gradients around chromosomes are thought to regulate spindle growth by controlling microtubule nucleation. Previous evidence suggests that microtubules nucleate throughout the spindle structure. However, the mechanisms underlying microtubule nucleation and its spatial regulation are still unclear. Here, we developed an assay based on laser ablation to directly probe microtubule nucleation events in Xenopus laevis egg extracts. Combining this method with theory and quantitative microscopy, we show that the size of a spindle is controlled by autocatalytic growth of microtubules, driven by microtubule-stimulated microtubule nucleation. The autocatalytic activity of this nucleation system is spatially regulated by the limiting amounts of active microtubule nucleators, which decrease with distance from the chromosomes. This mechanism provides an upper limit to spindle size even when resources are not limiting.
Collapse
Affiliation(s)
- Franziska Decker
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany,Center for Systems Biology DresdenDresdenGermany,Max Planck Institute for the Physics of Complex SystemsDresdenGermany
| | - David Oriola
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany,Center for Systems Biology DresdenDresdenGermany,Max Planck Institute for the Physics of Complex SystemsDresdenGermany
| | - Benjamin Dalton
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany,Center for Systems Biology DresdenDresdenGermany,Max Planck Institute for the Physics of Complex SystemsDresdenGermany
| | - Jan Brugués
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany,Center for Systems Biology DresdenDresdenGermany,Max Planck Institute for the Physics of Complex SystemsDresdenGermany
| |
Collapse
|
36
|
Aoki K, Niki H. Release of condensin from mitotic chromosomes requires the Ran-GTP gradient in the reorganized nucleus. Biol Open 2017; 6:1614-1628. [PMID: 28954740 PMCID: PMC5703609 DOI: 10.1242/bio.027193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After mitosis, nuclear reorganization occurs together with decondensation of mitotic chromosomes and reformation of the nuclear envelope, thereby restoring the Ran-GTP gradient between the nucleus and cytoplasm. The Ran-GTP gradient is dependent on Pim1/RCC1. Interestingly, a defect in Pim1/RCC1 in Schizosaccharomyces pombe causes postmitotic condensation of chromatin, namely hypercondensation, suggesting a relationship between the Ran-GTP gradient and chromosome decondensation. However, how Ran-GTP interacts with chromosome decondensation is unresolved. To examine this interaction, we used Schizosaccharomyces japonicus, which is known to undergo partial breakdown of the nuclear membrane during mitosis. We found that Pim1/RCC1 was localized on nuclear pores, but this localization failed in a temperature-sensitive mutant of Pim1/RCC1. The mutant cells exhibited hypercondensed chromatin after mitosis due to prolonged association of condensin on the chromosomes. Conceivably, a condensin-dephosphorylation defect might cause hypercondensed chromatin, since chromosomal localization of condensin is dependent on phosphorylation by cyclin-dependent kinase (CDK). Indeed, CDK-phospho-mimic mutation of condensin alone caused untimely condensin localization, resulting in hypercondensed chromatin. Together, these results suggest that dephosphorylation of CDK sites of condensin might require the Ran-GTP gradient produced by nuclear pore-localized Pim1/RCC1. Summary: A mutant of Pim1/RCC1 caused hypercondensed chromatin after mitosis due to prolonged association of condensin on chromosomes, suggesting that dephosphorylation of CDK sites of condensin might require Ran-GTP after mitosis.
Collapse
Affiliation(s)
- Keita Aoki
- Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan .,Department of Genetics, SOKENDAI, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hironori Niki
- Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, SOKENDAI, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
37
|
Wang C, Wang J, Wang X, Xia Y, Chen C, Shen Z, Chen Y. Proteomic analysis on roots of Oenothera glazioviana under copper-stress conditions. Sci Rep 2017; 7:10589. [PMID: 28878286 PMCID: PMC5587583 DOI: 10.1038/s41598-017-10370-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/04/2017] [Indexed: 01/20/2023] Open
Abstract
Proteomic studies were performed to identify proteins involved in the response of Oenothera glazioviana seedlings under Cu stress. Exposure of 28-d-old seedlings to 50 μM CuSO4 for 3 d led to inhibition of shoot and root growth as well as a considerable increase in the level of lipid peroxidation in the roots. Cu absorbed by O. glazioviana accumulated more easily in the root than in the shoot. Label-free proteomic analysis indicated 58 differentially abundant proteins (DAPs) of the total 3,149 proteins in the roots of O. glazioviana seedlings, of which 36 were upregulated and 22 were downregulated under Cu stress conditions. Gene Ontology analysis showed that most of the identified proteins could be annotated to signal transduction, detoxification, stress defence, carbohydrate, energy, and protein metabolism, development, and oxidoreduction. We also retrieved 13 proteins from the enriched Kyoto Encyclopaedia of Genes and Genomes and the protein-protein interaction databases related to various pathways, including the citric acid (CA) cycle. Application of exogenous CA to O. glazioviana seedlings exposed to Cu alleviated the stress symptoms. Overall, this study provided new insights into the molecular mechanisms of plant response to Cu at the protein level in relation to soil properties.
Collapse
Affiliation(s)
- Chong Wang
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jie Wang
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiao Wang
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yan Xia
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chen Chen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhenguo Shen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yahua Chen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
38
|
Koyama M, Matsuura Y. Crystal structure of importin-α3 bound to the nuclear localization signal of Ran-binding protein 3. Biochem Biophys Res Commun 2017; 491:609-613. [DOI: 10.1016/j.bbrc.2017.07.155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 07/27/2017] [Indexed: 12/12/2022]
|
39
|
Koyama M, Sasaki T, Sasaki N, Matsuura Y. Crystal structure of human WBSCR16, an RCC1-like protein in mitochondria. Protein Sci 2017; 26:1870-1877. [PMID: 28608466 DOI: 10.1002/pro.3210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 11/09/2022]
Abstract
WBSCR16 (Williams-Beuren Syndrome Chromosomal Region 16) gene is located in a large deletion region of Williams-Beuren syndrome (WBS), which is a neurodevelopmental disorder. Although the relationship between WBSCR16 and WBS remains unclear, it has been reported that WBSCR16 is a member of a functional module that regulates mitochondrial 16S rRNA abundance and intra-mitochondrial translation. WBSCR16 has RCC1 (Regulator of Chromosome Condensation 1)-like amino acid sequence repeats but the function of WBSCR16 appears to be different from that of other RCC1 superfamily members. Here, we demonstrate that WBSCR16 localizes to mitochondria in HeLa cells, and report the crystal structure of WBSCR16 determined to 2.0 Å resolution using multi-wavelength anomalous diffraction. WBSCR16 adopts the seven-bladed β-propeller fold characteristic of RCC1-like proteins. A comparison of the WBSCR16 structure with that of RCC1 and other RCC1-like proteins reveals that, although many of the residues buried in the core of the β-propeller are highly conserved, the surface residues are poorly conserved and conformationally divergent.
Collapse
Affiliation(s)
- Masako Koyama
- Division of Biological Science, Nagoya University, Furo-cho, Chikusa-ku, Japan
| | - Taeko Sasaki
- Division of Biological Science, Nagoya University, Furo-cho, Chikusa-ku, Japan
| | - Narie Sasaki
- Division of Biological Science, Nagoya University, Furo-cho, Chikusa-ku, Japan
| | - Yoshiyuki Matsuura
- Division of Biological Science, Nagoya University, Furo-cho, Chikusa-ku, Japan.,Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Japan
| |
Collapse
|
40
|
Abstract
Mitosis is the stage of the cell cycle during which replicated chromosomes must be precisely divided to allow the formation of two daughter cells possessing equal genetic material. Much of the careful spatial and temporal organization of mitosis is maintained through post-translational modifications, such as phosphorylation and ubiquitination, of key cellular proteins. Here, we will review evidence that sumoylation, conjugation to the SUMO family of small ubiquitin-like modifiers, also serves essential regulatory roles during mitosis. We will discuss the basic biology of sumoylation, how the SUMO pathway has been implicated in particular mitotic functions, including chromosome condensation, centromere/kinetochore organization and cytokinesis, and what cellular proteins may be the targets underlying these phenomena.
Collapse
Affiliation(s)
- Debaditya Mukhopadhyay
- Section on Cell Cycle Regulation, Laboratory of Gene Regulation and Development, National Institute of Child Health and Development, National Institutes of Health, 18 Library Drive, Room 106, Building 18T, Bethesda, MD, 20892, USA
| | - Mary Dasso
- Section on Cell Cycle Regulation, Laboratory of Gene Regulation and Development, National Institute of Child Health and Development, National Institutes of Health, 18 Library Drive, Room 106, Building 18T, Bethesda, MD, 20892, USA.
| |
Collapse
|
41
|
Akashi K, Yoshimura K, Kajikawa M, Hanada K, Kosaka R, Kato A, Katoh A, Nanasato Y, Tsujimoto H, Yokota A. Potential involvement of drought-induced Ran GTPase CLRan1 in root growth enhancement in a xerophyte wild watermelon. Biosci Biotechnol Biochem 2016; 80:1907-16. [DOI: 10.1080/09168451.2016.1191328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Enhanced root growth is known as the survival strategy of plants under drought. Previous proteome analysis in drought-resistant wild watermelon has shown that Ran GTPase, an essential regulator of cell division and proliferation, was induced in the roots under drought. In this study, two cDNAs were isolated from wild watermelon, CLRan1 and CLRan2, which showed a high degree of structural similarity with those of other plant Ran GTPases. Quantitative RT-PCR and promoter-GUS assays suggested that CLRan1 was expressed mainly in the root apex and lateral root primordia, whereas CLRan2 was more broadly expressed in other part of the roots. Immunoblotting analysis confirmed that the abundance of CLRan proteins was elevated in the root apex region under drought stress. Transgenic Arabidopsis overexpressing CLRan1 showed enhanced primary root growth, and the growth was maintained under osmotic stress, indicating that CLRan1 functions as a positive factor for maintaining root growth under stress conditions.
Collapse
Affiliation(s)
- Kinya Akashi
- Faculty of Agriculture, School of Agricultural, Biological and Environmental Sciences, Tottori University, Tottori, Japan
| | - Kazuya Yoshimura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Masataka Kajikawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Kouhei Hanada
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Rina Kosaka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Atsushi Kato
- Faculty of Agriculture, School of Agricultural, Biological and Environmental Sciences, Tottori University, Tottori, Japan
| | - Akira Katoh
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Yoshihiko Nanasato
- Faculty of Agriculture, School of Agricultural, Biological and Environmental Sciences, Tottori University, Tottori, Japan
| | | | - Akiho Yokota
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| |
Collapse
|
42
|
Fujiwara K, Hasegawa K, Oka M, Yoneda Y, Yoshikawa K. Terminal differentiation of cortical neurons rapidly remodels RanGAP-mediated nuclear transport system. Genes Cells 2016; 21:1176-1194. [DOI: 10.1111/gtc.12434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 08/16/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Kazushiro Fujiwara
- Institute for Protein Research; Osaka University; Suita Osaka 565-0871 Japan
| | - Koichi Hasegawa
- Institute for Protein Research; Osaka University; Suita Osaka 565-0871 Japan
| | - Masahiro Oka
- National Institutes of Biomedical Innovation, Health and Nutrition; Ibaraki Osaka 567-0085 Japan
| | - Yoshihiro Yoneda
- National Institutes of Biomedical Innovation, Health and Nutrition; Ibaraki Osaka 567-0085 Japan
| | - Kazuaki Yoshikawa
- Institute for Protein Research; Osaka University; Suita Osaka 565-0871 Japan
| |
Collapse
|
43
|
Yan JJ, Xie B, Zhang L, Li SJ, van Peer AF, Wu TJ, Chen BZ, Xie BG. Small GTPases and Stress Responses of vvran1 in the Straw Mushroom Volvariella volvacea. Int J Mol Sci 2016; 17:ijms17091527. [PMID: 27626406 PMCID: PMC5037802 DOI: 10.3390/ijms17091527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022] Open
Abstract
Small GTPases play important roles in the growth, development and environmental responses of eukaryotes. Based on the genomic sequence of the straw mushroom Volvariella volvacea, 44 small GTPases were identified. A clustering analysis using human small GTPases as the references revealed that V. volvacea small GTPases can be grouped into five families: nine are in the Ras family, 10 are in the Rho family, 15 are in the Rab family, one is in the Ran family and nine are in the Arf family. The transcription of vvran1 was up-regulated upon hydrogen peroxide (H2O2) stress, and could be repressed by diphenyleneiodonium chloride (DPI), a NADPH oxidase-specific inhibitor. The number of vvran1 transcripts also increased upon cold stress. Diphenyleneiodonium chloride, but not the superoxide dismutase (SOD) inhibitor diethy dithiocarbamate (DDC), could suppress the up-regulation of vvran1 gene expression to cold stress. These results combined with the high correlations between gene expression and superoxide anion (O2−) generation indicated that vvran1 could be one of the candidate genes in the downstream of O2− mediated pathways that are generated by NADPH oxidase under low temperature and oxidative stresses.
Collapse
Affiliation(s)
- Jun-Jie Yan
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Bin Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lei Zhang
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shao-Jie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China.
| | - Arend F van Peer
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ta-Ju Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China.
| | - Bing-Zhi Chen
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Bao-Gui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
44
|
Zong C, Garner CE, Huang C, Zhang X, Zhang L, Chang J, Toyokuni S, Ito H, Kato M, Sakurai T, Ichihara S, Ichihara G. Preliminary characterization of a murine model for 1-bromopropane neurotoxicity: Role of cytochrome P450. Toxicol Lett 2016; 258:249-258. [DOI: 10.1016/j.toxlet.2016.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/13/2016] [Accepted: 07/10/2016] [Indexed: 11/27/2022]
|
45
|
Li S, Huang Q, Zhang B, Zhang J, Liu X, Lu M, Hu Z, Ding C, Su X. Small GTP-binding protein PdRanBP regulates vascular tissue development in poplar. BMC Genet 2016; 17:96. [PMID: 27357205 PMCID: PMC4928302 DOI: 10.1186/s12863-016-0403-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/17/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Previous research has demonstrated that ectopic expression of Ran-binding protein (RanBP) in Arabidopsis results in more axillary buds and reduced apical dominance compared to WT plants. However, the function of RanBP in poplar, which has very typical secondary growth, remains unclear. Here, the Populus deltoides (Marsh.) RanBP gene (PdRanBP) was isolated and functionally characterized by ectopic expression in a hybrid poplar (P. davidiana Dode × P. bolleana Lauche). RESULTS PdRanBP was predominantly expressed in leaf buds and tissues undergoing secondary wall expansion, including immature xylem and immature phloem in the stem. Overexpression of PdRanBP in poplar increased the number of sylleptic branches and the proportion of cells in the G2 phase of the cell cycle, retarded plant growth, consistently decreased the size of the secondary xylem and secondary phloem zones, and reduced the expression levels of cell wall biosynthesis genes. The downregulation of PdRanBP facilitated secondary wall expansion and increased stem height, the sizes of the xylem and phloem zones, and the expression levels of cell wall biosynthesis genes. CONCLUSIONS These results suggest that PdRanBP influences the apical and radial growth of poplar trees and that PdRanBP may regulate cell division during cell cycle progression. Taken together, our results demonstrated that PdRanBP is a nuclear, vascular tissue development-associated protein in P. deltoides.
Collapse
Affiliation(s)
- Shaofeng Li
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 100023, People's Republic of China
| | - Qinjun Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, 100091, People's Republic of China
| | - Bingyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, 100091, People's Republic of China
| | - Jianhui Zhang
- Plants for Human Health Institute, Department of Horticultural Science, North Carolina State University, 600 Laureate Way, Kannapolis, North Carolina, 28081, USA.,Biomarker Technologies Corporation, Beijing, 101300, People's Republic of China
| | - Xue Liu
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 100023, People's Republic of China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, 100091, People's Republic of China
| | - Zanmin Hu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, 100091, People's Republic of China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, 100091, People's Republic of China.
| |
Collapse
|
46
|
Abstract
Life depends on cell proliferation and the accurate segregation of chromosomes, which are mediated by the microtubule (MT)-based mitotic spindle and ∼200 essential MT-associated proteins. Yet, a mechanistic understanding of how the mitotic spindle is assembled and achieves chromosome segregation is still missing. This is mostly due to the density of MTs in the spindle, which presumably precludes their direct observation. Recent insight has been gained into the molecular building plan of the metaphase spindle using bulk and single-molecule measurements combined with computational modeling. MT nucleation was uncovered as a key principle of spindle assembly, and mechanistic details about MT nucleation pathways and their coordination are starting to be revealed. Lastly, advances in studying spindle assembly can be applied to address the molecular mechanisms of how the spindle segregates chromosomes.
Collapse
Affiliation(s)
- Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014;
| |
Collapse
|
47
|
Jilek JL, Sant KE, Cho KH, Reed MS, Pohl J, Hansen JM, Harris C. Ethanol Attenuates Histiotrophic Nutrition Pathways and Alters the Intracellular Redox Environment and Thiol Proteome during Rat Organogenesis. Toxicol Sci 2015; 147:475-89. [PMID: 26185205 DOI: 10.1093/toxsci/kfv145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ethanol (EtOH) is a reactive oxygen-generating teratogen involved in the etiology of structural and functional developmental defects. Embryonic nutrition, redox environment, and changes in the thiol proteome following EtOH exposures (1.56.0 mg/ml) were studied in rat whole embryo culture. Glutathione (GSH) and cysteine (Cys) concentrations with their respective intracellular redox potentials (Eh) were determined using high-performance liquid chromatography. EtOH reduced GSH and Cys concentrations in embryo (EMB) and visceral yolk sac (VYS) tissues, and also in yolk sac and amniotic fluids. These changes produced greater oxidation as indicated by increasingly positive Eh values. EtOH reduced histiotrophic nutrition pathway activities as measured by the clearance of fluorescin isothiocyanate (FITC)-albumin from culture media. A significant decrease in total FITC clearance was observed at all concentrations, reaching approximately 50% at the highest dose. EtOH-induced changes to the thiol proteome were measured in EMBs and VYSs using isotope-coded affinity tags. Decreased concentrations for specific proteins from cytoskeletal dynamics and endocytosis pathways (α-actinin, α-tubulin, cubilin, and actin-related protein 2); nuclear translocation (Ran and RanBP1); and maintenance of receptor-mediated endocytosis (cubilin) were observed. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis also identified a decrease in ribosomal proteins in both EMB and VYS. Results show that EtOH interferes with nutrient uptake to reduce availability of amino acids and micronutrients required by the conceptus. Intracellular antioxidants such as GSH and Cys are depleted following EtOH and Eh values increase. Thiol proteome analysis in the EMB and VYS show selectively altered actin/cytoskeleton, endocytosis, ribosome biogenesis and function, nuclear transport, and stress-related responses.
Collapse
Affiliation(s)
- Joseph L Jilek
- *Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Karilyn E Sant
- *Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Katherine H Cho
- *Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Matthew S Reed
- Biotechnology Core Facility Branch, Centers for Disease Control, Atlanta, Georgia 30333; and
| | - Jan Pohl
- Biotechnology Core Facility Branch, Centers for Disease Control, Atlanta, Georgia 30333; and
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah 84602
| | - Craig Harris
- *Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109;
| |
Collapse
|
48
|
Mondal S, Hsiao K, Goueli SA. A Homogenous Bioluminescent System for Measuring GTPase, GTPase Activating Protein, and Guanine Nucleotide Exchange Factor Activities. Assay Drug Dev Technol 2015; 13:444-55. [PMID: 26167953 PMCID: PMC4605356 DOI: 10.1089/adt.2015.643] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
GTPases play a major role in various cellular functions such as cell signaling, cell proliferation, cell differentiation, cytoskeleton modulation, and cell motility. Deregulation or mutation of these proteins has considerable consequences resulting in multiple pathological conditions. Targeting GTPases and its regulators has been challenging due to paucity of convenient assays. In this study, we describe a homogenous bioluminescent assay for monitoring the activities of GTPase and its immediate regulators: GTPase activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Since Mg2+ plays a critical role in influencing the affinity of GTPases with guanosine triphosphate/guanosine diphosphate (GTP/GDP) and the process of nucleotide exchange, manipulating Mg2+ concentrations in the GTPase reaction buffer allows continuous progression of the GTPase cycle and faster hydrolysis of GTP. The assay relies on enzymatic conversion of GTP that remains after the GTPase reaction to ATP and detection of the generated ATP using the luciferin/luciferase combination. The GTPase/GAP/GEF-Glo assay system enables monitoring of GTPase, GAP-stimulated GTPase, GAP, and GEF activities. The system can also be used to analyze these proteins when expressed in cells as fusion proteins by performing the assay in a pulldown format. The assays showed minimal false hits upon testing for compound interference using the library of pharmacologically active compounds and its robustness was demonstrated by a high Z′-factor of 0.93 and CV of 2.2%. The assay system has a high dynamic range, formatted in a convenient add–mix–read, and applicable to high-throughput screening.
Collapse
Affiliation(s)
- Subhanjan Mondal
- 1 Research and Development , Promega Corporation, Madison, Wisconsin
| | - Kevin Hsiao
- 1 Research and Development , Promega Corporation, Madison, Wisconsin
| | - Said A Goueli
- 1 Research and Development , Promega Corporation, Madison, Wisconsin.,2 Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| |
Collapse
|
49
|
Khuperkar D, Helen M, Magre I, Joseph J. Inter-cellular transport of ran GTPase. PLoS One 2015; 10:e0125506. [PMID: 25894517 PMCID: PMC4403925 DOI: 10.1371/journal.pone.0125506] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/24/2015] [Indexed: 12/25/2022] Open
Abstract
Ran, a member of the Ras-GTPase superfamily, has a well-established role in regulating the transport of macromolecules across the nuclear envelope (NE). Ran has also been implicated in mitosis, cell cycle progression, and NE formation. Over-expression of Ran is associated with various cancers, although the molecular mechanism underlying this phenomenon is unclear. Serendipitously, we found that Ran possesses the ability to move from cell-to-cell when transiently expressed in mammalian cells. Moreover, we show that the inter-cellular transport of Ran is GTP-dependent. Importantly, Ran displays a similar distribution pattern in the recipient cells as that in the donor cell and co-localizes with the Ran binding protein Nup358 (also called RanBP2). Interestingly, leptomycin B, an inhibitor of CRM1-mediated export, or siRNA mediated depletion of CRM1, significantly impaired the inter-cellular transport of Ran, suggesting a function for CRM1 in this process. These novel findings indicate a possible role for Ran beyond nucleo-cytoplasmic transport, with potential implications in inter-cellular communication and cancers.
Collapse
Affiliation(s)
| | - Mary Helen
- National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Indrasen Magre
- National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Jomon Joseph
- National Centre for Cell Science, Ganeshkhind, Pune, India
| |
Collapse
|
50
|
Katoh A, Ashida H, Kasajima I, Shigeoka S, Yokota A. Potato yield enhancement through intensification of sink and source performances. BREEDING SCIENCE 2015; 65:77-84. [PMID: 25931982 PMCID: PMC4374566 DOI: 10.1270/jsbbs.65.77] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/27/2015] [Indexed: 05/07/2023]
Abstract
The combined total annual yield of six major crops (maize, rice, wheat, cassava, soybean, and potato; Solanum tuberosum L.) amounts to 3.1 billion tons. In recent years, staple crops have begun to be used as substitutes for fossil fuel and feedstocks. The diversion of crop products to fuels and industrial feedstocks has become a concern in many countries because of competition for arable lands and increased food prices. These concerns are definitely justified; however, if plant biotechnology succeeds in increasing crop yields to double the current yields, it will be possible to divert the surplus to purposes other than food without detrimental effects. Maize, rice, wheat, and soybean bear their sink organs in the aerial parts of the plant, and potato in the underground parts. Plants with aerial storage organs cannot accumulate products beyond their capacity to support the weight of these organs. In contrast, potato has heavy storage organs that are supported by the soil. In this mini-review, we introduce strategies of intensifying potato productivity and discuss recent advances in this research area.
Collapse
Affiliation(s)
- Akira Katoh
- Center for Frontier Science and Technology, Nara Institute of Science and Technology,
Takayama 8916-5, Ikoma, Nara 630-0192,
Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency,
Kawaguchi, Saitama 332-0012,
Japan
| | - Hiroki Ashida
- Graduate School of Human Development and Environment, Kobe University,
3-11 Tsurukabuto, Nada, Kobe, Hyogo 657-8501,
Japan
| | - Ichiro Kasajima
- Center for Frontier Science and Technology, Nara Institute of Science and Technology,
Takayama 8916-5, Ikoma, Nara 630-0192,
Japan
- Institute of Floricultural Science, National Agriculture and Food Research Organization,
2-1, Fujimoto, Tsukuba, Ibaraki 305-8519,
Japan
| | - Shigeru Shigeoka
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency,
Kawaguchi, Saitama 332-0012,
Japan
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University,
3327-204 Nakamachi, Nara 631-8505,
Japan
| | - Akiho Yokota
- Center for Frontier Science and Technology, Nara Institute of Science and Technology,
Takayama 8916-5, Ikoma, Nara 630-0192,
Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency,
Kawaguchi, Saitama 332-0012,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|